
Computing Partial Sums in Multidimensional Arrays

�Detailed Abstract�

Bernard Chazelle Burton Rosenberg

Department of Computer Science
Princeton University

� Introduction

The central theme of this paper is the complexity of the
partial�sum problem� Given a d�dimensional array A with n
entries in a semigroup and a d�rectangle q � �a�� b��� � � � �
�ad� bd�� compute the sum

��A� q� �
X

�k� �����kd ��q

A�k�� � � � � kd��

This problem comes in two distinct 	avors
 In query
mode� preprocessing is allowed and q is a query to be an�
swered on�line
 In o��line mode� we are given the array
A and a set of d�rectangles q�� � � � � qm� and we must com�
pute the m sums ��A� qi�
 Partial�sum is a special case
of the classical orthogonal range searching problem� Given
n weighted points in d�space and a query d�rectangle q�
compute the cumulative weight of the points in q �see e
g

��� � �� �� �� �� ��� ��� �� ��� ��� ��� ��� ��� ����
 The
dynamic version of partial�sum in query�mode was studied
by Fredman ����� who showed that a mixed sequence of n
insertions� deletions� and queries may require �

�
n logd n

�
time� which is optimal �Willard and Lueker �����
 This re�
sult was partially extended to groups by Willard in ����

For the case where only insertions and queries are al�
lowed� a lower bound of ��n log n� log log n� was proven in
the one�dimensional case �Yao ������ and later extended to
�
�
n�log n� log log n�d

�
� for any �xed dimension d �Chazelle

����
 Regarding static one�dimensional partial�sum� Yao
proved that if m units of storage are used then any query
can be answered in time O

�
��m�n�

�
� which is optimal in

the arithmetic model ����
 The function ��m�n� is the func�
tional inverse of Ackermann�s function de�ned by Tarjan
����
 See also Alon and Schieber ��� for related upper and
lower bounds

Our main results are a nonlinear lower bound for one�

dimensional partial�sum in o��line mode and a space�time

tradeo� for partial�sum in query mode in any �xed di�
mension
 More precisely� we prove that for any n and
m� there exist m partial sums whose evaluations require
�
�
n�m��m�n�

�
time
 This is a rare case where the func�

tion � arises in an o��line problem
 Noticeable instances are
the complexity of union��nd �Tarjan ����� and the length of
Davenport�Schinzel sequences �Hart and Sharir ����� Agar�
wal et al
 ����
 Interestingly� the proof technique we use does
not involve reductions from these problems
 Our result im�
plies that� given a sequence of n numbers� computing partial
sums over a well�chosen set of n intervals requires a nonlin�
ear number of additions
 This might come as a surprise in
light of the fact that there is a trivial linear�time algorithm
as soon as we allow subtraction
 The lower bound can be
regarded as a generalization of a result of Tarjan ���� con�
cerning the o��line evaluation of functions de�ned over the
paths of a tree
 As in ���� our result also leads to an im�
proved lower bound on the minimum depth of a monotone
circuit for computing conjunctions

The other contribution of this paper is an algorithm which

can answer any partial�sum query in time O
�
�d�m�n�

�
�

where m is the amount of storage available
 This generalizes
Yao�s one�dimensional upper bound ���� to �xed arbitrary
dimension d
 Since our algorithm works on a RAM� we can
use it as the inner loop of standard multidimensional search�
ing structures
 For example� consider the classical orthogo�
nal range searching problem on n weighted points in d�space

Lueker and Willard ���� have described a data structure of
size O

�
n logd�� n

�
which can answer any range query in time

O
�
logd n

�
�over a semigroup�
 We improve the time bound

to O
�
��n� logd�� n

�

The remainder of this abstract is devoted to the proofs
of the lower and upper bounds
 Except for a few technical
lemmas whose proofs have been omitted� our exposition is
complete and self�contained

� A Lower Bound for O��line

Partial�Sum

This section gives a lower bound for the one�dimensional
o��line partial�sum problem
 Our goal is to exhibit a family
of hard instances of this problem� instances for which the
amortized time needed to sum m intervals over n variables
grows with n while keeping the ratio m�n �xed
 The exis�

�

tence of this family implies the impossibility of a constant
amortized time algorithm for this problem
 More precisely�
the time grows as inverse Ackermann
 Since we desire a
lower bound� we can always assume the semigroup �S��� to
be commutative and idempotent� that is a � b � b � a and
a � a � a for all a� b � S
 With this specialization in mind
we now state precisely our model of computation

Let X �

�
xi j i � ��� n � ��

�
be a set of indeterminates

The power set of X is denoted P�X�
 A set of P�X� of the
form

�
xk jk � �i� j�

�
is called an interval and is denoted

�xi� xj�
 Intervals which are either empty or of the form
�xi� xi� are called trivial
 A collection of nontrivial intervals
is called a task
 A problem instance consists of a data set
X and a task T � P�X�
 A solution is a scheme containing
T � a sequence of semigroup additions taking us from the
singletons fxig to the sum

P
i�I xi for each I � T
 Using

the rules of calculation� any particular sum generated by
the scheme is of the form

P
i�J

xi where J � P�X�� and the
sum of two such sums is�X

i�J�

xi �
X
i�J�

xi �
X

i�J��J�

xi�

Thus our model of computation limits itself to considering
the construction of the intervals I � T through the iterative
application of union to the elements of P�X� at the cost
of one per union
 Our formal de�nition of a scheme is an
integer r and a map S � ��n� r�� P�X� such that�

S��n� � ��
S��i� � fxig for i � ��� n� ���

�i � ��� r�� 	j� j� � i s
t

S�i� � S�j�
 S�j���

A scheme S solves a task T if its range contains T � that
is� T � f S�i� j i � ��� r� g
 Each S�i� is called a production

Those S�i� for i � � are to be thought of as cost�free pro�
ductions� and are also called the axioms of the scheme
 This
being so� the integer r is intuitively the time the scheme re�
quires to sum up all intervals in the task
 For this reason�
we write r � Cost�S�

To motivate the de�nition we have given for a scheme� we

can relate it to the notion of a faithful semigroup as given by
Yao ����
 Brie	y� a faithful semigroup requires that any sum
can only be realized if all the required variables are named
in the sum and only those
 For example� set�theoretic union
forms a faithful semigroup
 Also taking the maximum of
integers gives a faithful semigroup
 We also note that a
scheme must work for all data assignments of the variables

That is� the data structure should not adapt to the details
of an assignment

The goal of this section is to exhibit a family of hard tasks

parameterized by two integers t and k� which are called time
and density� respectively
 Such a task has size roughly kn
where n is the number of variables over which it is de�ned�
and the amortized time to answer a query in the task is
at least t
 In addition� each task in our family will have
a uniformity property which will insure the success of our
construction
 This uniformity property will be expressed in
terms of a task�s right�degree
 It is a measure of how persis�
tently a task uses any given variable as the left endpoint of a
query
 In particular� we want all variables to be used fairly

equally as left endpoints of queries
 As more resource� space
or time� is permitted� the size of the variable set over which
the hard task is de�ned increases according to the function
R�t� k� de�ned below
 Having constructed a family of hard
tasks� we investigate the growth of the function R�t� k�
 It
is this function�s inverse which gives the lower bound on the
time needed to solve the o��line partial�sum problem as a
function of the problem size

For technical reasons� the domains of t and k are�

t � � � f i�� j i � � g� k � � � f�� �� �� � � �g�

For �t� k� � �� �� de�ne R � �� �� Z by the recursion�

R��� k� � �k�

R�t� �� � ��

R�t� k� � R�t� k � ��R
�
t� ���� R�t� k � ��

�
�

for t � �� k � ��

We construct a family�� Tn�t� k� j �t� k� � � � �� n � R�t� k�
�
�

where each Tn�t� k� is a task over n variables
 The task
is dense� in that its size� jTn�t� k�j� is at least kn��
 The
task is hard� in that if it is solved by a scheme S� then
Cost�S� � t jTn�t� k�j
 Next� we limit the size of each task by
placing an additional constraint on the tasks in our family

Consider the rightwards �lter of xi in P�X��

Fil �xi� �
�
J � P�X� jxi � J� and ��j � i� xj �� J�

�
�

The right�degree of task T is�

Deg T � max
��i�n

j�T Fil �xi��j �

We constrain Tn�t� k� so that Deg Tn�t� k� � k

Lemma ��� For all �t� k� � ���� n � R�t� k�� there exists
a task Tn�t� k� on n variables such that�

�� jTn�t� k�j � kn���

	� k � Deg Tn�t� k��

� If scheme S solves Tn�t� k�� and k � �� then

Cost�S� � t jTn�t� k�j�

We devote the next few pages to the proof of this result

For k � � we set T��t� �� � �� for this choice trivially satis�es
all the conditions
 For t � � and k � � we put n � R��� k� �
�k� X � fx�� � � � � xn��g� and�

Tn��� k� �
n�k���
i��

k�
j��

�xi� xi�j ��

This is a collection of nontrivial intervals de�ned on X�
hence a task
 The right�degree is bounded by k and the
size is jTn��� k�j � k�n � k� � k� � kn��
 If a scheme S
solves Tn��� k� its range necessarily contains it and therefore
Cost�S� � jTn��� k�j

We now assume that k � � and t � �
 By induction

hypothesis� for a � R�t� k � ��� b � R�t � ���� a�� we have
exhibited tasks A � Ta�t� k � �� and B � Tb�t � ���� a�

Name the variables in A by Y � fy�� � � � � ya��g� and those

�

in B by Z � fz�� � � � � zb��g
 Put n � R�t� k� � ab and
X � fx�� � � � � xn��g
 We construct task Q � P�X� from A
and B
 Taking b copies of A� we place them side by side in
X
 A copy of B is stretched over X and fringes are added to
increase the complexity of the resulting intervals
 Consider
X divided into b blocks each containing a consecutive vari�
ables
 Let the leftmost variable in each block be marked�
that is xia for i � �� �� � � � � b � �
 Alter the marking by re�
moving the mark on x� and placing it on xn��
 Task B is
stretched by considering these b marked variables as being
the b variables over which B is de�ned� the correspondence
being the obvious order�preserving association
 Each inter�
val �zi� zj � in B lifts to the unique smallest interval �xi� � xj� �
containing all the marked variables associated with �zi� zj�

Since B has density a� at most a intervals in B have their
leftmost ends on a given marked xi
 Further stretch each
interval leftward� by a di�erent amount� so that they end
over xi��� xi��� etc
 The point of this transformation is
twofold
 First� we are correcting the right�degree of the re�
sulting task
 Second� we are adding extra di�culty to the
solution of the resulting task
 We shall now formalize the
preceding discussion and show that the resulting task Q is of
the correct form� density and right�degree
 Finally� we will
show why any scheme solving Q is necessarily expensive

Throughout this section we shall make use of mappings

f � P�X�� P�Y � for which f�A
B� � f�A�
 f�B�
 Such
maps are completely de�ned by specifying the values of f
on the singleton sets fxg� for all x � X
 We also apply such
maps to collections of elements in P�X�
 If A � P�X� then�

f�A� �
�
f�a� j a � A

�
�

For j � ��� b � �� de�ne maps�
	j � P�Y � � P�X�

fyig �� fxja�ig� i � ��� a� ���
and apply these to A� forming collections of intervals�

Qj � f	j�x� jx � Ag j � �� � � � � b� ��
Partition B into a subsets B�� � � � �Ba�� so that the partition
obeys the following restrictions�

�
 Deg Bi � � for all i

�
 �zb��� zb��� �� B�

As mentioned above� intervals in B are stretched to form
�large� intervals in Q� large meaning that they span over
blocks
 Also� these stretched intervals are further length�
ened some additional variables leftward� in fact� Bi is length�
ened i additional variables leftward
 The purpose of the
�rst restriction is to control the right�degree of the resulting
task Q
 The purpose of the second restriction is to insure
that all intervals coming from B in Q span over more than
one block
 The interval �zb��� zb���� if present in B and
allowed to fall in B�� would be sent into Q as the inter�
val �xa�b���� xab���� which would lie fully inside the leftmost
block
 Since Deg B � a and since there is only one nontriv�
ial interval ending over zb��� it is possible to construct this
partition

For i � ��� a� �� de�ne the map�

i � P�Z� � P�X�
fzjg ��

�
fx�j���a�i� x�j���ag for j � ��� b� ��
fxab��g if j � b� �

Note that this map does not yield intervals
 Let ��x� be the
smallest interval containing the set x�

��x� �
��

�y� z� � P�X� jx � �y� z�
�
�

An image of each Bi is placed in X by�

Q�
i � f�
i�z� j z � Big i � �� � � � � a � ��

The task Q is de�ned as�

Q �

	

b���

j��

Qj

�
A�

	

a���

i��

Q�
i

�
A �

We investigate the properties of this task

By construction� Q is a collection of nontrivial intervals in

X
 In fact� each map 	i and �
i is one�to�one
 The distinct
character of each of these maps assures that the Qj and Q�

i

are pairwise disjoint
 So� we easily check that

jQj �
X

j�	��b��

jQjj�
X

i�	��a��

��Q�
i

��
� b jAj� jBj � b�k � ��a�� � ab�� � kab���

and�

Deg Q � max
i�	��ab��

jQ Fil �xi�j

� max
i�	��ab��

���Qbi�ac
Q�
�imoda

� Fil �xi�
��

� �k � �� � � � k�

Therefore Q is a task of the correct density and right�degree
for a task in our family of hard tasks

We will now derive a lower bound on the cost of any

scheme S which solves Q
 Recall that a scheme S is a map
from ��n� r� to P�X�
 We try to partition ��n� r� according
to where S�i� falls� for j � ��� b� ���

 j �
�
i � ��n� r� j S�i� � �xja� x�j���a���

�
�

 b � ��n� r� n
�

��j�b

 j�

This fails to be a partition since all j for j �� b share �n
as an element �the empty set is a subset of any block�
 The
set ��n � �� r� is well partitioned� however
 A relabeling
Li � ��a� ri� � i for i � ��� b � �� gives b distinct subse�
quences Si�j� � S

�
Li�j�

�
of S�j�
 We will show that up to

isomorphism each of these subsequences is a scheme solving
A
 Relabeling b by Lb � ��� rb � �� � b� we have a se�
quence which is essentially isomorphic to a scheme solving
B
 It will be shown that� in fact� it is essentially isomorphic
to a very ine�cient scheme solving B
 This ine�ciency is
the direct consequence of the fringing step in the construc�
tion� and is the key element in making a task �harder than
the sum of its parts�
 Because we have partitioned ��� r�� we
have the important fact�

bX
j��

rj � r�

The next two lemmas explicate the stated isomorphisms

The proofs are simple but long and tedious

�

Lemma ��� For i � �� � � � � b � �� the sequences Si �
��a� ri�� P�X� are isomorphic to schemes solving A�

Proof� De�ne a map� the inverse of 	i for all i�

	� � P�X� � P�Y �
fxjg �� fyjmodag�

We claim that for all i in ��� b � ��� the sequence given by
the composite map 	�Si � ��a� ri� � P�Y � is a scheme in
Y solving task A
 Because 	� takes the empty set to the
empty set 	�Si��a� � �
 For j � ��� a � �� we calculate
	�Si��j� � 	�S��j � ai� � 	��xj�ai� � yj
 The set i
includes �a�� negative integers� those j for which S�j� � �
or S�j� � fxlg for l � �ia� �i � ��a � ��
 Therefore� j � �
implies Li�j� � �
 Put jo � Li�j�
 Since S is a scheme there
exist integers j�o and j��o strictly less than jo and Si�j� �
S�jo� � S�j�o�
 S�j��o �
 But this gives S�j

�
o� � x and hence

j�o � i
 Likewise for j
��
o
 So there are integers j

� and j��

satisfying j�o � Li�j
�� and j��o � Li�j

���
 The nature of the
map Li is such that j

�
o� j

��
o � jo implies j

�� j�� � j
 But�

	�Si�j� � 	�
�
S�Li�j

���
 S�Li�j����
�

� 	�Si�j
��
 	�Si�j����

therefore 	�Si is a scheme
 Since S solves Q it also solves
Qi� which means that there exists j such that S�j� � q
for any q � Qi
 But Qi � 	i�A�� hence q � 	i�a� for
some a � A
 Furthermore� q � �xai� x�i���a��� implies that
j � i
 So there exists j� for which Si�j�� � 	i�a�� and
	�Si�j

�� � 	�	i�a� � a
 Any a � A gives rise to a q � 	i�a�
in Qi for which 	��q� � a
 Therefore 	�Si solves A
 �

Lemma ��� There exists a map
� such that Sb � ��b� rb�
�� � P�Z� is a scheme solving B and for i � ��� rb � �� we
have Sb�i� �
�S�Lb�i���

Proof� De�ne the map�

� � P�X� � P�Z�

fxig ��
 fzjg if i � a�j � ��� j � ��� b� ���
fzb��g if i � ab � ��
� otherwise

This map inverts the action of �
i
 The e�ect of

� is the

same as setting all but the marked variables in X to zero

We show that this results in a scheme for B
 We de�ne the
sequence Sb � ��b� rb � ��� P�Z� by�

Sb��b� � ��
Sb��i� � zi� i � ��� b� ���
Sb��� � �zb��� zb����

Sb�i� �
�
�
S
�
Lb�i�

��
� i � ��� rb � ���

We check that for all i � � there exist j� j� � i such that
Sb�i� � Sb�j�
 Sb�j��� and Im�Sb� � B

By de�nition Sb��� is a valid production� so let io � Lb�i�

for i � �
 Since S is a scheme� we have S�io� � S�jo�
S�j�o�
for integers jo� j

�
o � io
 If jo is in b let j satisfy jo � Lb�j�

From the nature of Lb we know that jo � io implies j � i

Otherwise� let l be such that jo � l
 We consider two
cases
 If l �� b � � then S�jo� contains at most one marked
variable� and
�S�jo� � Sb�j�� for some j � �
 If l � b��� it

is possible that S�jo� contains both marked variables xab��
and xa�b���� and therefore

�S�jo� � Sb�j� for some j � �

In either case j � i
 Repeating the argument for S�j�o�
we have
�S�j�o� � Sb�j

��� for some j� � i
 Therefore� as
required� we have�

Sb�i� �
�
�
S�io�

�
�
�

�
S�jo�
 S�j�o�

�
�
�S�jo�

�S�j�o� � Sb�j�
 Sb�j���

Let q � B be an interval
 Since q is in the partition Bi

for some i� we have �
i�q� � Q�
i
 Because S solves Q� for

some j� we also have S�j� � �
i�q�
 It is clear that j � b�
so
��
i�q� � Im�Sb�
 Write q � �zj� � zj�� �
 If j

�� �� b � �
then�

��
i
�
�zj� � zj�� �

�
�
�

�
x�j����a�i� x�j�����a

�
� �zj� � zj�� ��

If j�� � b � �� a similar calculation is performed
 In either
case� q � Im�Sb�� therefore Sb solves B
 �

We will show that the scheme Sb is not of minimum cost

Call a production Sb�i� redundant if there exists j � i for
which Sb�j� � Sb�i�
 Clearly� omitting a redundant produc�
tion from a scheme does not invalidate it

Lemma ��� There are at least jBj � jB�j redundant pro�
ductions among the productions Sb�i�� � � i � rb � ��

Proof� To �nd candidates for redundant productions� we
identify the �rst time in the scheme S that a particular
variable is the leftmost in a production which spans across
blocks
 The index for this production is in b
 If the variable
under scrutiny is not marked then this production� as seen
from Sb� looks like the addition of � to a precomputed sum

Consider the witness function�

W �i� �

��
�
min

�
j � b j

�
min i� s
t
 xi� � S�j�

�
� i

and
�	i�� i�a � i� s
t
 xi�a � S�j�

� �
�

� if this set is empty�

We claim that if i is not divisible by a and W �i� ��� then
Sb�io� is redundant� where io is the unique integer such that
W �i� � Lb�io�

Let j � W �i�
 Since j is �nite� j � b� and so j � �

Put S�j� � S�j��
 S�j��� with j�� j�� � j
 It is immediate
that for all i� � i� xi� �� S�j�� and xi� �� S�j���
 Without
loss of generality� suppose that S�j�� contains xi
 By virtue
of that fact j� � j it follows S�j�� does not contain xi� � for
any i� divisible by a and larger than i
 Furthermore� i is not
divisible by a and i � a�b� ��
 Therefore S�j�� contains no
marked variables� that is�

�S�j� �
�
�
S�j��
 S�j���

�
�
�S�j��

�S�j��� �
�S�j����

If j�� � b then by j�� � j we �nd an i��o � io for which
j�� � Lb�i��o � and Sb�i��o � � Sb�io�
 We conclude Sb�io� is
redundant
 If j�� �� b then
�S�j��� � Sb�i

��
o � for i

��
o �

� � io
 We have Sb�i
��
o � � Sb�io� and therefore Sb�io� is

redundant

The map P �q� � min

�
i jxi � q

�
projects elements in

a��i��Q
�
i to integers which are not multiples of a �note the

omission of i � � in the union�
 In addition� for any q in this
union� since S solves Q� there exists i such that S�i� � q
 It

�

follows that W
�
P �q�

�
is always �nite
 Thereby� with every

such q we have i � Lb�j� for some j and Sb�j� is redundant

We derive the composite map�

a���
i��

Q�
i

P�� Im�P �
W�� b

L��

b�� ��� rb � ���

where any element in the rightmost target coming from the
leftmost source is the index of a redundant production
 The
lower bound on the number of redundant productions follows
from the injection of the map
 Indeed� the map P fails to
inject if and only if two intervals in
Q�

i have the same
left endpoint
 By construction of Q�

i this is impossible
 If
W �i� � W �i�� then xi � xi� � or i � i�� and therefore W
is injective
 Finally� Lb was constructed to be one�to�one�
hence its inverse is also injective
 �

It is now a simple matter to derive a lower bound on
Cost�S�
 For each i � ��� b� �� the scheme Si is isomorphic
to one solving A� by Lemma �
�
 Therefore the cost ri of
scheme Si is at least t jAj
 Stripping Sb of its jBj � jB�j
redundant productions� we obtain a scheme of size rb � ��
jBj � jB�j� which is rich enough to solve B� by Lemmas
�
� and �

 Therefore rb � � � jBj � jB�j � �t � ���� jBj

Summing up� we derive�

r �

bX
i��

ri � bt jAj� �t� ���� jBj� jBj � jB�j � ��

Recall that each interval in B� ends over one of z�� � � � � zb���
and conversely each z�� � � � � zb�� has at most one interval in
B� ending over it
 Hence jB�j � b��
 Since jQj � b jAj�jBj�
we have�

r � bt jAj� �t� ���� jBj � �b� �� � �
� t jQj� ����� jBj � b� ��

Because B � Tb�t����� a� we have jBj � ab��
 Since a � ��

r � t jQj� ab�� � b� � � t jQj� ��
We conclude that Cost�S� � r � t jQj
 Setting Q � Tn�t� k�
the proof of Lemma �
� is now complete

Using this result we can derive a lower bound on T �m� n��
the number of operations needed to complete a task of m
intervals over n variables
 De�ne�

��m�n� � min
�
t jR�t� bm�nc� � n

�
�

Lemma ��� T �m� n� � �
�
m��m�n�

�
for m � n�

T �m� n� � �
�
n �m��m�m�

�
for m � n�

Proof� Given m and n� let k � bm�nc and � � ��m�n�

Assume that m � n
 There are no more than

�
n
�

�
intervals

in a task� therefore�

R
�
�� bm�nc

�
� �bm�nc � �

�
n�n� �����n�

�
� n� ��

from which it follows that � � �� and hence � � ��
 Let
no � R�� � ���� k�� note no � n by de�nition of �
 By
Lemma �
� there exist a task Tno�� � ���� k� of size be�
tween kno�� and kno� whose minimum derivation length
is bounded below by �� � ���� jTno�� � ���� k�j
 Placing

bn�noc copies of Tno�� � ���� k� side by side and adding
enough new variables and intervals to adjust the number of
variables to n and the size of the task to m� we derive�

T �m� n� � bn�noc�� � ���� jTno�� � ���� k�j
� bn�noc�� � ����kno��
� bn�nocbm�nc�� � ����no��
� m�� � ������ � ��m���

Suppose that m � n
 Temporarily ignoring n� proceed
as above to create task Q over m variables of size m whose
solution time is �

�
m��m�m�

�

 We can assume that all xi in

the set fx�� � � � � xm��g appear in the resulting task
 Else� we
discard the unused variables� renumbering the others from �
to m� � �
 Next we add variables fxm� � � � � � xn��g and �nd
an interval �i�m� � �� in Q which we replace by �i� n � ��

Now Q involves all variables� so its cost is ��n�
 Hence
T �m� n� � �

�
n�m��m�m�

�

 �

The functions R and � are akin to Ackermann�s function
and its functional inverse as de�ned in �Tarjan ������

A��� j� � �j� j � �!

A�i� �� �� � A�i���� i � �!

A�i� j� � A
�
i� �� A�i� j � ���� i� j � ��

and�
��m�n� � min

�
i jA�i� bm�nc� � log n

�
�

The remainder of this section proves that Lemma �
� is still
correct if we replace ��m�n� by ��m�n�
 We need some
technical facts about A�i� j�� whose proofs are omitted

Lemma ��	 The functionA satis�esA�i� j� � j for all i� j�

Proof� By induction
 For i � �� A��� j� � �j � j
 Assume
that i � �
 If j � � then we have A�i� �� � A�i� �� �� � �
by induction hypothesis
 If j � ��

A�i� j � �� � A
�
i � ��A�i� j�

�
� A�i� j� � j�

By the strictness of both inequalities� A�i� j��� � j��
 �

Lemma ��
 The function A�i� j� is increasing in j�

Proof� Obvious for i � �
 For i � �� we have A�i� j � �� �
A
�
i� ��A�i� j�� � A�i� j� from Lemma �
�
 �

Lemma ��� For i � �� A�i� j � �� � A�i� j���

Proof� It is su�cient to show that A�i� j� � j�� since then
A�i� j � �� � A

�
i� ��A�i� j�� � A�i� j��
 For i � ��

A��� j� � ��
�
�
�
�
�
o
j�� � ��

�
�
�
�
�
o
j
��

�
�
�
�
�
o
j
� A��� j���� � j��

with the �rst inequality being strict if j � �
 For j � � or
� we check directly that the inequality is true
 For i � �� if
j � � then A�i� �� � A�i� �� �� �
 Else�

A�i� j � �� � A
�
i� ��A�i� j�

�
� A�i� j�� � �j � ����

�

�

Lemma ��� For all i and j we have �A�i�j� � A�i� �� j��

Proof� For i � �� we calculate directly that �A����� �
A��� �� �
 For i � � and j � �� we have�

�A�i��� � �A�i����� � A�i� �� � A�i� �� ���

For i � � and j � �� we have�

�A�i�j��� � �A�i���A�i�j�� � A
�
i�A�i� j�

�
� A

�
i� �A�i�j�

�
� A

�
i�A�i��� j�

�
� A�i��� j����

�

We introduce an intermediate function to help establish
the relationship between A�i� j� and R�t� k�
 De�ne�

B��� j� � �j � j � �!

B�i� �� �� � B�i� ��� i � �!

B�i� j� � B�i� j � ��B
�
i � ��B�i� j � ��

�
� i� j � ��

Lemma ��� For all i and j positive integers� A�i��� j� �
B�i� j� � A�i� j�� Furthermore� B�i� j� is increasing in j�

Proof� We show by induction that B�i� j� � A�i� j�
 The
functions are equal for i � �
 For i � � and j � �� B�i� �� �
B�i� �� �� � A�i� �� �� � A�i� ��
 For i � � and j � �� by
the inductive hypothesis and monotonicity of A�i� j��

B�i� j��� � B�i� j�B
�
i���B�i� j�

�
� A�i� j�A

�
i���A�i� j�

�
� A

�
i���A�i� j�

�
� A�i� j����

We show by induction that A�i� �� j� � B�i� j�
 For i � ��

A��� j� � ��
�
�
�
�
�
o
j��

� ��
�
�
�
�
�
�

o
j

� �j � B��� j��

Assuming that i � � and j � �� we have A�i � �� �� �
A�i� �� � B�i� �� �� � B�i� ��
 For j � �� we use Lemmas
�
� and �
� to derive�

B�i� j � �� � B�i� j�B
�
i� ��B�i� j�

�
� B

�
i� ��B�i� j��� � A

�
i�B�i� j�

��
� A

�
i�B�i� j� � �

�
� A

�
i�A�i� �� j�

�
� A�i� �� j � ��

We omit the proof that B is increasing in j� as it is similar
to that of Lemma �
�
 �

For notational convenience� we change the indices of
R�t� k� by writing R��t� k� � R

�
�t � ����� k

�
� and neglect

the column k � � where explosive growth does not occur

That is� we de�ne�

R���� k� � �k� k � �!

R��t� �� �� � �R��t� ��� t � �!

R��t� k� � R��t� k� ��R�
�
t � ��R��t� k� ��

�
�

t� k � ��

Lemma ���� For all i and j� A�i � �� j� � R��i� j� and
R��i� �� j� � A�i� j��

Proof� We establish that for all i and j� R��i��� j� � B�i� j�
and B�i � �� j� � R��i� j�� from which the Lemma follows

It is easy to verify by induction that�

R���� j� � �������
j

��
j

�

Then� for i � � we can check directly that R���� j� � B��� j�

If i � � and j � �� then�

R��i� �� � �R��i� �� �� � B�i� �� �� � B�i� �� ���

If i � � and j � � then�

R��i� j � �� � R��i� j�R�
�
i� ��R��i� j�

�
� B�i� �� j�B�i� ��B�i� �� j�� � B�i� �� j � ���

which proves that R��i � �� j� � B�i� j� for all i� j
 Now
consider our claim that B�i� �� j� � R��i� j�
 For i � � we
have B�i� j��� � �j�� � �j � R��� j�
 For i � � and j � ��
B�i� �� � B�i� �� �� � R�i� �� �� by inductive hypothesis

For i � � and j � ��

B�i� j � �� � B�i� j�B
�
i� ��B�i� j�

�
� R��i� j � ��R�

�
i� ��R��i� j � ��� � R��i� j��

We complete the proof by showing B�i� �� j� � B�i� j � ��
for i� j � �
 In view of B�i � �� j� � B

�
i� B�i� �� j � ��

�
�

we need only show B�i � �� j � �� � j � � for i� j � �
 The
monotonicity of B�i� j� gives B�i��� j� �� � j� � �B�i�
�� �� � j � � by noting B��� �� � and thus B�i� �� j� �
for all i� j � �
 �

Lemma ���� For all m and n� with m � n� ��m�n� �
"
�
��m�n�

�
�

Proof� Let t � ��m�n�
 By the chain of inequalities�

A
�
�t� bm�nc

�
� R�

�
�t� �� bm�nc

�
� R

�
t� bm�nc

�
� n � log n�

we deduce ���m�n� � ��m�n�
 Let t � ��m�n�
 From�

R
�
�t� ���� bm�nc� � R�

�
t� �� bm�nc�

� A
�
t� �� bm�nc

�
� �A�t�bm�nc� � n�

we deduce ��m�n� � � ��m�n�
 That is�

��m�n� � ���m�n� � � ��m�n� � ���m�n��

�

We therefore have the following lower bound on the
partial�sum problem�

Theorem ��� If m � n then T �m�n� � �
�
m��m�n�

�
� If

m � n then T �m� n� � �
�
n�m��m�m�

�
�

Proof� Combine Lemma �
� and Lemma �
��
 �

�

� An Upper Bound for Multidi�

mensional Partial Sums

A scheme is a method of precomputing sums from a given
set of input variables so that any interval of variables can
be summed up by adding together a small number of these
precomputed sums
 Informally� it consists of an algorithm
which �rst of all speci�es how to �ll in a memory array
with precomputed sums� and then responds to any query
interval by retrieving a small number of precomputed sums�
presenting their grand total as the weight of the interval

We refer to the size of the array of precomputed sums as
the space used by the scheme� and the number of partial
sums needed to express any interval sum as the time needed
by the scheme
 As it turns out� in a RAM implementation
the overhead of �nding the needed partial sums is negligible

The method of �lling the memory array with precom�
puted sums is completely general in that it assumes nothing
about the addition operation or about the particular assign�
ment of values to the input variables
 It is in e�ect a �xed
map S � X � S�X� taking X� an assignment of values
to the input variables� to S�X�� the sequence of values in
the semigroup
 Our method will have an additional favor�
able property� this map will be calculated at the rate of
one semigroup addition per value of the sequence
 That is�
all intermediate results occurring in the setting up of the
scheme are themselves part of the scheme

The space used by a scheme is the length of the sequence
S�X�
 Among the subsets of the input variables are the
queries� interpreted as rectangles by arranging the variables
on points of a multi�dimensional integer lattice
 For in�
stance� in d dimensions consider indexing the input variables
by d�tuples i � �i�� � � � � id�
 In this situation a query� speci�
�ed by a pair of vectors j � �j�� � � � � jd� and k � �k�� � � � � kd��
is the set of all input variables with indices i such that
j � i � k
 The partial order � refers to coordinate domina�
tion
 The scheme provides a map T from queries to subsets
of the sequence S�X� such that for any query q�

X
v�T �q�

S�X��v� �
X
x�q

x�

this equality being true for any assignment X
 The time
used by a scheme is the maximum size of T �q� over all per�
missible queries q
 Given the input variable set of size n� a
scheme using space kn and time t is denoted Sn�t� k�
 By
abuse of terminology� the list Sn�t� k��X� will also be de�
noted by Sn�t� k�
 The suggestion is that a scheme should
always be thought of in its evaluated form # since cells can
only store elements from the semigroup� it is only in its eval�
uated form that the scheme can be represented in memory

However� one must consider the assignment X as completely
undetermined and general so that the universal nature of the
scheme is not undermined

Schemes are constructed recursively
 A query rectangle
is decomposed into a small number of slices� some fat and
some thin� by considering the problem as a one�dimensional
array of �d � ���dimensional arrays
 The set of �d � ���
dimensional arrays over a semigroup� with addition de�ned
componentwise� is itself a semigroup
 The one�dimensional
scheme gives a list of �d� ���dimensional subproblems� each

of which is solved recursively
 The construction for the one�
dimensional case is given by a two path recursion # one path
solving �small� queries which �t within carefully calculated
blocks� the other path solving �large� queries which span
over our de�ned blocks� but which therefore allows us to
treat the entire block as a single value

Given parameters t and k� there is a maximum number of

input variables within which a scheme with these parame�
ters can be constructed
 We give growth functions� Rd�t� k��
indexed by dimension� which both guide the choice of block
sizes and guarantee the construction of schemes
 If

maxf ni j i � �� � � � � d g � Rd�t� k�

then we can construct a scheme of size kn��� � ��nd which
solves arbitrary queries in time at most t

The following function is the model for all the Rd�s

By appropriate change of variables� each function Rd can
be expressed in this form
 For t � f�� �� �� � � �g and k �
f�� � �� � � �g�
R��� k� � �� k � �!

R�t� �� � � t � �!

R�t� k� � R�t� k � ��R
�
t� ��R�t� k � ��

�
� t� k � ��

Remark that all images of R are integers congruent to � mod
�

Lemma ��� For any �t� k� in the domain of R and any
n � R�t� k�� there exists a one�dimensional scheme Sn�t� �k�
solving any query in time t using �kn cells� The scheme can
be constructed in �kn semigroup additions�

Proof� The construction proceeds by a double induction
and is similar to �Yao �����
 Let the set of n input variables
be denoted by fxi j i � �� � � � � n � � g
 The cases t � �
and k � � are trivial
 We therefore assume that t � �
and k � �
 Let a � R�t� k � �� and b � R�t � �� a�
 By
induction� schemes Sa� �t� ��k � ��� and Sb��t � �� �a� can
be constructed for any a� � a and b� � b
 We show the
construction of Sn�t� �k� for any n � ab
 Without loss of
generality we assume that a � n
 Let $b � dn�ae
 We have
the inequalities�

a � a�$b� �� � n � a$b � ab�

The $b intervals ��� a���� �a� �a���� � � � � ��$b���a� n� partition
the variable set fxig into blocks of at most a variables each

The �rst $b�� blocks contain exactly a variables and the last
block contains a� � a variables
 Schemes Sa�t� ��k� ��� and
Sa� �t���k� ��� are constructed inductively
 These will solve
any query falling fully inside one of the blocks
 For use by
these schemes we reserve memory cells Bi�j with i � ��� n���
and j �

�
�� ��k � ��

�

Queries that span across blocks are handled in two steps

First the query is shortened so that its ends coincide with
block boundaries
 We precalculate and store in cells C�

i and
C�
i what it is possible to remove in this manner
 That is�
for i � ��� n� ���

C�
i �

n
xi for i � �� mod a� or if i � n� �!
xi � C�

i�� else

C�
i �

n
xi for i � � mod a!
xi � C�

i�� else

�

The shortened query can now be considered as a query over
variables C�

ai � xai � xai�� � � � � � xa�i�����
 We seek to
answer this query in time t � �
 With the two remaining
time units we add the appropriate Cl

i to recover the original
query
 We reserve cells D for a scheme to answer this query
over reduced variables C�

i
 Since b � R�t � �� a� and $b �
b� there exists a scheme S�b�t � �� �a� which can solve the

shortened query
 Since we have �a$b cells available for D�
the induction is complete
 Indeed�

�kn � jBj � jC�j � jC�j � jDj �
�kn � ��k � ��n� n� n� �a$b

� n � �a�$b � ��� �a � ��n� a� � ��

Discussion now turns to the linear�time constructibility of
these schemes
 We put the additions used to construct the
scheme in one�to�one correspondence with memory cells
 We
also need to consider how values for a and $b are selected at
each level of the recursion
 For this selection we refer to the
table R� and therefore must build that section of R which
contains values less than n
 We shall show that R�t� k� is
increasing in both t and k� so that the required section can
be constructed by the program�

i �� � !
while �R�i� � � n� begin
j �� � !
while �R�i� j� � n� j �� j � � !
i �� i� � !

end !

Note that we have omitted the calculation of R�i� j� as well
as the calculation of R�i� j� in its constant rows and column

Clearly� the nonconstant rows of R�t� k� are increasing

Furthermore we have R��i � �� � � i and hence R��i �
�� k� � i� for k �
 Note that� for i � ��

R��i� �� k � �� � R��i � �� k�R��i� �� k��
� R��i � �� k�i���

since k� �
 We derive the lower bound�

R��i� �� �j � �� � �i���j�

for all i� j � �
 So� for i� j � ��

R���i� �� � �� �j � �� �

R
�
�i� ��R���i � �� � �� ��j � �� � ���

� R
�
�i� �� i�j���

�
� R��i � �� �j � ��

from which it immediately follows that the number of values
less than n in the nonconstant rows is at most proportional
to�

jfk jR��� k� � n gj � O�log n��

Given �k storage cells and n variables� where k is con�
gruent to � mod � and k � � �nd the smallest t such that
R�t� k� � n
 If the inequality is strict� we have left the con�
structed segment of the table� and should reassign k to be
the smallest appropriate integer such that R�t� k� � n for
this t
 Now we are assured that R�t� k � �� � n and hence
lies in the constructed segment of the table
 As a result� the

values of a� a� and $b are obtainable from the above construc�
tion
 The remainder of the construction uses up one cell of
memory for every semigroup addition performed� hence the
number of additions is the number of cells
 �

Schemes for multidimensional variable sets are now con�
sidered
 In d dimensions� the variables are indexed by vec�
tors of integers
 Queries are d�rectangles with integer coor�
dinates
 For each dimension� a function Rd�t� k� is de�ned
for all positive integers t and k
 We have�

R��t� k� �

�
R
�
btc����� bk��c����

�
if t � �� k � ��

� else�

where bsci�j� denotes the greatest integer � s that is con�
gruent to i mod j
 In the d�dimensional case� d � �� let�

x�i������id� j ij � ��� nj � ��
�

be the variable set� that is� a d�dimensional array
 If nj �
Rd�t� k� for j � �� � � � � d� then there exists a scheme using
an k cells per variable� amortized� and which answers any
query in time t
 We construct this scheme� having de�ned�

Rd�t� k� � R�

��
d
p
t
�
�
�

d
p
k
��
�

Lemma ��� Let n � �n�� � � � � nd� where nj � Rd�t� k� for
all j� There exists a d�dimensional scheme Sn�t� k� for the
set of input variables xi for i � �i�� � � � � id� in the range � �
i � n� The scheme can be constructed by using kn��� � ��nd
semigroup additions�

Proof� We assume t � d and k � �d for integers and
�
 If this is not true� replace t or k by a smaller integer
which is a perfect d�th power
 Lemma �
� deals with the
case d � �
 For d � �� we reduce the dimension by one� and
by a recursive construction the result follows
 That is� we
show how a d�dimensional problem is essentially the product
of two problems of dimensions � and d� �

Since nd � Rd�t� k� � Rd�

d� �d� � R��� ��� we con�
struct a one�dimensional scheme over nd variables which
uses � cells per variable� amortized� and answers any query
in time
 The semigroup over which this construction
proceeds is the semigroup of �d � ���dimensional arrays�
of dimension �n�� � � � � nd���� with entries taken from the
original semigroup and addition de�ned componentwise

Thus each �cell� of this construction is itself an array of
n� � � � � � nd�� cells� and each addition of the construc�
tion involves n� � � � � � nd�� additions
 Recursively we
construct a scheme Sn� �d��� �d��� for each array given by
the one�dimensional construction� which is possible because
ni � Rd�

d� �d� � Rd���
d��� �d��� for i � �� � � � � d
 Re�

mark that a scheme necessarily contains all singletons in its
domain� because a singleton is a valid rectangle
 Therefore�
the cells used by the one�dimensional scheme are fully ab�
sorbed by the recursive constructions

Hence the total space is�

jSnd�� ��j jSn� �d��� �d���j � ��nd���
d��n� � � �nd���

� kn� � � �nd�

Each �d� ���dimensional scheme returns a collection of at
most d�� semigroup values in response to a query
 The
one dimensional query has divided the original query into at

�

most subproblems� hence any query is answered in time
at most d � t
 �

The remainder of this section expresses the time bound
for the constructed d�dimensional scheme in terms of the
inverse Ackermann function
 De�ne�

�d�k�N� � min
�
t jRd�t� k� � N

�
�

Lemma ��� For k � �d� we have �d�k�N� �
"
�
���k�N�

d
�
�

Proof� From Rd�t
d� kd� � R��t� k� we know �d�k

d�N� ��
���k�N�

�d

 Because Rd�t� k� increases with k� we have

���k�N� � ���k
d� N�
 To establish the inequality in the

other direction we prove that given d� there exists a T such
that for all k � �� R��t � T� k� � R��t� k

d�
 From this it
follows that ���k� N� � ���k

d� N� � T
 By�

R��t� T� k� � R�t� T� k���

� R
�
t� T � �� R�t� T� �k���� ��

�
� R�

�
t� �R�T� �k���� ��

�
�

we reduce the problem to showing that for T large enough�
�R
�
T� �k���� �

�
� kd
 Writing T � � �� and �k���� � �

�� � �� our hypothesis on k give � � �
 In Lemma �
� we
derived R

�
� � �� �� � �� � ������
 Chosing T so that

��� � �d� the inequality is assured
 �

Lemma ��� For all i� j � �� R
�
��i������ ��j�����

�
�

A�i� j� � R
�
��i� �� � �� ��j � �� � �

�
�

Proof� We actually have� R
�
��i � �� � �� ��j � �� � �

�
�

�A�i� j��
 Recall the lower bound R��i��� �j��� � �i���j

from the proof of Lemma �
�
 For i � ��

R
�
�� ��j � �� � �

�
� j�� � � � �j � � �A��� j� � �

For i � � and j � ��

R
�
��i� �� � �� �

� � R
�
�i� �� R

�
��i� �� � ��

��
� R��i� �� ��� � �A�i� �� �� �
� �A�i� �� � �

For i � � and j � ��

R
�
��i� �� � �� ��j � �� � �

�
�

R
�
�i� �� R

�
��i� �� � �� �j � �

��
� �A�i� �� j�� � �

where ��j������ � R
�
��i������ �j��

� � �A�i� j�����
Therefore j� � A�i� j � �� and�

R
�
��i� �� � �� ��j � �� � �

�
�

�A
�
i� �� A�i� j � ����

� �A�i� j� � �

This establishes the �rst inequality
 For i � � or j � � we
directly verify that

A�i� j� � R
�
��i� �� � �� ��j � �� � ���

Recall that for all i � �� A�i� j � �� � A�i� j�� �Lemma
�
��
 Using this and the lower bound on R�t� k� we derive
for i� j � ��

R
�
��i� �� � �� �j � �

�
�

R
�
��i� �� � �� ��j � �� � �

�
R
�
��i� �� � ��R���i� �� � �� ��j � �� � ���

� R
�
��i� �� � ��R

�
��i � �� � �� ��j � �� � �

���
� R

�
��i� �� � �� �

�
R
�
��i� �� � ��

��j � �� � ��� ��� ���
� A

�
i � ��R���i� �� � �� ��j � � � ���� ���

� A
�
i � ��R

�
��i� �� � �� ��j � �� � �

��
� A

�
i� �� A�i� j�

�
� A�i� j � ���

�

Lemma ��� For k � �� ���k� n� � O
�
��kn� n�

�
�

Proof� Recall that A�i��� j� � �A�i�j� �Lemma �
��
 Given
i such that A�i� k� � log n we have�

log n � n � �A�i�k� � A�i��� k� � R
�
��i������ ��k�����

�
�

hence �
�
��kn� n� ��

�
�� � ����k��� n�� If R��i��� ��k�

�� � �� � n then�

log n � n � R
�
�i� �� ��k � �� � �

�
� A�i� �� k��

and therefore �����
�
����k�� n���

�
�� � ��kn�n�� Clearly�

R��i� �� k� � R�

�
i�R��i� �� k � ��

�
� R��i� �k � d��

for su�ciently large i� provided that we are in the third
column of R�� that is� k � �
 Therefore� ����k � d� n� �
� � ���k� n�
 Also� ���k� n� � ���k

�� n� for k� � k� by the
monotonicity of R
 In conclusion�

���k� n� � ����k � �� n� � ���kn� n� � �

� ����k � � n� � � � ���k� n� � ��

�

We combine the constructions of Lemmas �
� and �
� with
the above results to state this section�s result

Theorem ��� In every dimension d� given a problem of
size n � �n�� � � � � nd� and any k � �d� there exists a scheme
using k cells per variable� amortized� which solves any query
in time O

�
��kN�N�d

�
� The scheme can be constructed in

time proportional to its size�

Proof� We select a t for which Rd�t� k� � N
 Using Lemmas
�
�� �
� and �
�� we deduce t � O

�
��kN�N�d

�

 �

To summarize this section� we have given an algorithm
which prestores partial sums of a multidimensional array
such that only a small amount of additional computation
need be done to compute any rectangular sum in the ar�
ray
 This is true whenever the elements have a commuta�
tive semigroup structure
 Omitted from this abstract is the

	

proof that the method can be implemented on a RAM with�
out adding any asymptotically signi�cant overhead
 Proving
the optimality of our solution is left as an open problem

Acknowledgments� This research was supported in part
by the National Science Foundation under Grant CCR%
�������

References

��� Agarwal� P
� Sharir� M
� Shor� P
 Sharp upper and lower
bounds on the length of general Davenport�Schinzel se�
quences� manuscript� ����

��� Alon� N
� Schieber� B
 Optimal preprocessing for an�
swering on�line product queries� TR ��&��� The Moise
and Frida Eskenasy Institute of Computer Science� Tel
Aviv University� ����

��� Bentley� J
L
 Decomposable searching problems� Info

Proc
 Lett
 � ������� �%���

�� Bentley� J
L
 Multidimensional divide and conquer�
Comm
 ACM� �� ������� ��%���

��� Bentley� J
L
� Maurer� H
A
 E�cient worst�case data
structures for range searching� Acta Informatica ��
������� ���%���

��� Chazelle� B
 Filtering search� a new approach to query�
answering� SIAM J
 Comput
 �� ������� ���%��

��� Chazelle� B
 A functional approach to data structures
and its use in multidimensional searching� SIAM J

Comput
 �� ������� ����� ��%��

��� Chazelle� B
 Lower bounds on the complexity of multidi�
mensional searching� Tech
 Rep
 CS%TR%������� Dept

Computer Science� Princeton University
 Abridged ver�
sion in Proc
 ��th Annu
 IEEE Symp
 on Foundat
 of
Comput
 Sci
 ������� ��%��

��� Chazelle� B
� Guibas� L
J
 Fractional cascading� II� Ap�
plications� Algorithmica � ������� ���%���

���� Fredman� M
L
 A lower bound on the complexity of or�
thogonal range queries� J
 ACM �� ������� ���%���

���� Hart� S
� Sharir� M
 Nonlinearity of Davenport�Schinzel
sequences and of generalized path compression schemes�
Combinatorica � ������� ���%���

���� Lueker� G
S
 A data structure for orthogonal range
queries� Proc
 ��th Annu
 IEEE Symp
 on Foundat

of Comput
 Sci
 ������� ��%�

���� Mehlhorn� K
 Data structures and algorithms
� mul�
tidimensional searching and computational geometry�
Springer�Verlag �����

��� Overmars� M
H
The design of dynamic data structures�
LNCS� Vol
 ���� Springer�Verlag� ����

���� Tarjan� R
E
 E�ciency of a good but not linear set
union algorithm� J
 ACM� �� ������� ���%���

���� Tarjan� R
E
 Complexity of monotone networks for
computing conjunctions� Annals Discrete Math
 �
������� �������

���� Vaidya� P
M
� Space�time tradeo�s for orthogonal range
queries� Proc
 ��th Annu
 ACM Symp
 on Theory of
Comput
 ������� ���%��

���� Willard� D
E
 New data structures for orthogonal range
queries� SIAM J
 Comput
 � ������� ���%���

���� Willard� D
E
 Lower bounds for dynamic range query
problems that permit subtraction� Proc
 ��th Internat

Coll
 on Autom
� Langu
 and Program
 ������

���� Willard� D
E
� Lueker� G
S
 Adding range restriction
capability to dynamic data structures� J
 ACM ��
������� ���%���

���� Yao� A
C
 Space�time tradeo� for answering range
queries� Proc
 �th Annu
 ACM Symp
 on Theory of
Comput
 ������� ���%���

���� Yao� A
C
 On the complexity of maintaining partial
sums� SIAM J
 Comput
 � ������� ���%���

�

