
Lower Bounds for Orthogonal Range Searching:
II. The Arithmetic Model

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey

Abstract. Lower bounds on the complexity of orthogonal range searching in the static case are established.
Specifically, we consider the following dominance search problem: Given a collection of n weighted
points in d-space and a query point 4, compute the cumulative weight of the points dominated (in all
coordinates) by q. It is assumed that the weights are chosen in a commutative semigroup and that
the query time measures only the number of arithmetic operations needed to compute the answer.
It is proved that if m units of storage are available, then the query time is at least proportional to
(logn/log(2m/n))“’ in both the worst and average cases. This lower bound is provably tight for m =
Q(n(logn)“‘+‘) and any fixed t > 0. A lower bound of Q(n(logn/loglogn)“) on the time required for
executing n inserts and queries is also established.

Categories and Subject Descriptors: E. 1 [Data Structures]; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithm, Theory

1. Introduction

Whereas searching a linearly ordered set is relatively well understood, the complex-
ity of multidimensional searching is far from being elucidated. The vast amount of
literature on this topic witnesses its central location in the study of data structures
as well as its relevance to many practical areas (e.g., database, computer graphics).
If many ingenious data structures have been discovered, however, only few of them
have been given lower bounds matching their performance. An interesting model
of computation was proposed by Fredman, along with a powerful technique for
proving lower bounds [5, 61. Unfortunately, deletions (or related operations like
updates) play an essential part in Fredman’s framework, and results on static
problems or on problems allowing only inserts and queries are thereby excluded.
This should not come as a total surprise; recent work on dynamization suggests
that the coexistence of inserts and deletes often causes a severe increase in
complexity [8].

A preliminary version of this work has appeared in Proceedings of the 27th Annual IEEE Symposium
on Foundations of Computer Science. IEEE, New York, 1986, pp. 87-96.
Part of this research was done while the author was a visiting professor at &ole Normale Superieure,
Paris, France. This research was supported in part by the National Science Foundation under grant
CCR 87-009 17.
Author’s address: Department of Computer Science, Princeton University, Princeton, NJ 08544.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0004-541 l/90/0700-0439 $0 1.50

Journal ofthe Association for Computing Machinery. Vol. 37, No. 3, July 1990, pp. 439-463.

440 B. CHAZELLE

As regards the static case, one of the most interesting results to date is a
lower bound of Yao [14] on the complexity of the following problem, which we
call dominance searching. Let ((p,, Wi)] 1 5 i I n) be a file of n records, where
pi E Ed and Wi belongs to a commutative semigroup. Given a query point q E Ed,
compute Cp,54 Wi, where pi 5 q means that pi does not dominate q in any coordi-
nate. This problem is fundamental because most rectangle problems are in one
way or the other equivalent to it [7]. Yao looked at the two-dimensional case and
proved that if only m units of storage are available, answering a query requires
!?(logn/log((m/n)logn)) in the worst case.’ The underlying model of computa-
tion-the arithmetic model-is very general and is particularly well suited for
lower bounds. It regards a data structure as a set of precomputed sums in the
semigroup, and charges only for the number of arithmetic operations needed to
answer a query. The model makes minimal assumptions about the real costs of an
algorithm, which is what makes it so attractive for proving lower bounds.

Another lower bound for the static case was obtained by Vaidya [9], who proved
that the worst-case query time t for orthogonal range searching in d-space is at least
proportional to ((n/m)log:‘-On), where 0 = 1 if d = 2, 3, and f3 = 2 if d > 3.
(Orthogonal range searching is a little more general than dominance searching:
Queries are of the form &,s,,,s4 wi = ?.) Vaidya’s result might not be as strong as
Yao’s (numerically and also because it deals with a more general problem), but it
has the advantage to hold in arbitrary dimension.

The main contribution of this paper is to strengthen both sets of lower bounds
by presenting a space-time trade-off for dominance searching that is optimal
(almost) across the board. Interestingly, the techniques we use are completely
different from both Yao’s and Vaidya’s. Our main result says that the query time
is at least proportional to (logn/log(2m/n))d-’ in the worst case. Actually, we
prove the stronger result that under a uniform distribution this bound holds for a
random query with probability arbitrarily close to 1; moreover, this is also true if
the point-set is random. Consequently, the lower bound holds in the worst case as
well as on the average. We can prove that the bound is tight for any m =
S2(n(log n)d-‘+r) and any t > 0.

We also establish a lower bound of Q((n(logn/loglogn)d) on the time required
for executing n inserts and queries. A similar result by Fredman [5] says that if
deletions are allowed, then n(n logdn) is a lower bound. Recent work on dynami-
zation (e.g., [S]) suggests that deletions are often hard to accommodate. Intuitively,
what makes a deletion costly is that a single one may invalidate large portions of
the data structure (because a semigroup has no inverse operation). Fredman’s proof
technique rests crucially on that fact and therefore does not generalize to the case
of inserts-only. Interestingly, our result says that even without deletions the problem
still remains almost as difficult. The lower bound was already established by Yao
[14]forthecased= l,butitisnewforalld> 1.

Most of the proofs in this paper use probabilistic arguments in the sense of [4]
and [131. This departs from previous methods that were (by and large) constructive.
For the problems considered in this paper, one advantage of probabilistic methods
is to yield at no extra cost additional information on the distribution of inputs that
achieve the lower bounds. In several cases, this allows us to strengthen the results
by providing bounds for both the worst and average cases.

Section 2 lays down the foundations and recasts the problem in purely combi-
natorial terms. Section 3 establishes a weaker lower bound meant to illustrate some

’ All logarithms in this paper are taken to the base 2, unless specified otherwise.

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 441

of the ideas used in the main proof, which is given in Section 4. In Section 5, we
discuss the optimality of the lower bound. Section 6 treats the dynamic case.
Finally, Section 7 concludes with closing remarks and open problems.

2. The Combinatorial Backdrop
We set our notation (2.1) and describe the problem (2.2) and the model of
computation (2.3). Then we prove a crucial reduction lemma (2.4) to strip the
problem of its computational aspect and cast it as a combinatorial problem in
discrete geometry.

2.1 SOME NOTATION AND TERMINOLOGY. A random point in [0, lld refers to a
point (x,, . . . , xd) E Ed, where each Xi is drawn randomly and independently from
the uniform distribution in [0, I]. A random set ofpoints in [0, lld is obtained by
drawing random points in [0, lld independently. We shall use this abbreviated
terminology throughout the paper. If p = (x1, . . . , xd) and q = (y,, . . . , yd) are
two points in Ed, we say that q dominates p, denoted p 5 q, if xi f yi for each i
(1 5 i 5 d). We define 5 = (q E [0, lld] q 5 p) and @ = (q E [0, lld (p 5 q).
Finally, let us recall some miscellaneous terminology. We define a d-range as the
region of Ed formed by the Cartesian product of d closed intervals over the real
line. We let Ad designate the Lebesgue measure in Ed. The cardinality of a finite
setxisdenoted 1x1. LetX,, X, be m collections of closed intervals in 9;
then n I<ism Xi denotes the set

(I, x a** X I, 1 Ii E Xi (1 5 i 5 m)).

Finally,weput[l . ..n]={1.2 ,..., nJandM={O,1,2 ,...).

2.2 PRELIMINARIES. Let (9, +) be a commutative semigroup and let w be
a weight function mapping every point of Ed to an element of 9. Let P =
{PI, . * * , pn) G Ed be a set of n points in Ed. We assume that either w can be
computed in constant time or the pairs ((pi, W(pi)) I 1 5 i I n) are given as part of
the input. Dominance searching is the problem of answering queries of the form
CP6Q W(pi) = ?, given an arbitrary point q E Ed. If no pi is dominated by q, we
expect the answer null, which is a special symbol that does not belong to the
semigroup. In order to obtain lower bounds which hold on any sequential machine,
we define a complexity measure which charges only for the arithmetic part of the
computation.

Before defining the model formally, let us introduce some of the ideas on a
concrete example. We first describe a tentative model. Then we point out its
weaknesses and discuss what we can do to fix them. Suppose that the semigroup is
(jY, +). If the answer to a query is null, no semigroup element is needed for the
answer, so we say that the query time is 0. (Note that this discounts the time
required to find out that the answer is indeed null.) If the answer to a query is, say,
17, and the data structure happens to store 17 somewhere, then we say that the
query time is 1, regardless of how long it takes for the algorithm to reach the
memory location where the answer is stored. If the database does not store 17 but,
say, 10 and 7, the query time will be 2, simply by virtue of the fact that 17 can be
computed as 10 + 7. Once again, the time to find these values in memory is not
charged. In general, we say that the query time is equal to the smallest number of
stored operands needed to form 17, using the semigroup operation as the only
arithmetic capability available. Similarly, the size of the data structure is defined
to be the number of semigroup elements that it stores. We do not charge for

442 B. CHAZELLE

auxiliary data, pointers, or any other information not directly related to the
semigroup.

This model is almost what we want, but not quite. One problem with it is that
too many important (nontrivial) semigroups have trivial solutions in that model.
If the semigroup is finite, for example, we can encode all the elements in a constant
amount of space and have constant-time answers. Also, in that model the semi-
group, (H, max) always admits of a linear-size solution with a worst-case query
time of 1. Since range searching over those semigroups is by no means trivial, we
must revise the model to avoid such pitfalls.

Consider the semigroup (“*, U), formed by the power-set of P (minus the empty
set), denoted P*, with set-union as the semigroup operation. None of the problems
mentioned above apply in this case. A stored value is a certain nonempty subset
of points that can be used only when the output is a superset of it. There is no
room here for cheap tricks and nontrivial lower bounds can be expected. To extend
this nice situation to other semigroups-beyond those mapping homomorphically
onto (P*, U)-we modify the model by requiring that each precomputed sum
stored in memory should be associated with a certain nonempty subset of P and
be equal to the cumulative weight of that subset. This means that if we choose to
reassign weights to the points of P, all we have to do is to reevaluate the cumulative
weight of each subset under the new assignment, and the same data structure will
work just as before. This situation actually reflects what happens most often in
practice. That is, most of the data structures for range searching proposed in the
literature are specified completely once the points are known, and do not try to
take advantage of the weight assignments. (There are very few exceptions.) In this
light, a data structure should be regarded not merely as a collection of precomputed
values, but as a collection of linear forms. To recreate the situation of our “ideal”
semigroup (P*, U), we need not worry so much about the semigroups themselves
as about the semigroup of linear forms defined over them. All we need to ensure
is that two linear forms with distinct variable sets must be different: Translated in
terms of the semigroup, this is a fairly weak property, called faithfulness, which
is enjoyed by most of the semigroups arising in practice, for example,
W, +I, W, max), (to, 1 I, or).

2.3 THE ARITHMETIC MODEL OF COMPUTATION. We now set out to specify the
computational model precisely as well as its complexity measures. We also state
our main lower bound and discuss what happens if we change the model somewhat.
To each pi we assign a distinct variable s, with values in 9. A generator g(s,, . . . ,
s,) is a linear form C15isn ais;, where the ai’s are nonnegative integers (not all 0).
Since 9 need not be a monoid (i.e., it may not have an identity), we make the
notational convention that ai = 0 means that the variable s, does not appear in the
linear form. So, for example, 3s, + OsZ + 2s3 stands for sI + sI + s1 + s3 + s3.
Similarly, if all the cwi’s are 0, the linear form is not defined. In practice (i.e., in all
the algorithms described in the literature), (cx,, . . . , cr,) is a O/l vector that
characterizes the subset of points associated with the generator (but this does not
have to be the case). A storage scheme r‘ for P of size m is a collection of m
generators (gl, . . . , gm) satisfying the following property: Given any point q such
that(p,EPlp,5q]#0,thereexistKL(l,..., ml and a set of labeled integers
(ok > 0 1 k E K) such that the relation

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 443

is an identity. The storage cost is measured by the number of generators used (and
not by the size of the explicit description of each of them). The reason for this is
obvious. The data structure itself need not store the generators of the storage
scheme: It should store their values when each si is assigned the value w(pi).
Thus, the answer &, 54 w(pi) to a query q is obtained by computing the sum
C&K Pk&(W(Pl), . . . : w(p,)), which is said to take time] K I.

As was hinted to earlier, a data structure is more than a mere collection of
semigroup elements. It also specifies, for each memory cell, which linear form is
used to compute its contents. A change in weight assignment can be simply effected
by reevaluating the linear forms of the storage scheme. The query algorithm remains
just the same. Now, to avoid a number of difficulties, we wish to assume that
generators are identical if and only if they are formally identical. Actually, we
require something a little weaker, called faithfulness. We say that the semigroup
(9, +) is faithful if for each n > 0, 0 C T,, T2 C [1 . . . n], T, # T2, and every
sequence of integers CY~, /3j > 0 (i E T,, j E T2), the equation

itc, aiSi = C P,Sj
1 ieT2

is not an identity (i.e., cannot be satisfied for all assignments of the variables
Sl, . . . , s,). Note that this definition does not prohibit idempotence (X = 2.x). For
example, (H, +), (J”, max), and (10, 1 }, or) are faithful, but ((01, or) and ((0, 1),
exclusive or) are not. In summary, a storage scheme must work for any weight
assignment (this is what we call the storage scheme requirement), but it can take
advantage of any property that P may enjoy. Because of the bijection between the
variables Si and the points of P, we can (abusively) regard a generator CISiS,, a;Si
as a certain subset of P: (pi] ai > 0). Given faithfulness, the meaning of (1) is that
any set of the form (pi] pi 5 q) can be written as a union of generators. Note that
this union need not be disjoint.

Next, we define the complexity of a storage scheme I’. Given a point q E Ed, let
K be the smallest set such that (1) is true: we define t(P, r, q) =] K] . As always,
we are interested in complexity measures as functions of the number n of input
points and the size m of the data structure. For this purpose we define the function
t(n, m), where

t(n, m) = max min max t(P, I?, q).
IPI=n II-I=m q

Assuming the probability distribution discussed in (2. l), we define the average-case
time complexity

i(n, m) = EIPl=, min E,t(P, F, q).
(TI=Wl

We shall now state the result whose proof will occupy us for the next four sections.

THEOREM 2.1. Let 9 be a faithful commutative semigroup; let d be any positive
integer and c anyfixed real (0 < c < 1). There exists a constant c > 0 (dependent
on t) such that the following is true. Let P be a random set of n points in [0, lid
and let r be any storage scheme for P of size m. If p is a random point in [0, 1 I”,
then with probability greater than 1 - t the time complexity of the dominance
search problem satisfies

t(p, r, p) 2 c(,og~~,n))61.

444 B. CHAZELLE

As a corollary, the worst-case and average-case times satisfy

Remark. Intuitively, we have the chronological sequence: Pick P, then set P,
and finally choose p. Rigorously, the statement is to be understood as follows:
Given any function mapping each P into a storage scheme I’(P), the stated lower
bound on t(P, I’(P), p) holds with probability > 1 - c, if (P, p) is a random point
in[O,l] . ‘(‘+‘) To say “let I’ be any storage scheme . . .” in Theorem 2.1 is a
shorthand for saying that the previous statement is true for an arbitrary choice of
the function P.

What would happen to Theorem 2.1 if we were to drop the storage scheme
requirement. Let us change the model of computation (just for now) and relax the
requirement that the preprocessing should work for all weight assignments. Instead,
let us think of a data structure as a collection of precomputed sums with no special
assumption other than the ability to express every non-null answer as a sum of
stored values. From our previous discussion, it appears that Theorem 2.1 will hold
for any semigroup that is rich enough to simulate all nonempty subsets of an
n-element set. Certain faithful semigroups, such as (N, max), were rich enough to
obey the lower bound in the previous model but are now in jeopardy. This is not
the case of (.N, X), however. Let pi be the ith largest prime: assign the weight pi to
each pi. Obviously, we can always assume that the data structure does not store
any integer which is a multiple of a prime exceeding ,Bn. Again, let (P*, U) be the
semigroup formed by the set of all nonempty subsets of the point-set P under the
set-union operation. The function that maps any integer to its set of prime divisors
carries the semigroup generated by p,, . . . , /3,, homomorphically onto the semigroup
(P*, U). This proves that (N, X) is rich enough to obey the lower bound of
Theorem 2.1, even though the storage scheme requirement has been lifted.

2.4 THE DOMINANCE LEMMA. The title of this paper refers to orthogonal range
searching. The fact that we restrict ourselves to dominance searching may have
appeared to the reader as a courageous decision, since proving lower bounds for a
subproblem can only be more difficult. As it turns out, this will allow us to clear
out the landscape and simplify matters a great deal. The reason is that in this way
the points associated with a generator can always be chosen to be of the form
P n $, for some p E [0, lid. The net result is that both queries and generators can
be interpreted as points in d-space. This remarkable property will play a crucial
role in the following:

Let A4 be a finite set of points in [0, lid. We say that A4 is a P-cover if, for each
point p E [0, l]“, there exists a subset Q of M II $, such that

We define c(P, M, p) =] Q 1, where Q is the smallest set such that (2) is true. If M
is not a P-cover, we have c(P, M, p) = + 03. Our next result states that each
generator can be normalized by considering the smallest j that contains all the
points associated with it.

LEMMA 2.2. Let 9 be a faithful commutative semigroup and let P be a finite
subset of [0, lld. Given any storage scheme r for P of size m, there exists a P-cover
A4 of size m such that, for each point p E [0, l]“, c(P, M, p) 5 t(P, r, p).

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 445

PROOF. Let P = {p,, . . . , p,, j and let P = 1 g,, . . . , gm) be a storage scheme
for P. If

gk(sI, . . . , sn) = c Lyk,iSi,
laisn

let Ck = {pi 1 ak,i > 0). We define the set M = (ql, . . . , qm), where each qk is the
corner of the Smallest octant containing the points of Ck. Formally, qk iS the UniqUe

point such that

We can prove that A4 is a P-cover of complexity no greater than I. Let p be a point
of [0, lid. From (I), we have

2 si = c Pk.&?k(SI, * - * 3 Sn),

P,SP kEK

forsomeKG(l,..., m). Using the associativity and commutativity of 9 we have

C Si = p II+ YiSi,
PidP

where C+ = U&K Ck and yi > 0. Let Q = (qk 1 k E K). By faithfulness, we have
C+ = P n c, which implies that P fl fi G U kEK &. Since each Ck is a subset of j,
each qk lies in h. The proof is complete. Note that the maxima of Q do the covering
job all by themselves. •i

3. A Weaker Result to Illustrate the Main Ideas

What was originally a fairly intricate problem, the space/time complexity of
orthogonal range searching, has now become, courtesy of Lemma 2.2, a rather
simple problem to state. Let us reword it as a game played between two protagonists.
Alice (the lower-bound prover) places n green points in [0, lid. Then, Bob (Nature)
places m red points to shield the green points. What shield means is that for any
choice of p in [0, lid, the set of green points dominated by p is itself globally
dominated by a subset of at most t red points; themselves, dominated by p. Alice
wants to prove that if m is small then t must be large. If m is at least n2, Bob can
always form a grid by drawing vertical and horizontal lines through each green
point and then place one red point per grid cell. This will make t = 1. On the other
hand, if m = n, Bob has no choice but to place his troops right on the green points.
But clever Alice will have arranged her points on the line y = 1 - X. Thus, we get
t = n in the worst case.

These extreme situations are fairly trivial. Let us now consider intermediate
scenarios. Alice will try to disperse her green points as much as possible in order
to limit the power of any red point. To do this, she will just throw her points at
random. Obviously, Bob must place one red point on top of each green point. This
is actually necessary and sufficient to ensure that t remains finite. With his
remaining m - n red points, he will try to be clever enough to get a small t. Bob
knows that Alice has thrown the green points at random. For a given p, it makes
sense to attribute a quality rating to the red points inside rj. Intuitively, the closer
a red point is to p, the greater is its contribution to the global domination of
P rl 6. Of course, we are not referring here to the Euclidean metric but to the
range-distance discussed in Part I [3]. Recall that the range-distance between two

446 B. CHAZELLE

points (x,, . . . , xd) and (y,, . . . , yd) in Ed is defined as fl rckcd] & - yk 1: it is the
Lebesgue measure of the smallest d-range enclosing the two points.

The proofs will get a bit technical, so we choose to begin with a toned-down
version of the proof technique in two dimensions. This will give us a chance to
introduce the main ideas in a simpler context. We shall prove that t(m, n) =
0(log n/log(m/n)log n)), in the case d = 2. This result is a little weak because,
as we shall see in the next section, the second logn term need not be there. We
begin with a few definitions. We say that a set of n points in [0, 112 is weakly
uniform if the points are in general position and any 2-range in [0, 112 of measure
64(logn)/n contains at least one point of the set. Our next result says that to be
weakly uniform is nothing out of the ordinary.

LEMMA 3.1. A random set of n points is weakly uniform with probability greater
than 1 - l/n”, for any n large enough.

PROOF. We shall always assume that n is larger than any appropriate constant,
whatever the case might be. We define a set of cells 7 = (r E 3 2 1 n X2(r) L 4 log n),
where

3={[#] 0 5 k 5 flognl and 0 I i < 2k I- .

Let R = [XI, x21 x [YI, ~21 C 10, 112 be a 2-range of measure 64(logn)/n, and let

k= [logt-&,] + 1

and i = rx,2kl. We have
2yx2 - x,) = 2~+r~w’/(~2--xlqX2 - x,) 2 2;

therefore, 2kx2 2 2 + 2kx, > i + 1, which implies that [i/2k, (i + 1)/2k] !Z
[x,, x2]. We easily verify that 0 5 k 5 flognl and 0 5 i c 2k, therefore,
r, = [i/2k, (i + 1)/2k] lies in [x,, x2] and is a member of 9. Similarly, we derive
the existence of r2 E Y such that r2 L [y,, y2]. We have

and similarly, X1(r2) 2 (y2 - yJ/4. We can then conclude to the existence of a
2-range r G R, with r E Y2 and X,(r) 2 X,(R)/16 = 4(log n)/n, and hence r E .P.
To summarize, any 2-range in [0, II2 of measure 64(logn)/n contains a 2-range of
F. To complete the proof, we must show that if P is a random set of n points in
[0, 112, then with probability > 1 - l/n4 every 2-range of 7 contains a point of P.
Let n(k, 1) be the number of elements of 7 of the form [i/2k, (i + 1)/2k] x
[j/2’, (j + 1)/2’]: we have n(k, I) = 0 if n < 2kf’f210gn, and n(k, 1) % 2k+’ in
general. Therefore,

IFIs c n(k 0 5 C 2’logn 5 n.
k,ll 2k+‘logn~n/4 ialogn--loglogn-2

Now, the probability that no 2-range of 7 is empty is at least

1 - 17 I(1 - 4(logn)/n)” > 1 - 17 I em410gn,

which is at least 1 - n/e4’ogn 2 1 - l/n”. 0

Lower Bounds for Orthogonul Range Searching II: The Arithmetic Model 447

Let P be a weakly uniform set of n points in [0, l]* and let M be a P-cover
of size m 5 n2. For clarity, we introduce some notation: a = l/m,
b = i, c = 3000m(logn)*/n, and 6 = Li(logn)/log((m/n)logn)l. Let

As usual, we assume that n is large enough so that, in particular, we have a < b.
Let x and x’ be two reals (a 5 x < x’ 5 b) and let xl = (x, a2/x’) and x2 =
(x’, a2/x): x, and x2 are two points on each side of the hyperbola delimiting 9.
We define b(x, x’) = ii, n X2. Any 2-range of the form b(x, x’) is called a
box (Figure 1). A box is called valid if its measure is equal to 64(logn)/n. A set
b,, bk forms a chain of boxes if each bi is a box and the intersection of any
two is empty (bi n bj = 0, if i # j).

Here is what we are trying to do: We want to grab the gun-like device 9%’ at the
origin, rotate it by 180 degrees and translate it some place. The corner of the device
specifies a query fi, as illustrated in Figure 2. Because of the weak uniformity of P,
each box of the chain will contain a green point. We then argue that, no matter
how Bob arranges his red points, it is always possible to find a placement of the
device that avoids all the red points. In these conditions, no red point can be used
to dominate more than one box of the chain. The length of the chain will then
give us a lower bound on the query time. Intuitively, the choice of a hyperbola as
the delimiting curve of the device is a compromise between two desires: A flat
curve would allow us to place more boxes but would made it impossible to avoid
the red points. Conversely, a very curvy shape would make it easy to avoid the red
stuff but would make room for only a short chain of boxes. Of course, the fact that
a sphere in the range-distance metric has a hyperbolic shape is not alien to our
choice. We now turn these ideas into reality, beginning with a few technical
lemmas.

LEMMA 3.2. For any n large enough, there exists a chain of 6 valid boxes,

PROOF. Let k = L(log(b/a))/logcl and let bi = b(ac’, ac’+‘), for each i such that
0 5 i < k. Since m 2 n, we have c > 1 and ac’ 2 a, for n large enough. The
inequality ack I b implies that each bi is a box. We have

b(bi) =
d(C - 1)2

C
, $, 64logn;

n

therefore, bi contains a valid box bl in its interior. The set (b;, . . . , bi-,) forms a
chain of valid boxes. There are k of them, with

k = log ((16mlogn)“*/16)

I L

~ +logn + i loglogn - 2
log (3000 m log* n/n) 2 log ((m/n)logn) + 12

, 6
’

for n large enough. 0

Let p = (pX, p,) E [0, 11’ and let C(p) denote the device we were talking about
earlier:

C(P) = KPX - x, PY - Y) I(4 Y> E 91.

We say that a point p is clear if C(p) G [0, l]* and C(p) rl M = 0. With each
point p the region C(p) associates a chain of boxes that lie between two pieces of
hyperbola (xy = a2c and xy = a2/c, up to rotation). Each box is valid and therefore

B. CHAZEL.LE

a

a X X'

FIGURE 1

b X

FIGURE 2

contains green points (weak uniformity). If p is clear, it will take at least one red
point per box to ensure the global domination of the green points (Figure 2).

LEMMA 3.3. A random point of [0, 112 is clear with probability greater than f,
for any n large enough.

PROOF. Let P be the probability that p is not clear. The condition C(p) G
[0, l]* contributes 1 - (1 - a)(1 - 6) to P. As to the condition C(p) fl A4 = 0,
each point of M contributes at most the measure of 9, that is,

s b

a2 + ffd,y=a*
a x

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 449

therefore,

h 5 1 - (1 - a)(1 - b) + a2m 5 a + b + a2m

and p 5 $ + (logm)/(32 logn), for n large enough. Since we have assumed that
2 3 msn ,wehavepsG. 0

If P is weakly uniform and p is clear, then each of the valid boxes of C(p)
provided by Lemma 3.2 contains at least one point of P (note that these boxes lie
entirely in [0, 112). Since the boxes are pairwise disjoint and C(p) n A4 = 0, no
point of M in fi can dominate two points of P that lie in distinct boxes. It follows
that c(P, A4, p) 2 6. The inequality remains true if m > n*; therefore,

t(n, m) = D
i

log n

log(Wh n) 1

in two dimensions.
The relative weakness of this result is owed to two factors. As its name suggests,

the weak uniformity criterion is too weak, indeed. We would like to strengthen it
by requiring that any 2-range of measure inversely proportional to the density of
P should intersect P. Unfortunately, this does not seem so easy to achieve in higher
dimensions. Therefore, we replace any by most. Also, it appears that the clear-
lzess condition is a tad too strong. We weaken it by requiring that C(p) should not
contain too much red stuff (whatever that means). There now remains for us the
arduous task of making these modifications precise and proving their utility.

4. The Proof of Theorem 2.1

We are now ready to prove our general lower bound. We assume in the following
that d > 1. Let c be an arbitrary fixed real (0 C E < 1). As we did in the previous
section, we introduce a few parameters to facilitate our discussion.

Until specified otherwise, it will be assumed that the integers n and m satisfy the
inequalities

0 < d2n < m < n1+f2/5d+5. (3)

These are technical restrictions to make our calculations easier. We relax them
later. We continue with a string of definitions that, as we will try hard to show,
are not nearly as tedious as they look. Let p = (x,, . . . , xd) E [0, lid and D =
(Xl, . * * , x&l). For each k (0 C k < d) and i 2 0, we define

Jk,i = [xk - UI+I, xk - ui],

450 B. CHAZELLE

where u. = 0 and for i > 0, ui = Ui-’ + CE~(~-‘)/~. (Note that U; = ~((2”~ - 1)/(2””
- I)).) We define the logarithmic lattice

-wD) = rI (i u lJk,il . O<k<d ito
This lattice is called logarithmic because a regular lattice can be derived from it
by a logarithmic mapping. The lattice consists of (d - I)-ranges r(& j) =
n O<k<d Jk,ik, where j = (i,, . . . , id-,) E Jy ‘-’ The point p specifies the origin of .
the lattice in Ed-‘- i . . 5 id-’ are the coordinates of the lattice point j in its local
system of reference. ‘ikt z = h/Ad-,(r(P, j)) and

a = (XI - ui,+l, . . . , xd-I - uidm,+I, xd - Z>.

We define

u+(p, j) = r(p, j) x xd - z, xd - z 1 2w3 '

I W(P, j) = (ii n s)\u+(p, j).

Note that since 2”O = (m/n)“’ > d lo/’ > 1 (from (3)) the interval [& - z, & -
z/2’/@], and hence u’(p, j), are well defined.

Figures 3 and 4 illustrate these notions in the cases d = 2, 3. Figure 3 shows
clearly what u(p, j) and w(p, j) are. The lattice is one-dimensional, extending
horizontally from p to the left. The corner a lies on a hyperbolic curve. In
Figure 4, the logarithmic lattice is two-dimensional: (i) u(p, j) is the box between
the two shaded rectangles with corners a and U; the volume of the box is invariant
(equal to h regardless of the position of j in the lattice); (ii) w(p, j) is the box
between the corners p and a minus the box between the two shaded rectangles with
corners a and T.

Our strategy now is to find a placement of p that maximizes the number of
u-boxes that contain green points and at the same time maximizes the number
of w-boxes that are free of red points. In the previous section, we required that
all u- and w-boxes satisfy these properties. Now we simply require that many of
them should. We define the notion of a u-exposed point p (one that has more than
v u-boxes with green points inside) and that of a v-isolated point p (one that has
more than v w-boxes free of red points). We estimate the probability that a random
throw of y2 green points followed by a random pick of p gives us a point that is
both v-exposed and v-isolated, a property that we call v-hyperbolic. Finally, we
argue that if v is big enough, a point p that is v-hyperbolic contains many u-boxes,
say v ’ of them, which contain green stuff and whose corresponding w-boxes are
free of red points. Obviously, what we have in mind is to claim that v’ is indeed a
lower bound on the query time. These are the basic ideas of the proof. The rest is
just a lot of technical approximations necessary for the probabilistic analysis.

We introduce two collections of sets (the u-boxes and w-boxes of the previous
discussion):

and

T(P) = MP, j) C LO, lldlj E J@‘)

W(P) = (w(P, j) I ~(a, j) E V(P)).

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 451

L NOTE: d = 2, j = (i,), p = (xl, x2).

FIGURE 3

LetP= (pr,. . .,Pn) andM= (q,, . . . , qm) be two sets of points in [0, IId; P gives
the green points and M the red points. Given P, M, and a placement p of the
lattice, we wish to count how many u-boxes contain green points and how many
w-boxes are free of red points. For this purpose, we introduce the functions
r(P, p) and p(A4, p), defined for each p E [0, 116

and

AM, P> = I (r E W(P) I M n r = 01 I.

Let u be a positive real. We say that p E [0, lid is u-exposed if n(P, p) > v,
and u-isolated if &kf, p) > u. If p is both u-exposed and u-isolated, then it is
called u-hyperbolic. Note that P and A4 are understood. These definitions find their
justification in the following lemma.

LEMMA 4.1. Let P be a finite set of points in [0, lid and M be a P-cover.
Let p E [0, lld and u be a real > 0. If p is u-hyperbolic, then c(P, M, p) >
2lJ - ImP)l.

452 B. CHAZELLE

X NOTE: -3.

FIGURE 4

PROOF. Let

and

L, = {j E Nd-’) u(p, j) E V(p) and u(p, j) II P # 0J

Lz = (j E Afd-’ 1 w(p, j) E W(p) and w(p, j) FU M = 0),

and let L = L, rl L2. If j E L, u+(p, j) contains a point of P since P C A4 and
w(p, j) n A4 = 0. This point is not shared by any other u+(p, j’) (j’ # j).
But since w(p, j) n A4 = 0, the only points of M rl Ij that can dominate this point
must also lie in u+(p, j). This proves that if we have Q C A4 fl .6 and P rl 6 C
U qEe 4, then I Q I I I L (. But we have

ILI =*(P,P)+CLW,P)- IL UL2I >2zJ- ImP)l;

therefore, the proof is complete. 0

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 453

Our work is cut out for us. We need to show that, even when v is large, a random
point p is v-hyperbolic with high probability. Luckily, first-moment methods are
powerful enough for this purpose. In other words, the arguments come down to
estimating the expectation @i (resp., &) of the number of u-boxes that contain
green points (resp., w-boxes free of red points). The only difficulty is technical: It
comes from the fact that p is not free to be placed anywhere in the unit cube, since
a substantial number of u- and w-boxes must also lie in the cube.

4.1 MEASURING THE SET OF EXPOSED POINTS. Let j = (i,, . . . , id-J E Md-‘.
We define a characteristic function J(P, p) as follows:

m P) =
if u(p, j) E Y(p) and u(p, j) FU P # 0;
otherwise.

Put

and

a, = s s lO,lP IO,lld
0, P) dp dp.

Note that we treat P as a point in [0, lldn. Observing that u(p, j) E F(p) if and
only if p E t;., we can write

a, = s s W,lP” [O,,ld js;“, spy p) dp dp
= jE;d-I ss [O,lld

co,,ldnW, P> dp dp

=
jEZd-1 1; S (1 - (1 - h)“) dp;

therefore,

@I = (1 - (1 - h)“) js;dm, b(c). (4)

The derivations above are valid only if h < 1, which is true for n large enough. We
continue with a technical result. Let CX’ = CX”- and old = (a!‘, . . . , a’) E Ed
and let A = {j E Jtrd-*] tj E &). As long as we confine the point p to the region
&& we can use all the u-boxes u(p, j) (j E A), since they lie entirely in the unit
cube. Although we can use more u-boxes when p is close to (1, 1, . . . , l), it is
convenient to use the same number for all the points p. Since ad converges towards
the origin 0 as n goes to infinity, confining p to & is not a big imposition. Of
course, one might be worried that this does not leave us much room to place
u-boxes. The best thing about the logarithmic lattice is that this is not the case. To
get one more u-box requires an exponentially larger chunk of the unit cube, so
what we obtain from A is actually quite large. Since

2U8 - 1
Ui = (Y 2’lB - 1 ’

even under the best of circumstances no point p can claim more than roughly

454 B. CHAZELLE

(p log(~/cI))~-’ u-boxes and w-boxes. Our next result shows that restricting ourselves
to the lattice coordinates of A yields just about the same number of boxes.

LEMMA 4.2. For any n suficiently large, we have

’ A ’ ’ l - (fog l/01)“* (
d)(Nog; - 2)-Y

PROOF. We can easily verify that for II large enough we have

h
-= a’. ad-12(i,+. .+i+,)/B -

Since 2’@ - 1 > 1, it follows that

hence,
d-l

.

Using (3) to show that p log(l/01) 2 2, if y1 is large enough, we have

’ A’ z 1 - (log j/a)‘/2 i
l)y,log~-2~‘.

For any real .x (0 < x < 2) we have (1 - x)~-’ z 1 - (d - 1)x. (This inequality will
be used repeatedly later on without further mention.) Since l/(log l/01)‘j2 < 2 for
n large enough, the lemma follows readily. q

For n large enough, we have log n < 2 -; therefore, da “J’og(“a) <
l/log(l/a). Since tj E & if j E A, we have, for such a j,

kd(tfj) L (1 - CY ‘IJ’ogU/4)d 1 1 - da’/J“X(‘/a) > 1 - log(;,a~. (5)

From (4) we derive that Q?, 2 (1 - (1 - h)“) CjEA xd(i;.) and therefore, if y1 is large
enough,

@.I > (1 - (1 - h)“)(l - log~;,a))lN~

We now introduce an important quantity,

#Y = maxi] Y(p)]: p E [0, IId),

which we estimate below. Lemma 4.4 summarizes our findings about exposed
points.

LEMMA 4.3. For any n large enough, (Lpfog 1/0rl)~-’ 5 #M 5 (1 + @log ~/cY)~-‘.

PROOF. Obviously, #Y” = Iz”(p)l, where p = (1, . . . , 1) E_[O, lid. Let j =
(iI, . . . , id-‘) E M+‘; since U(p, j) E Y(p) if and only if p E tj, an equivalent
condition is that (i) for each k (0 < k < d),

2(ik+l)lP _ 1
ui,+l = 01 2’43 - , 51

and (ii) h I CY~-‘~(~‘+ ‘.’ +‘+-I)/~. Note that for n large enough, (ii) is always satisfied.

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 455

Also, one can easily verify that because of (3) condition (i) implies ik % 0 log(l/a)
and is satisfied for ik I p log(l/(y) - 1. Cl

LEMMA 4.4. Let n and m be integers satisfying (3), with n large enough, and let
v be a real such that 0 < Y < #Y. If P is a random set of n points in [0, lid and p
is a random point in [0, I] d, then p is u-exposed with probability greater than

(1 - (1 - h)“)(l - l/log(l/ol))] A] - u
#T - v

PROOF. Let rl = {(P, p) E [0, lldCn+‘) I dp, P> > 4. Since dp, PI 5 I M(P) I,
we have

a’1 5 (#~)h,(,+,)(r,) + v(l - b(,+,)(r,)).

The lemma follows from (6) and the fact that X d(n+l)(rl) is precisely the probability
that p is v-exposed. 0

4.2 MEASURING THE SET OF ISOLATED POINTS. We pursue the same line of
reasoning. The difference is that unlike P the set M of red points is not random,
but rather, it is specified by an adversary. As usual, A4 is a set of m points in
[0, lid, and n and m satisfy (3). Let j = (i,, . . . , id-,) E Jtrd-’ andp E [0, lid. We
define a function g(p) as follows:

gi(P> =
i

l2
if w(p, j) E W(p) and w(p, j) n M = 0;

0, otherwise.

Following the approach of the previous section, we define the expectation +,2 =
JLO,~ 1.04 P> dp. We have

+2= c
s jEJv”’ IO,lP ‘TAP> dp = C s _ ITAP) dp 2 C ,av-’ I, S jEA 4

g(p) dp. (7)

Let w (p, j) E W(p); by definition we have

where z = h/id-,(r(p, j)). We derive

rI
Ad(W(P, j)) = xd~;;;pu’j;; h -

3
h

h
= (2”” - 1)d-’ O<k<d II (25&3)-(1 -$ij)h,

therefore,

~dtwb j)) 5 ((1 _ :/21,0)61 + $j - l)h. (8)

The derivative of dx + 1 - I/(1 - x)~-’ has a zero at x = 1 - (1 - l/d)““, so it is
immediate that for all x satisfying 0 < x < 1 - (1 - l/d)‘ld,

d-l

c 1 + dx. (9)

456 B. CHAZELLE

Because d > 1 and 0 < c < 1, we have (1 - l/dlo)d > 1 - l/d; hence, l/d”” <
1 - (1 - l/d) . ‘Id From (3) we find that

L<- 1
2 l/B d lo/e

therefore from (8) and (9), we derive

h = max max Ad(r) <
(d + 1)h

PW,lP rE=mP) 2 l/P

and from (7, % I zjEa (hd(ij) - f’nA>, hence from (5)

(10)

LEMMA 4.5. Let n and m be integers satisfying (3), with n large enough, and let
u be a real such that 0 < Y < #Y. If A4 is an arbitrary set of m points in [0, lid,
then a random point in [0, lld is u-isolated with probability greater than

(1 - l/fog(l/Ly) - (d + l)mh/2’lP)I A 1 - v

#Y-v

PROOF. Let r2 = (p E [0, lld] p(M, p) > v). For each p E [0, l]“, &I,#, p) I
] W(p) 1 =] V(p) I ; therefore, a2 5 (#y)&(r2) + V(1 - Xd(pZ)), which because of
(10) completes the proof. 0

4.3 THE LOWER BOUND, AT LAST. Recall that 6 is a real (0 < E < 1) and n and
m satisfy (3). Let y = p log(l/a) and u = #M - yd-‘/3. Let M(P) be an arbitrary
mapping of a set P of n points in [0, lld into a P-cover of size m. We define II as
the probability that if P is a random set of n points in [0, lid and if p is a random
point of [0, I]“, then c(P, M(P), p) > 2u - I Y(p) I. Let II, be the probability that
given a random set P of n points in [0, l]“, a random point of [0, lld is v-exposed
with respect to P, and let h,(P) be the measure of the set of points in [0, lid that
are Y-exposed. We define J = (A4 C [0, IId:] M] = m) and d(P) as the set of all
P-covers of size m, given P G [0, lld and] P] = n. Let h,(M) be the Lebesgue
measure of the v-isolated subset of [0, l]“, given M E .&, and put II2 =
min(h2(M)] A4 E k?). Using Lemma 4.1, we have

nr s, [o ,ld” M$& xd(b E [o, lld 1 C(p, M, P) ’ 2~ - I y(P) 1)) dP

2 S min
[O,ll‘f” MEA(P)

&j((p E [0, lid 1 p is v-hyperbolic]) dP

2 s lo,,ldn (hdP) + min(h,(M) I M E J&‘) - 1) dP,

therefore

II 2 n, + rI2 - 1. (11)

Applying Lemmas 4.4 and 4.5, we find that for n large enough we have I - II <
A/B, where

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 457

and
d-l

B=x

3 - (13)

We derive an upper bound on A via several approximations. We begin with a
technical result.

LEMMA 4.6. For any reals x, y z 2, we have xy > (x - 2)~~.

PROOF. Let 4(x, y) = xY - (x - 2)y2 and q(y) = 2y-1 - y. Since #‘(y) = 0
for y = 1 - logln 2 < 2, we have II/(y) 2 0; hence, Y”(~-‘) I 2, for y I 2. But
e@(x, y)/ex = 0 at x = y’/“‘-l); therefore, 4(x, y) 2 1$(2, y) > 0, for x, y 2 2. 0

From (3) we find that

5 d+4

Y'X. (14)

Lemma 4.3 shows that #T 5 y d-‘(1 + l/~)~-‘, which is easily shown to be at most

Y
d-, l + (d -

because y > 1. Using (14) and Lemma 4.6 we find that

2d-2 de 2E
Y < 4’(5/2)d < 45d’

therefore, we have

#Y” c yd-’ 1 + $.
i 1

From (14), we know that y > 1; therefore,

Using (14) and Lemma 4.6, it follows that

From Lemma 4.2, we then have

IAl 41 --j$)b-2)6’,

so for n large enough,

If n is large enough,

IAl > 1-k yd-‘.
()

(1%

(16)

() l-:n<j&<’ 33/t’

458

so from Lemma 4.6, we have (1 - 5/(~n))” < e2/9, hence

G-(1 -4 -&)=(2-(1 --$)(l,

Next, we establish the relation

(d + 1)mh
21/P -2

5’
From (3), we have

>2-$. (17)

(18)

(d + 1)mh = 5(d + 1) < 5(d + 1)d2
2m E(m/?p- ,dlO/’ * (19)

B. CHAZELLE

We distinguish between two cases:

(i) t < 5. From Lemma 4.6, we have d”” > (d8)6’(5f) > (36/25)(d8 - 2)/t2 >
(1 1/8)d8/c2; therefore, (d + l)mh/2”” < 60~4 1 Id’) < c/5, since d 2 2.

(ii) t 2 3. From (19) we have (d + l)rn/~/2~/~ < 25(d + 1)/(3d*) 5 25/(2d’) <
t/5.

Relation (18) is thus established. Putting together the inequalities (15- 1 S), we
derive from (12)

663
A < 2000 y

- d--It < yd-l 1

3’

which, combined with (13), gives II > 1 - E. Using the lower bound of Lemma
4.3, we conclude that with probability greater than 1 - E we have

zyd-’
c(P, M(P), p) > 2v - #Y 2 Lye’ - -

3 .

To simplify this lower bound, we use Lemma 4.6 to derive 5d+4 > 1875d*. From
(14) we easily find that

(1 -y-‘>(I -gy’> 1 -g>;;
therefore, with probability > 1 - E, we have

this statement being true for any y1 large enough and m satisfying (3). Assume now
that (3) does not hold. If m I d2n, then we augment M(P) with dummy points so
as to obtain a set M’ with 1 + d*n points, hence satisfying (3) if n is large enough.
Since c(P, M(P), p) I c(P, M’, y), we have c(P, M(P), p) = Q(logd-‘n) with
probability greater than 1 - t. If now m 2 n1+~2~5d+5, all the inequality above says
is that c(P, M(P), p) = 0(l). Although, strictly speaking, the inequality is not
applicable, it is still obviously correct. This shows that for some appropriate
constant c > 0, we have

On the basis of Lemma 2.2, we have established the following result.

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 459

Let ,-‘Y be a faithful commutative semigroup; let d be any positive integer and 6
any real (0 < c < 1). There exists a real c > 0 (dependent on E) such that the
following is true. Let P be a random set of n points in [0, lid and let r be any
storage scheme for P of size m. If p is a random point in [0, l]“, then with
probability greater than 1 - E,

t(P, r, PI 2 C(log$$J-‘.

This means that t(n, m) = !A((logn/log(2m/n))d-‘). Moreover, this lower bound is
true on the average with respect to both P and p. The proof of Theorem 2.1 is now
complete.

5. Optimality Issues

The lower bound is provably optimal for any m large enough (in the arithmetic
model). Let t be any fixed positive real and assume that m = C2(n(logn)d-‘+‘). We
can show that the worst-case time complexity of dominance searching on n points
in d-space satisfies t(n, m) = @((log n/log(m/n))d-‘). We can obviously assume
that d > 1. The data structure is inspired by a solution to orthogonal range searching
proposed by Bentley and Maurer [2].

Let k = L(m/n)“‘d-“/lognl; note that k > 2 for n large enough. Divide up the
set of n points into subsets PI, . . . , P, of size [n/k1 (except possibly for the last
one). This partition is to be carried along one coordinate, say, the first one. Then,
construct a data structure of dimension d for each of PI, . . . , PI and a data structure
of dimension d - 1 for each of the sets U Isisj Pt (1 5 j < l), where PT is the set
of points in Ed-’ obtained by ignoring the first coordinate of each point in Pi. In
all these definitions, we assume that the parameter k isfixed once and for all. That
is, it need not be readjusted at each recursive call. The storage S(d, n) and the
query time Q(d, n) obey the inequalities: (n = nl + . . . + n1 and ni 5 rn/kl)

S(d, n) 5 C S(d - 1, nl + ... + nj) + C S(d, nj),
O<j</ O<JJa/

d - 1, C ni + Q(d, nj)
O<i<j)

(sums over empty sets are null) and S(1, n) = O(n) and Q(1, n) = 0(1). Let X =
(log n)/log k. We easily derive

S(d,n)rfxS(d- l,n)+ C S(d,n,)
OCjal

= O(/XS(d - 1, n))
= O((IX)“‘S(1, n)).

Since I I k we easily verify that for n large enough we have S(d, n) 5 m. Similarly,
we find

Q(d,n)sQ(d- l,n)+Q d, n (11) k
= O(XQ(d - 1, n))
= o(xd-‘).

460 B. CHAZELLE

Since m = fi(n(log n)‘-I+‘), we have

logk?? --
(

1 1
d-1 d-l+C)

log? - O(1) = R log;)
()

which implies that Q(d, n) = O((logn/log(m/n))d-‘). This establishes our claim.

THEOREM 5.1. Let m be the size of a data structure for dominance searching
on n points in Ed. There exists a query that cannot be answered in fewer than
c(logn/log(2m/n))d-L steps, for somefixed constant c. This lower bound is provably
optimal in the arithmetic model, for any fixed e > 0 and any m > n(logn)d-‘+‘.

Although the points and the queries used in the proof of Theorem 2.1 are defined
with real coordinates, it is clear that the lower bound still holds if the point sets
and the queries are required to have integer coordinates. This is an important
observation since, after all, computers usually encode finite-precision numbers.
Basically, all we need is the ability to encode arbitrary permutations with the
coordinates of the points. This can be done if we have on the order of logn bits
per coordinate.

Another question is how off Theorem 5.1 is from what can be done in a more
realistic model of computation, such as a random access machine. Without getting
into that issue, let us just say that using fast algorithms for successor searching [lo],
we can come within a factor of log log n of the stated lower bound, for m large
enough.

Proving that our lower bound is true for all values of m is left as an open
problem. Actually, we should observe that the lower bound has little meaning
if m - n is not in n(n). Indeed, even for d = 2, we have a lower bound of
D (n/(m - n + 1)) on t(n, m). This lower bound is vacuous for m = n + Q(n), but
far exceeds the bound of Theorem 2.1 when m - n grows very slowly (e.g., as
log n). The claimed lower bound follows by reduction of another searching problem
to dominance searching in two dimensions. If we place the points of P on the line
x + y = 1, dominance searching becomes equivalent to summing up all the entries
of an array of size n between query positions i and j. This problem has been studied
by Yao [12], who derived an n(n/(m - n + 1) + cy(m, n)) lower bound on its
complexity, where (Y is a functional inverse of Ackermann’s function.

It is interesting to compare this result with the fact, to be proven next, that for
certain semigroups the average-case result of Theorem 2.1 is tight for m = n. (From
the previous paragraph, this obviously is not true in the worst case). As we shall
see, the moral of the story is: doing nothing is best! We choose (N, max) as our
semigroup.

THEOREM 5.2. There exist semigroups for which the expected-time complexity
of dominance searching on n points in d-space satisjies t(n, m) = e(logd-‘n), for
any m such that n I m = O(n).

PROOF. The case d = 1 is trivial, so let us assume that d > 1 from now on. The
data structure is nothing more than the input to the problem; therefore, m = n.
However, for each point pi, instead of storing si, we shall store Cp,+ Sj. In this
way, the average-case time complexity can be expressed as

A(n) = s s KJ,lld" W,lld
m(P, p) dp dP,

where m(P, p) is the number of maxima in P fl c. We can easily show that if

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 461

q=(l,..., 1) E [0, l]“, then A(n) cannot exceed JtO,,ldn m(P, q) dP, which from
[l] we can show to be in O(logd-’ n). To prove our claim, observe that

A(n) = j-.Iti (0z5. ($1 - b(p))“-k W) &, m(Q, 8) dQ) dp

(1 - ~,(li))“-~wk)W> 4,

where M(k) is the average number of maxima when k points are drawn uniformly
and independently from a hypercube in Ed. Since obviously the number of maxima
depends only on the d permutations of the points induced by their coordinates,
and that for a given set of d permutations the set of points that realize them has
the same measure, M(k) can be obtained by assuming that the coordinates are
permutations of (1, . . . , k]. Then, we can use a result of Bentley et al. [I] and
conclude that M(k) = O(logd-‘k), hence A(n) = O(log”‘n), Optimality for
m = O(n) follows from Theorem 2.1. 0

6. The Dynamic Case

As usual, let (9, +) be a faithful commutative semigroup, and let P =
IPI,. . . , pn) be a set of points in Ed and w be the weight function associated with
it. In the dynamic version of dominance searching, one wishes to process a sequence
of instructions of the form: given p E Ed, (1) insert (p, w(p)) into the database, or
(2) compute CpIsp w(p(). To do so, an algorithm must specify how to implement
these instructions, using an infinite array of registers zl, ZZ, For an insertion,
the unit-time operations allowed are either of the form zi := s, where s E S, or
Zi := (Yzk + pzr (01, /3 integer 2 0). Queries are answered as in the static case.

Yao [141 has shown that a dynamic algorithm in dimension d can be used to
construct a static data structure in dimension d + 1. This will allow us to turn our
lower bound for the static problem into one for its dynamic version. In the case in
which deletions are allowed, Fredman [5] has been able to construct sequences of
n instructions requiring R (n logdn) operations to be processed. The following result
shows that disallowing deletions cannot improve the situation dramatically. As
mentioned in the introduction, the result was already derived by Yao [141 for the
cased= l,butitisnewforanyd> 1.

THEOREM 6.1. Consider dominance searching in d-space (d > 0) over a com-
mutative faithful semigroup. For any n > 2, there exists a sequence of n instructions
(inserts or queries) that requires f~(n(logn/loglogn)~) time to process.

PROOF. Without loss of generality, assume that n is of the form n = 3k > 6.
Because of Theorem 2.1, we know that there exists a constant c > 0 such that
the following is true. For any k > 0, there exists a set of k points in [0, IId+’
such that, for any storage scheme r for P of size m, we have t(P, r, p) 2
c(log k/log(2m/k))d for a random point p E [0, 1 Id+’ with probability greater
than one half. Let (p,, . . . , pk) be the points of P sorted by x,-coordinates and
let Pi = (Xi,Yi,l, . . . , Yi,d) and 9i = (Yi.1, . . . , yi,d) (1 I i I k). Let D be a data
structure for dominance searching in d-space and let r be the storage scheme for
P constructed as follows. Initially, r‘ consists of the k semigroup values associated
with the points of P. Then, as each qi is inserted into D, for i = 1, . . . , k, and as
various queries are processed, r collects all the generators on the pi’s induced by
the generators on the qi’s created by D in the process. If T is the time of execution

462 B. CHAZELLE

of a program on D, then certainly 1 r I C cl T, for some constant cl > 0 independent
of k. Next, we define a language for specifying instructions to D.

(1) “Z(4)” means “insert q in D”.
(2) “Q” means “ask the hardest query at current time”.

Let K = (ul, . . . , uZkJ be the sequence formed by merging (x,, . . . , xkJ and
(i/k 1 1 5 i 5 k). We form the program J by replacing in K each “xi” by “Q, Z(q;)“,
and each “i/k” by “Q”. Note that Jconsists precisely of n instructions. Let ro, . . . ,
rzk-, be the open intervals: r. = (0, u,) and ri = (u,, ui+,) (0 < i < 2k). Let r be the
storage scheme formed by J, as described earlier. Put y = c(logkllog(2 I r I /k>)d.
For each i (0 5 i < 2k), mark ri if ri x [0, lid contains a point p such that
t(P, r, p) L y. Since such points are to be found at random with probability
greater than t and the length of each ri is I l/k, at least rk/21 intervals will be
marked. But since T‘ can only get richer and thus improve over time (like good
wine), at least rk/21 queries in J take time L c2y, for some constant c2 > 0. We
immediately derive

from which it follows that T 2 cjk(log k/log log k)d, for some constant c3 > 0. 0.

7. Conclusions and Open Problems
Let us mention a few intriguing open problems. To begin with, is our lower
bound on the complexity of dominance searching optimal when the storage is
between, say, 2n and O(nlog d-‘n)? Is there a matching upper bound for the
R (n(log n/log log n)d) lower bound given in this paper for the dynamic version of
the problem? Also, what is the complexity of orthogonal range searching in the
so-called group model, where we allow an inverse operation? Recently Willard has
partially generalized Fredman’s technique to the group model [111. To our knowl-
edge, however, nothing is known about the static case in higher dimensions.

Concerning the arithmetic model of computation, one must decide to what
extent the storage scheme requirement can be relaxed. We saw in Section 2 that
there is no problem doing so if the semigroup is rich enough, that is, sufficiently
powerful to simulate set-union. But what about simpler semigroups? For example,
how hard is it to determine whether a query d-range contains at least one point of
P? Clearly, the complexity of this problem must have something to do with
searching through the data structure and not so much with adding things up. So,
it seems that a computational, rather than a combinatorial, model is needed.

ACKNOWLEDGMENTS. I wish to thank the referees for many useful comments that
helped to improve the style and presentation of this paper.

REFERENCES

1. BENTLEY, J. L., KUNG, H. T., SCHKOLNICK, M., AND THOMPSON, C. D. On the average number
of maxima in a set of vectors, and applications. J. ACM 25, 4 (Oct. 1978), 536-543.

2. BENTLEY, J. L., AND MAURER, H. A. Efficient worst-case data structures for range searching. Acta
Inf: 13 (1980), 155-168.

3. CHAZELLE, B. Lower bounds for orthogonal range searching: I. The reporting case. J. ACM 37, 2
(Apr. 1990), 200-2 12.

4. ERDOS, P., AND SPENCER, J. Probabilistic Methods in Combinatorics. Academic Press, Orlando,
Fla., 1974.

Lower Bounds for Orthogonal Range Searching II: The Arithmetic Model 463

5. FREDMAN, M. L. A lower bound on the complexity of orthogonal range queries. J. ACM 28, 4
(Oct. 1981) 696-705.

6. FREDMAN, M. L. Lower bounds on the complexity of some optimal data structures. SIAM J.
Comput. 10 (1981), l-10.

7. MEHLHORN, K. Data structures and algorithms. 3: Multidimensional Searching and Computa-
tional Geometry. Springer-Verlag, New York, 1984.

8. OVERMARS, M. H. The design of dynamic data structures. In Lecture Notes in Computer Science,
vol. 156. Springer-Verlag, New York, 1983.

9. VAIDYA, P. M. Space-time tradeoffs for orthogonal range queries. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (Providence, RI., May 6-8) ACM, New York,
1985, pp. 169-174.

10. WILLARD, D. E. Log-logarithmic worst-case range queries are possible in space e(n). Inf: Process.
Lett. I7 (1983), 8 l-84.

11. WILLARD, D. E. Lower bounds for dynamic range query problems that permit subtraction. In
Proceedings of the 13th International Colloquium on Automata, Languages, and Programming,
1986.

12. YAO, A. C. Space-time tradeoff for answering range queries. In Proceedings of the 14th Annual
ACM Symposium on Theory of Computing (San Francisco, Calif., May 5-7). ACM, New York,
1982, pp. 128-136.

13. YAO, A. C. Lower bounds by probabilistic arguments. In Proceedings of the 24th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, New York, pp. 420-428.

14. YAO, A. C. On the complexity of maintaining partial sums. SIAM J. Comput. II, 2 (1985),
277-288.

RECEIVED AUGUST 1986; REVISEDJUNE 1988; ACCEPTEDJUNE 1989

Journal ofthe Association Rr Computing Machinery, Vol. 37, No. 3,July 1990.

