
Computational
Geometry

Theory and Applications
ELSEVIER Computational Geometry 4 (1994) 53-62

Point location among hyperplanes and unidirectional
ray-shooting*

Bernard Chazelle*, Joel Friedman

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

Communicated by Raimund Seidel; submitted 10 July 1991; accepted 19 December 1993

Abstract

We present an algorithm for locating a query point q in an arrangement of n hyperplanes in
Rd. The size of the data structure is O(n”) and the time to answer any query is O(log n). Unlike
previous data structures, our solution will also report, in addition to the face of the arrangement
that contains q, the first hyperplane that is hit (if any) by shooting the point q in some fixed
direction. Actually, if this ray-shooting capability is all that is needed, or if one only desires to
know a single vertex of the face enclosing q, then the storage can be reduced to
0(nd/(logn)rd/21~t), for any fixed E >O.

Key words: Point location; Ray-shooting; Multidimensional searching

1. Introduction

Let H be a set of n hyperplanes in [Wd and let J&‘(H) be the arrangement determined by

these hyperplanes. We show how to preprocess H into a data structure of size O(nd) so

that given any query point 4 the unique face of d(H) that contains 4 can be

determined in O(log n) time. The data structure can be built deterministically in

O(n 2df2) time. It must be noted that the dimension d is assumed to be a constant and

that the big-oh notation actually hides constant factors exponential in d.

*Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this research
in part under Grants CCR-8700917 and CCR-9002352. Joel Friedman wishes to acknowledge the National

Science Foundation for supporting this research in part under Grant CCR-8858788, and the Office of Naval
Research under Grant N00014-87-K-0467.

* Corresponding author.

0925-7721/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved

SSDI 0925-7721(94)00002-D

54 B. Chazelle. J. Friedman J Computational Geometry 4 (1994) 53-62

Our result improves upon a solution of Clarkson [3], which requires O(nd+E) space,

for any fixed E >O. (The preprocessing time of our method is not as good, however.)

Another advantage of our algorithm is that if a direction is chosen ahead of time then

the first hyperplane of H hit (if any) by shooting the query point in that direction can

be found at no extra cost. Actually, if this ray-shooting capability is all that is needed,

or if one only desires to know a single vertex of the face enclosing 4, then the storage

can be reduced to O(n”/(log n)rd’21-‘), for any fixed E >O.

Our data structures make use of the probabilistic form of divide-and-conquer found

in [3, 5, 8, 111 and its derandomization given in [2], The point location algorithm is

developed in several stages by bootstrapping and mixing together four intermediate

solutions. The first one, Solution A, is Clarkson’s algorithm itself: it requires O(nd+‘)

space, for any fixed E >O. Solution B improves this space bound by making E a func-

tion of n that goes to 0 as n goes to infinity. Solution C introduces the main data

structuring scheme, which further reduces the space bound to O((n log n)“). Solution

D trades space for time by requiring only o(n”) storage but substantially more than

O(log n) query time. Finally, Solution E presents our last data structure, which

requires 0 (nd/(log n) rdj21PE) space, for any fixed E >O, and O(log n) query time.

Obviously, the space bound climbs to O(nd) if we require a full representation of the

arrangement.

2. Some results on derandomization

We begin with a brief review of fundamental geometric concepts (see e.g., [3, 63).

A set is polyhedral if it is the intersection of a finite number of closed halfspaces. The

arrangement al(H) of a finite collection H of hyperplanes in Rd is the cell complex

induced by the hyperplanes. An element of the complex is called aface, or a k-face if we

want to specify its dimension k; a vertex is a O-face, an edge is a l-face, and a cell is

a d-face. A face is the relative interior of some polyhedral set bounded by hyperplanes

in H. A triangulation of d(H) is a simplicial cell complex which refines the arrange-

ment d(H) (i.e., each face is a simplex of dimension d or less). For example, we can

define a canonical triangulation [4] by first triangulating recursively the (d - l)-

dimensional cross-section of the arrangement made by each hyperplane, and then for

each cell of the arrangement, lifting all the k-simplices on its boundary (k = 0,. . ., d - 1)

toward a chosen vertex (except for the simplices decomposing the faces incident upon

the vertex in question). The choice of lifting vertices must be consistent: for example,

we can choose the lexicographically smallest vertex in the cell.

We now recall some results from [2] which provide some important tools for our

constructions. Let X = (V, E) be a hypergraph on n vertices. In our application, the

vertices correspond to the hyperplanes of H; each edge is associated with a pair of

distinct vertices in d(H) and indicates which hyperplanes of H separate the two

vertices (i.e., intersect the relatively open segment connecting them but not its

endpoints). For simplicity, we shall assume that the hyperplanes are in general

B. Chazelle. J. Friedman/Computational Geometry 4 (1994) 53-62 55

position. By abuse of notation we identify V and H, so that we might speak of the

hyperplanes of V. The two vertices of &4(H) associated with a given edge eeE are

specified by a certain subset o(e) z V of hyperplanes (each vertex contributing the

hyperplanes of which it is the intersection). Let h be the maximum value of la(e)1 over

all e E E; in our application, h = 2d. We can verify that given any W s I/ of size at most

h the cardinality of K1 (W) is bounded above by a constant. Given a subset R c V of

r hyperplanes, an edge e is called t-de$cient if (i) lel 3 tn/r, (ii) o(e) c R, (iii) no

hyperplane of R separates the endpoints of e. This simply means that the two vertices

of d(R) with which e is associated are separated by a least m/r hyperplanes of H and

are incident upon a common face of d(R). Given R, let x(t) be the number of

t-deficient edges. We say that R is favourable if

x(t) G
%!(O) + 1

2Wh) ’

for t = 1 2 , ,... ,r, where a is some appropriate constant.

To use the results of [Z], we need to ensure that SF is robust, meaning roughly that

the average number of O-deficient edges, when R is chosen uniformly at random,

cannot decrease as r increases. That this should hold in our particular application is

not entirely clear, but we can weaken the definition of robustness, and replace X(O)-in

the definition of a favorable sample-by a nondecreasing function of r which upper-

bounds the actual value of x(O) for any R. To do so, we need a result of Aronov,

Matougek and Sharir [l], which says that the sum of the squares of the size

complexities of the faces of an arrangement of r hyperplanes in d-space is

O(rd(log r)Ld/21-1). Th en, the result from [2] which we need says that if r is large

enough, it is possible to compute a favorable R in time O(rnh+‘) time. This means that

R can be found so that the number of t-deficient edges vanishes exponentially in t.

More precisely, the number of pairs of vertices incident upon a common face and

intersected by at least tn/r hyperplanes of H is at most O(rd(log r)LdizJm l/c’), for some

constant c > 1.

Lemma 1. There exists a collection R of r hyperplanes in H such that, for any t >O, the

number of pairs of vertices incident upon a common face of d(R) and intersected bj at

least tn/r hyperplanes of H is O(rd(log r) Ld/21-1/~f), for some constant c > 1. The set

R can be computed in 0(rn2d+1) time.

Remark. The lemma implies that every pair of vertices in the same face is separated by

at most O(n(log r)/r) hyperplanes of H.

Let’s change our perspective somewhat and apply the same result to a geometric

construction which we call the vertical decomposition of d(R). We decompose the

closure of each cell c of d(R) into a cell complex by erecting “walls” along the

x,-direction as follows: Take each k-face (for all k < d - 1) of the closure c* of c, and

(1) lift it by taking its Cartesian product with the xl-axis and (2) intersect the lifted face

56 B. Chazelle, J. Friedman/ Computational Geometry 4 (1994) 53-62

with c*. To simplify the discussion, let us assume that c* is bounded. Since c* is

convex, the k-faces to be lifted fall into three categories: those for which the lifting

proceeds in the positive direction, those going in the negative direction, and those

faces which cannot be lifted within c* (the silhouette of c*). None of these categories

alone can cause an asymptotic blow-up in the complexity of the resulting structure.

The first two categories, however, collide head-on, in the sense that within a given cell

walls from distinct categories can cut each other. By the zone theorem for hyperplanes

[7], however, it easily follows that the total size of the resulting structures, over all

cells of d(R), remains O(rd).

To be convinced of this, it suffices to observe that the size (i.e., combinatorial

complexity) of the vertical decomposition is proportional to the number of features in

(i) the arrangement d(R) itself, (ii) the zone of every hyperplane in R, and more

generally (iii) the zone of each k-wise intersection I of hyperplanes in R with respect to

the cross-section of R with the (d -k + 1)-flat passing through I that is parallel to the

xl-axis. The zone theorem for hyperplanes [7] shows that the size in (ii) is O(rd- ‘) and

that each zone in (iii) has size O(r d-k). There are O(rk) k-wise intersections, so the size

of the vertical decomposition is O(rd).

The walls of the decomposition partition each cell closure c* into a cylindrical cell

complex. Each face of the complex can be further decomposed by lifting a canonical

triangulation of its base in the x,-direction. Besides increasing the total complexity by

at most a constant factor, this produces a cell complex whose faces are either simplices

of dimension less than d (on the boundary of c*) or are (topologically) products of such

simplices with line segments. Note that although each cell is decomposed into a cell

complex, their union does not produce a cell complex (since adjacent cells do not

necessarily glue together properly). The size of the vertical decomposition in its final

state is still O(rd).

Given the subset R, to compute the vertical decomposition can be done most simply

by intersecting the cylinder erected from each face on the boundary of c* with all the

other faces. These intersections take place in (d - 1)-space, so the work involved can

be reduced to computing the intersection of up to Y halfspaces in (d - 1)-space, which

can be done in 0(rL(d-1)/21 log r) time by using Seidel’s convex hull algorithm in dual

space [12]. We know that at most O(rd(logr) Ld”jP1) such intersections will be

computed [l]. Therefore, setting up the vertical decomposition takes time at most

proportional to rL3d/2J (log r)Ldlzl.

We wish to ensure that no face in the decomposition of any c* intersects more than

n(log r)/r hyperplanes of H, up to within a constant factor. Since these faces have

constant description size it suffices to guarantee that any segment within each c*

intersects O(n(log r)/r) hyperplanes. By a standard argument, it is easily seen that

ensuring this property for the segments joining pairs of (old) vertices in c* is actually

sufficient. This can be done by appealing to Lemma 1.

Lemma 2. For any r < n large enough, there exists a collection R of r hyperplanes in

H such that any face in the vertical decomposition of d(R) is intersected by

B. Chazelle, J. Friedman / Computarional Geometry 4 (1994) 53-62 57

O(n(log r)/r) hyperplanes of H. The size ofthe uertical decomposition is O(rd). Comput-

ing R and the vertical decomposition can be done in O(rnzd+‘) time.

We conclude this section with a trivial but useful technical result. Letfbe a positive

nondecreasing function such that, for any x, y large enough,f(xy) d x”f(y), for some

fixed constant cc 3 1. Given m 2 2, let ml, . . . , mP be a set of integers such that for any

t >l, I{i:mi >tm}l < up/b’, for some constants a, b >l.

Lemma 3. The sum c,,iS, f(mi) is at most proportional to pf(m).

3. The point location algorithm

As we said earlier, we need four intermediate solutions, A through D, from which the

final point location algorithm, Solution E, is derived.

Solution A. This is Clarkson’s method [3]. Take a random sample R of r =0(l)

hyperplanes and triangulate the arrangement d(R). With at least constant positive

probability, no face of the triangulation is intersected by more than cn(log r)/r

hyperplanes, for some fixed constant c. If this condition does not hold, repeat the

sampling until it does. From a result of Matouiek [9] an appropriate R can be found

deterministically in O(n) time. Next, for each facef of the triangulation of S&‘(R) in

turn, identify the subset H, G H of hyperplanes that intersectf(but do not contain it).

If H, is not empty then construct the data structure recursively, with the input

consisting of H, and the hyperplanes bounding f: Note that if the face f is of

dimension k < d, then we need a data structure for searching in k-space, so in the

recursive step we must provide not quite the hyperplanes which we specified above

but rather their intersections with the affine closure off:

To answer a query we first locate the point in the triangulation of A!(R) by checking

its inclusion in each of the faces, one by one. If the enclosing face is not intersected by

other hyperplanes (in H\R) then it is the answer which we are looking for and we are

done. Otherwise, we proceed recursively in the data structure defined for that face.

Ultimately, we must fall into the first case and thus be able to answer the query. Note

that because the construction algorithm was careful to include the bounding faces of

the simplices within which it recurses, the answer to the query is a simplex that falls

entirely within some face of d(H): the correspondence can be precomputed and

encoded in the data structure. If r is chosen to be a large constant, then this scheme

requires O(nd+‘) storage, for any fixed E = I >O, and O(log n) query time, respec-

tively. The preprocessing time is also O(nd+‘).

Solution B. Clarkson’s algorithm reports the name of the face that contains the query

point, but it does not report the name of the hyperplane right “above” the query point.

58 B. Charelle, J. Friedman/Computational Geometry 4 (1994) 53-62

Assume that we have a system of reference (0, x i , . . . , xd), none of whose axes is parallel

to any hyperplane of H. Given a query point q we want to know the first hyperplane

encountered (if any) as we move q along Ox, in either direction. Let h be one of these

hyperplanes and let q’ be the projection of q onto h along xi; the intersection of h and

the plane (0, xl, x2) is a line parallel to which we can move q’ until we reach another

hyperplane of H, etc. Iterating in this manner, the point q is thus associated with

2 points along direction (0, xi) 4 points on a plane parallel to (0, xi, x2), 8 points on

a 3-flat parallel to (0, x1, x2, x3), etc. Note that the final 2d-tuple, which we call the

aiite~~n of q, consists of vertices of d(H) which need not be distinct. These various

tuples not only allow us to locate q within d(H) but also provide useful additional

information, as we shall see below. All our subsequent point location algorithms will

compute these d tuples.

Let us describe a method for computing the 2-tuple of a query point. By applying

the data structure recursively for each hyperplane it will then be easy to derive all the

remaining tuples, and hence, the full antenna. Take a subset R of r hyperplanes in

H and compute the vertical decomposition of at(R). We need a data structure for

locating a point within al(R) and, if it does not lie on any hyperplane of R, within the

(vertical) decomposition of its enclosing cell in ai’(R) as well. This is done most simply

by applying Solution A to the set of hyperplanes spanning the (d -1)-faces of the

vertical decompositions of the closures of all the cells. Since there are a total of O(rd)

such faces, this produces one giant data structure of size O(V~(~+‘)) (setting E = 1). We

complete the data structure by considering each face in the decomposition of each cell

c and recursing within it, using as input the hyperplanes that intersect the face in

question. Note that we do not recurse within the faces on the boundary of c*, nor do

we recurse within the faces produced by Solution A (those are used only as an

intermediate device).

Under the conditions of Lemma 2, any face in which the construction algorithm

recurses intersects only O(n(log r)/r) hyperplanes. Setting r = PIN’, the storage

requirement 8(n) follows the recurrence: s(n) = O(l), for n =0(l), and

S(n) = Clil ‘Ps(~~~ - l/W) log n) + qn’d+ U/2),

for some constants cl, c2 > 0. We easily verify by induction that S(n) is at most

proportional to nd2’d log log ‘j2, with all logarithms taken to the base 2. (We omit the

calculation, which is straightforward: to the reader eager to verify it, however, we

recommend using the upper bound of n1 - 1’(2d)+E on cZnl - 1/(2d) log n when substitu-

ting in the exponent of 2.) The construction takes time T(n), with r(n) = O(l), for

n =0(l), and

T(n) = tin 1’2T(c2nl-“(2d)10gn) +O(n2d+2),

which certainly is in 0(n2d+2).

To answer a query, we begin by locating the point q in the Clarkson-type data

structure at the top level. If the point lies on one of the hyperplanes of R then this gives

B. Chazelle, J. Friedman/Computational Geometry 4 (1994) 53-62 59

us the 2-tuple of the point and we are done. Otherwise, we find the cell of d(R) that

contains 4 as well as its enclosing face in the vertical decomposition of the cell. If this

face has no further intersections with other hyperplanes then its two bases (recall that

it is a cylinder) gives the 2-tuple of the point 4; otherwise, we must recurse within the

data structure associated with that face. The query time Q(n) follows a recurrence of

the form: Q(O(1)) =0(l) and Q(n) =Q(n’- “) +O(log n), for some constant v >O,

which gives Q(n) = O(log n).

To go from the 2-tuple of the query point to its antenna, we need to augment the

data structure as follows: for each hyperplane of H, form its intersections with the

n - 1 remaining hyperplanes and feed the resulting (d -2)-flats as input to a data

structure built recursively in dimension d - 1. This allows us to compute all the

d tuples of a query point in O(log n) time, using 0(nd2(d’o~10gn)‘) storage and O(F?~+~)

preprocessing time.

Solution C. We now show how to reduce the space complexity to O(nd logd n) by

bootstrapping the previous solution. This will also give us a chance to introduce the

main data structuring technique used in this work. The idea is to apply Solution B to

a slightly sublinear subset of the hyperplanes chosen carefully. We then argue that the

set of tuples computed by the query algorithm with the sample set either provides the

right answer directly or else points to a small number of hyperplanes from which the

correct set of tuples can be derived by again applying Solution B.

The preprocessing is very simple to describe. Pick a subset R of r hyperplanes in

H that satisfies the conditions of Lemma 1 and apply Solution B to it. Given a cell c of

x2(R), let or,..., uk be the vertices incident upon it: form a k-by-k matrix whose

(i,j)-entry is a pointer to the list of hyperplanes in H that intersect the line segment ViDj

(but not its endpoints). Preprocess each such list according to Solution B. To compute

the 2-tuple of a query point q, we first determine its antenna K within d(R), using

Solution B. If q is found to lie on a hyperplane of R then we are done. Otherwise, to see

whether the antenna of q within d(H) differs from K, and if so, how, we form all pairs

of vertices in K and we look up the corresponding entries in the matrix associated with

the cell containing q. This gives us a constant number of lists of O(n(log r)/r)

hyperplanes each, which we check by using Solution B.

We claim that the desired 2-tuple is formed by some of these hyperplanes or

possibly by the hyperplanes of R corresponding to the 2-tuple computed by Solution

B at the top level. To see this, let t be the 2-tuple of q within L&‘(R). It suffices to show

that if a hyperplane separates the two points in t then it must intersect the convex hull

of K. This follows from the fact, trivially shown by induction, that the 2-tuple of

a point within an arrangement lies in the convex hull of its 2k-tuple, for any k >l.

As we saw earlier, the total size p of all these matrices is O(rd(log r))td12J-l). The

size of the data stucture is at most on the order of

,.dz’d log log 1)’
+ C f(W)t

60 B. Chazelle, J. Friedman/ Computational Geometry 4 (1994) 53-62

wheref(z) = ~~2(~“‘g log z)2, and the mi’s are the numbers of hyperplanes separating pairs

of vertices on cells of d(R). From Lemmas 1 and 3 we then find that the

storage is at most proportional to

#2’d log log r)* + #(log r)td/2J- 1 (n/r)d2’d log 1% (n/r))‘,

which, setting r to be roughly n/2(d log log “)‘, gives the simple (and very conservative)

upper bound of O(nd logd n). The construction takes 0(n2d+2) time. The query time is

O(log r + log (n(log r)/r)), which is O(log n). Again, by recursive construction of the

data structure, we can convert this algorithm for computing the 2-tuple of a query

point into one that determines its antenna. This only affects constant factors in the

complexity bounds stated above.

Solution D. We use the same scheme but instead of using Solution B at both levels,

we use Solution C at the top level and the naive algorithm at the bottom level. In

other words, Solution C is applied to the sample of hyperplanes, and each list

of hyperplanes pointed to by the entries of the matrices are left unprocessed. The

query algorithm searches those lists by examining each of their elements. Again,

we can appeal to Lemma 3 and derive that the size of the data structure is now at

most proportional to

rd logd r + rd (log r)Ld12j - ‘(n/r),

which, setting r = n1 -‘, gives an upper bound of O(nd-(d-l)E(log n)Ld/21-1). Again, the

construction time is 0(n2d+2) time. The query time is O(n’ log n). We use the usual

format to go from the 2-tuple of the query point to its full set of tuples.

Solution E. Finally, we combine Solutions C and D into a leaner, faster algorithm. The

setting is still the same, but we now apply Solution C to the top level (the hyperplanes

of R) and Solution D to the bottom level (the hyperplanes pointed to by the matrix

entries). From one final use of Lemma 3, we find that the size of the data structure is at

most proportional to

rd logd r + rd(log r) Ld,2,+-‘“-“’ (Iog$d’2J-1,

which if we set r to be roughly n(log n)i-l’(’ +E2) gives O(nd/(log n)rd’21-t’), for any

fixed E’ >O. The construction takes 0(n2d+2) time. The query time is O(log r +

(n(log r)/r)’ log(n(log r)/r)), which is O(log n). One last time we use recursion to

augment the data structure to allow for the computation of not merely the 2-tuple of

a query point but its antenna, too.

Theorem 4. It is possible to preprocess a set of n hyperplanes in lRd, using O(nd/

(log n)rd/21-E) storage, for any fixed E >O, so that given any query point, the first

hyperplane (if any) that is hit by shooting from the point in ajxed direction can be

B. Chazelle, J. Friedman/Computational Geomeiry 4 (1994) 53-62 61

determined in O(log n) time. Zf an explicit representation of the arrangement of

hyperplanes is available (which requires O(nd) storage) then the face enclosing the

point can also be found in O(log n) time. The data structure can be built in

O(n “+‘) time.

4. Conclusions

An immediate application of the point location algorithm is halfspace range

searching. By duality, we can preprocess n points in d-space so that given a query

halfspace the number of points in it can be computed in O(log n) time. The data

structure requires O(nd) storage and can be built in O(n2d+2) time.

The fact that o(n”) storage suffices to do ray-shooting (in a fixed direction) suggests

that perhaps much lower space bounds can be achieved. At this point our bound is

constrained by the best current bound on the sum of squares of face sizes in an

arrangement of hyperplanes. Even if not optimal this bound is unlikely to decrease

much more in the future, so a different approach might be needed. The preprocessing

time of our algorithms can be reduced a little by a more careful analysis or perhaps by

adapting some of Matousek’s recent results [9, lo]. Unfortunately, the large size of our

samples might prevent any dramatic savings. This might perhaps be partly alleviated,

however, by bootstrapping the algorithm a large but bounded number of times.

Acknowledgments

We wish to thank Otfried Schwarzkopf for pointing out an error in an earlier version

of the algorithm. We also thank Herbert Edelsbrunner and Micha Sharir for helpful

discussions, as well as the referees for useful suggestions.

References

Cl1

PI

c31

c41

c51

C61
c71

B. Aronov, J. Matousek and M. Sharir, On the sum of squares of cell complexities in hyperplane

arrangements, Proc. 7th Annu. ACM Symp. Comput. Geom. (1991) 3077313.

B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,

Combinatorics 10 (1990) 2299249.

K.L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput.
Geom. 2 (1987) 195-222.

K.L. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput. 17 (1988)
83&847.

K.L. Clarkson and P.W. Shor, Applications of random sampling in computational geometry, II,
Discrete Comp. Geom. 4 (1989) 387421.

H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, Berlin, 1987).
H. Edelsbrunner, R. Seidel and M. Sharir, On the zone theorem for hyperplane arrangements, in H.
Maurer, ed., New Results and New Trends in Computer Science, LNCS Vol. 555 (Springer, Berlin,
1991) 1088123.

62 B. Chazelle, J. Friedman/Computational Geometry 4 (1994) 53-62

[8] D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Comput. Geom. 2 (1987)
1277151.

[9] J. MatouSek, Cutting hyperplane arrangements, Discrete Comput. Geom. 6 (1991) 385406.

[lo] J. MatouSek, Approximations and optimal geometric divide-and-conquer, Proc. 23rd Ann. ACM

Symp. Theory of Comput. (1991) 505-511.
[l I] J.H. Reif and S. Sen, Optimal randomized parallel algorithms for computational geometry, Algorith-

mica 7 (1992) 91-117.

[12] R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, Proc. 18th Ann.

ACM Symp. Theory Comput. (1986) 404413.

