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Abstract. This paper describes a linear-time algorithm for computing the intersection of two convex

polyhedra in 3-space. Applications of this result to computing intersections, convex hulls, and Voronoi
diagrams are also given.
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1. Introduction. Given two convex polyhedra in 3-space, how fast can we compute
their intersection? Over a decade ago, Muller and Preparata [22] gave the first efficient
solution to this problem by reducing it to a combination of intersection detection and
convex hull computation. Another route was followed in 1984 by Hertel et al., who
solved the problem by using space sweep [16]. In both cases, a running time of
(R)(n log n) was achieved, where n is the combined number of vertices in the two
polyhedra. Resolving the true complexity of the problem, however, remained elusive.

The different but related problem of detecting whether two convex polyhedra
intersect, by using preprocessing, was studied by Chazelle and Dobkin [5], Dobkin
and Munro [9], and Dobkin and Kirkpatrick [6]. More germane to our concerns here
is the off-line version of the detection problem. Dobkin and Kirkpatrick [7] have shown
that detecting whether two convex polyhedra intersect can be done in a linear number
of operations. By stating the problem as a linear program over three variables, other
linear-time algorithms originate in the works of Megiddo [19] and Dyer 10]. Previous
results also include an efficient algorithm for intersecting two polyhedra, one of which
is convex (Mehlhorn and Simon [21]). Optimal solutions for intersecting convex
polygons are given in Shamos and Hoey [27] and O’Rourke et al. [23]. For additional
background material on polyhedral intersections, the reader should consult Edelsbrun-
ner [11], Mehlhorn [20], and Preparata and Shamos [25].

Our main result is an algorithm for constructing the intersection between two
convex polyhedra in linear time. The algorithm does not use any complicated data
structure and seems a good candidate for practical implementation. As is customary,
our result assumes that the input conforms with any one of the standard (linear-time
equivalent) polyhedral representations given in the literature [3], [15], [22]. This is
not a minor point, because nonstandard representations can easily make the problem
more difficult. (For example, think how much more difficult the problem would be if
we were given only the vertices without any other facial information.) From our
algorithm for pairwise intersections we immediately derive an efficient method for
intersecting k convex polyhedra. The complexity of the algorithm is O(n log k), where
n is the total number of vertices, which is provably optimal. Other applications include
merging Voronoi diagrams in two dimensions and computing convex hulls in 3-space.

2. Polyhedra and shields. At the heart of Dobkin and Kirkpatrick’s detection [6]
and separation algorithms [7] is an ingenious hierarchical representation of a convex
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polyhedron. Further applications of that versatile data structure have been given in
[12], [21]. The representation can be seen as a specialization of Kirkpatrick’s point
location structure [18]. A convex polyhedron P of n vertices is made the first element
of a descending chain of O(log n) nested convex polyhedra, such that the last one has
a constant number of vertices and the others differ from their immediate predecessors
by shelling off small, disjoint polyhedral cones. We need to go further and modify this
hierarchy of polyhedra in several ways.

First, we represent the set of nested polyhedra as a single geometric object, namely,
a simplicial cell complex, so we can walk freely from one to the next. In this context,
walking means being able to trace a polygonal curve in 3-space within the hierarchy
in time proportional to the size of the curve (i.e., its number of vertices) and the number
of cells (counting multiplicities) crossed by the curve. Thus, if a curve lies inside P
and connects two points on the boundary, we can go from one endpoint to the other
while keeping track of where we are within the hierarchy, all of this in time proportional
to the size of the curve and the number of cells crossed. If the curve is a straight-line
segment, then because of convexity the time becomes O(log n).

This data structure is still insufficient for our purposes, because sometimes we
will need to follow a curve that leaves P and later re-enters the polyhedron from the
outside. To trace the curve after we leave P we need a hierarchy for the "outside" of
P as well. Unfortunately, the outside of a convex polyhedron is not convex, so we
cannot apply the Dobkin-Kirkpatrick construction verbatim. Instead, we switch to
dual space because the set of planes that avoid P gets mapped to a convex polyhedron.
So, we now have two nested sequences of O(log n) polyhedra, one fitting inside P
and the other fitting inside its dual. The resulting data structure is called the shield of
P: It consists of a primal part, which allows us to navigate inside P, and a dual part,
which, we hope, allows us excursions outside. The latter is true, but in an indirect
way. Indeed, to trace a curve that connects two points on the boundary of P and lies
outside the polyhedron is still not very easy. But, instead, consider a finite sequence
of planes, all of which lie outside P, except for the first and last ones, which are tangent
to P. We can visualize this sequence mechanically by starting with the first plane and
pivoting along the appropriate line to get to the second plane, and so on, until we
reach the position of the last plane. Dually, this motion corresponds to the traversal
of a polygonal curve inside the dual of P that connects two points on the boundary
(namely, the duals of the first and last planes in the sequence). Because of the dual
hierarchy we are thus able to trace this curve, which, in primal space, means "tracing"
the corresponding sequence of planes. These operations will allow us to navigate inside
and outside P and discover the points where we leave and re-enter the polyhedron.
The navigation inside P follows polygonal curves, while the one outside P follows
sequences of pivoting planes.

As it turns out, we cannot afford to keep the full contents of the hierachies: Only
their outermost layers can be used. Thus, we discard all but a constant number, say
k, of the nested polyhedra. The result is a geometric structure that we call the k-shield
of P. Intuitively, we cannot afford to traverse either hierarchy all the way across because
we would pay a factor of log n time in doing so, and this overhead would result in an
O(n log n)-time intersection algorithm. Of course, we are now missing so much
information that navigating in a k-shield is rather difficult. However, we can use a
well-tuned form of recursion to get around this problem.

Informally, the linear algorithm works as follows: We check that both input
polyhedra P and Q have a point in common and we compute their k-shields, for some
appropriate constant k. Then we begin to traverse the edges of one of the polyhedra,
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say P, and while doing so we keep track of where we are in the primal part of the
k-shield of Q (assuming that we start somewhere inside Q). This is called broadcasting
from P. As long as we navigate inside Q we can use the primal part of its k-shield to
guide us. When we reach portions of the boundary of P that lie outside Q, however,
we must switch to dual space and use the dual part of the shield to guide the navigation.
A transition from primal to dual space is called a mutation" It involves changing the
mode of navigation from one that traces a polygonal curve within a shield to one that
follows a sequence of pivoting planes or, equivalently, one that traces a polygonal
curve in the dual part of the shield. Unfortunately, a mutation cannot be carried out
instantaneously and requires a little bit of geometric work.

A yet more serious difficulty is what to do when we reach the last layer L in either
one of the hierarchies of Q, say the primal one, and we need to go deeper to carry on
the navigation. Recall that most of the inner layers of the shield have been removed
and, thus, tracing a polygonal curve all across the hierarchy is not possible. When this
happens we call upon the intersection algorithm recursively with P and L as input
and thus discover, in this indirect manner, the tracing pattern along L. In other words,
we use recursion to palliate the lack of inner layers. What makes this idea work is that
as we do so we also switch from a broadcasting from P to a broadcasting from L. This
switching trick is actually the key to breaking the n log n barrier. Indeed, this leads
to a recurrence on the running time T(n) of the form T(n)=4T(n/5)+ O(n), which
solves to linear.

An interesting side effect is that because we operate in both primal and dual
spaces, the algorithm ends up computing the intersection, as well as the convex hull,
of the two input polyhedra. Actually, we keep switching between these two tasks in a
co-routine-like fashion. Although the algorithm is not particularly complicated, proving
its correctness requires a certain amount of thoroughness in investigating the topology
of several convex polyhedra. The fact that polyhedral boundaries are not smooth
manifolds further complicates the analysis but also makes it more interesting.

A. BACKGROUND. We begin with some geometric terminology. Given X
_
Rd,

the closure (respectively, interior) of X is denoted cl X (respectively, int X). The
frontier of X is defined as cl X fqcl (Rd\x), or as cl X f’)cl (A\X) if the relative
topology of some A

_
X is understood. The unit d-sphere and the open unit d-ball

are denoted Sd and Od, respectively. A disjoint union of k-faces (subsets of Ed
homeomorphic to ok), for k 0, , d, is called a d-dimensional cell complex if, given
any two faces f and g, the intersection of clf and cl g is either a union of faces or the
empty set. A cell complex is called simplicial (or triangulation) if each face is the
interior of a simplex (in the relative topology of its affine closure).

We take a rather general view of a polyhedron as any subset of 3-space that is
locally a cone with a compact base [26]. Given a point p 3 and a subset C c 3, we
say that the points ap + (1-a)q, for all q C and 0-< a-< 1, form a cone pC if for
each point of pC distinct from p, the choice of q is unique. A subset P of 3 is called
a polyhedron if each point p P has a cone neighborhood pC, whose base C is compact.
We use the term boundary to refer to the frontier of a polyhedron P and denote it 0P.
It is not hard to see that a polyhedron is a locally finite union of simplices and, hence,
is piecewise linear. It need not be a manifold, however. An example of a valid
polyhedron is shown in Fig. 2.1. An open halfplane 7r is a polyhedron but, because
of the compactness condition, ceases to be one as soon as we include one point on its
frontier. Adding the entire frontier is fine, however.

We need this level of generality because we will sometimes be dealing with rather
convoluted shapes. As it turns out, however, most of our time will be spent with convex
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FIG. 2.1. Example of a valid polyhedron.

polyhedra, for which a more global (but slightly restrictive) definition is preferable
11]. A convex polyhedron is a nonempty intersection of a finite number of closed

halfspaces. It is called a convex polytope if it is bounded. For technical convenience,
we will restrict our discussion to convex polytopes, but it is easy to generalize it to
the unbounded case. We assume that the boundary of a convex polytope P is facially
structured as a two-dimensional cell complex with a minimal set of vertices. This last
requirement means that a vertex (0-face) must be the intersection of three or more
bounding planes (i.e., planes that delimit the defining halfspaces), but an edge (1-face)
need not lie in the intersection of two distinct bounding planes. This assumption allows
us to triangulate cgP and still have a convex polytope; on the other hand, it forbids
the facets (2-faces) incident upon any given vertex from being all coplanar. For storing
two- and three-dimensional cell complexes we shall assume the representations of
Baumgart [3], Muller and Preparata [22], or Guibas and Stolfi [15] and of Dobkin
and Laszlo [8], respectively, or any other data structures that allow us to navigate at
ease between adjacent cells. Such representations will be called standard.

To conclude this laundry list of assumptions and definitions, we introduce a
well-known duality between points and planes, namely, the polarity , which maps
any point p (a, 3, y) distinct from the origin O to the plane of equation ax +y+ yz
1: (p) is the plane normal to Op that lies at a distance 1/lOpl from the origin on the
same side as p. Given a convex polytope P, whose interior contains the origin, the
dual of P is the set of planes whose dual points lie in P. Forming the union of all
these planes and taking the closure of the complement defines a convex polytope,
which is called the dual polytope of P and is denoted P. If the polytope P has no
coplanar facets (e.g., no triangulation has been forced upon its boundary), then each
vertex, edge, and facet of P corresponds respectively to a unique facet, edge, and
vertex of its dual polytope, and the correspondence is involutory. Given a standard
representation of a convex polytope P, it is elementary to compute a standard rep-
resentation of. P in linear time, supplemented with pointers between each k-face of
P and its dual (2-k)-face. Note that if the origin is not interior to P, then instead of
a single polytope we obtain one or two unbounded polyhedra in 3-space.

Central to the Muller-Preparata method [22] is the use of the fact that convex
hulls and intersections play dual roles. Indeed, if the origin lies in the interior of two
convex polytopes P and Q, then the convex hull of P and Q is the dual polytope
of P f) Q. In other words, identifying the binary operation intersection in primal space
with the binary operation convex hull in dual space yields the following commutative
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diagram:

PCI Q (P Q) Hull (P Q)
Unlike the Muller-Preparata approach, which commutes through the diagram only
once, our algorithm will spend most of its time traveling back and forth between primal
and dual spaces.

B. SHIELDING A CONVEX POLYTOPE. We open this discussion with a variant of
the Dobkin-Kirkpatrick construction. Let P be a convex polytope of n vertices with
nonempty interior. We assume that its boundary has been triangulated, which is easy
to ensure in linear time. Recall that the degree of a vertex refers to its number of
incident edges. We select a maximal independent set of constant-degree vertices: (i)
Pick any vertex of degree at most 8, and mark it along with all its adjacent vertices;
(ii) iterate on this process, always making sure to pick unmarked vertices. Termination
occurs when we run out of unmarked vertices of degree at most 8. Because the number
of edges is at most 3n-6, we find that the sum of all vertex degrees does not exceed
6n- 12. Since every vertex has degree at least 3, the number m of vertices of degree
at most 8 satisfies 9(n- m)<-6n 12-3m, and hence m >- n/2. Therefore, at least n/18
vertices will be selected in this process. As shown in Edelsbrunner 11], we can actually
do better by considering vertices in order of nondecreasing degree. This allows us to
find an independent set of at least n/7 vertices of degree at most 12. In both cases,
the time for selecting the desired vertices is linear.

Around each selected vertex v, we perform some local surgery by removing v and
its "umbrella" of incident faces and recomputing the convex hull of P (Fig. 2.2). Since
v has degree at most 12, this shelling operation can be done in constant time. Note
that because of the independence of the selected set of vertices, the order in which
vertices are "popped out" does not matter. In O(n) time we thus will have (i) removed
all selected vertices and their incident faces, (ii) computed the new convex hull P1,
and (iii) triangulated its boundary. We easily verify that P1 is a valid convex polytope;
in particular, each of its vertices lies on at least three distinct bounding planes. We

FIG. 2.2. Removing v and its "umbrella" of incident faces.
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can now repeat this process with respect to P1 and define a sequence of nested convex
polytopes Po P1 ’’" P, where (i) Po-- P, (ii) P has constant size, and (iii) each
cl (Pi\Pi+l) is a collection of three-dimensional cones whose interiors are disjoint. If
the interior of P1 is empty, then at most two vertices were popped out and P has at
most 12 + 2 vertices. To avoid any difficulty, we do not bother with P1 and set c 0
whenever P has at most 14 vertices. We use the same criterion to terminate the iteration.

Our next step is to compute a triangulation of P that is compatible with all the
nested polytopes. This might be awkward to do during the shelling phase, because we
may inherit the "wrong" triangulation from outer polytopes and create tetrahedra with
empty interiors (Fig. 2.3). The difficulty is that a facet incident upon a popped-out
vertex v of Pi might still contribute a portion of a facet of Pi+l. A simple fix is to
retriangulate inside out. Assume that P has been given a triangulation compatible with
P+I,""", P. Each cone of cl (P-I\Pi) can be triangulated directly by connecting its
apex to the triangulation of its base provided by Pi. This will lead to a compatible
triangulation of P in O(n) time. Note that the resulting triangulation of aP might be
different from the one we started with.

FIG. 2.3. Inheriting the wrong triangulation.

There is nothing startlingly novel here. The only slight twist from the Dobkin-
Kirkpatrick construction is to transform the nested sequence into a three-dimensional
triangulation. This will allow us to discover P from various angles by traversing it
along straight lines, shooting rays through it, and in general exploring its geometry
from within. Unfortunately, we also need to approximate P from the outside. What
is unfortunate about this is that the complement of P is not convex, so we cannot play
the same game over. Its dual polytope is convex, however, so it might just be the right
time to jump into dual space.

After ensuring that no two facets are coplanar, by removing edges if necessary,
we choose an origin O in the interior of P and we form its dual polytope P. Then
we triangulate aP and submit P to the in-growing process described above. This
results in a sequence of nested convex polytopes P= rio lII D’’’ D lift, where ri
has constant size. The triangulation of Po\int P is the primal shield of P; its counterpart
between rio and li is called the dual shield. Unless specified otherwise, the term
"shield" refers to both its primal and dual parts. Given any integer k such that
0_-< k <_-min {a, fl}, the triangulations of Po\int Pk and rio\int rig form the k-shield of
P. Primal and dual k-shields are defined in the obvious way. All logarithms below are
to the base 2.
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LEMMA 2.1. Let P be a convex polytope with nonempty interior, and let m be its
total number of vertices and bounding planes. The shield ofP can be constructed in O(m
time. The total number of vertices and bounding planes in each Pk (and Hk) is at most

3(1 1/7)km. The total number of nested polytopes is less than 9 log m + O(1).
Proof Let Vk and fk be the number of vertices and bounding planes in Pk,

respectively. The reason for dealing with mk Vk +fk is that this quantity is invariant
under duality. Since the boundary of a convex polytope has Euler characteristic 2 and
every facet has at least three incident edges, we derive fk <= 2Vk--4. Each pass in the
algorithm removes at least one-seventh of the vertices; therefore, (i) the preprocessing
is linear and (ii) mk -<3(1 1/7)kVo--4. [3

C. NAVIGATING THROUGH A SHIELD. The usefulness of a shield owes to its being
both an approximation scheme and a cell complex. Indeed, it gives us a "two-way"
sequence of approximations for P, through which we can easily navigate and "discover"
the boundary of P from any desired angle. This assumes that we use a proper
representation, such as the Dobkin-Laszlo structure [8]. Without getting into the details
of the data structure, let us just say that from each tetrahedron of a shield we can gain
access to any of its four incident facets in constant time. Conversely, any facet leads
us directly to its two incident tetrahedra. Also, the tetrahedra and facets incident upon
an edge are accessible in cyclical order around the edge.

Let us consider a simple operation, such as being given a ray with a starting
point in a tetrahedron of, say, the primal shield of P, and being asked to traverse the
primal shield along . In general, the ray will cut through a sequence of cells alternating
between tetrahedra and triangles. When this is the case, there is no difficulty in
discovering the sequences of cuts on the fly, at a cost of O(1) per cut. Let us call a
facet of the primal shield primitive if it lies on the boundary of one of the nested
polytopes. Since the popped-out cones are bounded by primitive triangles, the ray Y
cannot cut more than a constant number of nonprimitive triangles in a row. Con-
sequently, the total size of the cutting sequence is proportional to the number of
primitive triangles intersected by the ray. A minor difficulty arises when the ray cuts
through an edge or a vertex of the shield. In the case of an edge we are faced with
two candidate triangles to be visited next. We can break ties by making arbitrary
navigational conventions. For example, we might agree always to choose the triangle
that is (locally) highest (or leftmost if there are several highest ones). We can also
submit the ray to a symbolic perturbationsee Edelsbrunner and Mficke [13] and
Yap [28]. Note that we can easily generalize the mode of traversal to polygonal lines
embedded in 3-space. The following summarizes our discussion.

LEMMA 2.2. The complexity oftraversing the primal (respectively, dual) shield along
a polygonal line in three dimensions, knowing the starting cell, is proportional to the
complexity of the polygonal line plus the number of nested polytopes Pi (respectively, H)
whose boundaries are cut during the traversal (counting multiplicities).

3. Intersecting two convex polytopes. We begin with a brief discussion of what
makes the problem not so easy. We can assume that we have a point O inside both
convex polytopes P and Q, since such a witness (if any) can be discovered in linear
time [7], [10], [19]. What remains to be done is in some sense merging P and Q.
Imagine a sphere centered at O, on which OP and oQ are centrally projected. This
gives us two spherical subdivisions Sp and So. Merging the two subdivisions would
do the job, but this might cause a quadratic blowup. The next "smartest" move might
appear to be locating each vertex of Sp in So and vice versa, which we can do in
O(n log n)time, where n is the total number ofvertices in P and Q [18]. Unfortunately,
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it is easy to prove that this complexity is optimal. Clearly, we are still seeking too
much information, and the subdivisions Sp and So appear essentially worthless. So,
let us bring shields into the picture. How about locating each vertex of P (respectively,
Q) in the primal shield of Q (respectively, P)? Such information might be a good
start from which to launch our intersecting attack. But actually this is still asking too
much: Indeed, it can be proven that locating the vertices of P in the primal shield of
Q requires [l(n log log n) time in the worst case. All these attempts fail because we
are working too far from the boundaries of P and Q and thus are giving free rein to
our adversary. Pairwise intersections of convex polytopes possess a rich geometric
structure into which we have yet to tap seriously. The time has come for a closer look
at the geometry of the intersection problem.

A. BROADCASTING. We devote this section to defining the notion of broadcasting
and showing that it is the essential operation in computing the intersection of two
polytopes (Lemma 3.1). Let us restate our assumptions: P and Q are two convex
polytopes with a total of n vertices, and their interiors contain the origin O. To simplify
our discussion, we shall assume that P and Q have no two coplanar facets and are in
general position relative to each other: No facet (respectively, edge) of one is coplanar
(respectively, colinear) with a facet (respectively, edge) of the other, no vertex of one
lies on the boundary of the other, etc. To borrow a clich6, relaxing these assumptions
is tedious but not difficult.

Assume that the boundaries of P and Q have been triangulated by inheritance
from their primal shields. Since the two polytopes are convex and contain the origin
in their interiors, the boundary E=O(PU Q) is the graph of max (f, g), where f and
g are continuous functions S2 -> R+. It follows that E is homeomorphic to S2. Let us
now color OP blue and oQ red. (We apologize to the reader for not using a more
evocative terminology: If it is any help for future reference, P and the first letter of
"blue" sound somewhat alike.) Points that are both blue and red are said to be purple.
The facets of E become monochromatic polygons. Beware: Some of them may be of
nonconstant size, nonconvex, and even perforated. However, can still be regarded
as a two-dimensional cell complex. Of particular interest to us are the connected
components of OP (3 oQ. These are disjoint, purple, simple cycles in the facial graph
of, which we call laces, removing all the laces from creates relatively open polyhedral
surfaces, called regions (white and dotted areas in Fig. 3.1).

Regions and laces partition into maximal monochromatic connected subsets.
Assume for the time being that E has at least one lace. Then the closure of a region

FIG. 3.1. Creation of regions by removing all the laces from ,.
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R is a (topological) manifold with boundary, which is homeomorphic to S2 perforated
by k_-> 1 disjoint copies of O2. Unlike some of the sets we will encounter later, this is
a rather friendly one: It is an orientable bounded surface, its number of boundary
components is k, and its Euler characteristic is 2- k. The boundary of the manifold is
also the frontier of R in the relative topology of Z: By extension, we call it the boundary
of R. The k connected components of the boundary are called the bounding laces of
the region. Note that each lace of Z bounds exactly two regions (of opposite color).
A region R, being a monochromatic component of the graph max {f, g}, is paired with
a homeomorphic component R of the graph min {f, g}: This component has the
opposite color of the region R and is called its co-region (dotted area in Fig. 3.2m
boundaries are left untriangulated for clarity). Here are more formal definitions of all
these concepts.

FIG. 3.2. Co-region of R (dotted area).

DEFINITIONS. A lace is a connected component ofOP oQ. A region is a connected
component of O(PU Q)\(oPoQ). A co-region is a connected component of O(Pf-)
Q)\(oPoQ).

We are now ready to define the notion of broadcasting. A broadcaster is an
algorithm that takes as input a vertex v on a lace and a color c and returns at least
one vertex on each of the laces bounding the unique c-colored region incident upon
v. Each vertex of a lace is determined by the intersection of a facet of P (or Q) and
an edge of Q (or P): It is understood that this correspondence should be provided in
full by the broadcaster. Suppose without loss of generality that the broadcaster is given
the color red as input. Then one solution for the broadcaster is to traverse the relevant
co-region on the boundary of P and keep track of the current location in the primal
shield of Q until all the desired laces have been reached. In that case we say that the
broadcasting is anchored to P. As we shall see, there is another, slightly more compli-
cated solution, which is to stay anchored to Q and traverse the relevant portion of its
boundary while tracing the navigation in the dual shield of P. In all cases the term
anchor refers to the polytope on whose boundary the traversal takes place, the other
polytope providing the guiding shield.

LEMMA 3.1. Ifa broadcaster is available, it is sufficient to know a vertex ofone lace
of (or to know that there is no lace) in order to compute the entire intersection of P
and Q while incurring only linear overhead on top of the broadcasting time.

Proof If has no lace, just knowing this fact will be enough for us to compute
P CI Q in linear time, by checking whether a vertex v of P lies inside or outside Q.
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Indeed, P f’l Q P (respectively, P fq Q Q) if and only if v 6 Q (respectively, v Q).
Suppose now that E has at least one lace. They key observation is that if the regions
of E are to be made into the nodes of a graph, with arcs connecting nodes whose
associated regions are bounded by a common lace, then the graph in question will be
connected. Therefore, starting from the vertex given to us by the input, a standard
graph traversal algorithm will allow us to discover a vertex for each lace of Z. Since
the facets of P and Q are triangles, it is elementary to compute an entire lace in time
linear in its size by tracing it from one of its vertices. Once we know all the laces in
full, we can easily compute P f-) Q in linear time by marking the laces in both OP and
oQ and exploring the facets of the co-regions.

B. AN INTERSECTION ALGORITHM BASED ON CO-ANCHORED NAVIGATION. To
illustrate the utility of broadcasting further and bring out some of its main features,
we describe an O(n log n) time algorithm for intersecting P and Q that relies on a
symmetric form of broadcasting, one where the anchoring alternates between P and
Q (hence the term co-anchored). The idea is to stay glued to the boundary of P fq Q
and confine our traversals to co-regions. In one broadcast we are anchored to P; that
is, we navigate across the primal shield of Q while exploring a co-region in OP. The
next time around, roles are reversed and we find ourselves broadcasting across the
primal shield of P while being anchored to Q. Dual shields are never used. For this
reason co-anchored navigation relies solely on what we call primal broadcasting.

Co-anchored navigation is simple, but it leaves us little room for improvement.
Later we will develop a more complex but more promising form of navigation in which
we always remain anchored to the same polytope. This requires keeping track of where
we are within the primal shield of Q while we lie inside Q (primal broadcasting) and
where we are in the dual shield of Q when we navigate outside Q (dual broadcasting).
This also necessitates the use of mutations, the transition operation we mentioned
earlier. Briefly, the reason why this more complicated form of navigation is preferable
is that by always remaining anchored to the same polytope, we remain free to choose
the anchor, whereas, before, the choice of anchors was dictated by the color of the
co-regions. This added freedom is the key to being able to balance costs between the
two polytopes and achieve linear time.

Let us now describe the simpler, co-anchored form of navigation that, as we said,
relies exclusively on primal broadcasting. Given a vertex v of a certain lace y of E,
let R be the red region of E incident upon v and let R be its co-region. Suppose now
that the broadcaster is given the vertex v and the color red as input. Its goal is to find
vertices on all the laces y, yl," ", yl of R. First of all, we (the broadcaster) can easily
compute the entire lace y by tracing the connected component of oPt-loG passing
through v. Since the boundaries are triangulated, the computation is linear in the size
of y.

Now we must reach out to all the other laces yi. Our strategy relies on the fact
that the closure of a co-region is an edge-connected bounded surface (meaning that
the vertices and edges form a connected graph). This seemingly obvious fact should
not be taken for granted, because it does not necessarily hold for the closure of a
region. In Fig. 3.3, for example, the dotted area represents a region facet that is
biconnected and therefore is not edge-connected. So we must prove our claim. Suppose
that two vertices of E in the closure of a co-region R cannot be joined by a path of
edges in cl R c. Then, either one of these vertices can be separated from the other by
a simple closed curve that lies entirely in cl R but does not cut across any edge or
vertex. It easily follows that this curve must lie in a single facet f of cl R and that f
is perforated. A local analysis of the perforation reveals that f contains two points p
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FIG. 3.3. Region facet (dotted area) that is biconnected and therefore is not edge-connected.

and q such that pq P f’)Q. This contradicts the convexity of P f3 Q and proves our
claim.

Observe that cl R has vertices in gPgQ as well as possibly in cgP\oQ (we
previously assumed that R is red). The main difference is that the latter vertices are
known ahead of time, whereas the former (the lace vertices) are discovered during the
broadcast. Using standard graph traversal techniques, we can reach the vertices of all
the yi’s from v. The only problem is that whenever we visit an edge of P that crosses
the boundary of Q, we need to know about it. The solution is to keep trackmat all
times during the broadcastmof where we are in the primal shield of Q. This means
computing the intersections of the visited edges of P with the facets of the primal
shield of Q. It follows trivially from Lemmas 2.1 and 2.2 that the broadcast will take
O(p log n) time, where p denotes the number of edges in cl R c. Obviously, we shall
exchange the roles of P and Q if the color blue is given as input to the broadcaster.
To summarize, the cost of all the broadcasts will be proportional, up to a logarithmic
factor, to the size of all the co-regions. This gives us a total broadcasting time of
O(n log n).

We will now be in a position to apply Lemma 3.1 and compute the entire
intersection of P and Q as soon as we know one lace vertex. To do this, we take an
arbitrary starting vertex v of P and check whether it lies inside Q. If the answer is yes,
we pursue the search and locate v in the primal shield of Q. From there, we start a
regular broadcast-like routine, which involves traversing aP and keeping track of where
we are in the primal shield of Q at all times. Either we will reach the boundary of Q
and, hence, a vertex of a lace, or we won’t. In the latter case, we know that P f-) Q P.
If v lies outside Q, on the other hand, we locate the point w Ov f3 aQ in the primal
shield of P. Let z be one of the vertices incident upon the unique (simplicial) face of
Q that contains w. Let us traverse the primal shield of P along the oriented segment
wz. If we do not exit P (or if w z) we are just back to the previous case, with the
roles of P and Q reversed. If we do leave P, however, the exit point belongs to a lace
and therefore is a valid starting vertex (or it lies on an edge incident upon one). In
view of Lemmas 2.1, 2.2, and 3.1, we now have an intersection algorithm with O(n log n)
running time.

C. A TOPOLOGICAL EXCtJRSION. Before we can switch to single-anchored naviga-
tion and describe dual broadcasting, we must further explicate the relationship between
polytopes and their duals. This section introduces the notions of belts, bracelets, and
co-dual regions, on which dual broadcasting is founded. This introduction might be a
little tedious, but it is indispensable for a proper understanding of why the intersection
algorithm actually works.
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Everything we said of P and Q (e.g., laces, regions, co-regions) applies just the
same to P and Q. In the following, E will designate the analog of E vis-a-vis
P U Q; that is, E O(P t3 Q). We assume that the boundaries of all four polytopes
P, P, Q, Q have been triangulated in accordance with their shields (and, hence, may
have coplanar facets). Correspondence between a polytope X and its dual is ensured
by the usual pointers between a k-face and its dual (2-k)-face. This concerns the
state of faces prior to boundary triangulation. With the introduction of simplicial faces,
however, this representation must be slightly amended. Let us distinguish between the
old faces of X (before triangulation of cgX) and the new ones. Note that some of them,
vertices in particular, are both old and new. Each vertex of X points to any one of
the new facets to which it is dual, and each new facet points to its unique dual vertex.
Each old edge of X points to the unique old edge of X that is dual to it. Each. new
edge e points to the four old edges of X that are both adjacent to e and incident upon
the old facet where e lies. It is a simple exercise to set up all these pointers in linear
time. An attractive aspect of this representation is that, given a new facet abc of X,
we can gain constant time access not only to its dual vertex v, but also to three new
facets of X that are dual to a, b, and c, respectively, and incident upon v (Fig. 3.4).

FIG 3.4. Relationship between polytopes and their duals.

Belts. We will show that the laces of E can be individually "covered" by disjoint
belts that dualize to laces of E. Let us color yellow all the faces of the convex hull H
of P t_J Q that are faces of neither P nor Q. A maximal connected subset of yellow
faces is a polyhedron (in our definition), which we call a belt of E. Formally, we define
belts and co-belts as follows:

DEFINITIONS. Let H be the convex hull of P U Q. A belt is a connected component
of (cgH)\c(P Q). A co-belt is a connected component of c(Pt_J Q)\OH.

Note that belts and co-belts are relatively open. To be able to say more about
them, we define the envelope of a polyhedron X (in a slightly nonstandard manner)
as the set of planes 7r such that (i) the affine closure of X f3 7r has dimension at least
1 and (ii) X lies entirely in either one of the closed halfspaces defined by r. It easily
follows from the incidence-preserving properties of a polarity that the envelope of a
belt B dualizes to a lace B of E. More specifically, as we walk along the lace B, a
certain plane or(x) rolls around the belt in a continuous fashion as x goes around S1.
Therefore, B is a simple cycle of simplicial facets and edges (and no vertices),
to, eo,’", tin, era, where each facet ti is incident upon the two edges ei and ei_l
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(mod m+ 1). It follows that a belt is topologically equivalent to an open annulus
Six (0, 1). Its frontier consists of two monochromatic connected components: One of
them, denoted be, is blue, and the other, b,, is red. Let us look at these components
more closely. We may restrict ourselves to one of them, say be.

In general, b will be a simple closed polygonal curve, but unfortunately this might
not always be the case. Indeed, consider an old (i.e., untriangulated) facet f of P
that contributes at least one edge to the lace B. It is certainly possible for B to come
in and out of f repeatedly, as is shown in Fig. 3.5 (where f is the horizontal face of
the lower polyhedron). To translate this into the language of belts, let Uo,’’ ", Uk be
the cycle of edges of b encountered while visiting to,’", t, in that order. Iden-
tifications of the form ui uj might occur. The topological type of a belt enforces two
important restrictions on the allowable identification patterns. First, three or more
edges cannot be identified together. Second, in any subcycle ui, uj, Uk, U we cannot
have both ui uk and u u, which means that the identifications form a parenthesis
system. Of course, we might have vertex identifications only and no edge identifications
at all. It might even be the case that b consists of a single vertex, which will happen
if B lies entirely in a single facet of Pmsee the top vertex in Fig. 3.6. The only
reason that b is not always topologically equivalent to S is that the boundaries of P
and Q are not smooth. If they were, then bc would actually be diffeomorphic to S.
Thus, ifwe look at 0P and 0Q as limit sets ofsmooth 2-manifolds, it appears immediately
that bc is a simple closed curve that may have been pinched and collapsed along
vertices and edges according to a parenthesis system. A traversal of such a curve is

FIG. 3.5. B may come in and out off repeatedly.

A similar situation occurs in the merge step of Preparata and Hong’s convex hull algorithm [24],
which is also discussed in detail in Edelsbrunner [11].
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FIG. 3.6. A case in which b consists of a single vertex.

shown in Fig. 3.7: The curve can be obtained from a circle by pinching it and gluing
it at various places.

Observe that two distinct laces cannot share vertices or edges, but they can pass
through the same (old) facet of P or Q. This implies that although two belts cannot
share a common edge or facet, their frontiers might have vertices and edges in common
(recall that a belt does not contain its frontier). This fact will require that special
measures be added to the intersection algorithm.

FIG. 3.7. Traversal of a simple closed curve that has been pinched and collapsed along vertices and edges
according to a parenthesis system.
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Bracelets. The space between the boundary of the convex hull H and the polytopes
P and Q consists of disjoint donut-like objects, which are called bracelets.

DEFINITION. Let H be the convex hull of P t_J Q. A bracelet is the closure of a
connected component of H\(P U Q).
A different perspective on belts and bracelets comes from looking at E and 0H as

the graphs of two continuous functions, respectively, q and b:S2,- R+. Removing
the kernel of- from S2 leave,s relatively open connected components S1, $2," ,
and each belt B is the graph of $ s restriction to some distinct domain Si. By analogy,
the graph of q’s restriction to Si is the co-belt B of B. Belts and co-belts are
homeomorphic and have the same frontiers. Therefore, the closure of B U B is
the frontier of a compact polyhedron , which is a bracelet of E: Its interior is homeo-
morphic to an open filled torus De x S1. A bracelet is the closure of a connected com-
ponent of H\(P Q), and its belt is the relative interior of the intersection of that
component with OH. One should not hastily conclude that a bracelet is always
topologically equivalent to a filled torus. It can actually assume rather contrived
shapes, because as the frontiers b and bm might cause (homeomorphically) multiple
point identifications along nonnull homologous paths on the torus. This might give
us a filled torus pinched at various places or, as in Fig. 3.6, a closed 3-ball pinched at
a pair of antipodal points. Note that general position alone cannot prevent this type
of pathology.

Again, let be and bm be the frontier components of B. Since E is locally blue
(respectively, red) around b (respectively, bm), we can define the maximal blue
(respectively, red) connected subset B (respectively, Bin) of B whose closure contains

bc (respectively, bm). We claim that Be and B,, are joined together along a single lace.
To prove this claim, let y B\(Be B,) and suppose, by contradiction, that ), contains
a point p of a color different from purple, say, red. Let C be the maximal connected
red subset of B that contains p (the dotted region containing p in Fig. 3.8). The
closure of C does not intersect b or bm; therefore, C is a full region of E (and not
just the portion of a region that lies within B). Figure 3.8 shows E with the white
area denoting B and with C in the middle: It is bordered by red (i.e., dotted) material
on one side and blue (i.e., hatched) material on the other. Like every region, C contains
a point in 0H. To see why, consider a plane 7r supporting a facet of its co-region, and
let 7r

+ be the open halfspace bounded by r that does not contain the origin. Since P
lies entirely outside r+, we have r+ oQ C; therefore, the point of r+ 71 oQ farthest
away from r is a vertex of Q in C (3 OH. But this contradicts our previous observation
that the portion of the bracelet that lies in OH is confined to the closure of its belt.
Consequently, y is a purple curve whose removal from B creates two monochromatic
surfaces of opposite color, each homeomorphic to an open annulus. It follows
that y is homeomorphic to S and therefore is a lace of E. Thus, we have shown
that 0 is the disjoint union of B, b, B, y, B,,, and bin. In general, the removal
of any one of these six sets makes 0 homeomorphic to an annulus (open for the
lower-case sets, closed for the upper-case ones). But one should not count on it.
Removing the belt or the co-belt makes 0 equivalent to a closed 2-disk with usually
one open perforation, but with possibly zero (Fig. 3.6) or an arbitrarily large number
of them.

Dual bracelets and co-dual regions. Each belt of E is associated with a unique lace
of . Since this is true in dual space as well, this association is bijective. Therefore,
the envelope of a belt B of any bracelet of E dualizes to the lace y* of a bracelet

of E, whose belt B* has for an envelope the dual of the lace y of . If A and fl
map a bracelet to its lace and belt, respectively, we can extend the commutative diagram
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FIG. 3.8. The maximal connected red subset ofB that containsp (dotted region containingp is afull region.

of 2.A as follows"

By carefully rolling a plane around the boundary of in the appropriate manner, we
trace the entire boundary of in dual space. (The rolling has to be "appropriate"
in the sense that the passage from a belt to the co-belt and the passage across the lace
must cut through the bracelet instead oftracing its envelope.) Obviously, the association
between and is involutory. For all these good reasons, we call the dual
bracelet of . Note that a lace alone does not provide sufficient information to
reconstruct its associated belt in dual space. One needs to add the planes supporting
the facets incident to it. Another subtle point is that although the envelope of a belt
in primal space is dual to a lace in dual space, the facial structures of these objects
may not be in bijection. The reason is that all facets have been triangulated. As a
result, a belt in primal (respectively, dual) space might end up being facially less
"refined" than its corresponding lace in dual (respectively, primal) space. This will
complicate our algorithm a little because of the ensuing loss of information incurred
when switching to dual space.

We are now in a position to establish the most useful connection between the
input polytopes and their duals, namely, a bijection between the regions of E and
those of . This can be seen as a further extension of the commutative diagram. As
usual, we must use caution, however, because of the nonsmoothness of polyhedral
boundaries. Every bounding lace of a region is covered by a band (a co-belt) whose
frontier usually consists of two simple closed curves: Figure 3.9 shows four laces (the
thick black rings) surrounded by their co-belts. As we saw earlier, things might not be
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FIG. 3.9. Four laces (thick black rings) surrounded by their co-belts.

nearly as simple. Let R be a blue region of X and let 1," ", 1 be the bracelets of
its bounding laces. Since the corresponding co-belts B,. ., B are pairwise disjoint,
the set K R\ 1<<_i<=1B is a connected subset of 0Hmthe dotted area in Fig. 3.9. If
again we think of P and Q as limit sets of infinite sequences of isotopic smooth
manifolds, we can interpret K as a deformation retract of a copy of cl D2 with zero,
one, or several open perforations (Fig. 3.10). Thus, any two planes supporting H at
points of K can be brought together by continuous rolling around H without ever
leaving contact with K. This proves that among the laces of the dual bracelets
1, ..., , any two can be connected by a blue path in a co-region of X. An
immediate consequence is that the laces of 1, bound a common red region
of X. Since the argument is involutory, the region in question must be entirely bounded
by these laces. For this reason it is only natural to call it the co-dual region R of R
(the prefix "co" is a reminder that it is really its co-region that is dual to R). Again,
this map is involutory and, of course, consistent with the bijection previously defined
between laces in primal and dual spaces.

FIG. 3.10. Interpretation ofK as a deformation retract of a copy of cl D with four open perforations.
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Unlike k-faces, which become (2-k)-faces in dual space, or, for that matter,
laces and belts, the type "bracelet" (respectively, "region") is invariant under duality
(respectively, co-duality). The best illustration of this comes from the self-dual case,
where Q= P (Fig. 3.6). In that remarkable situation, dual bracelets and co-dual
regions remain invariant; Only their colors change! The following lemma summarizes
most of our discussion so far.

LEMMA 3.2. The interior of a bracelet J of E is homeomorphic to an open filled
torus. Its boundary contains exactly one belt and one lace of ,, which are homeomorphic
to S x (0, 1) and S, respectively. With is associated a unique dual bracelet of ,:
The dual of the envelope of the belt of J is the lace of; conversely, the dual of the
lace of is the envelope of the belt of. Also, to each region R corresponds a unique
co-dual region R of E of opposite color, and the bracelets of their bounding laces are
dual to each other.

D. DUAL BROADCASTING. As we said earlier, our goal is to break the symmetry
between P and Q provided by co-anchored navigation. This will oblige the broadcaster
to alternate between two modes of operation: primal and dual. The motivation for this
move is to leave us the choice of anchor. Suppose once and for all that P is the anchor.
(How to choose the right anchor will be discussed later.) Using the previous notation,
what shall the broadcaster do if presented with the input pair (v, red)? Since we mean
to let the boundary of P lead the search, this is the easy case where primal broadcasting
through Q can be used ( 3.B).

Assume now that the input is of the form (v, blue), where v is a vertex of a lace
y, and let R be the blue region to be explored. Traversing R entails leaving the polytope
Q altogether. As usual, if 3’ is the only lace of R and we know that for a fact, everything
is easy. But what if we have other laces y, , y ? The difficulty is not to traverse R
per se, but to tell when we might be re-entering Q and hitting upon vertices of
Primal shields are useless at this point, and we must turn to the dual shield of Q for
help. Dual broadcasting from a lace of to another one will be accomplished in three
stages:

1. Starting from the belt of Z associated with the starting lace, navigate in dual
space to the lace of its bracelet.

2. Primal broadcast through Q in dual space.
3. Starting from the belt of E associated with a (dual space) lace newly discovered,

navigate to the lace of its bracelet.
Either of the tasks performed in steps 1 and 3 is called a mutation: We are given a
vertex on a lace of a bracelet , and we must find one vertex on the lace of the dual
bracelet of . Note that from the algorithm description a mutation involves navigating
from a belt to its associated lace and not the other way around. One might think that
reversing the process is just dualizing it and, hence, is computationally equivalent.
That is not quite true. The subtlety here relates to our previous remark about belts
being facially less refined than the laces of their dual bracelets. As a result, navigating
toward belts can be more difficult than toward laces (albeit still doable). We now
describe an efficient implementation of a mutation. It consists of two parts: First we
move to dual space, then we navigate around the boundary of the dual bracelet from
somewhere on its belt to some place on its lace.

Goingfrom the lace to its dual belt. To mutate from the lace of a bracelet of
to the lace of its dual bracelet , our first action is to collect some relevant information
from the input vertex v. As we indicated earlier, a vertex of a lace is never given by
itself, but along with the new facet of P (or Q) and the new edge of Q (or P) upon
which it is in contact. General position ensures that v is incident upon a constant
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number of faces, so we can easily get two (new) facets, one in OP and the other in
oQ, whose intersection contributes one edge e of the lace of . By duality, these two
facets specify an edge ab of the belt of . Note that each facet contributes at least
one of its own vertices to the bracelet: Which one can be determined in constant time
by local examination. Dualizing these chosen vertices gives old facets fa, fb that, locally
around a and b, lie on the boundary of . Note that these facets need not lie entirely
in 0. For example, in Fig. 3.11, the two (intersecting) triangles shown on the left
dualize to the two vertices a and b shown on the right. The two vertices in primal
space from which the arrows emanate point to their dual facets fa, fb, both of which
extend beyond the dual bracelet. Instead of computing these old facets, which might
be large, we retrieve one new facet within f (respectively, fb) that is incident upon a
(respectively, b) These are the hatched triangles in Fig. 3.11. Recall that we added a
special provision to the correspondence between a polytope and its dual to make this
possible in constant time.

Climbing down around the dual bracelet from its belt to its lace. We are now in
possession of an edge ab of the belt of and a simplicial facet A (respectively, B)
incident upon a (respectively, b) that contributes a facet to (but might not be one
itself). Let P* (respectively, Q*) be the intersection of P (respectively, Q) with the
plane 7r passing through O, a, b, and let H* be the convex hull of P* and Q*. Note
that, in general, H* is not the intersection of r with the convex hull of Pt_J Q.
Because the origin lies in the interior of both P* and Q* and neither polygon contains
the other, the curves OP* and oQ* must intersect. Furthermore, the closure * of the
connected component of H*\(P*t_J Q*) that contains the edge ab is the two-
dimensional equivalent of a bracelet (Fig. 3.12): It is simple to analyze, so we will
assume its basic properties. The edge ab is the "belt" of * (more appropriately called
a bridge) and its "lace" is the point p= *N0*N0*. Using standard techniques,
we can compute p by a simultaneous traversal of OP* and oQ* starting from a and b.
With a bit of care, we can find p in time proportional to the number of vertices in *.

Of course, this assumes that we have full knowledge of P* and Q*. But we do
not, and we do not wish to. Since the boundaries of P and Q have been triangulated,
however, it is easy to go from one edge to an adjacent one in constant time and thus
achieve the same effect. To obtain the starting edge may require a little extra work,
since A (respectively, B) might not intersect zr (recall that a facet does not contain its
incident vertices). But we know that A (respectively, B) lies in 0 locally around a

FIG. 3.11. Two intersecting triangles (left) dualize to vertices a and b (right).
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o0

FIG. 3.12. Two-dimensional equivalent of a bracelet.

(respectively, b). Therefore, beginning at A (respectively, B), we can go around the
cyclical order of new faces around a (respectively, b) until we find one that intersects
r. If we are careful to go in the right direction, this preliminary work should involve
looking only at new faces of P and Q that contribute to the boundary of . Once
we have p, we also know two simplicial facets whose intersection contributes an edge
to the desired lace, so the mutation is over. The total running time is at most proportional
to the size of the dual bracelet.

LEMMA 3.3. Mutatingfrom a lace ofa bracelet can be performed in time proportional
to the number of edges in its dual bracelet.

The lemma gives us all the ammunition we need to primal broadcast through Q.
By definition, this will reveal to us one vertex for each lace bounding the co-dual
region of R. By virtue of Lemma 3.2, mutating back from each lace bounding R will
finally take us to the remaining laces of R and complete our dual broadcasting routine.
Thus, to summarize, dual broadcasting is effected in a three-step sequence: (1) mutate
to dual space, (2) primal broadcast in dual space, and (3) mutate back to primal space.
One should appreciate that dual broadcasting is more than simply primal broadcasting
in dual space. Another basic observation is that the input to a primal broadcast need
not be a vertex of a lace: Any nonlace vertex v in a co-region of (respectively, E)
will work just as well, as long as we know the location of v in the primal (respectively,
dual) shield of Q. This might be handy when looking for a starting vertex.

What is the cost of broadcasting as a whole? Let K (respectively, K’) be the
maximum number of nested polytopes in the primal (respectively, dual) shield of Q
whose boundaries are cut by a single (old or new) edge of P (respectively, P). It
follows from Lemma 2.2 that the broadcasting time will be O(( + ’+ 1)n), not
counting mutations. But from Lemma 3.3 the cost of all mutations is at most proportional
to the number of edges in E and E, which is O(n). In light of Lemmas 2.1 and 3.1,
we can draw the following conclusions:

LEMMA 3.4. Given a starting vertex, we can compute the intersection ofP and Q in
time O(n+ n+ ’n), where (respectively, ’) is the maximum number of nested
polytopes in the primal (respectively, dual) shield of Q whose boundaries are cut by a
single edge of P (respectively, P).

What is a valid starting vertex in the context of the lemma? Any vertex on a lace
of or 5: will do, as will any vertex of P (respectively, P) that lies in the primal
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(respectively, dual) shield of Q and has been located in it. It is not difficult to compute
a starting vertex in linear time. Therefore, we could package our findings into yet
another O(n log n) algorithm for intersecting two convex polyhedra of size n. But we
can do better than that. To begin with, we must trade our full shields for k-shields.

E. USING PARTIAL SHIELDS. The only data structure we shall need is the k-shield
of Q, where k is a fixed constant to be determined later. Let Q Qo Q1 " Qk
and Q Q= Q =. = Q, be the sequences of nested polytopes provided by, respec-
tively, the primal and dual parts of the k-shield. Suppose that the intersections P fq Qk
and P fq Q, are fully available. We will show that we can emulate primal broadcasting
through Q and Q, even though we have only a portion of the shield at our disposal.
Let us discuss the case of P and Qk, with the understanding that the same applies to
P and Q,. Assume that both the boundaries and the interiors of P and Qk intersect.
Then, the entire theory ofregions, co-regions, laces, belts, and bracelets applies verbatim
to the surface O(PU Qk). Since the intersection of P and Qk is available, we can
precornpute all primal broadcasting through Qk anchored to P. We do this by marking
the (new) facets of P and Qk that contribute an edge to a lace of O(P tA Qk). Also, for
each region of O(P t_J Qk), we link together representative vertices of its bounding laces
into a circular list. In this way, we are able to primal broadcast from any vertex of a
lace in 0(P tA Qk) by tracing the lace in question until we hit a representative vertex.
From there, we jump to all the other laces bounding the desired region in time
proportional to their number. This gives us the capability to primal broadcast through
the polytope Q with P as anchor, even though we might know only the outer layers
of its primal shield. Obviously, the same trick can be used for primal broadcasting
in dual space. Note that mutations are not affected by this change. The advantage
of this new scenario is to place an upper bound of k on the values of K and K’ in
Lemma 3.4.

What now qualifies as a starting vertex? As usual, any vertex on a lace of E or
will do. Another valid situation is a vertex of P (respectively, P) that lies in the

(possibly disconnected) set Q\Qk (respectively, Q\Q,), along with its location in the
primal (respectively, dual) part of the k-shield of Q. Finally, any intersection between
OQk (respectively, OQ’k) and an edge of P (respectively, P) and its location in the
k-shield would form an appropriate starting vertex. Note that we do not extend this
qualification to just any point in P fq OQk or P fq OQ’k because these points might not
be reached by any broadcast. Indeed, primal broadcasting anchored to P involves
traversing the edges of P and not its facets. Thus, there could be a nonempty intersection
between OP and OQk, even though no edge of P intersects Qk. In that case, the primal
broadcast would never make contact with Qk, so, obviously, no point of OQk should
serve as a valid starting vertex.

The intersection algorithm.
1. Check whether the interiors of P and Q intersect and conclude immediately

if they do not, using the information provided by the Dobkin-Kirkpatrick algorithm.
Else, pick a point O in the interior of both P and Q, and compute their dual polytopes
P and Q.

2. Unless the anchor has already been chosen, declare P the anchor and compute
the k-shield of Q. Let Qk (respectively, Q,) be the innermost polytope in the primal
(respectively, dual) part of the k-shield.

3. Compute P fq Qk and P Q, recursively (the boundary case where any of the
polytopes involved has constant size can be handled directly in linear time). Crucial
point: Make Qk and Q, the anchors in the recursive calls.

4. If P Qk P, return P as the intersection of P and Q, and stop. IfP f’) Q, P,
return Q as the intersection of P and Q, and stop.
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5. If the interiors and boundaries of P (respectively, P) and Qk (respectively,
Q,) intersect, then precompute all primal broadcasting through Qk (respectively, Q,)
anchored to P (respectively, P).

6. Compute a starting vertex (see below).
7. Launch a broadcast from the starting vertex and pursue it until all the laces of

0(P (3 Q) have been found.
8. Use the laces to compute P f-I Q explicitly.
A few comments about the algorithm are in order. Step 1 uses the Iinear time

algorithm of Dobkin and Kirkpatrick [7]. If there is no intersection, the algorithm will
say so and report the two closest points in P and Q. If P and Q intersect only at their
boundaries (which, incidentally, is against our general position assumption), the
Dobkin-Kirkpatrick method will still allow us to compute the full intersection in linear
time. If we have a full-fledged intersection, however, the method will return a point
interior to both polytopes. The dual polytopes of P and Q are easily computed in
linear time. In step 2, we declare either one of the two polytopes, say, P, the anchor,
unless we are responding to a recursive call, in which case the choice of anchor is
forced upon us. From Lemma 2.1, the k-shield of Q can be computed in linear time.
Step 3 consists of two recursive calls. As the analysis will show, switching anchors is
a crucial feature of the algorithm. Failure to do so would jeopardize the linearity of
the algorithm. Step 4 takes care of two trivial terminating cases. In step 5, we build
the shortcuts, if any, provided by P 0 Qk and P Q,.

Step 6 determines a starting vertex. If the boundaries of P and Qk intersect, we
pick a starting vertex among the vertices of OP OQk that emanate from an edge of P
(if any). Then we locate the vertex in question in the primal part of the k-shield of
Q. If this does not work, we try the same operation in dual space. Namely, if the
boundaries of P and Q, intersect, we pick a starting vertex among the vertices of
OP (qOQ’k that emanate from an edge of P (if any). Then we locate the vertex in
question in the dual part of the k-shield of Q. If this also fails, then because of step
4 we know that the skeleton (i.e., set of vertices and edges) of P (respectively, P)
lies entirely outside Qk (respectively, Q,). Therefore, we pick a vertex v of P and
check whether it lies in Q. If it does, then it must be sandwiched between Q and Qk,
so we can locate v in the primal part of the k-shield and make it the starting vertex.
Otherwise, let f be a facet of P incident upon v. If the plane passing through f does
not intersect Q, then its dual is a vertex of P in Q\Q, and therefore qualifies as a
starting vertex. Otherwise, computing the intersection allows us to identify a point w
in oQ\P or oP fq oQ. The cross section of P and Q by the plane passing through O, v, w
consists oftwo convex polygons whose boundaries intersect. Any boundary intersection
qualifies as a starting vertex. So, in all cases, finding a starting vertex (step 6) takes
linear time. With such a vertex in hand, Lemma 3.4 tells us how to compute the
intersection of P and Q. Figure 3.13 attempts to illustrate the main phases of the
algorithm in two dimensions. The polytope P is the nonconvex (sorry about that) blob
wiggling across the primal part of the k-shield of Q (which itself, obviously, should
not be made of disjoint rings...).

Complexity analysis. Put m =p / q, where p (respectively, q) is the total number
ofvertices and bounding planes in P (respectively, Q), and let T(p, q) be the worst-case
running time of the algorithm. If either p O(1) or q O(1), then, trivially, T(p, q)
O(p/ q). From Lemmas 2.1 and 3.4 we derive the general relation

T(p, q)= 2T(p, 3(1 1/7)kq)+ O(p+ q).
This recurrence alone is rather ominous looking. However, the trick of switching
anchors at each recursive call will now pay off. Indeed, the recurrence can be more
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Primal broadcast in
dual space + recursion

Primal broadcast
in primal space

Recursion

Mutation

FIG. 3.13. A bird’s-eye view of the algorithm.

accurately expressed as

T(p, q)= 2T’(p, 3(1 1/7)kq)+ O(p+ q)

and

T’(p, q)=2T(3(1--1/7)kp, q)+O(p+q),

which, after substitution, yields

T(p, q)= 4T(3(1 1/7)kp, 3(1 1/7)kq)+ O(p+ q)

or, more simply,

T*(m) =4T*(m/5)+ O(m),

where T*(m) T(m, m) and k 18. We have T*(m) O(m), and thus ends our search
for a linear time algorithm for intersecting two convex polyhedra.

Reflecting back on the algorithm, it is interesting to observe that switching anchors
at each recursive call makes all the difference. The process can be regarded as a form
of branching dovetailing. A second observation is that, in the end, all the laces in both
E and E will have been fully computed (or at least this can be easily ensured at no
extra asymptotic cost). Since the laces of E dualize to the belts of E, we get the convex
hull of P and Q as a bonus. Of course, another method is to compute the intersection
of the dual polytopes and dualize back. If P and Q are disjoint, then we can use the
Preparata-Hong linear time wrapping routine. In all cases, therefore, we are able to
compute the convex hull of two convex polytopes in linear time.

THEOREM 3.5. It is possible to compute the intersection (and the convex hull) of
two three-dimensional convex polyhedra in linear time. It is assumed that the polyhedra
are given in standard representation.

4. Miscellaneous applications. The intersection algorithm can be put to use for
improving or simplif.ving the solutions to a number of geometric problems. These
applications are all very simple, so we keep our discussion to a minimum.
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A. INTERSECTING SEVERAL CONVEX POLYHEDRA. Consider the problem of com-
puting the common intersection of k convex polyhedra P1," ", Pk, given in standard
representation. We can do this in optimal O(n log k) time, where n is the total number
of vertices among the k polytopes. We use a straightforward scheme, borrowed from
multi-way merging" Put the polyhedra in bijection with the leaves of a complete binary
tree, and compute intersections in an order consistent with the tree. The O(n log k)
running time of this algorithm is worst-case optimal even in two dimensions, because
we can reduce any k-way merge to polygon intersection. To see this, consider a
collection of k sorted lists L1,’’’, Lk with distinct elements. Form the polygons
P1,’’’, Pk, where Pi is the unbounded polygon defined by the intersection of the
halfplanes y >-xj(2x-xj): Pi is bounded by the tangents to the parabola y--x2 at the
points (xj, x), forj 1, , m, where Li (xl,. , x,). Now, observe that the bound-
ary of the polygon P=Cl<__i__<k P contains all the points in {(X, X2)[X<__i<__k Li}.
Therefore, the merged sequence of all the k lists can be read off by going around the
boundary of P. To obtain the desired lower bound, we form k lists of size m n/k
and observe that they can be merged in M (-,,.-."-,,-k) ways, where m rn. The lower
bound follows from the fact that log M l)(n log k) and by-now standard algebraic
decision-tree arguments [25].

B. CONVEX I-ItJLLS. Bentley and Shamos [4] have shown how to take advantage
of certain point distributions to obtain linear expected-time algorithms for computing
convex hulls. The idea is to use divide-and-conquer by splitting the input set in a fixed
manner (independent of the point set itself) and build the convex hull bottom-up. For
their method to work efficiently, the merge step must be capable of computing the
convex hull oftwo (possibly intersecting) convex polytopes reasonably fast. As observed
by Seidel [11], we can use the Preparata-Hong algorithm for that purpose and get
linear expected complexity for a wide class of point distributions. Using Theorem 3.5
widens that class. Specifically, any distribution for which the average size of the convex
hull of a random set of n points is O(n/log+ n) will trivially yield a linear expected-
time complexity.

C. MERGING VORONOI DIAGRAMS. Kirkpatrick [17] has shown that two planar
Voronoi diagrams can be "merged" in linear time. His algorithm is ingenious but
somewhat complicated. Standard reductions cause the same result to fall straight out
of Theorem 3.5. The problem is this: Given two sets of n points in the plane with their
respective Voronoi diagrams, compute the diagram of their union. By using a reduction
due to Edelsbrunner and Seidel 11 ], 14], we compute a Voronoi diagram of n points
by intersecting n halfspaces. Let h(p) denote the closed halfspace bounded below by
the tangent to the paraboloid z x+y at the point whose xy projection is p. The
Voronoi diagram ofp, , Pn is the xy projection of the two-dimensional cell complex
formed by the boundary ofthe convex polyhedron fq __<=<, h (pi). Thus, merging Voronoi
diagrams becomes a special case of intersecting two convex polyhedra. Applications
include computing the Voronoi diagram of a polygon (Kirkpatrick [17]) and of the
vertices of a convex polygon (Aggarwal et al. [1]).

5. Conclusions. Our main result is a linear-time algorithm for intersecting two
convex polyhedra in 3-space. Whether the algorithm lends itself to efficient and robust
implementations remains to be seen. In practice the recursion might be stopped after
only a few steps, when the polytopes are small enough that we can use more naive
methods. One advantage of this algorithm is that it does not use any dynamic data
structure. Except for the work needed to build the shields, all other activity is purely
pointer chasing through a three-dimensional cell complex. It is likely that adding
randomization might lead to certain simplifications. Looking into this possibility might
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be worthwhile. One must live with the fact, however, that intersecting even two
tetrahedra is difficult to implement correctly, so the goal of an intersection algorithm
that is truly simple to implement might be elusive. An outstanding open problem is
that of intersecting two nonconvex polyhedra efficiently. The problem of intersecting
arbitrarily placed triangles in 3-space has been investigated by Aronov and Sharir [2].
How much we can gain by having collections of faces structured into the boundaries
of simple polyhedra is an intriguing open question.
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