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Abstract 

Chazelle, B., H. Edelsbrunner, L.J. Guibas and M. Sharir, A singly exponential stratification 

scheme for real semi-algebraic varieties and its applications, Theoretical Computer Science 84 

(1991) 77-105. 

This paper describes an effective procedure for stratifying a real semi-algebraic set into cells of 

constant description size. The attractive feature of our method is that the number of cells produced 

is singly exponential in the number of input variables. This compares favorably with the doubly 

exponential size of Collins’ decomposition. Unlike Collins’ construction, however, our scheme 

does not produce a cell complex but only a smooth stratification. Nevertheless, we are able to 
apply our results in interesting ways to problems of point location and geometric optimization. 

1. Introduction 

This paper studies techniques for building economical stratifications of real 

semi-algebraic sets. Let f, , . . . ,fn be n d-variate polynomials with rational 

coefficients; we assume that the number of variables d as well as the maximum 

algebraic degree of the polynomials are independent of n. We seek a partition of 
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X’ into “simply-shaped” cells, of dimensions ranging from 0 to d, so that each fi 

has constant sign (0, positive, or negative) over each cell c in the decomposition. 

If, in addition, each cell is a smooth manifold, such a decomposition is then called 

a sign-invariant strutiJication. Our goals are (i) to keep the number of cells as small 

as possible, and (ii) to keep the “shape” of each cell as simple as possible (both 

topologically and combinatorially). Obviously, the number of cells cannot be smaller 

than the number of connected components into which the varieties Vf; = {f; = 0) 

partition Bd. In the worst case this number is on the order O(nd), as easily follows 

from Milnor’s Theorem [6,7,38]. Note that these components might be very complex 

and thus completely unsuitable for our purposes. In particular, the number of 

polynomials needed to define a single connected component (in the unquantified 

first-order theory of the reals) might be very large, not to mention its topology which 

can be also very complex. To enforce property (ii), and more specifically, to ensure 

that each cell can be described by a constant-size formula and is diffeomorphic 

to an open k-ball, for some k G d, we need to cut up each such component still 

further. 

This problem has been studied extensively over the last 15 years. Collins’ landmark 

paper [22] yields a sign-invariant stratification with 0(n2d-‘) cells of simple shape. 

The resulting structure is powerful enough to decide the truth of any quantified 

formula in the first-order theory of reals, and in doing so, eliminates quantifiers 

from such formulae. In fact, quantifier elimination has been recently shown to be 

inherently doubly exponential in the number of variables [25]. Recent findings show, 

however, that many restricted problems related to the theory of reals can be solved 

in singly exponential time and storage. For example, deciding the existential theory 

of the reals [42], eliminating quantifiers from a formula with a bounded number of 

alternations between universal and existential quantifiers [9,30], or deciding if two 

points lie in the same connected component [lo]. Our paper can be regarded as 

another step in that direction. 

Let us first motivate our study by its applications. A major one is the generalized 

point location problem discussed in [ 161 and its applications. Let fi, . . . , fn be n 

d-variate polynomials as above, and let x be a point in 8’: is x a zero of any 1;? 

It is understood that the polynomials are given once and for all, but that the point 

x is a query which must be answered on-line. In many applications it is desirable 

to obtain more information than a simple yes-or-no answer, so we add the following 

requirements. If the answer is positive, the index i of some f; for which x is a zero 

should be given. Otherwise, the point x falls in some connected component c of 

l-h&G, {.Y E Sd If;(Y) # 01, and the output should return a pointer to some precom- 

puted point in c, or more generally, some precomputed attribute associated with c. 

Often, it is useful to obtain information about the varieties at or right above the 

query point. For example, if x = (x, , . . , xd) is not a zero of any J;, this might mean 

providing the index k of some fk (if any) such that fk(x,, . . . , x&_l, z) has the 

smallest real root (in z) larger than xd among all f;‘s. 

The motivation for studying this generalized form of point location is that its 

language is powerful enough to express any multidimensional searching problem 
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expressed as a first-order predicate in the theory of real-closed fields. A related 

application, which in fact is also used as a subroutine in the point location algorithm, 

is the following general paradigm: We are given the polynomials fi , . . . , fn as input 

data to some problem that needs to be solved over the entire space 8’. We would 

like to break the problem into independent subproblems, by decomposing Wd into 

a small number of cells and by obtaining in each cell c a subproblem that involves 

only the polynomials whose varieties V J; intersect c. If we can keep both the number 

of cells and the number of varieties crossing each cell small, then this divide-and- 

conquer scheme will be efficient. This paradigm has indeed been used for point 

location [18] (albeit only for hyperplanes), as well as for a miscellany of other 

algorithmic and combinatorial applications (see e.g., [4, 14, 17, 19, 20, 27, 32, 411). 

With the exception of [20], however, these applications involve only linear features 

(points, lines, hyperplanes, etc.). Moreover, most of these studies involve planar 

decompositions, and only very few efficient decomposition techniques are known 

in three dimensions [4,12,15] or higher [22]. 

The extensive theory of random sampling that has been developed in the last few 

years (e.g., in [14, 17, 19,20,27,32,41] provides a tool to implement this divide-and- 

conquer paradigm: Choose a random sample R of r of the varieties VA and obtain 

a sign-invariant decomposition of !lld for R. The analysis of [ 14, 17, 19, 321 implies 

that if each cell c in the decomposition has a simple shape, then, with high probability, 

no cell meets more than an(log r)/r varieties (for some constant a that depends on 

the dimension d and the degree of the given polynomials). Chazelle and Friedman 

[14] provide a deterministic method for constructing such a decomposition. Thus 

the size of the decomposition is a crucial factor in the overall complexity of this 

divide-and-conquer technique. 

This paper provides an efficient new technique for stratifying real semi-algebraic 

sets. Roughly speaking, we show how to partition d-space into cells of constant 

description-size, over which the signs of the J’s remain invariant. Each cell is a 

smooth connected manifold which admits a simple parametrization and can be fully 

specified as a semi-algebraic set over a constant number of polynomials. The number 

of cells is O(n) in one dimension and 0( n 2dP2) in dimension d > 1. Actually, with 

a bit of extra work it is possible to lower the space requirement to O(n2d-3p(n)) 

for d > 2, where p(n) is a very slow-growing function (so slow that its inverse is 

not even primitive-recursive); specifically, we have P(n) = 2”‘““, where c is a 

constant dependent only on the dimension d and the maximum degree of the input 

polynomials, and cy is a functional inverse of Ackermann’s function. This fairly 

minor improvement requires a lengthy analysis, so it will be omitted. The construction 

can be performed in time O(n2d-’ log n). Within the same asymptotic time we can 

also compute an algebraic point in each cell of the decomposition. 

As we mentioned earlier, our construction produces a number of cells which is 

singly exponential in the dimension (as a function of n), and is thus a noticeable 

improvement over the doubly exponential size of Collins’ decomposition [22]. Of 

course, the purpose of Collins’ construction is different from ours, since it is designed 

as a decision procedure for the first-order theory of real-closed fields. Incidentally, 
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our algorithm can decide the existential restriction of that theory, albeit not as fast 

as in [ll, 421. One drawback of our method is that, like Collins’, it generates 

polynomials of degree doubly exponential in the dimension. Reducing this bound 

to singly exponential is a challenging open problem. 

Applying this stratification technique in conjunction with the random sampling 

approach, we obtain an efficient point location algorithm that can answer any query 

in O(log n) time, using O(n2d-2+’ ) space, in dimension d > 1, for any fixed F > 0. 

The preprocessing time is O(n 2d+‘) time (deterministic) and O(nzd~*+“) (random- 

ized). These bounds assume that the coefficients of each input polynomial A, as 

well as of certain auxiliary polynomials derived by the construction, can be stored 

in a single computer word and that arithmetic operations on word-size integers can 

be performed in constant time. To obtain an upper bound on the bit complexity 

of the algorithm we must multiply both preprocessing and query times by a poly- 

nomial in the maximum number of bits required to encode any coefficient in the f;‘s. 

Our result is a substantial improvement over ther the best previous algorithm, 

which requires storage doubly exponential in the dimension; namely, 0( nZdpl) [ 161. 

Many algorithms have been given for searching among curves in two-dimensions 

[21, 28, 441. See also [26,39] for background information. 

Point location among algebraic varieties is at the center of subquadratic algorithms 

for many optimization problems. By straight substitution of our techniques we 

improve upon all these algorithms at once. Here are a few examples among many 

others: 

(1) Computing the minimum vertical separation between two sets of line segments 

in 3-space [37]. 

(2) Computing the longest line segment which fits inside a simple polygon [37]. 

(3) Computing the time at which the convex hull of a set of points in (polynomial) 

motion enters its steady-state [5]. 

(4) Given m red objects (algebraic curves, surface patches, etc.) and n blue 

objects, does any red object intersect any blue object? (A generalization of Hopcroft’s 

problem). 

(5) Given m rays and n triangles in 3-space, find the first triangle hit by each of 

the rays, or alternatively, find the number of triangles stabbed by each ray [16]. 

This paper is organized as follows. In the next two sections we discuss our 

stratification technique and we introduce the key notion of a semi-cylindrical cell 

decomposition. We discuss point location in Section 4 and mention some applica- 

tions of our techniques in Section 5. To preserve the flow of the presentation, all 

the proofs that are not essential for the understanding of the overall discussion have 

been relegated to an appendix. 

2. Preliminaries 

We recall some standard terminology and introduce some of the basic concepts 

to be used later. In particular, we define a sign-invariant stratification formally, and 
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we discuss the notion of a cylindrical cell and its upper boundary. Finally, we review 

the algebraic tools needed for eliminating variables from polynomials, and in 

particular, the fundamental theorem of subresultant theory. 

Let Qd = Q[xi , . . . , xd] be the ring of polynomials with rational coefficients. A 

subset of !lId is a semi-algebraic set if it can be derived from sets of the form 

{x E 8’ If(x) 3 0}, where f c Qd, by union, intersection, and complementation. It is 

a classical result that any semi-algebraic set in !Hd can be partitioned into manifolds 

of dimension between 0 and d [49]. Such a partition is called a stratijication; its 

elements are called strata. It is immediate that the n-fold product of the stratification 

of !R given by (-CO, 0), {0}, and (0, +OO) is itself a stratification of !!I”: its strata are 

called sign-sequences. Given a polynomial map F = (f, , . . , fn) : 8’ H Si”, where 

each J E Qdr the preimage F-‘(u) of a sign-sequence g is called a maximal sign- 

invariant set. A stratification of 8’ is sign-invariant for F if each stratum is a subset 

of a maximal sign-invariant set. 

Let us make a few remarks to clarify these concepts. It should be clear that the 

collection S of maximal sign-invariant sets need not always be a stratification. For 

example, let d = 2 and F = (f,), with f,(x, y) = xy. The variety {(x, y) ~!H*lf,(x, y) = 

0) belongs to S, but it contains the critical point (0,O) and thus fails to be a stratum. 

Interestingly, however, perturbing fi into f; = f, + E, for almost any E # 0, ensures 

that the variety f ,F(x, y) = 0 consists of regular points, and hence, is a l-manifold’. 

In general, it follows from Sard’s Theorem [47] that the values of F(x) are all 

regular, except for a zero-measure subset of !H”. Consequently, for almost any change 

of F into F + E, where E = (E,, . . . , e,) E ?Xn, the perturbed variety 

for any ks d, is a (d - k)-manifold. (This means, for example, that a randomly 

perturbed polynomial curve in !H* does not self-intersect.) It follows trivially that 

each maximal sign-invariant set is now a manifold. Thus, if S is not a stratification 

to begin with, almost any perturbation in the constant terms of the n coordinate 

polynomials of F will make it into one. Although not essential for our theory, this 

might be a useful tool in practice. 

The main tool behind our data structure for point location is a new constructive 

proof that semi-algebraic sets admit sign-invariant stratifications. A crucial feature 

of the construction is that each stratum is a semi-algebraic set which can be defined 

by a constant number of polynomials of Qd. We call such a set a Tarski cell. This 

can be regarded as a first step towards triangulating real-algebraic varieties. What 

will be lacking in our construction, however, is that our Tarski cells do not “glue” 

properly to one another to form a cell complex [45]. 

A cylindrical cell of !M is either a singleton {a}, where a is real-algebraic, or an 

open interval (a, b), where a and b are real-algebraic or f~. The upper boundary 

of the cell c, abbreviated ubd (c), is {a} in the first case and {b} in the second case. 

’ Throughout this paper, unless specified otherwise, the term manifold will refer to a smooth manifold 
without boundary. 
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If b = +a~, however, the upper boundary of c is not defined. Given x = 

(x1 3.. ., X&I) E !nd-’ and YG%,theset{(x,,..., x,_,,y)ly~ Y}isdenotedxOY. 

If k > 1, a cylindrical cell of Sk falls in one of the five categories below, where c’ 

is a cylindrical cell of Sk-‘, andf; g are real-valued smooth (i.e., infinitely differenti- 

able) functions over c’: 

(i) c = U {xO(f(x), g(x)) I x E c’}, where c’ is a cylindrical cell of ?XkP’, and 

f(x) < g(x) for all x E c’. The upper boundary of c is lJ {xO{g(x)}lx E c’}. 

(ii) c = lJ {x0(-a, g(x)) I XEC’} and ubd(c)=L_J{xO{g(x)}lx~c’}. 

(iii) c = lJ (x0 (f(x), too) 1 x E c’}; its upper boundary is not defined. 

(iv) c=lJ{xOR~ x E c’}; its upper boundary is not defined. 

(v) c = u w3u-(x)II x~c’}andubd(c)={c}. 

The smoothness off and g ensures that cylindrical cells and their upper boundaries 

(when defined) are connected smooth manifolds which admit single-chart bases 

[47] (meaning that they can be described by a single local parametrization). In the 

following the dimension of a cell will refer to the dimension of the corresponding 

manifold. 

Lemma 2.1. A cylindrical cell of !Hd is a k-manifold (k s d) which can be parametrized 

by a single smooth difleomorphism mapping the open unit ball iJk to the cell. 

Proof. See Appendix. q 

Lemma 2.2. Whenever defined, the upper boundary of a cylindrical cell of dimension 

k (as a mantfold) is a cylindrical cell of dimension k or k - 1. 

Proof. Straightforward induction. 0 

The notion of upper boundary allows us to define cell decompositions in a two-stage 

process: First, we pack 3’ with cylindrical cells whose closures cover ‘8’; then we 

complete the packing into a covering by adding on appropriate upper boundaries. 

We develop this idea in detail in the next Section. 

We close these preliminaries with a short review of subresultant theory. Let 

A(x) =COGiSa qx’ and B(x) =COrisb &xi be two polynomials with coefficients in 

0 or &, (or actually in any integral unique-factorization domain with identity 

[48]), where a,, & # 0. From the unique factorization Theorem we easily find that 

A(x) and B(x) have at least one common divisor if and only if there exist two 

polynomials U(x) and V(x) of degree b - 1 and a - 1 respectively, which do not 

vanish identically, such that 

U(x)A(x) = V(x)B(x). (2.1) 

Indeed, if the identity above is true then all the irreducible factors of U(x)A(x) 

divide V(x)B(x). But V is of degree too small to contain all the factors of A with 
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their multiplicities, so some factor of A must divide B. Conversely, if A and B have 

a common factor f(x), then we have the equation 

(B(x)lf(x))A(x) = (A(x)lf(x))B(x), 

which establishes our claim. Now, if we develop (2.1) we obtain a homogeneous 

system of linear equations which, in order to have a nontrivial solution, must have 

its determinant equal to 0. This (a + b) x (a + b) determinant is called the resultant 
of A and B: 

Pursuing in this vein we can characterize the fact that A and B have a specified 

number of common factors by using subdeterminants of the matrix above. For 

O<j s min(a, 6), let Mj be the matrix obtained by deleting the last j rows of A 
coefficients, the last j rows of B coefficients, and all the last 2j columns. We can 

then define psc’(A, B) (the jth principal subresultant coeficient of A and B) as the 

determinant of Mj. The same reasoning used above leads to the following important 

fact (e.g., Brown and Traub [S]). 

Lemma 2.3. Two polynomials A and B have exactly j common roots (i.e., j is the degree 

of their greatest common divisor) if and only if j is the least index k for which 
psck(A, B) # 0. 

3. Semi-cylindrical cell decompositions 

Let F=(f,,.. . ,J,) be a polynomial map in Q$ . We build a sign-invariant 

stratification of .Sd for F by assembling cylindrical cells together, one dimension 

at a time. Let V $ ={x IA(x) = 0). The gist of the method is to consider the variety 

V f; xfr, for each pair i S j, and form its intersection with each of the remaining 

varieties. Then we project all these intersections onto Sd-‘, along with the critical 

points of VJXJ, and the silhouettes of all the varieties (i.e., the critical sets of their 

projection maps). We treat these projections as a collection of polynomials in Q&l. 

Proceeding recursively, we end up with a cell decomposition of Sd-‘, which we 

next lift cylindrically into a cell decomposition of Zd. Finally, we use the variety 

V J; xf; to chop off the vertical cylinders into cylindrical cells. We now repeat this 

operation for all pairs J,&, which gives us a total of (“z’) cell decompositions of 
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Md, referred to as K-decompositions. Next, we examine every cell of every K- 

decomposition in turn, and keep only those that are free of intersections with any 

variety V fk. These candidate cells might still be intersecting, so we add one final 

selection criterion based on the indices of their defining polynomials. This gives us 

a collection of mutually disjoint Tarski cells which, together with their upper 

boundaries, constitute the desired sign-invariant stratification of 8’. 

The resulting stratification, denoted 9’,(F), is called a semi-cylindrical cell decompo- 

sition. If d = 1, we have Collins’ decomposition: The union of the n varieties Vf; 

is a discrete set of real-algebraic numbers 5, < & < . + * < &, and 9’r( F) consists of 

the cylindrical cells 

To treat the general case we must define the intermediate K-decomposition K (cp, $), 

where cp and $ are two polynomials of Qd. As we just outlined, the master plan is 

to identify the building blocks of 9, (F) among the cylindrical cells of K(f;,A), for 

all i,j (isj). 

Let’s look at an example. Consider the four bivariate polynomials f; (1~ i G 4) 

whose varieties, A, B, C, D, are shown in Fig. 1. Pairing A and B, we obtain the 

decomposition of 3 corresponding to the sequence of points and horizontal segments 

in Fig. 2. Lifting this decomposition in the vertical direction gives us our first 

K-decomposition (one should ignore the dashed curves in the figure). It consists 

of a collection of cylindrical cells. Let us restrict our attention to the two-dimensional 

cells that do not intersect any of the varieties A, B, C, D (dotted and hashed regions 

in Fig. 2). Some of the cells (the hashed regions) will be rediscovered during the 

pairings (A, A) and (B, B), and are best ignored for the time being. The three dotted 

Fig. I 
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Fig. 2. 

regions are the two-dimensional cells which we keep once and for all as part of our 

final decomposition. We also add on their upper boundaries. The remaining cells 

are obtained by repeating the argument with the nine other pairings of A, B, C, D 

(Fig. 3). The labels of the regions indicate the pairings at which they are selected. 

Note that because of the junctions at a and b the final decomposition does not 

form a cell complex. These “faulty” junctions always occur at the bottom of vertical 

segments and not at the top because of our rule of adding upper and not lower 

boundaries. Of course, this problem is easy to fix in two dimensions but it appears 

much more formidable in higher dimensions. 

3.1. The K-decomposition 

Let A be a polynomial in Qd. Regarding A as a univariate polynomial with 

coefficients in the ring Qd_,, we can write 

4x,, . . .,Xd)=CO~i~oAi(xl,...,Xd~~)Xa, 
where A, is not identically null. Following Collins’ notation [22] we define deg(A) = 

a and Zdcf(A) = A,(x,, . , . , xd-,). For any k (06 kc a) we also need the kth 

reductum 

redk(A)= C Ai(x,, . . . ,x,-,)x;. 
“~i=--a-k 

L,et G be the polynomial map whose coordinate functions are the nonzero poly- 

nomials in U Gi, where 
3SiS5 

(i) G,={redk(g))k~O and deg(redk(g))Sl and gE{q, $,fi ,..., fn>>, 

(ii) G,={redk(g)IkaO and deg(redk(g))Z1 and gE{q,+}}, 



B. Chazelle et al. 

AC 

AB 

\ 
BC 

2 

AA 

/- 

BC 

L 

AC 

Fig. 3. 

(iii) G = {&f(g) 1 g E GJ, 
(iv) G,={psck(g,Llg/3xd)]g~ G, and 0~ k<deg(ag/ax,)}, 

(v) G5 = {psck(f; g) 1-f~ G2 and g E G, and 0~ k < min(deg(f), &g(g))}. 

The reader familiar with Collins decomposition will recognize similarities in the 

variable elimination procedure. One crucial difference, however, is that all pairings 

here involve either cp or +, and are therefore considerably fewer. Regard each g as 

a univariate polynomial in x,, so its coefficient domain is parametrized by a point 

in Sd-‘. Roughly, (iv) delimits the regions of %‘-’ where the number of real roots 

of each g E G, changes, while (v) keeps track of where cp and $ (and their reductae) 

acquire or lose common roots with each g. The reason for including (iii) is that 

changes in the number of roots might occur simply because of changes in the degree 

of g. (Actually, this slight annoyance can be avoided by applying a normalization 

procedure described in [40] for Collins’ decomposition: The idea is to change 

coordinates so that each g receives a constant nonzero leading coefficient.) 

We are now ready to construct Yd-, (G) recursively. At this point we must mention 

an assumption which we wish to make for the sake of convenience: Every polynomial 

g(x, 7. -. 9 xd) should be well-based [46], meaning that g, as a univariate polynomial 

in xd, should never vanish identically. In other words, its coefficients in QdPl should 

never be all 0 simultaneously. Furthermore, this should also be true in all the 

recursive calls made by the algorithm. As it turns out, a random rotation in the 

coordinate axes ensures well-basedness with probability 1. We shall not elaborate 

on this issue, which is thoroughly discussed in [46]. 
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Note that, unlike the base decomposition used in Collins’ construction, YdPl( G) 

is much too coarse to delineate the x,-roots of each J;. Still, since P’+,(G) is 

sign-invariant for G, we have a form of partial delineation. To elaborate on this 

point, we need a few definitions. Let XE %‘-’ and let p(x; z) E Qd_,[z]_ Given a 

connected manifold S E % d-1 we say that the functions { li : S H 8 11~ i =S I} delineate 

p over S if 

(i) each f; is smooth over S; 

(ii) for each x E S, we have J,(x) < l*(x) < * . . <l,(x); 

(iii) for each k = 1, . . . , I, there is an integer mk such that, for each x E S, <k(x) 

is the kth largest distinct real root of p, and this root has multiplicity mk ; 

(iv) for each x E S, p has exactly 1 distinct real roots. 

Note that the domain of li need not extend beyond S and that the functions trace 

only distinct real roots. Our definition of delineation differs from the standard one 

[22] in two minor aspects: ignoring complex-valued roots and requiring smoothness. 

Let us now substantiate our previous claim about partial delineation. We will 

eventually prove that the cells of yd(F) are manifolds which are diffeomorphic to 

the k-dimensional unit ball Uk, so let us assume inductively that this is true of 

YdP,(G) (the basis case being obvious), and that Yd-,(G) is a sign-invariant 

stratification for G. We also assume that d > 1. 

Lemma 3.1. The functions cp, $,fi, . . . ,fn can all be delineated over each cell of 

yd-l(G). 

Proof. See Appendix. I? 

Let g be the product of two polynomials r and s, where I E {cp, (CI} and s E 

{cp,Icr,fi,.. . ,fn}. We will now show that g is delineated over each cell c of yd_r(G). 

From the proof of Lemma 3.1, it suffices to show that for g as a univariate polynomial 

in xd, the number of distinct roots of g(x,, . . . , xd) remains constant for each 

(XI,..., x&r) E c. We have deg(g) = deg(r) + deg(s), so G, ensures that the degree 

of g is invariant over c. Now what about root multiplicities? Since both r and s can 

be delineated over c the only thing to check is that the degree of the greatest common 

divisor of r and s (again as polynomials in xd) is constant over c. But this is precisely 

what G5 is there to ensure. 

For a given x E c and polynomial g(x, z), form the list of distinct real roots of g 

and merge together these lists for all g in {cp(x, z), 4(x, z),f,(x, z), . . . ,fn(x, z)}. We 

obtain a list of smooth functions pr(x) s . * * s p,(x). Since c delineates cp x g for 

anygE{+,fi,.. . ,fn}, the real-root functions associated with cp are strictly ordered 

among the others: This means that if p, is associated with cp, then for all j, we have 

pi < pj, or pi = pj, or pi > p, over the entire domain c. We refer to this property as 

partial delineation. Of course, the same applies to I/I. Now let p,(x) < . . * C&(x) 
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(k G I) be the (distinct) real-root functions associated with cp x $. Since these func- 

tions are smooth we can build a stack of cylindrical cells: 

(i) U {x0(-~, PI(x)) Ix E ~1, 
(3 U {x0( PdxL +a) I x E cl, 

(iii) LJ {x0( p;(x), pi+l(x)) Ix E ~1 (1 s i < k), 
(iv) lJ{x~{~i(x)}~x~~}(l~i~k). 

Cells of type (i)-(iii) are called layer cells, whereas cells of type (iv) are called 

section cells (think of a birthday cake). Note that these notions are well defined 

because the polynomials are well-based. A remark which will have its importance 

later is that each section cell is the upper boundary of a unique layer cell. Collecting 

cells for all CE .Yd-,(G) forms the desired decomposition K(cp, $). In light of 

Lemmas 2.1 and 3.1 it follows by induction that K (cp, I,!J) is a stratification of IHd 

into cylindrical cells. The lemma that follows describes the most useful property of 

layer cells, for our purposes. It is an immediate corollary of partial delineation. 

Roughly speaking, the lemma says that if we can poke a layer cell from floor to 

ceiling with a vertical segment that intersects none of the varieties in the middle, 

then the whole cell is itself free of intersections with the varieties. 

Lemma 3.2. Suppose that a layer cell c E K (q, I,!J) contains a point x = (x, , . . . , &) 

such that g(x,, . . . , x&l, z) # 0, for any g E {cp, $,f,, . . . ,f;,} and any z E % satisfying 

(x1,. . . , xd_,, z) E c. Then the same is true of any x E c. Furthermore, given x = 

(x1,.. . , xd ) E c, the subset of functions g in { cp, I/J, f, , . . . , fn} which contribute the next 

real root (aspolynomials of Qd-,[ z]) larger (or smaller) than xd is invariantfor allx E c. 

Let us now show that these cells are Tarski cells (i.e., admit constant size 

representations) and that an algebraic point can be computed for each of them. 

Again, we proceed by induction on the dimension d. Regarding the representation 

issue, it follows from the four cases listed above that all we need to show is that 

being the kth largest distinct real root of cpX(z) x I/J,(Z) can be expressed by a 

quantifier-free formula involving only a constant (dependent on d) number of 

polynomials and Boolean connectives. This is quite obvious if we allow quantifiers 

[2] which is fine since we can use Collins’ method afterwards to eliminate all the 

quantifiers. To compute an algebraic sample point in each cell is straightforward. 

As in [22], we lift an algebraic point x E c E Yd_,( G) into ?Hd by assigning to it the 

following sequence of x,-coordinates: 

PI(X) - 1, p,(x), p1’x);p2(x), . . . , p,-,(x), pk-l(x~pk(x), j&(x), P,‘(x)+ 1. 

Of course, the difficulty is to compare and do arithmetic with (recursively represen- 

ted) real-algebraic numbers, [9, 23, 24, 29, 30, 35, 36, 431 for a discussion of this 

and related issues. A very short primer on real-algebraic numbers is given in the 

Appendix. We will have to come back to the subject later when we analyze the 

complexity of the algorithm. 
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3.2. The semi-cylindrical cell decomposition 

We are now ready to assemble our semi-cylindrical cell decomposition. Given 

F=U-,,...,.L)EQZ, we begin by computing K(f;,f;) for each pair i,j such that 

1 s i ~j s n. Then we argue that the (“:I) K-decompositions contain all the cells 

necessary to form Yd(F). The only problem is finding the right cells. Intuitively, 

we would like to include only layer cells that are not crossed by any variety; collecting 

such cells over all pairsJ;,J; will give us only “empty” layer cells, which, put together 

and glued to their upper boundaries, will yield the overall desired decomposition. 

Some caution must be used, however, to avoid accepting the same cell several times. 

This selection process is now described in detail. Let c be a layer cell of K(A,A) 

and let (Y = (a,, . . . , ad) E c be its precomputed sample point. Should c be accepted 

into Yd(F)? To decide, we compute three sets of indices L(a), M(a), U(a). Let 

2,s.. . c z, be the real roots of the univariate polynomials fk( a,, . . . , ad-, , z) 

(1 s k s n), where each zi is associated with a unique fk. We partition the sequence 

of roots into blocks B, , Bz, . . . of equal value. Thus, all zk’s in B, are equal and 

strictly less than the roots in BZ, etc. Now let B, be the block (if one exists) whose 

corresponding root value is precisely (Yd. We define M(a) (resp. L(a) and U(a)) 

as the set of indices associated with B, (resp. B,_, and B,,,). If there is no such 

block B,, then M(a) is empty and L(a) (resp. U(a)) is the set of indices associated 

with the block whose root value is the one immediately smaller (resp. larger) than 

(Yd. Note that any one of L(a), &f(a), or U(a) might be empty. Assume that all 

three sets have been computed. With the convention that min 0 = 1, the inclusion 

rule for c is particularly simple: Accept c if and only if 

M((Y)=@ and {i,j}={min L(~~),min U(a)}. (3.1) 

(The minimization is used to ensure that no cell is accepted more than once.) To 

complete the construction of yd(F), we simply throw in the upper boundaries of 

each layer cell accepted. This asymmetry justifies the name semi-cylindrical cell 

decomposition. The following falls straight out of Lemma 3.2. 

Lemma 3.3. Given a polynomial map F = (f, , . . . ,fn) E Qz , the set yd( F) is a sign- 

invariant stratiJication of !Xd into Tarski cylindrical cells. 

Proof. It suffices to show that given x E !Hd there is a unique cell c in Yd(F) that 

contains x. We begin with the case where M(x) = 0. The key observation comes 

from Lemma 3.2: Given x E c, the set {min L(X), min U(x)} is invariant over c. This 

implies that the unique cell of K(J;,J) containing x, where i = 

min{min L(x), min U(x)} and j = max{min L(x), min U(x)}, is also the unique cell 

of Yd (F) that contains x. Suppose now that M(x) # 0. Then because of well- 

basedness, the point y = x + (0, . . . , 0, --a) satisfies M(y) = 0, for any positive F 

small enough. Therefore, it lies in a unique layer cell of 9, (F). The upper boundary 

of that cell is the unique cell of yd (F) that contains x. 0 
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The reader is invited to check that Fig. 3 is indeed the decomposition resulting 

from the curves of Fig. 1. A few observations are in order. Why are not the two 

regions labelled AA at the bottom left merged together? The reason is that during 

the pairing (A, A), the silhouette of B (and C for that matter) is projected in the 

vertical direction and causes this apparently useless separation. To avoid it might 

be tricky because silhouettes are sometimes needed for delineation, as shown in 

Fig. 4. Note that these two regions are discovered during the pairing (A, A), where 

they are included in the final decomposition, but also during the pairings (A, B), 

(A, C), and (A, D). Finally, the reader should pay particular attention to the “faulty” 

junctions a and b. What happens there is that the two-dimensional region labelled 

AB, incident upon these points, forces its upper boundary into the decomposition, 

but this clashes with the lower boundaries of the regions right above. 

Fig. 4. 

3.3. Trimming the strati$cations in lower dimensions 

Semi-cylindrical cell decompositions often contain many superfluous features: 

certain cells could be merged together and we would still have a sign-invariant 

stratification. As we already saw, Fig. 3 displays several examples of that. This is a 

phenomenon which seems difficult to avoid. As we will show in Section 3.4, our 

construction yields 0( n 2dP2) cells, which is still far from the Thorn-Milnor bound 

of O(nd) on the maximum number of sign-invariant components. It is possible to 

trim down the decomposition in two and three dimensions. The three-dimensional 

case is quite complicated, however, and yields only modest savings, so we will only 

discuss the trimming process in two dimensions. 

We begin with a brief review of Collins’ decomposition in two dimensions. Let 

F = (fi, _ _ . ,fn) be a polynomial map in Qg and let (x, v) be a Cartesian system of 

coordinates. A cylindrical algebraic decomposition for the polynomials f, , . . . , fn, or 

cad for short [22], is defined by considering the projection set C = IJzGi<d Ci, where 

(i) C,={redk(J)IkaO and deg(red”(A))zl and l<iSn}, 

(ii) G={ldcfk)IgE Gl, 
(iii) C, = {psck(g, ag/ay) lg E C, and 0~ k < deg(ag/ay)}, 

(iv) G = {psck(f, g) IL g E G and 0 s k < min( deg( f ), deg(g))}. 
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This is the projection set in its most general form, so that generalizing it to higher 

dimensions is just a matter of substituting the right variables. As it turns out, reductae 

are not necessary in two dimensions, as our previous discussion on delineation 

should make clear. Indeed, each polynomial Z&f(J) . is univariate and therefore has 

a finite number of roots. Since delineation among these roots will be ensured, 

anyway, the reductae become irrelevant. (We shall leave them in, however, for the 

sake of simplicity). 

A cad of the real line for polynomials g,, . . . , g, is defined just like a semi- 

cylindrical cell decomposition for the polynomial map (g,, . . . , g,). To define the 

cad for F (in two dimensions), we begin by computing a cad of !R for C, which 

we will use as a base decomposition. Then we build cylindrical cells by lifting the 

cells of the one-dimensional decomposition, using the J’s to create sections. The 

process is exactly the same as if we tried to define a K-decomposition with respect 

tofi,...,fn using the one-dimensional cad as a base decomposition. We do not 

elaborate on Collins’ construction any further and refer the reader to [22] for details. 

However, let us mention the useful fact, proven in [46], that because of well- 

basedness, a cad is a cell complex. 

We define a vertical edge to be any one-dimensional layer cell. Similarly, a vertex 

is a O-dimensional cell. Next, we set out to remove extraneous vertical edges. To 

do so, we need adjacency information about the cad, which we obtain by computing 

all cell incidences. There are several ways to do that. For example, Schwartz and 

Sharir [46] give a method for determining into how many real roots a given root 

function splits, as we move from a cell to one next to it (which is the key question 

for determining incidences among the cells of a Collins decomposition). Given a 

real root p of cp(x, z) E Q[z], what happens to it as x moves to x+ EV, where u is 

a vector pointing towards the next cell, and p splits into several roots? For each 

new root z, we can express z -p by a fractional power series in E. A method is then 

needed to assess how many terms must be computed to be able to count the number 

of splits. This leads to a polynomial-time algorithm for computing incidences 

between cells of codimension 0 and 1. Using a different approach based on certain 

gap Theorems for real-algebraic numbers, Prill [40] gives a general polynomial-time 

algorithm for computing cell incidences. The rough idea is to compute approximate 

sample points for the cells and test incidence between two cells by checking how 

close their sample points are. The key here is to prove that points need not be too 

close and that fairly coarse approximations can be used. In our case, however, we 

can avoid many of these difficulties by using a simple procedure from [3] which is 

tailored for two dimensions and relies only on root isolation. The gist of the method 

is to enclose each critical point in a box small enough so that all the branches at 

that point cross the same vertical side. See also [33]. Other techniques for analyzing 

the topology of real-algebraic curves (which is what the discussion above is all 

about) are given in [24,29,43]. 

We now return to our main objective, which is to characterize the necessary 

vertices and edges and set out to eliminate all the others. We must assume that all 
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the cell incidences of the cud have been computed. We say that a point (a, b) E ZR2 

is proper if 

(1) J;(a,b)=Idcf(redk(f;))(a)=O,forsomei(l ~i~n)andsomek~Osuchthat 

deg(redk(A)) 2 1, or 

(2) _&(a, b) =psc’(g, ag/ay)(u) =0 and g = redk(J;), for some i, k, 1 such that 1 s 

isn, k>O, and O~l<deg(ag/ay), or 

(3) $(a, b)=J(u, b)=O, for some i,j (1s i,jGn). 

We extend case (1) to the points at infinity along asymptotic branches. Figure 5 

depicts proper vertices of all three types. Case (1) shows two proper points of type 

(l), one of which is at infinity. We shall now remove every vertical edge of the cud 

that is not incident upon at least one proper vertex (possibly at infinity). An example 

is given in Fig. 6. Because the edges removed do not delineate any function locally, 

the natural variant of Lemma 3.2 still holds. That is, given any layer cell c of the 

new cud, the functions f,, . . . , fn which contribute the next real root larger (or 

smaller) than y are the same for all (x, v) E c. Similarly, any point in a given section 

cell is the zero of the same subset of J;‘s. Note that the order of removal does not 

matter. (One might also observe that this cleanup will not always produce a minimal 

set of vertical edges: Indeed, edges might still remain which play no role in the 

delineation process.) Identifying edges to be removed can be done directly on the 

basis of the information provided by the cell incidence algorithms mentioned earlier. 

Similarly, repairing the decomposition (e.g., merging edges adjacent to a removed 

edge) involves only straightforward local surgery, once incidences are known. It is 

a simple exercise to show that the edge removal keeps all the cells cylindrical and, 

in particular, maintains their smooth differential structure. This completes our 

discussion of the sign-invariant semi-cylindrical cell decomposition of 8’ for F, or 

4 

i; 

(1) 

I# 
Fig. 5. 

H-W 
Fig. 6 
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2-scd for short. Since the number of proper vertices is O(n*), a simple planarity 

argument shows that the number of resulting cells is O(n’) as well. 

3.4. Complexity analysis 

The combinatorial complexity of 9, (F) obeys a simple recurrence relation. Let 

c(d, 6, n) be the maximum number of cells in Yd(F), given that F = (f,, . . . ,fn) 

and each f; E Qd has degree at most b. The size of U3_ issG, does not exceed 

2b3n + b*n and, because the subresultants we use are determinants of size at most 

2b by 2b, their maximum degree is at most 2b*. Consequently, we have ~(1, b, n) = 

O(n) and 

c(d, b, n)s(46+1) 
n+l 

( > 
2 c(d-1,26’,(2b+l)b*n), ford>l. (3.2) 

This recurrence is very conservative, so let us look more closely at the case d = 2. 

In particular, let us estimate the number E of edges in Y*(F) when b is considered 

a constant. This will give us an asymptotic upper bound on the total number of 

cells. We have E = E,+ E, , where E, counts the section edges and E, the vertical 

edges. The closure of every vertical edge contains at least one proper point and 

there are O(n’) proper points, so E, = 0( n’). Since, obviously, E, = E,+O( n’), we 

derive ~(2, b, n) = 0( n’), in the case where b is a constant. 

Resolving the recurrence in (3.2) we find that for any d 2 2, c(d, b, n) = O( nId-*). 

Note that if b = 1 (the linear case) then we can use simpler and more efficient 

methods (e.g., Clarkson [ 171, Edelsbrunner [26]), which produce only 0( nd) cells. 

Let I be the maximum norm-length of the J’s, that is, 

It follows from Collins’ analysis that the norm-length of any intermediate polynomial 

is at most O(l), if we take b to be a constant and assume that a computer word is 

at least I bits long. Similarly, encoding the sample points will require O(1) words 

per point. An important remark is that although we can assume that b and d are 

fixed constants, we cannot extend this to 1. Indeed, treating 1 as a constant would 

limit the maximum number of distinct polynomials to a constant: not a very wise 

thing to do! 

The preprocessing time t(d, b, n) follows a recurrence similar to (3.2). Up to 

within a constant factor, we have 

t(d, 6, n) s t(d - 1,26’, (2b-t l)b*n) 

c(d - 1,26’, (26+ l)b2n)h(d, b, n), 

where h(d, b, n) is the time for checking whether a cell of a K-decomposition of 

!lid should be accepted in the semi-cylindrical cell decomposition. For simplicity, 
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we will only count the number of word operations. Since the norm-length of all 

intermediate polynomials remains linear in the maximum norm-length 1 of the input 

polynomials, the bit complexity of the preprocessing will differ from our measure 

by at most a polynomial in 1. As usual, we assume that b and d are constants. There 

are two (related) points to be discussed: (i) computing sample points and (ii) testing 

acceptance of a cell into Yd(F). 

Recall that the data structure must provide a precomputed algebraic point in each 

cell of the semi-cylindrical cell decomposition. We have already seen how to specify 

these points, but we have not said anything about representation. The obvious 

solution is to use a recursive specification of real-algebraic numbers. One problem 

with that approach, however, is that an operation as simple as comparing two 

algebraic reals becomes a major challenge. Instead, we follow the approach of 

Collins [22] which is intimately based on Rubald’s methods for computing in 

algebraic extension fields without requiring minimum defining polynomials. Collins’ 

approach works fine when computing samples, but it does not fare nearly as well 

when testing cell acceptance. The reason is that it tends to make the asymptotic 

cost too heavily dependent on n, as opposed to the other parameters b, d (which 

we like to regard as constants). Fortunately, it is not too difficult to fix these problems. 

Without loss of generality, we will consider the representation of a sample point 

(a,,.**, c+) of K(f, ,f2). The point is specified by lifting into sd the (recursively 

computed) algebraic point ((Y, , . . . , ad_l), which itself has been computed recur- 

sively from some other K-decomposition of lesser dimension. From now on, we 

say that a real-algebraic number is isolated if it is expressed as the unique distinct 

real root in a rational interval of some primitive squarefree integral polynomial*. 

We assume that crl has been isolated. Let Q(cz,, . . . , ai) denote the multiple real- 

algebraic extension field obtained by adjoining (Y, , . . . , ai to Q. We shall inductively 

assume that Q(al,. . . , ad-I) has been reduced to a simple extension field Q(6) 

and that 6 has been isolated. We also assume that each (Y, (1 G i < d) is expressed 

as Ai( where Ai is an integral polynomial. 

For each i = 1,2, let (p,(z) be the univariate polynomial f;(ai, . . . , a&_l, z) with 

coefficients in Q(6). First, we compute a coarsest square-free basis ?P = {J+%~, . . . , I&,,} 

for {cp, , (p2}. Next, we compute a list of distinct open rational intervals I,, . . . , Iv, 

along with a list of indices p,, . . . , py, such that (i) I, < * . . < Iu, (ii) each I, contains 

one real root of +!J,+, and (iii) each distinct real root of fl,,is, I,!J~ lies in a distinct 

I,. After this root isolation process, we must redefine the real roots by means of 

We recall some standard terminology. An integral univariate polynomial p is primitive if its coefficients 

are relatively prime. If they are not, their greatest common divisor is called the contents of the polynomial; 
factoring out the contents from each coefficient gives the primitiue part of p. These notions generalize 

trivially to any unique-factorization domain. Given a set P of primitive polynomials, a basis B for P is 

a set of primitive polynomials of positive degree, pairwise relatively prime, such that (i) any b E B divides 

at least one polynomial of P and (ii) any p E P can be expressed as a product of polynomials in B. If 

P is arbitrary, then its basis consists of the contents of its polynomials along with the basis of their 

primitive parts. Finally, it is well-known that P always admits a coarsest basis B+, in the sense that any 

element of any basis for P divides some element of B+. 
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polynomials with integral coefficients. For each I,$, retrieve the intervals I,,, , . . . , I,,, 

which isolate its own real roots and compute a nonzero primitive square-free integral 

polynomial I,$ as well as a sequence of nonoverlapping intervals f,,, , . . . , f,, such 

that, for each j (1 c j 6 u) f,,, c I,, and the unique root of I+!J~ in I,,, is also the unique 

root of Gi in f,,, . Finally, once we have merged all the intervals i’s, it becomes trivial 

to express the dth coordinates of all the sample points lifted from ((or, . . . , (Y&l ) 

in K(fl,fi). The sample points in the section cells are already fully specified. The 

other sample points (the midpoints in layer cells) follow readily; we omit the details. 

To maintain the induction invariant, we must now compute and isolate a new 

number 6 for each sample point which we just computed. This is a case of reducing 

a real-algebraic extension field Q(u, b) to a simple one Q(c). 

Collins [22] shows how to carry out each of the steps described above in time 

polynomial in the number (=2) of functions involved in the lifting and in the number 

and degrees of all the other polynomials. The latter quantities depend only on b 

and d, and therefore are 0( 1) for our purposes. The function h (d, b, n) measures 

the worst-case time complexity of the following problem. Given an algebraic point 

(a,, . . . > a,), let p,(z) be the univariate polynomial f;(a!, , . . . , a&_I, z) (1 s is n) 

and let p1 < . . . <pu be the distinct real roots of all the pi’s in increasing order: 

find which qi’s (if any) contribute pk, where p&r < (Yd s pk. Clearly, we can extend 

the previous technique to solve this problem, by simply substituting {f, , . . . ,fn} for 

{f,,f*}. The running time of this method would not be linear in n, however, so we 

slightly modify it. From our previous discussion we know that we can isolate (and 

thus compare) the real roots of any two polynomials cpi and qJ. Similarly, we can 

compare (Yd against the real roots of any ‘pi. Since any of these tests requires constant 

time it is immediate that h(d, b, n) = O(n). 

Let us now return to t(d, b, n). We claim that t( 1, b, n) = O(n log n). In O(n) time 

we can certainly isolate the real roots of each f; individually. Our claim will now 

follow readily if we can prove that comparing the rth real root ofJ; against the sth 

real root of & can be done in constant time. But this is clear, since we can isolate 

the roots of J XJ in constant time. Thus we obtain the following recurrence: 

~(1, b, n) = O(n log n), and for d > 1, 

t(4 b, n)s t(d - 1, 2b2, (2b-t l)b2n) 

c(d - 1, 2b2, (2b+ l)b2n), 

where t( d, b, n) is measured up to within a constant factor. This gives us f( d, b, n) = 

O(nZd-’ log n). 

Theorem3.4. LetF=(f,, . . .,fn) b e a o p ly nomial map from 8’ to 8”. Suppose that 
eachf; is a polynomial of degree at most b in Q[xl,. . . , xd] (whose norm-length does 

not exceed the size of a computer word). It is possible to construct a sign-invariant 
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stratification of ad for F consisting of O(n2d-2 ) cylindrical Tarski cells, if d 2 2. rf 

d = 1 the number of cells is respectively O(n) and 0( n’). In all cases, the construction 

can be done in time 0(n2dP’ log n). Within the same asymptotic cost we can also 

compute an algebraic point in each cell of the decomposition. 

4. Point location among real-algebraic varieties 

We are now ready to attack the problem of preprocessing the set of varieties 

VA,.. . , V fn to support fast point location. We use probabilistic divide-and- 

conquer in the sense of Clarkson [ 181: We choose a small random sample of varieties 

and compute a semi-cylindrical cell decomposition compatible with them. Next, we 

recurse in each cell c, passing only the varieties that intersect c down the recursion. 

To locate a point, we perform an exhaustive search in the top cell decomposition 

and iterate this process in the cell that contains the query point. The success of this 

method depends on how evenly the n varieties intersect the cells of the decomposi- 

tion. We can show that uniform random sampling ensures success with high probabil- 

ity. To make the construction deterministic we use the general derandomization 

technique of Chazelle and Friedman [ 141. This requires a certain amount of formal- 

ism which we discuss below. 

4.1. Geometric divide-and-conquer 

Let r be a fixed integer parameter between 1 and n. Our first task is to show how 

to select r varieties among V fi , . . . , i,/ fn and set the ground for divide-and-conquer. 

To do so we must recall some terminology [ 141. Let H = (V, E) be a multi-hypergraph 

(E is a multiset of edges in 2”) and let cp : 2” H 2E be a map such that (i) cp( V) = E 

and (ii) W’G WC V implies cp( W’) L cp( W). The pair (H; cp) is called a frame. It 

is said to be of dimension 6 if 6 is the smallest positive (constant) real such that, 

for each W c V, the size of { W n e 1 e E cp( W)} is at most cl WI’, for some constant 

c. The ratio min{ 1 el / I VI: e E E} is called the threshold of the frame. Finally, a subset 

R of r vertices is called an r-cover if it has a nonempty intersection with every edge 

of P(R). 

Theorem 4.1 (Chazelle-Friedman [ 141). C onsider a frame of dimension 6 with n 

vertices and let rs n be any integer larger than some fixed constant. If the threshold 

of the frame is at least a(log r)/r, for some appropriate constant a, then it is possible 

to find an r-cover for the frame in 0( rn ‘+‘) (deterministic) time. A random subset of 

r vertices (under the hypergeometric distribution) is an r-cover with probability larger 

than some constant. 

We will now establish the relationship between frames and the problem at hand. 

The basic idea is to construct a frame where the vertices are the varieties and the 

edges represent all possible cells of the K-decompositions used in the construction 

of yd (F). The vertices contained in an edge denote the varieties interfering with 
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its associated cell. In this way, a cell is accepted into the semicylindrical cell 

decomposition if and only if its corresponding edge is empty. This will allow us to 

prove the following important fact. 

Theorem 4.2. Consider n real-algebraic varieties in !Hd of degree at most b and assume 

that d > 1. Given any integer r s n large enough, there exists a semi-cylindrical cell 

decomposition of size 0( rZdP2), each of whose cells intersects 0( n(log r)/ r) varieties. 

The preprocessing requires O(rn 2dt’) deterministic time or 0( nr2d-2+ r2dP’ log r) 

expected (randomized) time. 

Let f,, . . . , fn be n polynomials of Qd of degree at most b. Our first task is to 

define the notion of an abstract cylindrical cell. The idea is to take the recursive 

definition of a cell of Jfd (F) and remove all acceptance tests from it. Let us consider 

a cell c of Yd(F) and retrace its recursive definition. To begin with, we define the 

cell c in reference to some K(f;,&) by lifting a cell c’ G !HdP’ into d-space (and 

perhaps taking its upper boundary). The lifting can be entirely specified by indicating 

its level 1, (i.e., as a real-root rank), which is an integer between 0 and 26. We can 

define c’ similarly, except that the varieties have changed. Now, a variety can be 

specified by a polynomial of the form ldcf(g), pscr2(g, ag/axd), or PSC’~(A g), where 

f = red’3(f) or red/J(J), and g = redId( each of the 1,‘s is bounded by b, the 

maximum degree of the polynomials. By agreeing once and for all on a certain 

syntax, we can therefore specify the variety by means of the sequence (i, j, k), called 

its multi-index, followed by O(log( b + 1)) parameter bits. Note that, strictly speaking, 

i and j are not both needed: they are included as a reminder of the “genesis” of 

the variety. In a similar manner, we can specify any variety at any level of the 

recursion by a multi-index consisting of up to 2d integers between 1 and n, followed 

by O(log 6) parameter bits, where 6 is the maximum degree of specified polynomials. 

Since the degree of any intermediate variety is bounded above by b0(2d’, we can 

similarly specify any cell c of 9, (F) combinatorially by providing a multi-index of 

size 2d, followed by 0(2d log( b + 1)) parameter bits. Any cell used in the intermediate 

decompositions (of type K or semi-cylindrical) at any level of the recursion can be 

expressed in a similar manner. This set-up allows us to define abstract cylindrical 

cells by first-order sentences. To be accepted into yd (F), such an abstract cell must 

pass two different types of tests: (i) it must specify a nonempty cylindrical cell, and 

(ii) it must pass the acceptance test at each level of the recursion, meaning that it 

must pass, its base cell must pass, the base cell of its base cell must pass, etc. 

Let us follow the chronological sequence of tests (3.1) which an abstract cylindrical 

cell c with multi-index S has to pass in order to make it into Yd(F). Suppose that 

the kth test (which takes place in 91”) is the first one which fails. There are two 

ways of failing. One is an unconditional failure caused by S itself, meaning that 

even if the varieties specified in S were the only ones considered the cell would still 

fail. In that case we say that every variety Vfi , . . . , V fn is a witness. What may 

happen, however, is that the kth test fails because of varieties not specified by S. 



98 B. Chazelle et al. 

In that case, the witness set consists of the minimal subset of varieties Vfis whose 

removal would let the cell pass all the tests and make it into Yd (F). To make this 

definition sound we must prove that such a set is unique. 

Let c be an abstract cylindrical cell with multi-index S and let c1 , c2, . . . , cd be 

the sequence of cells leading to c = cd by successive lifting 8 H 8’ ++ . . - H 8’. At 

the kth test, let Ek be the set of varieties in gk which cause ck to fail. We easily 

argue that if 2 is the set of multi-indices of the varieties in E,, . . . , Ed, then the 

witness set of c is precisely lJ {a\ S 1 u E 2). Therefore, the witness set of an abstract 

cylindrical cell is uniquely defined. 

Our next task is to construct an appropriate frame 9= (H; cp), with H = (V, E). 

We define V by putting the vertices in bijection with the n input varieties. Given a 

subset S E V of size 2d, let K(S) be the set of all abstract cylindrical cells with 

multi-index S. For any W G V, let p(W) be the set 

lJ {K(S) 1 S c W and ISI = 2d). 

We define the edge set E by putting it in bijection with cp( V) and making each edge 

consist exactly of its witness set. From now on, we will not distinguish between 

edges and abstract cells, or between vertices and varieties. We easily check that 9 

is a frame. As we observed earlier, an abstract cell can be specified combinatorially 

by its multi-index and 0(2d log(b + 1)) bits. This means that IK(S)/ is at most on 

the order of b2d. We derive that the frame 9 is of dimension 2d, since given any 

WGV, 

Let us remove all edges of H of size at most an(log r)/ r, for the value of a 

required for the application of Theorem 4.1. We are now ready to compute an 

r-cover for the frame, which we can do in deterministic time O(rn2d+‘). Let R be 

the polynomial map in QL formed by the defining polynomials of the varieties in 

the r-cover, and let c be a cell of Yd(R). Obviously, the cell c has an edge e E E 

associated with it. We will now show that the size of e cannot exceed an(log r)/r. 

If it did, indeed, there would be a variety J; in both e and the r-cover. This would 

mean that J is in the witness set of c, when regarded as an abstract cylindrical cell 

defined with respect to R. But this would deny its membership in sPd (R), which is 

a contradiction. We have not mentioned the fact that the decomposition algorithm 

is different in two dimensions. It is easy to show that our claims still hold true, 

however. Computing yd (R) takes 0( r2d -’ log r) deterministic time. If we pick the 

r varieties at random, it takes us 0( r2dp’ log r) to construct the semi-cylindrical cell 

decomposition and 0( nr 2d-2) time to check that it satisfies the desired properties. 

The proof of Theorem 4.2 is now complete. 

4.2. Point location 

We follow the approach which Clarkson used in the linear case [18] and bring 

in the new machinery we just built. Applying Theorem 4.2 for a fixed (but large) 
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value of r gives us a semi-cylindrical cell decomposition of size 0(r2d-2). For each 

cellcEYd(R),identifythesubset V(c)c{Vf,,..., Vf”} of varieties that intersect 

c. Each variety in V(c) is a witness of c, therefore 1 V(c)1 s an(log r)/ r. Now recut-se 

with respect to each V(c). (Do not try to clip the resulting decompositions within 

c.) Here is how a point location query is answered. First, locate the point among 

the cells of yd(R) by exhaustive search. If the point is found to lie in one of the 

varieties specified by R then we can stop. Otherwise, we recurse in the data structure 

associated with the cell containing the query point. 

In light of the previous Section, it is easy to argue that the query-answering 

terminates after O(log n) word operations. A multiplicative factor polynomial in 

the norm-length of the input polynomials must be added to get the bit complexity. 

Assume that d 2 2; the storage requirement s(n) follows the recurrence s(O(1)) = 

O(1) and 

s(n) G cr2d-2 4 r41og r)lrl), 

which gives 

1ogs(n)s 
(2d -2) log r+O(l) log n 

log r-log(a log r) ’ 

or s(n)=O(n 2d-2+E), for any fixed E > 0. Similarly, the preprocessing time can be 

estimated at 0( nZd+’ ) (deterministic) and 0(n2d-2+E) (randomized). 

Theorem 4.3. Consider n real-algebraic varieties in %’ (d > 1) of degree at most b. 

It is possible to perform point location among the varieties in O(log n) query time, 

using 0( n2d-2+E ) space, for any fixed E > 0. The data structure can be constructed 

deterministically in 0( n 2d+‘) time, or by using a Las Vegas algorithm, in 0( nZdm2+&) 

expected time. These bounds assume that the coeficients of the polynomials de$ning 

the varieties are rationals that can be stored in a single computer word and that 

arithmetic operations on word-size integers can be performed in constant time. To obtain 

an upper bound on the bit complexity of the algorithm we must multiply both preprocess- 

ing and query times by a polynomial factor in the maximum number of bits required 

to encode any coeficient in the defining polynomials. 

5. Concluding remarks 

Our point location method allows us to improve upon the solutions currently 

known for a wide variety of optimization problems. Some of these problems have 

been studied in Chazelle and Sharir [16] and we direct the reader to this reference 

for details. Examples of these problems are: 

(1) Computing the minimum vertical separation between two sets of line segments 

in 3-space. 

(2) Computing the longest line segment which fits inside a simple polygon. 
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(3) 

(4) 

(5) 
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Computing the time at which the convex hull of a set of points in (polynomial) 

motion enters its steady-state. 

Given m red objects (algebraic curves, surface patches, etc.) and n blue 

objects, does any red object intersect any blue object? 

Given m rays and n triangles in 3-space, find the first triangle hit by each of 

the rays, or alternatively, find the number of triangles stabbed by each ray. 

In one way or the other all these problems can be reduced to a generic problem of 

the following kind. Given a collection of n blue “objects” (point, line, polygon, 

curve, algebraic surface, etc.) and n red objects, does some blue-red pair of objects 

interact in some predetermined manner? Each object is specified by a vector with 

a constant number of real coordinates and the interaction predicate is a constant-size 

formula in the unquantified first-order of the reals. If r is the maximum length of 

any vector then the problem can be solved in time at most proportional to n2-“o(2r). 

This assumes that point location among n varieties in d-space can be done in 

logarithmic time and noc2’) preprocessing. Plugging in our new point location result 

yields a slightly better subquadratic complexity, namely, 0( n2-“0(r)). 

This work leaves open three major problems: The first one is to obtain a triangula- 

tion and not a stratification of the manifolds. The second problem is to lower the 

space requirement to the Thorn-Milnor bound of O(nd). Finally, it would be nice 

to be able to carry out the computations without generating polynomials whose 

degrees are doubly exponential in the number of variables. 

Appendix 

Lemma 2.1. A cylindrical cell of 8’ is a k-manlfold (k s d) which can be parametrized 

by a single smooth difleomorphism mapping the open unit ball Uk to the cell. 

Proof. We proceed by induction on the dimension of the ambient space. The 

one-dimensional case is trivial, so assume that d > 1. Of the five types of cells 

introduced in the definition it suffices to consider types (i) and (v). Assume that 

thecell cisoftheformu {xO(f(x), g(x))1 x E c’} (type (i)). By induction hypothesis, 

c’ is a k-manifold, for some ks d - 1, and we assume that there is a smooth 

diffeomorphism cp : Udpl ++ ZRd-‘, whose restriction to Uk parametrizes c’. Now, 

given u’= (u, (Y)E Ud, with UE Ud-‘, let 

1(9=(,($(1-*) fM+; (1+&J g(+W). 

We easily check that the Jacobian determinant A+!J is equal to 
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From the Inverse Function Theorem, we derive that 4 is a smooth local diffeomorph- 

ism. Actually, it is now immediate that tj~ globally immerses Uktl into %‘. Its 

restriction to Uk+’ parametrizes c (which is therefore a (k + 1)-manifold). 

Consider now the case of the cell c = U {x@{_/(x)} Ix E c’}. As before, let 

cp:u d-l H sd-I 
, be a smooth diffeomorphism whose restriction to Uk parametrizes 

c’, for some k< d - 1. Consider the map 

$(u”) = (P(U), a)+(O,f(cp(u))), 

where u” = (1.4, LY) E Ud and u E Ud-‘. We have A+; = Ap,, # 0, so again by the Inverse 

Function Theorem, I,!J is a smooth diffeomorphism whose restriction to Uk 

parametrizes c and c is a k-manifold. 0 

Lemma 3.1. The functions cp, +!I, fi, . . . , fn can all be delineated over each cell of 

yd-l(G). 

Proof. For definiteness, we will deal with cp only, but everything we will say applies 

to the other functions as well. Once again, we regard cp as a univariate polynomial 

(pX(xd) in G&_1[&]. As we shall see we only need to look at a subset H = H2u H3 

of G’s coordinate functions, where 

(i) H,={redk(p)Ik*Oanddeg(redk(cp))~l}, 

(ii) H2={l&fk)lg~Hll, 
(iii) H3 = {psck(g, iJg/ax,) 1 g E H, and 0s k < deg(ag/aXd)}. 

We will repeatedly use the fact that Yd_,(G) is sign-invariant for the polynomial 

map induced by H. Let c E Yd_,( G); because of the sign-invariance with respect to 

Hz, deg( cp) remains constant over c. Then H, contains a restriction g of cp to c, 

whose leading coefficient does not vanish anywhere in c. From the Fundamental 

Theorem of Algebra, it trivially follows that the number of distinct (real and complex) 

roots of g (as a polynomial in xd) is equal to 

d&g) - deg(GCD(g, %/axd)). 

Consequently, the sign-invariance with respect to H,, combined with Lemma 2.3 

proves that the number of distinct roots of (PI(&) is invariant over c. 

Borrowing a technique from Schwartz and Sharir [46] we can establish the 

continuity of the roots of (pX(xd) by expressing each of its roots as a ratio of line 

integrals. For completeness, let us rederive this result. Because of well-basedness, 

p,(z) is not identically zero, so it can be written as (z - z~)“~~(z), where z0 is a root 

of q,(z) of multiplicity k. Let us now regard z as a variable in the complex plane 

and let us choose a small circle r which encloses z0 but no other root. Since z0 is 

not a pole of y;‘(z), given any complex polynomial w(z), we have 

I w(z)vp:(z) dz = 

cpx(z) I kw(z) dz + I W(Z)YJc(Z) dz 

I‘ ,‘ z-z” I‘ Yx(Z) 

kw(z) = - dz = 2nkw(z,)i. 
J-z-z0 
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Setting w(z) dsf z and w(z) dzf 1 successively, we derive 

which immediately establishes the continuity of z0 as a function of x. Let us now 

show that the number of distinct real roots is also invariant over c. To see this, 

place small disjoint disks centered at each root of cpJz). Note that because of 

disjointness the disks centered at the real roots are the only ones to intersect the 

real axis, the reason being that complex roots occur in conjugate pairs. For that 

same reason, a root cannot wander in and out of the real axis without changing the 

total count of distinct roots, therefore every real root x of c has a neighborhood in 

c composed entirely of real roots. Since c is connected the number of distinct real 

roots must therefore remain constant for all x E c. To appreciate the importance of 

connectivity in this argument, consider the case cpX(z) = z2 -x, where x E ‘8, and 

assume that c = (-1,0) u (0,l). Then cpX(z) always keeps two distinct roots over c, 

but both roots are real for x = { and imaginary for x = -f. Of course, our algorithm 

would not allow such a cell c, since G would include the polynomial g(x) =x as 

a coordinate function. 

Returning now to our general discussion, we have established all the conditions 

for the delineation of cpX, except for the smoothness of the real-root functions 

Cl(X) < * * * <f;(x). Before we do so we should note that, again because c is 

connected, the sign of p,(z), for any z between lj(x) and Sit,(x), does not depend 

on x. To prove that each 6 is smooth, we will forsake Cauchy integrals and use a 

more general argument. Let ((Y, U) be a (smooth) coordinate chart around some 

arbitrary point of c. Given u E (Y(C) and ZE%, let $(u, z) = (p(K’(u), z). Fix j 

(1 <j< I) once and for all and put v = (u, lj(~ -l(u))); by definition we know that 

s(v) = 0. Now let 

where so/a is the identity operator. Note that m(u) is well defined unless 

+~(a-‘(u), z) = 0, for all z. But this cannot happen because the input polynomials 

are well-based. Now, since 

a”@ akt+O 
k=- az azk’ 

we derive that m(u) + 1 is the multiplicity of the jth largest real root of (P~-~(~)(z), 

which we know remains constant over c. Let 

a m(u) 1 

w(u, z) = --$ (4 z). 
az 

Here is what we know about w: (i) it is smooth, (ii) w(v) = 0, and (iii) (aw/az)(v) f 0. 

Then by the Implicit Function Theorem it follows that locally around u the equation 
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w(u, z) = 0 can be traced by a smooth function z = z(u). The key observation now 

is that this function also traces (P~-~(,,)(z) = 0 around the point ((Y-‘(U), t( LY-‘( u))). 

Consequently, this function is precisely lj(a -l(u)) and the jth largest distinct real 

root of (P~~I(~)(z) is a smooth function of U. 0 

Remarks. The main motivation for proving that lj(x) is smooth over c is to endow 

the cells of Yd(F) with a C” differential structure (via Lemma 2.1). Note that 

although lj(x) can be extended outside of c into a continuous function, it might 

not be possible to make this extension differentiable (let alone smooth) over the 

closure of c. For example, consider the torus (m- 2)*+ z2 = 1, whose poly- 

nomial equation is 

The surface is obtained by revolving a vertical unit-circle centered at (2,0,0) around 

the z-axis. The set 

c={(x,y)Il<x<3and1<x2+y2<9} 

is an algebraic cell over which ‘p(X,Y) (z) has two real roots. Now the reader should 

appreciate the difficulties in trying to extend, say, the second root 

{2(x,y)=J1-(J?77-2)2 

smoothly to the closure of c. Note that the function does not have a partial in x at 

(330). 

Algebraic Numbers. A standard representation of a real-algebraic number (Y consists 

of a pair (P, [a, b]), where P is a square-free polynomial with integer coordinates 

and [a, b] c Q isolates (Y from the other real roots of P. Often we might be dealing 

with numbers in the extension field of cr, which can then be expressed as quotients 

A(a)/B(a), with A, BE Q, . Let us show briefly how the kth real root of P can be 

isolated in time polynomial in the degree of P and the logarithm of its weight. (The 

weight w(P) of P is the sum of the magnitudes of its coefficients.) First, we can 

use Sturm sequences to compute the number of real roots in any interval [a, b]. 

This involves applying a straightforward variant of Euclid’s GCD algorithm to the 

pair (P, P’) and counting the sign changes in the resulting polynomial remainder 

sequences (evaluated at a and b). With this tool in hand, we can isolate the kth 

real root of P by binary search, starting with a large interval enclosing all the real 

roots, say [-w(P), w(P)] and ending with an interval which is too small to enclose 

two distinct roots. A classical result of Mahler [36] says any two distinct real roots 

of P must be apart by at least b -(h+2)‘2~( P)lpb. Consequently, the binary search 

will involve 0( b log b + log w(P) + 1) GCD computations, which proves that root 

isolation is polynomial. Collins and Loos [23] describe an efficient method for root 

isolation, whose bit complexity is 0( b”+ b’ log3w( P)). Note that this discussion 

concerns only simple representations of real-algebraic numbers. For our purposes, 
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we must deal with algebraic numbers which are represented as roots of polynomials 

whose coefficients themselves are algebraic numbers represented recursively in the 

same manner [9, 23, 24, 29, 30, 35, 36, 431. 
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