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A Reflective Symmetry Descriptor for 3D Models

Michael Kazhdan,1 Bernard Chazelle,1 David Dobkin,1 Thomas Funkhouser,1 and
Szymon Rusinkiewicz1

Abstract. Computing reflective symmetries of 2D and 3D shapes is a classical problem in computer vision
and computational geometry. Most prior work has focused on finding the main axes of symmetry, or determining
that none exists. In this paper we introduce a new reflective symmetry descriptor that represents a measure
of reflective symmetry for an arbitrary 3D model for all planes through the model’s center of mass (even if
they are not planes of symmetry). The main benefits of this new shape descriptor are that it is defined over a
canonical parameterization (the sphere) and describes global properties of a 3D shape. We show how to obtain
a voxel grid from arbitrary 3D shapes and, using Fourier methods, we present an algorithm that computes
the symmetry descriptor in O(N 4 log N ) time for an N × N × N voxel grid and computes a multiresolution
approximation in O(N 3 log N ) time. In our initial experiments, we have found that the symmetry descriptor
is insensitive to noise and stable under point sampling. We have also found that it performs well in shape
matching tasks, providing a measure of shape similarity that is orthogonal to existing methods.

Key Words. Shape representation, Symmetry detection, 3D model matching and retrieval.

1. Introduction. Detecting symmetry in 3D models is a well-studied problem with
applications in a large number of areas. For instance, the implicit redundancy in symmet-
ric models is used to guide reconstruction [1], [2], axes of symmetry provide a method
for defining a coordinate system for models [3], and symmetries are used for shape
classification and recognition [4], [5].

Despite its intuitive appeal, global symmetry has been underutilized in computer-
aided shape analysis. Most previous methods have focused only on discrete detection of
symmetries–i.e., classifying a model in terms of its symmetry groups (either a model has
a symmetry or it does not) [2], [6]–[13]. Accordingly, they provide limited information
about the overall shape of an object, and they are not very useful for shapes that have
no symmetries. In contrast, in the context of shape analysis, we believe that it is just as
important to know that a model does not have a particular symmetry, as it is to know
that it does. The objective of our work is to define a continuous measure of reflective
symmetry for any plane and use it to build a concise shape signature that is useful for
matching and classification of 3D objects.

Our approach is to define a reflective symmetry descriptor as a 2D function that
gives the measure of invariance of a model with respect to reflection about each plane
through the model’s center of mass. The key idea is that the measure of symmetry with
respect to any plane is an important feature of an object’s shape, even if the plane does
not correspond to a perfect reflective symmetry of the shape. As an example, consider
Figure 1, which shows the reflective symmetry descriptors for a car, cube, and chair (the
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Fig. 1. A visualization of the reflective symmetry descriptor for a car, a cube, and a chair. The visualization is
obtained by scaling unit vectors on the sphere in proportion to the measure of reflective symmetry about the
plane through the center of mass, normal to the vector.

visualization shows each point on the unit sphere scaled in proportion to the similarity
of the model to its reflection over a perpendicular plane through the center of mass).
Note that every point on the reflective symmetry descriptor provides a measure of global
shape, where peaks correspond to the planes of near reflective symmetry, and valleys
correspond to the planes of near antisymmetry. For example, the descriptor of the chair
has strong peaks corresponding to its near-perfect left–right symmetry, as well as less
prominent off-axis peaks corresponding to the planes that reflect the back of the chair
into the seat. Meanwhile, it has valleys representing the lack of top–bottom reflective
symmetry. In contrast, the car has peaks corresponding to its left–right, front–back,
and top–bottom near symmetries. Due to the global nature of the reflective symmetry
measure, a large difference in the values for a single plane provides a provable indication
that two models are significantly different. In this example, the car and the chair can
be distinguished because they have different top–bottom reflective symmetry measures.
By capturing symmetry measures for many planes in a concise structure defined on
a canonical parameterization (the sphere), we can match and index models efficiently
(with L∞ comparisons), providing a basis for shape-based retrieval, classification, and
recognition of 3D models.

In this paper we describe our research in defining, computing, and using reflective
symmetry descriptors. This is an extended version of a poster at ECCV 2002 [15]. In this
work we make the following contributions: (1) we define a continuous measure for the re-
flective symmetry of a 3D function with respect to a given plane, (2) we provide efficient
algorithms to compute the reflective symmetry measure for all planes through the center
of mass of a 3D model, and (3) we present experimental results evaluating the utility of
reflective symmetry descriptors for representation and retrieval of 3D shapes. In our tests
we find that the reflective symmetry descriptors are competitive with other shape descrip-
tors commonly used for matching 3D polygonal models. We also find that they provide
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a characterization of 3D models orthogonal to other descriptors, which allows them to
be combined with existing methods to provide more discriminating multiclassifiers.

2. Related Work. Existing approaches for reflective symmetry detection have mainly
focused on finding perfect symmetries of shapes [6], [7]. Early work in this area is
based on efficient substring matching algorithms (e.g., [16]), taking advantage of the
fact that a circular string, S, is reflectively symmetric precisely when S appears as a
substring of (SS)t (the inversion of the concatenation of S with itself). However, since
substring matching is inherently a binary question, these algorithms can only find perfect
symmetries and are unstable in the presence of noise and imprecision. Thus, they are not
suitable for most shape registration and matching applications.

In the case of voxel grids, methods for symmetry detection have used the covariance
matrix [11], [12], taking advantage of the fact that eigenspaces of the covariance matrix
must be invariant under the symmetries of the model. These methods are efficient and
work in all dimensions. However, they have the disadvantage that they only work when
the eigenspaces of the covariance matrix are all one-dimensional, which is not always
the case. In the case of the cube, for example, the covariance matrix is a constant multiple
of the identity, every vector is an eigenvector, and no candidate axes of symmetry can
be determined. Additionally, the covariance matrix can only identify candidate axes and
does not determine a measure of symmetry. So, further evaluation needs to be performed
to establish the quality of these candidates as axes of symmetry. Methods for symmetry
detection in 2D using more complex moments and Fourier decomposition have also
been described [8], [9], [10], [13], though their dependence on the ability to represent
an image as a function on the complex plane makes them difficult to generalize to 3D.

In the work most similar to ours, Marola [8] presents a method for measuring symme-
try invariance of 2D images. However, because of its use of autocorrelation, the method
cannot be extended directly to 3D objects. In related work, Zabrodsky et al. [14], [2]
define a continuous symmetry distance for point sets in any dimension. However, it relies
on the ability to establish point correspondences first, which is generally difficult. Ad-
ditionally, while the method provides a way of computing the symmetry distance for an
individual plane of reflection, it does not provide an efficient algorithm for characterizing
a shape by its symmetry distances with respect to multiple planes.

Our work differs from previous research on symmetry detection in that we aim to
construct a shape descriptor that can be used for matching, recognition, and classification
of 3D shapes. In this respect, our goals are similar to those of prior work on shape
representations for retrieval and analysis (see [17]–[21] for surveys). There, the challenge
is to find a shape descriptor that is: (1) quick to compute, (2) concise to store, (3) easy to
index, (4) invariant under similarity transforms, (5) insensitive to noise and small extra
features, (6) independent of 3D object representation, tessellation, or genus, (7) robust
to arbitrary topological degeneracies, and (8) discriminating of shape similarities and
differences. Recent approaches have been based on probability distributions (e.g., [22]–
[27]), part-based estimation (e.g., [28]–[31]), skeletal decomposition (e.g., [32]–[34]),
and indexing of local features (e.g., [35] and [36]).

Among these existing shape representations, our work is most related to the shape
descriptors that map the 3D shape of an object to a spherical domain. Some examples
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include Extended Gaussian Images [37], Orientation Histograms [10], Spherical Ex-
tent Functions [38], and Spherical Attribute Images [39], [40]. However, these prior
approaches map local surface features (surface orientation, curvature, etc.) to points on
a sphere, and thus they are sensitive to noise in 3D surface data. In contrast, our reflec-
tive symmetry descriptor maps global features (integrals over the entire surface) to each
point on a sphere, which provides more stability and descriptive power (as is shown
theoretically in Section 8 and empirically in Section 9).

3. Overview of the Approach. Our approach is to represent the shape of a 3D model
with a spherical function that associates continuous measures of reflective invariance
of a 3D model with respect to every plane through its center of mass. The potential
advantages of this approach are threefold. First, it is defined over a canonical 2D domain
(the sphere), and thus it provides a common parameterization for arbitrary 3D models
that can be used for alignment and comparison. Second, it characterizes the global shape
of the object and it is insensitive to noise and other small perturbations in a 3D model.
Thus it is suited for matching whole objects (as is needed for searching databases of 3D
objects). Finally, it describes the shape of an object in terms of its symmetry features,
which provide distinguishing shape information for many objects (look around your
office and consider classifying objects based on their symmetries). This approach is
quite different from existing shape descriptors, and thus we expect it to be useful in
conjunction with other representations.

The basic steps of our approach are outlined in Figure 2: (0) If the model is given
as either a collection of points or a surface, we first compute a 3D voxel representation
characterizing the model. (1) Then for every plane passing through its center of mass,

Fig. 2. An outline of our approach: (0) If the model is given as either point sets or collections of polygons,
we first define a voxel representation that characterizes the model. (1) For every plane passing through the
model’s center of mass we compute how similar the model is to its reflection. (2) We combine the different
symmetry distances to generate a spherical function describing the measure of the model’s symmetries. (The
image on the right is a visualization of the reflective symmetry descriptors with points on the circle scaled in
proportion to the measure of symmetry of the model with respect to the corresponding reflection.)
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we compute the reflective symmetry distance of the model with respect to the plane—
a measure of how similar it is to its reflection. (2) Next, we combine the distances
to obtain the reflective symmetry descriptor—a function on the sphere that associates
to each vector measures of the reflective symmetry of the model with respect to the
perpendicular plane. (3) Finally, we compute the measure of similarity between two
reflective symmetry descriptors by taking their L∞-distance and use this as a measure
of similarity for matching and classification of 3D models.

In the following sections we investigate the specific issues of defining, computing, and
using reflective symmetry descriptors. Section 4 introduces a new definition for symme-
try distance that measures the invariance of a 3D function with respect to reflection about
any plane. Sections 5 and 6 describe algorithms for computing the reflective symmetry
descriptor efficiently. Section 7 provides a way to transform commonly available 3D
object representations (e.g., a list of unconnected polygons) into 3D functions suitable
as input to our algorithms. Section 8 proves theoretical properties of the reflective sym-
metry descriptor and Section 9 presents experiments to evaluate the utility of reflective
symmetry descriptors in practice. Finally, Section 10 contains a brief summary and a
dissussion of topics for future work.

4. Definition of the Symmetry Distance. The first issue we must address is to define
a measure of symmetry for a 3D model with respect to a plane. While previous work
has proposed symmetry measures for 2D images and 3D point sets [6], [7], [2], we
seek such a measure for arbitrary 3D functions (e.g., represented on voxel grids). In this
section we show that the measure of a function’s reflective symmetry can be defined as
the L2-difference between the model and its reflection (up to scale factor). The specific
contribution is our description of the symmetry distance as the length of a projection
onto a subspace of functions. This interpretation allows us to prove valuable properties
of reflective symmetry descriptors in Section 8.

We define the symmetry distance of a function with respect to a given plane of
reflection as the L2-distance to the nearest function that is invariant with respect to
the reflection. More formally, for a function f and a reflection γ we write the symmetry
distance (SD) as

SD( f, γ ) = min
g|γ (g)=g

‖ f − g‖.
Using the facts that the space of functions is an inner product space and that the

functions that are invariant to reflection about γ define a vector subspace, it follows
that the nearest invariant function g is precisely the projection of f onto the subspace
of invariant functions. That is, if we define πγ to be the projection onto the space of
functions invariant under the action of γ and we define π⊥

γ to be the projection onto the
orthogonal subspace, then

SD( f, γ ) = ‖ f − πγ ( f )‖ = ‖π⊥
γ ( f )‖,

so that the symmetry distance of f with respect to γ is the length of the projection of f
onto a subspace of functions indexed by γ .

In order to compute an explicit formulation of the projection of f onto the space
functions invariant under the action of γ , we observe that reflections are orthogonal
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Fig. 3. An image of a dog (left) and its projection onto the space of images invariant under reflection through
the gray line (right). The image on the right is obtained by averaging the image on the left with its reflection
about the gray line.

transformations (that is, they preserve the inner product defined on the space of functions).
This observation lets us apply a theorem from representation theory [41] stating that a
projection of a vector onto the subspace invariant under the action of an orthogonal group
is the average of the vector over the different elements in the group. Thus, in the case of
a function f and a reflection γ , we get

SD( f, γ ) = ‖ f − 1
2 ( f + γ ( f ))‖ =

∥
∥
∥
∥

f − γ ( f )

2

∥
∥
∥
∥

,(1)

so that up to a scale factor the symmetry distance is simply the L2-difference between
the initial function and its reflection.

As an example, Figure 3 demonstrates this process of projection by averaging. The
image on the left shows a picture of a dog. The image on the right is the closest image
that is symmetric with respect to the gray line. It is obtained by averaging the original
with its reflection about the gray line. The L2-difference between these two images is
the measure of the symmetry of the initial image with respect to reflection about the gray
line. Equivalently, according to (1), the symmetry distance is half the L2-distance from
the original image to its reflection.

5. Computation of the Reflective Symmetry Descriptor. Given a 3D function f , we
define its reflective symmetry descriptor (RSD) as a 2D function on the space of planes
through the origin (indexed by their unit normals), describing the proportion of f that
is symmetric with respect to reflection about a given plane and the proportion of f that
is antisymmetric:

RSD( f, s) =
(‖πs( f )‖

‖ f ‖ ,
‖π⊥

s ( f )‖
‖ f ‖

)

=
(√

‖ f ‖2 − SD2( f, s)

‖ f ‖ ,
SD( f, s)

‖ f ‖

)

,

where πs is the projection onto the space of functions invariant under reflection about
the plane passing through the origin, perpendicular to s, and π⊥

s is the projection onto
the orthogonal complement.
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To compute the reflective symmetry descriptor of a 3D model, we first convert it into
a density function sampled on a 3D voxel grid (as described in Section 7). This allows us
to leverage the Fast Fourier Transform to compute the reflective symmetry descriptor in
O(N 4 log N ) time for an N ×N ×N voxel grid and a good multiresolution approximation
in O(N 3 log N ) time (as described in Section 6). This provides a substantial improvement
over the brute-force O(N 5) algorithm, which performs O(N 3) computations for each
of O(N 2) planes.

In the following subsections we describe how to compute the reflective symmetry
descriptor efficiently by showing that the symmetry distances for all planes passing
through the origin can be computed without explicitly computing the reflection of the
function about every plane. First, we show how the Fast Fourier Transform can be used
to compute the symmetry distances of a function defined on the boundary of a circle
(Section 5.1). Second, we show how the case of a function f defined on the interior of
a unit disk can be reduced to the case of a function on a circle by decomposing f into
a collection of functions defined on concentric circles (Section 5.2). Third, through a
collection of mappings we show how to reduce the question of finding the symmetry
distances of a function on the surface of a sphere to the question of finding the symmetry
distances of a function on a disk (Section 5.3). Finally, we show how the symmetry
distances of a 3D function represented as a voxel grid can be computed by decomposing
the grid into a collection of concentric spheres and applying the methods for computing
the symmetry distances on a sphere (Section 5.4).

5.1. Functions on a Circle. We begin our discussion by looking at functions on the
boundary of a circle. For a given function f (θ) on the circle and all reflections γ we
would like to compute the symmetry distance of f with respect to γ . Denoting by γα

the reflection about the line through the origin with angle α and using the fact that this
reflection maps a point with angle θ to the point with angle 2α − θ (see Figure 4) we
can apply (1) to obtain

SD( f, γα) =
√

∫ 2π

0

(
f (θ) − f (2α − θ)

2

)2

dθ

=

√
√
√
√
√

L2-norm
︷ ︸︸ ︷

‖ f ‖2

2
−

convolution term
︷ ︸︸ ︷
∫ 2π

0

f (θ) f (2α − θ)

2
dθ .

This formulation provides an efficient method for computing all the symmetry dis-
tances of a function defined on a unit circle because we can use the Fast Fourier Transform
to compute the value of the convolution term for all angles α in O(N log N ) time, where
N represents the number of times f is sampled on the circle.

5.2. Functions on a Disk. As with functions on a circle, we would like to compute the
symmetry distances of a function on the interior of a disk with respect to all reflections
about lines through the origin. To compute the symmetry distances we observe that these
reflections fix circles of constant radius, and hence the symmetries of a function defined
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Fig. 4. Reflection about α maps a point with angle θ to the point with angle 2α − θ .

on a disk can be studied by looking at the restriction of the function to concentric circles.
Figure 5 shows a visualization of this process: the image of Superman is decomposed into
concentric circles, and the symmetry distances of the image are computed by combining
the symmetry distances of the different circular functions.

To make this observation explicit, we reparameterize the function f (x, y) into polar
coordinates to get the collection of functions { f̃r } with

f̃r (θ) = f (r cos θ, r sin θ),

where r ∈ [0, 1] and θ ∈ [0, 2π ], and we set γα to be the reflection about the line through
the origin with angle α. Using (1) and applying the appropriate change of variables we
get

SD( f, γα) =
√

∫ 1

0
SD2( f̃r , γα)r dr ,

showing that we can take advantage of the efficient method for computing the symmetry
distances of a function on the circle to obtain an O(N 2 log N ) algorithm for computing
the symmetry distances of an N × N image.

This method is similar to the method presented in the works of Marola [8] and Sun
and Si [10] in its use of autocorrelation as a tool for reflective symmetry detection. The
advantage of our formulation is that it describes the relationship between autocorrelation
and an explicit notion of symmetry distance, defined by the L2 inner product of the
underlying space of functions, and provides a method for generalizing the definition of
symmetry distance to 3D.

Fig. 5. The symmetry distances of a 2D image can be obtained by decomposing the image into concentric
circles and computing all the symmetry distances for each of the circles.
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(a) (b)

Fig. 6. To compute the symmetry distances of a function defined on the sphere, for all planes passing through
the north pole, we observe that these planar reflections correspond to reflections about lines in the projected
functions (a). We observe that a great circle must intersect every plane through the origin (b) so letting the
north pole vary over a great circle and computing the projection at every step we obtain the symmetry distance
for all planes.

5.3. Functions on a Sphere. Next, we look at functions on the surface of a sphere.
To compute the reflective symmetry distances of a function on a sphere, for all planes
passing through the origin, we fix a north pole and restrict our attention to those planes
passing through it. The symmetry distances of the restricted set of reflections can be
efficiently computed by breaking up the function into its restrictions to the upper and
lower hemisphere and projecting each of these restrictions to a disk. Figure 6(a) shows
a visualization of this process for the restriction to the upper hemisphere. Note that
reflections through planes containing the north pole map the upper hemisphere to itself
and correspond to reflections about lines in the projected function.

In particular, if we parameterize the sphere in terms of spherical coordinates:

�(ϕ, θ) = (

cos ϕ, sin ϕ cos θ, sin ϕ sin θ
)

with ϕ ∈ [0, π ] and θ ∈ [0, 2π ], the restriction to the upper hemisphere corresponds
to the restriction ϕ ∈ [0, π/2]. Unfolding the restriction of f to the upper hemisphere
along lines of constant latitude gives a function f̃ u defined on a disk of radius π/2:

f̃ u(ϕ cos θ, ϕ sin θ) = f (�(ϕ, θ))

√

sin ϕ

ϕ

(where the factor of
√

sin(ϕ)/ϕ is the change of variable necessary for the integration
below). We obtain f̃ �, the projection of the lower hemisphere, in a similar fashion.
Letting γα represent both the reflection of the sphere about the plane through the north
pole with constant angle of longitude α and the reflection of the disk about the line with
angle α we get

SD( f, γα) =
√

SD2( f̃ u, γα) + SD2( f̃ �, γα)

so that with the correct parameterization and scaling of the projections, the symmetry
distance for the reflection γα can be obtained from the symmetry distances of the projec-
tions of f . (Note that rather than doing a true projection onto the plane perpendicular to
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the north pole, we actually unfold the hemisphere in terms of its angles of latitude. This
allows us to avoid the sampling problems that would otherwise result due to a vanishing
Jacobian near the boundary of the disk.)

In order to compute the symmetry distances for all planes through the origin, not
just those passing through the north pole, we use the fact that if we fix a great circle on
the sphere, any plane through the origin must intersect the great circle in at least two
points (Figure 6(b)). This allows us to compute the symmetry distances of all planes by
walking (half of) the great circle and at each point projecting onto a disk to compute
the symmetry distances for those planes containing the current north pole. Since the
symmetry distances of the projection onto a disk can be computed in O(N 2 log N ) and
since we perform O(N ) such projections, this method gives an O(N 3 log N ) algorithm
for computing the symmetry distances of a function on the sphere, sampled at O(N 2)

points.

5.4. Functions on a Voxel Grid. Finally, we address the problem of computing sym-
metry distances on a regular N × N × N voxel grid. As in Section 5.2, we can use the
fact that reflections fix lengths to transform this problem into a problem of computing
the symmetry distances of a collection of functions defined on concentric spheres. In
particular, if f is a function defined in the interior of a unit ball, then we decompose f
into a collection of functions { f̃r } where f̃r is a function defined on the unit sphere and
f̃r (v) = f (rv). After changing variables, the measure of symmetry of f with respect to
a reflection γ becomes

SD( f, γ ) =
√

∫ 1

0
SD2( f̃r , γ )r2 dr

and we obtain the value of the symmetry descriptor of f as a combination of the val-
ues of the symmetry descriptors of the functions { f̃r } defined on the sphere, giving an
O(N 4 log N ) algorithm for computing the symmetry distances of an N × N × N voxel
model.

6. Multiresolution Approximation. Our algorithm for computing the symmetry dis-
tances takes O(N 4 log N ) time at full resolution. However, using Fourier decomposition
of the restriction of the function to rays through the origin, we are able to compute a
good multiresolution approximation in O(N 3 log N ) time. This approximation is use-
ful in most applications because symmetry describes global features of a model and is
apparent even at low resolutions.

Given a function f defined on the set of points with radius less than or equal to 1
we decompose f into the collection of 1D functions by fixing rays through the origin
and consider the restriction of f to these rays. This gives a collection of functions { f̃v},
indexed by unit vectors v, with f̃v(t) = f (tv)t and t ∈ [0, 1] (where the factor of t is
the change of variable necessary for integration below). Expanding the functions f̃v in
terms of their trigonometric series we get

f̃v(t) = a0(v) +
∞∑

k=1

(

ak(v)
cos(2kπ t)√

2
+ bk(v)

sin(2kπ t)√
2

)

.
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The advantage of this decomposition is that the functions ak(v) and bk(v) are functions
defined on the sphere, providing a multiresolution description of the initial function f .
Applying the appropriate change of variables and letting γ denote a reflection about a
plane through the origin we get

SD( f, γ ) =
√
√
√
√SD2(a0, γ ) +

∞∑

k=1

(

SD2(ak, γ ) + SD2(bk, γ )
)

.

Thus a lower-bound approximation to the symmetry distances can be obtained in O(N 3

log N ) time by only using the first few of the Fourier coefficient functions ak and bk .

7. Voxelization of 3D Models. Our algorithm for computing a reflective symmetry
descriptor takes a voxel model as its input. In order to be able to use it for a general
class of shapes, (and not just density images or models with a well-defined interior and
exterior), it is first necessary to be able to transform an arbitrary 3D model into a 3D
function sampled on a regular voxel grid.

Since we compute the symmetry distance by comparing the initial model with its
reflection, we choose a voxel representation that describes not only where the points on
the model are, but also how far an arbitrary point is from the model. Furthermore, the
values of the voxel grid should fall off to zero for voxels further from the model, allowing
us to treat the voxel grid as a sampling of a compactly supported function and to restrict
the domain over which we integrate. To address these issues we define the voxel grid as
a sampling of an exponentially decaying Euclidean Distance Transform. In particular,
given a model S we define the implicit function FS by

FS(x) = exp

(

− D2
S(x)

R2
S

)

,(2)

where DS(x) is the Euclidean Distance Transform, giving the distance from x to the
nearest point on the model S,

DS(x) = min
y∈S

‖x − y‖,

and RS is the average distance from a point on S to the center of mass.
In practice, we compute the implicit function FS(x) by first rasterizing the triangles,

line segments, or points of a 3D model into an N × N × N voxel grid and then applying
the O(N 3) algorithm of Saito and Toriwaki [42] to compute the exponentially decaying
distance transform.

The advantage of using this distance function representation is that it allows us to
compute the reflective symmetry descriptor for a wide class of models, including mod-
els that are not topologically consistent, models that have cracks, and models that have
flipped triangles. Figure 7 shows 15 models (above) with their corresponding reflective
symmetry descriptors (underneath). The descriptors were computed without first recon-
structing a solid representation or manifold surface. Note also that the descriptors vary
from model to model, with different patterns of undulations and sharp peaks, demonstrat-
ing that the symmetry descriptor is a rich function, capable of describing large amounts
of information about shape.
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Fig. 7. Fifteen different models (above) with visualizations of their reflective symmetry descriptors (under-
neath), demonstrating the variability and richness of the descriptor. The visualization is obtained by scaling
unit vectors on the sphere by the value of the reflective symmetry descriptor at the vector. (Though the reflective
symmetry descriptor is defined as a pair of functions, in these images we only show the first function—giving
length of the projection onto the reflectively symmetric subspace. The visualization of the second function
would look like an inversion of the one shown, peaking where the first has valleys, and having valleys where
the first peaks.)

8. Properties of the Reflective Symmetry Descriptor. In addition to being a function
that is both parameterized over a canonical domain and describes a model in terms of its
symmetries, the reflective symmetry descriptor has several provable properties that are
valuable for shape analysis:

8.1. Stability. The reflective symmetry descriptor is stable in the presence of high-
frequency noise. To see this, we rewrite the symmetry distance of a function f , defined
on a circle, in terms of its Fourier coefficients:

SD( f, γα) =
√

1

2

∑

k

(‖ak‖2 + a2
k ei2kα

)

.
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This equation demonstrates that the contribution of different frequencies to the symmetry
distance depends only on their Fourier coefficients. In contrast, shape descriptors that
involve the computation of model derivatives, either as normals or gradients [37], [10],
have the property of amplifying the contribution of high-frequency components, making
them unstable in the presence of high-frequency noise.

8.2. Globality. The difference in the reflective symmetry descriptors of two different
functions f and g, with ‖ f ‖ = ‖g‖ = 1, at any point provides a bound for the L2-
difference of the two functions. The explicit proof of this bound derives from the fact
that the values of the reflective symmetry descriptor of a unit-norm function are equal
to the lengths of its projections onto two orthogonal subspaces. Since we know that for
any projection π and any vectors v and w we have ‖v‖2 = ‖π(v)‖2 + ‖π⊥(v)‖2 and
‖v − w‖ ≥ ∣

∣‖v‖ − ‖w‖∣∣ it follows that

‖ f − g‖2 = ‖πs( f ) − πs(g)‖2 + ‖π⊥
s ( f ) − π⊥

s (g)‖2

≥ (‖πs( f )‖ − ‖πs(g)‖)2 + (‖π⊥
s ( f )‖ − ‖π⊥

s (g)‖)2

= ‖RSD( f, s) − RSD(g, s)‖2

so that the difference in the values of two symmetry descriptors at a single point provides
a lower bound for the L2-difference of the corresponding models. Consequently, the L∞-
difference of the descriptors provides a meaningful and discriminating measure for model
similarity. (The L2-difference, by contrast, averages the different errors, and provides a
lower bound that is less tight.)

8.3. Even Splitting. The reflective symmetry descriptor can be described as a specific
instance of a more general phenomenon: Given some space Q (in our case the unit
sphere) and given a mapping that associates to each point q ∈ Q some subspace of
functions (in our case q maps to the space of functions invariant under reflection about
the plane, passing through the origin, perpendicular to q) then one can define a function
descriptor by setting

Descriptor( f, q) =
(

‖πq( f )‖
‖ f ‖ ,

‖π⊥
q ( f )‖
‖ f ‖

)

,

where πq is the projection onto the space of functions indexed by q , and π⊥
q is the

orthogonal projection.
In order for this descriptor to be valuable, it is desirable that the subspace indexed by

q and the orthogonal complement to this space have roughly the same dimension. (If,
for example, the space indexed by q is the entire space of functions, then the descriptor
is equal to (1, 0) for all q, and is not informative.)

The reflective symmetry descriptor has the property that if we restrict ourselves to
looking at band-limited functions, then the dimensions of the two spaces are roughly
equal. For example, if we look at the space of band-limited functions on the sphere
(Q = S2), with band width m, then these functions are spanned by the basis of spherical
harmonics:

{eilϕ Pl
k (cos θ)},
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where 0 ≤ k ≤ m, −k ≤ l ≤ k, and Pl
k is the associated Legendre polynomial. If,

without loss of generality, we let q be the reflection about the plane perpendicular to
the z-axis, then the space of functions invariant under the action of q, and its orthogonal
complement are spanned by

{cos(lϕ)Pl
k (cos θ)} and {sin(lϕ)Pl

k (cos θ)}

with dimensions (m + 2)(m + 1)/2 and m(m + 1)/2, respectively.

8.4. Scale Invariance. The reflective symmetry descriptor is invariant to three different
types of scaling:

1. Function Scale Invariance. Given a 3D function f , if the function g is defined as

g(x) = λ f (x),

then the reflective symmetry descriptors of f and g are equal. To show this we use
the fact that projections are linear and that ‖λ f ‖ = |λ|‖ f ‖ to get

RSD(g, s) =
( |λ|‖πs( f )‖

|λ|‖ f ‖ ,
|λ|‖π⊥

s ( f )‖
|λ|‖ f ‖

)

= RSD( f, s).

This shows that the reflective symmetry descriptor remains unchanged when we scale
the input voxel values by a constant factor.

2. Domain Scale Invariance. Given a 3D function f , if the function g is defined as

g(x) = f (λx),

then the reflective symmetry descriptors of f and g are equal. To show this we note
that if γ is a reflection about any plane through the origin and f̃ = πγ ( f ) is the
projection of f onto the space of functions invariant under reflection by γ , then f̃ is
the nearest γ -invariant function to f . Since it is also true that f̃ (λx) is γ -invariant,
it follows that

‖π⊥
γ (g)‖ ≤ ‖g(x) − f̃ (λx)‖ = ‖ f (λx) − f̃ (λx)‖ = ‖π⊥

γ ( f )‖
|λ|3 .

Similarly, we can reverse the argument to get

‖π⊥
γ (g)‖ ≥ ‖π⊥

γ ( f )‖
|λ|3 .

Thus, we get

RSD(g, s) =
( |λ|3‖πs( f )‖

|λ|3‖ f ‖ ,
|λ|3‖π⊥

s ( f )‖
|λ|3‖ f ‖

)

= RSD( f, s).

This shows that the reflective symmetry descriptor is independent of the resolution
of the input voxel grid.
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3. Model Scale Invariance. Given a 3D shape S, if the shape T is obtained by scaling
S by λ, T = λS, then the reflective symmetry descriptors of S and T are equal. To
show this we first recall that the implicit function used for computing the reflective
symmetry descriptor of S is defined as

FS(x) = exp

(−D2
S(x)

R2
S

)

,

where DS(x) is the Euclidean distance transform of S, and RS is the average distance
from points on S to the center of mass. Using the fact that RT = λRS , and using the
fact that

DT (x) = λDS

( x

λ

)

we get

FT (x) = exp

(

− D2
T (x)

R2
T

)

= exp

(

−λ2 D2
S(x/λ)

λ2 R2
S

)

= FS

( x

λ

)

.

Thus, from the domain scale invariance property, it follows that the reflective sym-
metry descriptors of S and T are equal—i.e., the reflective symmetry descriptor is
independent of the scale of the input 3D model.

9. Experimental Results. While the properties described in Section 8 indicate that
the reflective symmetry descriptor may be well suited for shape analysis tasks in theory,
it is necessary to demonstrate that these properties translate into desirable properties in
practice. This section presents experiments used to investigate the following questions:

• How stable is the descriptor if noise is added to the model?
• How robust is the descriptor with respect to point sampling?
• How quickly does the multiresolution approximation converge to the descriptor?
• How well does the descriptor classify models?
• How orthogonal is the reflective symmetry descriptor to other descriptors?

For the purposes of these experiments, the reflective symmetry descriptor of a polyg-
onal model was computed by rasterizing the model into a 64 × 64 × 64 voxel grid.
The models were translated so that the center of mass was at the center of the voxel
grid, and they were rescaled so that the average distance of a point on the model from
the center was one-quarter the resolution of the grid (we found that twice the average
distance to the center of mass was a more stable measure of the extent of a model than its
bounding radius). The reflective symmetry descriptors were computed on an 800 MHz
Athlon processor with 512 MB of RAM. The polygonal models took between 0.2 and 3.5
seconds to rasterize for polygon counts ranging from 20 to 120,000; the exponentiated
distance transform took 1.2 seconds; and the descriptor of the voxel grid took 5 seconds
to compute.

9.1. Noise. In order to test whether the reflective symmetry descriptor is stable in the
presence of noise, we took the 12 different polygonal models shown in Figure 8 and per-
turbed their vertices by different frequency functions at different amplitudes. Figure 9
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Fig. 8. Twelve polygonal models used for stability testing. (Triangles are colored by normal direction.)

shows images of a mug perturbed at different frequencies with its corresponding Ex-
tended Gaussian Image (EGI) [37], Orientation Histogram [10], and reflective symmetry
descriptor. The EGI was computed by binning surface normals in proportion to area:

EGI(S, p) =
∫

S
δp(N (s)) ds,

while the Orientation Histogram was obtained by computing the voxel representation
of the polygonal model (as described by (2) in Section 7) and binning the gradients in
proportion to their lengths:

OH( f, p) =
∫

‖∇ fx‖δp(∇ fx ) dx,

where δp is an approximation to the delta function at p, N (s) is the function giving the
surface normal at the point s, and ∇ fx is the gradient of f at the point x . (Both the EGI and
Orientation Histogram were smoothed by convolving with a low band width spherical
Gaussian in order to eliminate noise.) We chose these representations because though
they capture local information, they are similar to the reflective symmetry descriptor in
that the value at every point on the sphere represents an integration over the entire model.

To evaluate the stability of each shape representation, we normalized the descriptors
so that they had an L2-norm equal to 1, and computed the L2-difference between the
descriptors of the initial and noisy models. In order to compare the different results with
each other, we also computed the standard deviation in the descriptors of 1890 mod-
els. We then defined the measure of stability as the L2-difference between the initial and
noisy models, divided by the twice standard deviation in the descriptors. Figure 10 shows
a plot of the error as a function of amplitude (given as a fraction of the bounding radius)
for three different frequencies. Throughout the different perturbations the reflective sym-
metry descriptor is more stable than either the Orientation Histogram or the EGI. Also,
since differentiation has the property of amplifying high-frequency information, the EGI
(which depends on the computation of surface normals) becomes less stable at higher
frequencies. Similarly, if we were to add noise to the voxel grid itself, we would find
that the Orientation Histogram becomes less stable at higher frequencies. Meanwhile,
the reflective symmetry descriptor would remain stable.
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Fig. 9. A mug with noise added to it at frequencies 3, 6, and 9 and amplitude equal to 1
10 th of the bounding

radius (first row), the EGI of the models (second row), the Orientation Histogram of the models (third row),
and the reflective symmetry descriptor of the models (bottom row).

Fig. 10. Plots showing the stability of the EGI, Orientation Histogram, and reflective symmetry descriptor at
different frequencies, as a function of the amplitude of the noise. Stability was measured by computing the
difference between the descriptors of the initial and noisy models, and dividing by twice the standard deviation
in the descriptors.
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Fig. 11. A plot showing the stability of the Orientation Histogram and reflective symmetry descriptor at
different point samplings. Stability was measured by computing the difference between the descriptors of the
initial and point-sampled models, and dividing by twice the standard deviation descriptors.

9.2. Point Sampling. We further tested the robustness of the reflective symmetry de-
scriptor by evaluating how efficiently the reflective symmetry descriptor of a discrete
point sampling converges to the reflective symmetry descriptor of the surface. To test
this for a given model S, we generated point sets SN consisting of N randomly placed
samples on the surface of S (as described in [27]). We then computed the L2-difference
between the descriptors of S and the descriptors of SN , and divided by twice the stan-
dard deviation in the descriptors. Figure 11 shows the results of our experiments for the
reflective symmetry descriptor and Orientation Histograms, averaged over the 12 differ-
ent models shown in Figure 8, where the value of N ranged from 100 to 12,800, while
Figure 12 shows a visualization of these results for one model (a table). Note that even
when using a small number of samples, the reflective symmetry descriptor of the point
set accurately approximates the reflective symmetry descriptor of the model. We find that
the Orientation Histogram, by contrast, is less stable and converges to the Orientation
Histogram of the initial model more slowly. The robustness of the reflective symmetry
descriptor to point sampling indicates that it can be used even when the initial input to
the model is a sampling of points from a surface of the model (for example when the
data is obtained by scanning) and does not require that the point set first be triangulated.

9.3. Multiresolution Approximation. In Section 6 we showed that an efficient approxi-
mation to the reflective symmetry descriptor can be obtained by computing the reflective
symmetry descriptor using only the first few Fourier coefficients. In this section we
evaluate how quickly the multiresolution approximation converges to the true reflective
symmetry descriptor in practice. Table 1 gives the error of the reflective symmetry de-
scriptor for different frequency approximations, averaged over the 12 models shown in
Figure 8. As in the previous sections, error is defined by computing the L2-difference
between the full descriptor and the approximation, and then dividing by twice the stan-
dard deviation in the reflective symmetry descriptors. Figure 13 shows a visualization
of this result—a biplane and the reflective symmetry descriptors obtained by using the
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Fig. 12. A polygonal model of a table (right) point sampled with 400, 1600, and 6400 points, and the corre-
sponding Orientation Histograms (middle row) and reflective symmetry descriptors (bottom row).

Table 1. Results showing the stability of the reflective symmetry descriptor at different
approximations.∗

Fourier Approximation

2 4 6 8 10 Full descriptor

Error (%) 57 14 3 1 < 1 0
Time (seconds) 2.66 2.87 3.12 3.40 3.63 5.96

∗Stability was measured by computing the L2-difference between the full reflective symmetry
descriptor and the approximating descriptor, and dividing by twice the standard deviation in the
descriptors. Timing results include the time for rasterization and computation of the exponentially
decaying Euclidean Distance Transform.

Fig. 13. An airplane and approximations to its reflective symmetry descriptor obtained using two, four, six,
and eight Fourier functions, with the corresponding time for computation.
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153 dining room chairs 25 living room chairs 8 chests 16 beds 12 dining tables

36 end tables 39 vases 28 bottles 9 chandeliers 5 candelabra

Fig. 14. Samples from ten representative classes from the Viewpoint “household” and “miscellaneous” database
(images courtesy of Viewpoint [43]).

first two, four, six, and eight Fourier coefficient functions. Note that while the descriptor
obtained using four Fourier coefficient functions has more pronounced peaks than the
descriptor obtained using two coefficient functions, it is barely distinguishable from the
descriptor obtained using six coefficient functions.

9.4. Retrieval. In this experiment we aim to test whether our reflective symmetry
descriptor is useful for retrieval and classification tasks. We ran a series of experiments
in which each model in a database was matched with all others and analyzed how well
the computed ranks correlate with a human’s classification of the models.

For this experiment, we used a test database with 1890 models of “household” and
“miscellaneous” objects provided by Viewpoint [43]. The models contain between 120
and 120,392 triangles, with an average of 3504 triangles per object. Models were clustered
into 85 classes based on functional similarities, largely following the grouping provided
by Viewpoint. The smallest class had 5 models, the largest had 153 models, and 610
models did not fit into any meaningful class. Examples of ten different classes are shown
in Figure 14.

We chose this database for our tests because it provides a representative repository of
3D polygonal models, and it is difficult for shape-based retrieval. In particular, several
distinct classes contain models with very similar shapes. For example, there are five
separate classes of chairs (153 dining room chairs, 10 desk chairs, 5 director chairs,
25 living room chairs, and 6 lounge chairs). Meanwhile, there are classes spanning a
wide variety of shapes (e.g., plates of food, bottles, etc.). Thus, the database stresses the
discrimination power of our reflective symmetry descriptor while testing it under a variety
of conditions. Furthermore, since the models were consistently aligned by Viewpoint in
a common coordinate frame, we were able to test the discriminatory power of different
shape descriptors independent of an automatic alignment method (e.g., principal axes).

In this experiment we compared the retrieval results of seven alignment-dependent
shape-matching methods:

• RSD∞: L∞-difference of the reflective symmetry descriptors.
• RSD2: L2-difference of the reflective symmetry descriptors.
• EGI: L2-difference of the Extended Gaussian Images, as computed in [37].
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Fig. 15. Plots of precision versus recall obtained using the the voxel representations (VOXEL), Spherical Extent
Function (EXT), reflective symmetry descriptor with L∞-norm (RSD∞), reflective symmetry descriptor with
L2-norm (RSD2), Orientation Histograms (OH), Moments (MOM), and Extended Gaussian Images (EGI).

• OH: L2-difference of the Orientation Histograms, as computed in [10].
• EXT: L2-difference of the Spherical Extent Functions, as computed in [38].
• MOM: L2-difference of the moments up to order 7, as computed in [44].
• VOXEL: L2-difference of the voxel model, as described by (2) in Section 7.

Figure 15 shows the retrieval results of these different methods. Each curve plots
precision versus recall, averaged over all the classified models in the database. The plot
axes can be interpreted as follows. For each target model in class C and any number K
of top matches, “Recall” represents the ratio of models in class C returned within the top
K matches to the number of models in class C , while “Precision” indicates the ratio of
the top K matches that are members of class C . A perfect retrieval result would produce
a horizontal line along the top of the plot, indicating that all the models within the target
object’s class are returned as the top hits. Otherwise, plots that appear shifted up and to
the right generally indicate superior retrieval results.

Note that since the reflective symmetry descriptor is a function whose value at each
point characterizes global shape properties, using the L∞-difference (which gives the
maximum error between descriptors) provides better retrieval results than using the
L2-difference (which gives an L2-average of the different errors). By contrast, the other
spherical descriptors (EXT, EGI, and OH) characterize local shape information and per-
form less well when the L∞-difference is used. In particular, we found that with the L∞-
difference, Spherical Extent Functions gave precision results that were on average 45%
worse, Orientation Histograms gave precision results that were on average 25% worse,
and Extended Gaussian Images gave precision results that were on average 15% worse.

While the reflective symmetry descriptor does not provide the best precision recall
results, it is competitive with a number of commonly used shape descriptors. However,
more importantly, the reflective symmetry descriptor measures global symmetries rather
than local features, and thus it describes shape in a manner orthogonal to the other
descriptors. To test whether we can leverage this distinction empirically, we took all
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Table 2. Comparison of the pairwise combinations of
different matching methods.

EXT OH VOXEL RSD∞

EXT 0∗ 35 −2 22
OH 20 0 −4 26
VOXEL 10 23 0 15
RSD∞ 26 48 5 0

∗The entry in a given column and row describes the percentage
improvement using the combination of descriptors indexed by
the column and row, over just using the descriptor indexed by
the column.

pairwise combinations of the four best classification methods, and tested whether the
product of their similarity measures gave better retrieval results than either method alone.
Improvement was computed by averaging the percentage of precision improvement over
all recall values. Table 2 gives the results of the experiment, with each entry giving the
percentage improvement obtained using the combination of descriptors indexed by the
column and row, over just using the descriptor indexed by the column. For example,
the entry in the first column and second row indicates that the combination of Spherical
Extent Functions and Orientation Histograms gives precision results that are on average
20% better than using the Spherical Extent Function alone, while the entry in the third
column and second row indicates that combining Orientation Histograms with the voxel-
based method gives results that are 2% worse than using the voxel-based method alone.

We have found that for each descriptor, combining it with the reflective symme-
try descriptor provides a better classification method. Figure 16 shows some of the
precision/recall plots of the different pairwise combinations and compares them with
the plot of the voxel-based method, which gives the best results alone. (We do not show

Fig. 16. Plots of precision versus recall obtained using combinations of different methods. The plots in-
clude Spherical Extent Functions, with Orientation Histogram and reflective symmetry descriptors (EXT-
OH-RSD∞), Orientation Histograms with reflective symmetry descriptors (OH-RSD∞), Spherical Extent
Functions with reflective symmetry descriptors (EXT-RSD∞), Spherical Extent Functions with Orientation
Histograms (EXT-OH), and a plot of the descriptor that gave the best results in the previous classification
experiment (VOXEL).
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the combinations with the voxel-based method, because, as Table 2 indicates, no method
combines well with it.) It is particularly interesting to note that though the reflective
symmetry descriptor and the Orientation Histogram both represent an abstraction of in-
formation from a single voxel grid, and do not carry enough information to reconstruct
the model, the combination of these two descriptors performs better in classification
experiments than the direct comparison of the voxel grids.

10. Conclusion and Future Work. In this paper we have introduced the reflective
symmetry descriptor, a function associating measures of reflective invariance of a 3D
model with respect to every plane through the center of mass. It has several desirable
properties, including parameterization over a canonical domain, stability, globality, and
invariance to scale, that make it useful for shape analysis tasks. We have shown how
to compute it efficiently and conducted experiments that show it is a stable descriptor
that performs well in classification experiments, especially in conjunction with other
common descriptors.

This work suggests a number of questions to be addressed in future research: (1) Can
the symmetry descriptor be used for other shape analysis tasks, such as registration
and indexing? (2) Can other theoretical properties of the descriptor be proven, such as
showing when 3D models can have the same descriptor? (3) Is the globality property
of the reflective symmetry descriptor sufficiently powerful to allow it to be used with
randomized shape analysis algorithms (e.g., efficient algorithms that make decisions
about alignment and classification by only sparsely sampling the descriptor)? Answers
to these questions will further our understanding of how symmetry defines shape.
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