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Chapter �

Introduction

The study of the di�culty �or hardness
 of computational problems has two parts The
theory of algorithms is concerned with the design of e�cient algorithms in other words�
with proving upper bounds on the amount of computational resources required to solve
a speci�c problem Complexity theory is concerned with proving the corresponding lower
bounds Our work is part of the second endeavor more speci�cally� the endeavor to prove
problems computationally di�cult� or hard

Despite some notable successes� lower bound research is still in a stage of infancy 
progress on its open problems has been slow Central among these open problems is the
question whether P �� NP In other words� is there a problem that can be solved in
polynomial time on a nondeterministic Turing Machine� but cannot be solved in polynomial
time deterministically� The conjecture P �� NP is widely believed� but currently our chances
of proving it appear slim

If we assume that P �� NP� however� then another interesting question arises� given
any speci�c optimization problem of interest� is it in P or not� Complexity theory has
had remarkable success in answering such questions The theory of NP�completeness due
to Cook� Levin� and Karp allows us to prove that explicit problems are not in P� assuming
P �� NP The main idea is to prove the given problem NP�hard� that is� to give a polynomial�
time reduction from instances of any NP problem to instances of the given problem If an
NP�hard problem were to have a polynomial�time algorithm� so would every NP problem�
which would contradict the assumption P �� NP Hence if P �� NP then an NP�hard
problem has no polynomial�time algorithm �To put it di!erently� an NP�hard problem is
no easier than any other problem in NP


The success of the theory of NP�completeness lay in the unity it brought to the study of
computational complexity� a wide array of optimization problems arising in practice �and
which had hitherto de�ed all e!orts of algorithm designers to �nd e�cient algorithms
 were
proved NP�hard in one swoop� using essentially the same kind of reductions �For a list of
NP�hard problems c 	���� see the survey by Garey and Johnson �GJ���


	



� CHAPTER �� INTRODUCTION

But one major group of problems seemed not to �t in the framework of NP�completeness�
approximation problems Approximating an NP�hard optimization problem within a factor
c means to compute solutions whose �cost� is within a multiplicative factor c of the cost
of the optimal solution Such solutions would su�ce in practice� if c were close enough
to 	 For some NP�hard problems we know how to compute such solutions in polynomial
time for most it seemed that even approximation was hard " at least� a substantial body
of research failed to yield any e�cient approximation algorithms However� it was not clear
how to prove the hardness of approximation using the Cook�Karp�Levin technique �We
elaborate on this point in Chapter �
 A recent result by Feige et al ��FGL��	�
 provided a
breakthrough� by using algebraic techniques to show that approximating the clique problem
is hard These algebraic techniques are derived from recent work on interactive proofs and
program checking �see Section ��


���� This dissertation

We use techniques similar to those in the above�mentioned paper ��FGL��	�
 to prove
the hardness of many other approximation problems We also prove a new probabilistic
characterization of the class NP The results in this dissertation are from three papers
��AS��� ALM���� ABSS���
 and some previously unpublished observations

������ Hardness of Approximation

We exhibit many NP�hard optimization problems for which approximation �for a range of
values of the factor c
 is NP�hard In other words� approximating the problem is no easier
than solving it exactly �at least as far as polynomial�time solvability is concerned
 Some
of the important problems to which our result applies are the following

Clique and Independent Set� We show that approximating these problems within any
constant factor is NP�hard ��AS���
 Further� in �ALM���� we show that some positive
constant � exists such that approximating these problems within a factor of n� �n �
number of vertices in the graph
 is NP�hard A weaker hardness result was known
earlier� namely� that if these problems can be approximated within any constant factor
in polynomial time� then all NP problems can be solved deterministically in time
nO�log logn� ��FGL��	�


MAX	SNP	hard problems� The class MAX�SNP of optimization problems was identi�
�ed by Papadimitriou and Yannakakis ��PY�	�
� and the class of problems hard for
this class include vertex�cover� metric TSP� shortest superstring� and others We show
that for every MAX�SNP�hard problem there is some �xed constant c � 	 such that
approximating the problem within a factor c is NP�hard ��ALM����


Optimization problems on lattices� codes and linear systems� We show the hard�
ness of approximating many problems including the well�known Nearest Lattice Vector



���� THIS DISSERTATION �

and the Nearest Codeword problems �ABSS��� A hardness result is also obtained for
a version of the Shortest Lattice Vector problem� namely the version using the ��
norm We note that tightening the �� result would prove the hardness of exact
optimization in the �� norm� a longstanding open problem

A self�contained description of the above hardness results appears in Chapter � That
chapter also attempts to unify all known hardness results More speci�cally� it introduces
two canonical problems and indicates how reductions from them can be used to prove all
known hardness results For some problems however� this approach yields inapproximability
results not as strong as those provable otherwise Chapter � discusses a possible approach
to remedy this di�culty

������ A New Characterization of NP

Our results on hardness of approximation rely on a new type of reduction whose main feature
is that it acts globally� unlike classical reductions� which perform local transformations
Another way to view this new reduction is as a new de�nition of NP According to this
de�nition� the class NP contains exactly those languages for which membership proofs can
be checked by a probabilistic veri�er that uses O�logn
 random bits and examines O�	
 bits
in the proof ��AS��� ALM����
 �Please see Chapter � for a more careful statement
 The
equivalence between the new and the old de�nitions of NP is the subject of the so�called
the PCP Theorem� whose proof uses algebraic techniques partially derived from previous
work An outline of the proof appears in Chapter �� and details appear in Chapters � and
�

At the end of each chapter� a brief section gives pointers to other literature� and a
historical account of the the development of the ideas of that chapter

To the best of our knowledge� this dissertation represents the �rst self�contained expo�
sition of the entire proof of the PCP Theorem� incorporating all necessary lemmas from the
papers ��AS��� ALM����
� and other previous work For other �almost complete
 exposi�
tions we refer the reader to �Sud��� ALM����
 However� the exposition in �Sud��� takes
a di!erent viewpoint� Its main results concern program checking� and the PCP theorem is
derived as a corollary to those results

We feel that in the long run the algebraic techniques used in proving the PCP theorem
will �nd many other applications To some extent� this has already happened� and in
Chapter � we include a brief survey of some of the recently�discovered applications �Many
applications are due to other researchers


Finally� Chapter � contains a list of open questions about both hardness of approximat�
ion� and the algebraic techniques used in earlier chapters One important open question is
whether proof of the PCP theorem can be simpli�ed Chapter � discusses this question as
well



� CHAPTER �� INTRODUCTION

������ Knowledge assumed of the Reader

This dissertation has been written as a survey for the nonspecialist We assume only famil�
iarity with Turing Machines �and standard conventions about them
� asymptotic notation
and polynomial time� and NP�completeness For an introduction to all these see �GJ��� A
list of assumed algebraic facts� with brief proofs� appears in Appendix A However� most
readers should �nd that they can understand most of the dissertation on the basis of just
the following mantra

A non�zero univariate polynomial of degree d has at most d roots in a �eld�



Chapter �

Old vs� New Views of NP

Let # be a �nite set �called the alphabet
 A language L is a set of �nite�sized strings over
#� ie� L � #� By a straightforward equivalent of the classical de�nition� a language L
is in NP i! there is a polynomial time deterministic Turing Machine M and a positive
number c such that for any x in #��

x � L i! �y � #�� jyj � jxjc � st M accepts �x� y
 ��	


String y is variously called �witness�� �nondeterministic guess�� or �membership proof�
We prefer the term �membership proof� Machine M is called the veri�er

As is standard� we assume # � f�� 	g

Example ���� A �CNF formula in boolean variables s�� � � � � sn is of the form

m�
i	�

�wi� � wi� � wi�
�

where each wij is a literal� ie� either sk or �sk for some k The subformula �wi��wi� �wi�

is called a clause The formula is satis�able if there is an assignment to the si�s which makes
all clauses true

Let �SAT be the set of satis�able �CNF formulae By encoding formulae with �s and
	s in some canonical fashion� we can consider �SAT as a language It is in NP� since a
satisfying assignment constitutes a membership proof that can be checked in polynomial
time

���� The Old View� Cook�Levin Theorem

Cook ��Coo�	�
� and independently� Levin ��Lev���
 showed that �SAT is NP�complete
More speci�cally� given any NP�language L and input x� they gave a polynomial time

�
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x y

window
0 1

0 1 q’,1

q,0

Figure �	� Tableau and �window� The window shows the �nite control initially in state q
and reading a � The control overwrites the � with a 	� moves one cell to right� and changes
state to q�

construction of a �CNF formula �x�L that is satis�able i! x � L The Cook�Levin result
underlies classical work on NP�completeness� since most other problems are proven NP�
complete by doing reductions from �SAT We brie$y recall the textbook version of their
construction �for further details� see �GJ���


How can a generic reduction be given from all NP languages to �SAT� After all� the
notion of membership proof di!ers widely for di!erent NP languages Cook and Levin
noticed that a single notion �or format
 su�ces for all languages� The proof can be the
tableau of an accepting computation of the polynomial�time veri�er Further� in this format�
the proof is correct i! it satis�es some local constraints

A tableau is a ��dimensional transcript of a computation If the computation ran for
T steps� the tableau is a ��dimensional table that has T lines of T entries each� where jth
entry in line i contains the following information � �i
 the contents of the jth cell of the
tape at time i and �ii
 whether or not the �nite control was in that cell or not� and if so�
what state it was in �see Figure �� in �GJ���


Let L be an NP�language� and M be the veri�er for L A tableau is valid for M if each
step of the computation followed correctly from the previous step� and the veri�er is in an
accept state in the last line

A look at the de�nition in ��	
 shows that an input x is in L i!

� valid tableau for M with �rst line �x� y
� for a string y of a suitable size ���


Given a tableau� here is how to check that it satis�es the conditions in ���
 �a
 Check
bit�by�bit that the �rst line contains x �b
 Check that M is in an accept state in the last
line And �nally� �c
 check that the computation was done correctly at each step

But to check �c
 we only need to check that the �nite control of M operated correctly at
each step� and that every tape cell not in the immediate neighborhood of the �nite control



���� OPTIMIZATION AND APPROXIMATION �

does not change its contents in that step

Thus whether or not the tableau passes the checks �a
� �b
� and �c
 depends upon
whether or not its entries satisfy some local constraints In fact� it is easy to see that
the computation is done correctly overall i! all � � � neighborhoods in the tableau look
�correct� This �� � neighborhood is sometimes called a �window� �See Figure �	


Here is how Cook and Levin constructed a �CNF formula that is satis�able i! there is
a tableau that passes the checks �a
� �b
 and �c
 For i� j 	 T � represent the contents of
the the jth entry of the ith line by O�	
 boolean variables For each window� express its
correctness by a boolean function of the variables corresponding to the cells in that window
Rewrite this function using clauses of size �

The overall formula is the � of the formulae expressing checks �a
� �b
� and �c
 For
instance the formula expressing �c
 is�

i�j�T
�Formula expressing correctness of window around jth cell of ith line
�

Example ���� �We give some details of the Cook�Levin construction� see 	GJ
�� for further
details�� Assume the machine�s alphabet is f�� 	g The corresponding formula has for each
i� j 	 T the variables zij � yij and for each state q in the �nite control� a variable sijq The
interpretation to zij � yij � b for b � f�� 	g is� � At time i the the jth cell contains bit b�
And zij �� yij means the cell has a blank symbol The interpretation to sijq being set to
true is� �At time i the jth cell contains the Turing Machine head� and the �nite control is
in state q� Then here�s how to express that if the �nite control is in cell j at time i� then
it cannot be in multiple states

�q �	q���sijq � �sijq�
�

���� Optimization and Approximation

With most well�known NP languages we can associate a natural optimization problem The
problem associated with �SAT is MAX��SAT For a �CNF formula �� and assignment A�
let val�A��� denote the number of clauses in � satis�ed by A

De�nition ��� �MAX	�SAT�� This is the following problem
Input� �CNF formula �
Output� OPT��
� which is max fval�A��
 � A is an assignmentg�

Clearly� MAX��SAT is NP�hard As mentioned in the introduction� a natural way to deal
with NP�hardness is to compute approximate solutions
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De�nition ���� For a rational number c � 	� an algorithm is said to compute c�approxi�
mations to MAX��SAT if given any input � its output is an assignment B such that

OPT��


c
	 val�B��
 	 OPT��
�

This dissertation addresses the following question� For what values of c can c�approxi�
mations to MAX��SAT be computed in polynomial time� For c � ��� this was known
to be possible ��Yan���� see also �GW���
 �The algorithm for c � � is actually quite
straightforward
 Whether or not the same was true for every �xed constant c � 	 was not
known

The Cook�Levin reduction does not rule out the existence of polynomial�time algorithms
that compute c�approximations for every �xed c � 	 Recall that the �CNF formulae it
produces always represent tableaus For such formulae we show how to satisfy a fraction
�	
 	�T 
 of the clauses in polynomial time� where T is the number of lines in the tableau
Construct in polynomial time an invalid tableau that starts o! by representing a valid
computation on �x� y
 for some string y� but then �switches� the computation to some
trivial accepting computation In such a tableau all the �windows� look correct except
those in the line where the switch was made Now interpret the tableau as an assignment to
the corresponding �CNF formula The assignment satis�es all the clauses except the ones
corresponding to a single line in other words� all but 	�T fraction of the clauses Since 	�T
is smaller than any constant� we conclude that in the Cook�Levin instances of MAX��SAT�
optimization is hard� but computing c�approximations for any �xed c � 	 is easy

Furthermore� the known reductions from �SAT to other optimization problems trans�
form �SAT instances in a local fashion� namely� by using �gadgets� to represent clauses and
variables When performed on the Cook�Levin instances of �SAT� such local transforma�
tions yield instances of the other problem in which optimization is hard but c�approximation
is easy for every c � 	

Thus it becomes clear that a new type of NP�completeness reduction is called for to
prove the hardness of approximations

���� A New View of NP

In this section we state a new probabilistic de�nition of NP It is based upon a new
complexity class� PCP� whose name abbreviates Probabilistically Checkable Proofs

Let a veri�er be a polynomial�time probabilistic Turing Machine containing an input
tape� a work tape� a source of random bits� and a read�only tape called the proof string
and denoted as � �see Figure ��
 The machine has random access to � � the work�tape
contains a special addressing portion on which M can write the address of a location in ��
and then read just the bit in that location The operation of reading a bit in � is called a
query
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INPUT PROOF x

  WORK−TAPE 

     V
(FINITE CONTROL) RANDOM STRING

τ

Figure ��� Veri�er in the de�nition of PCP

The source of random bits generates at most one bit per step of the machine�s computa�
tion Since the machine uses only a �nite sequence of those bits� we can view the sequence
as an additional input to the machine� called the random string�

De�nition ���� A veri�er is �r�n
� q�n

�restricted if on each input of size n it uses at most
O�r�n

 random bits for its computation� and queries at most O�q�n

 bits of the proof

In other words� an �r�n
� q�n

�restricted veri�er has two associated integers c� k The
random string has length cr�n
 The veri�er operates as follows on an input of size n It
reads the random string 	 � computes a sequence of k q�n
 locations i��	
� � � � � ik q�n��	
� and
queries those locations in � Depending upon what these bits were� it accepts or rejects�

De�ne M
�x� 	
 to be 	 if M accepts input x� with access to the proof �� using a string
of random bits 	 � and � otherwise

De�nition ���� A veri�er M can probabilistically check membership proofs for language L
if

� For every input x in L� there is a proof �x that causes M to accept for every random
string �ie with probability 	


� For any input x not in L� every proof � is rejected with probability at least 	��

Pr
�

�M
�x� 	
 � 	� 

	

�
�

�Note that we are restricting the veri�er to query the proof non�adaptively� the locations it queries in
� depend only upon its random string� In contrast� the original de�nition of PCP ��AS	
�� allowed the
veri�er base its next query on the bits it had already read from �� We include nonadaptiveness as part of
the de�nition because many applications require it�
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Note� The choice of probability 	�� in the second part is arbitrary By repeating the
veri�er�s program O�	
 times� �and rejecting if the veri�er rejects even once
 the probability
of rejection 	�� in the second part can be reduced to any arbitrary positive constant Thus
we could�ve used any constant less than 	 instead of 	��

De�nition ���� A language L is in PCP�r�n
� q�n

 if there is an �r�n
� q�n

�restricted
veri�er M that can check membership proof for L

Note that NP � PCP��� poly�n

� since PCP��� poly�n

 is the set of languages for which
membership proofs can be checked in deterministic polynomial�time� which is exactly NP�
according to De�nition ��	
 In Chapter � we will prove the following result�

Theorem ��� �PCP Theorem�� NP � PCP�logn� 	
�

Next� we prove the easier half of the PCP Theorem� PCP�logn� 	
 � NP Observe that
when the input has size n� a �logn� 	
�restricted veri�er has �O�logn� � nO��� choices for its
random string Further� once we �x the random string� the veri�er�s decision is based upon
O�	
 bits in the proof More formally� we can state the following lemma

Lemma ���� Let language L be in PCP�logn� 	
� Then there are integers c� d� k � 	 such
that for every input x there are nc boolean functions f�� f�� � � � in nd boolean variables �where
n is the size of x� with the following properties�

� Each fi is a function of only k variables� and its truth�table can be computed in
polynomial time given �x� i
�

�� If input x is in L� there is an assignment to the boolean variables that makes every fi
evaluate to true�

�� If x �� L then no assignment to the boolean variables makes more than 	�� the fi�s
true�

Proof� Let the veri�er for L use c logn random bits Note that it has at most �c logn � nc

di!erent possible runs� and in each run it reads only O�	
 bits in the proof�string Hence
wlog we can assume that the number of bits in any provided proof�string is at most
O�nc
 For concreteness� assume this number is nd for some integer d

For any boolean�valued variables y�� � � � � ynd � the set of possible assignments to y�� � � � � ynd
is in one�to�one correspondence with the set of possible proof�strings We assume wlog
that the proof�string is an assignment to the variables y�� y�� � � � � ynd 

�John Addison has pointed out an �unintended� pun in this result� In descriptive set theory� PCC for any
class C would be the projections of sets that are complements of sets of C�� For C � the complexity class
P� this would refer to NP� since complement of P is P and projection of P is NP�
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Fixing the veri�er�s random string to r � f�� 	gc logn� �xes the sequence of locations
that it will examine in the proof Let this sequence have size k �� O�	

 Let the sequence
of locations be i��r
� � � � � ik�r
 The veri�er�s decision depends only upon the assignments
to yi��r�� � � � � yik�r� De�ne a boolean function on k bits� fr� as fr�b�� � � � � bk
 � true i!
the veri�er accepts when the assignment to the sequence of variables yi��r�� � � � � yik�r� is
b�� � � � � bk Since the veri�er runs in polynomial time� we can compute the truth table of fr
in polynomial time by going through all possible �k values of b�� � � � � bk� and computing the
veri�er�s decision on each sequence

Consider the set of nc functions
n
fr � r � f�� 	gc logn

o
de�ned in this fashion By def�

inition of PCP�logn� 	
� when the input is in the language� there is an assignment to the
y�� y�� � � � � that makes all functions in this set evaluate to true Otherwise no assignment
makes more than 	�� of them evaluate to true �

Corollary ���� PCP�logn� 	
 � NP�

Proof� Let L � PCP�logn� 	
� and x be an input of size n Construct in poly�n
 time the
functions of Lemma �� Clearly� x � L i! there exists an assignment to the nd variables
that makes all the fi�s evaluate to TRUE Such an assignment constitutes a �membership
proof� that x � L� and can be checked in poly�n
 time �

���� The PCP Theorem� Connection to Approximation

This section shows that the characterization of NP as PCP�logn� 	
 allows us to de�ne a
new format for membership proofs for NP languages The format is more robust �in a sense
explained below
 than the tableau format of Cook and Levin� and immediately suggests
a new way to reduce NP to MAX��SAT This new reduction shows that approximating
MAX��SAT is NP�hard

Let L be any NP language Since NP � PCP�logn� 	
� Lemma �� holds for it Let
x be an input Use the set of functions given by Lemma �� to de�ne a new format for
membership proofs for L� the proof is a boolean assignment �ie� a sequence of bits
 that
makes all of f�� f�� � � � � evaluate to true

Then follow the Cook�Levin construction closely Think of each fi as representing a
�correctness condition� for a set of k bit�positions in the proof thus this set of k locations
plays a role analogous to that of a �window� in the tableau The statement of Lemma ��
implies that if x �� L then half the windows are incorrect  To contrast the new format with
the tableau format� recall that when x �� L there exist tableaus in which almost all the
windows look correct In this sense the new format is more robust

Formally� the reduction consists in writing a �SAT formula that represents all the fi�s
The gap �of a factor �
 between the fraction of fi�s that can be satis�ed in the two cases
translates into a gap between the fraction of clauses that can be satis�ed in the two case
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The proof of the following corollary formalizes the above description

Corollary ���� There is a constant � � � such that computing �	 � �
�approximations to
MAX��SAT is NP�hard�

Proof� Let L be an NP�complete language and x be an input of size n Assuming NP �
PCP�logn� 	
� Lemma �� applies to L We use notation from that lemma Let y�� � � � � ynd
be the set of boolean variables and ffi � 	 	 i 	 ncg the collection of functions corresponding
to x

Consider a function fi from this collection Let it be a function of variables yi� � � � � � yik 
Then fi can be expressed as a conjunction of �k clauses in these variables� each of size at
most k Let Ci��� � � � � Ci��k denote these clauses �From now on we use the terms k�clause
and ��clause to talk about clauses of size k and � respectively


Then the k�CNF formula
nc�
i	�

�k�
j	�

Ci�j ���


is satis�able i! x � L Also� if x �� L� then every assignment fails to satisfy half the fi�s�
each of which yields an unsatis�ed k�clause So if x �� L the fraction of unsatis�ed clauses
is at least �

� � �
�k

� which is some �xed constant

To obtain a �CNF formula rewrite every k�clause as a conjunction of clauses of size ��
as follows For a k�clause l� � l� �    � lk �the li�s are literals
� write the formula

�l� � l� � z�
 � �lk�� � lk � �zk��
 �
k���
t	�

��zt � lt�� � zt��
 ���


where z�� � � � � zk�� are new variables which are not to be used again for any other k�clause
Clearly� a �xed assignment to l�� � � � � lk satis�es the original k�clause i! there is a further
assignment to z�� � � � � zk�� that satis�es the formula in ���


Thus the formula of ���
 has been rewritten as a �CNF formula that is satis�able i!
x � L Further� if x �� L� every unsatis�ed k�clause in ���
 yields an unsatis�ed ��clause in
the new formula� so the fraction of unsatis�ed ��clauses is at least �

k�� � �
�k�� 

Hence the lemma has been proved for the value of � given by

	

	 � �
� 	
 	

�k
 �
�k��
�

�

As shown in Chapter �� Corollary �� implies similar hardness results for a host of other
problems
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Where the gap came from� The gap of a factor of � in the above reduction came from
two sources� the gap 	 versus 	�� in the fraction of satis�able fi�s in Lemma ��� and the
fact that each fi involves O�	
 variables But recall that each fi just represents a possible
run of the �logn� 	
�restricted veri�er for the language Thus the description of each fi
depends upon the construction of the veri�er Unfortunately� the only known construction
of this veri�er is quite involved It consists in de�ning a complicated algebraic object� which
exists i! the input is in the language The veri�er expects a membership proof to contain
a representation of this object In each of its runs the veri�er examines a di!erent part of
this provided object Thus the function fi representing that run is a correctness condition
for that part of the object

For details on the algebraic object� we refer the reader to the next chapter A detail
worth mentioning is that each part of the object " and thus� the de�nition of each fi "
depends upon every input bit This imparts our reduction a global structure In contrast�
classical NP�completeness reductions usually perform local transformations of the input

���� History and Background

Approximability� The question of approximability started receiving attention soon af�
ter NP�completeness was discovered �Joh��� SG��� �See �GJ��� for a discussion
 Much of
the work attempted to discover a classi�cation framework for optimization �and aproxima�
tion
 problems analogous to the framework of NP�completeness for decision problems �See
�ADP��� ADP��� AMSP��� for some of these attempts
 The most successful attempt was
due to Papadimitriou and Yannakakis� who based their classi�cation around a complexity
class they called MAX�SNP �see Chapter �
 They proved that MAX��SAT is complete
for MAX�SNP� in other words� any unapproximability result for MAX��SAT transfers au�
tomatically to a host of other problems The desire to prove such an unapproximability
result motivated the discovery of the PCP theorem

Roots of PCP� The roots of the de�nition of PCP �speci�cally� the fact that the veri�er is
randomized
 go back to the de�nition of Interactive Proofs �Goldwasser� Micali� and Racko!
�GMR���
 and Arthur�Merlin games �Babai�Bab���� see also �BM���
 Two complexity
classes arise from their de�nitions� IP and AM respectively Both feature a polynomial time
veri�er interacting with an all�powerful adversary� called the prover� who has to convince
the veri�er that the given input is in the language �The di!erence between the two classes
is that in the de�nition of IP� the prover cannot read the veri�er�s random string
 Early
results about these classes $eshed out their properties� including the surprising fact that
they are the same class ��GS���
� see also �GMS���


The next step involved the invention of multi�prover interactive proofs� and the associ�
ated complexity class MIP by Ben�Or� Goldwasser� Killian� and Wigderson ��BGKW���

Here the single all�powerful prover in the IP scenario is replaced by many all�powerful
provers who cannot communicate with one another during the protocol Again� the mo�
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tivation was cryptography� although soon Fortnow� Rompel and Sipser �FRS��� analyzed
the new model from a complexity�theoretic viewpoint They proved that the class MIP is
exactly the class of languages for which membership proofs can be checked by a probabilis�
tic polynomial time veri�er that has random access to the proof Since the probabilistic
veri�er can access �over all choices of its random seed
 a proof of exponential size� it follows
that MIP � NEXPTIME Recall that NEXPTIME is the exponential analogue of NP It
contains the set of languages that can be accepted by a nondeterministic Turing Machine
that runs in exponential time Since it seemed �clear� that MIP was quite smaller than
NEXPTIME� the statement MIP � NEXPTIME was considered unsatisfactorily weak �A
similar situation prevailed for IP� where the analogous statement� IP � PSPACE "proved
implicitly by Papadimitriou in �Pap���" was considered quite weak


The next development in this area came as a big surprise Techniques from program�
checking �due to Blum and Kannan �BK���� Lipton �Lip���� and Blum� Luby and Rubin�
feld �BLR���
� as well as some new ideas about how to represent logical formulae with
polynomials �Babai and Fortnow �BF�	�� Fortnow� Lund� Karlo! and Nisan �LFKN����
and Shamir �Sha���
 were used to show that IP� PSPACE��LFKN��� Sha���
 and MIP�
NEXPTIME�Babai� Fortnow� and Lund�BFL�	�
 These connections between traditional
and nontraditional complexity classes were proved using novel algebraic technques� some of
which will be covered later in this book

Emergence of PCP� The characterization of MIP from ��FRS���
 and the result MIP�
NEXPTIME together imply that NEXPTIME is exactly the set of languages for which
membership proofs can be checked by a probabilistic polynomial time veri�er Such a
surprising result led to some thinking about NP as well� speci�cally� the papers of Babai�
Fortnow� Levin� and Szegedy ��BFLS�	�
 and Feige� Goldwasser� Lov%asz� Safra� and Szegedy
��FGL��	�
 Although only the latter talked explicitly about NP �the former dealt with
checking nondeterministic computations including NP computations as a subcase
� their
techniques were actually scaling down the MIP�NEXPTIME result The paper �FGL��	�
implicitly de�ned a hierarchy of complexity classes " unnamed there� but which we can call
C Their class C�t�n

 is identical to the class PCP�t�n
� t�n

 as de�ned in this chapter�
and their main result was that NP � C�logn  log logn


What caused great interest in �FGL��	� was their corollary� If the clique number of a
graph can be approximated within any �xed constant factor� then all NP problems can be
solved deterministically in time nO�log logn� �Computing the clique number is a well�known
NP�complete problem �Kar���
 They showed how to reduce every problem in PCP�logn 
log log n
 " and as a special subcase� every problem in NP " to the Clique problem in
such a way that the �gap� �probability 	 versus probability 	��
 used in the de�nition of
PCP translates into a gap in the clique number

To prove that NP � C�logn
 seemed to be the next logical step� and for two reasons
First� this would imply that approximating the clique number is NP�hard Second� since
C�logn
 is trivially a subclass of NP� such a result would imply a new characterization of
NP� namely� NP � C�logn
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This step was taken in the paper �Arora and Safra �AS���
 Somewhat curiously�
we found that although the number of random bits used by the veri�er cannot be sub�
logarithmic �or else P � NP see �AS���
� there was no such restriction on the number of
query�bits Hence we de�ned the class PCP �de�nition ��
 with two parameters �instead
of the single parameter used in �FGL��	�
 We showed that NP � PCP�logn� �log logn
�


At this point� several people �for example� the authors of �AMS����
 realized that prov�
ing NP � PCP�logn� 	
 would prove the inapproximability of MAX��SAT This result was
actually obtained in the paper �Arora� Lund� Motwani� Sudan and Szegedy �ALM����

Owing to its great dependence upon �AS���� the proof of the PCP Theorem is often at�
tributed to jointly to �ALM���� AS���

Among other papers that were in$uential in the above developments were those by
Beaver and Feigenbaum ��BF���
� Lapidot and Shamir ��LS�	�
� Rubinfeld and Sudan
�RS���� and Feige and Lovasz ��FL���
 Their contributions will be described in appro�
priate places later

Other characterizations of NP� Researchers have discovered other probabilistic char�
acterizations of NP One such result� implicit in Lipton�s paper ��Lip���
� says that NP is
exactly the set of languages for which membership proofs can be checked by a probabilistic
logspace veri�er that uses O�logn
 random bits� and makes just one sweep �say left�to�right

over the proof�string Condon and Ladner ��CL���
 further strengthened Lipton�s charac�
terization Even more interestingly� Condon ��Con���
 then used the result of ��CL���
 to
show the hardness of approximating the max�word problem This unapproximability result
appeared somewhat before �and was independent of
 the more well�known �FGL��	� paper

An older characterization of NP� in terms of spectra of second�order formulae� is due to
Fagin��Fag���
 His result� since it involves no notion of computation� is an interesting al�
ternative viewpoint of NP It has motivated the de�nition of many classes of approximation
problems� including MAX�SNP

�The above account of the evolution of PCP has been kept brief� for more details refer
to the surveys by Babai �	Bab���� and Johnson �	Joh����� A recent survey by Goldreich
�	Gol���� describes the known variations on probabilistic proof systems� and how they are
used in cryptography�

Three existing dissertations describe various aspects of the above theory� Rubinfeld�s
�	Rub���� describes the theory of program checking� Lund�s �	Lun���� describes the sur�
prising results on interactive proofs� and Sudan�s �	Sud���� describes program checking for
algebraic programs and its connection to the PCP Theorem�
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Chapter �

PCP � An Overview

The PCP theorem �Theorem �	
 states merely the existence of a veri�er for any NP prob�
lem Our proof of the theorem is quite constructive� we give an explicit program for the
veri�er� as well as explicit descriptions of what the proof must contain in order to be ac�
cepted with probability 	

Details come later� but let us �rst face a fundamental problem to be solved� How can
the veri�er recognize the proof as valid or invalid� after examining only O�	
 bits in it� At
the very least� an invalid proof must di!er from a valid one on a large fraction of bits� so
that they appear di!erent to a randomized test that examines very few bits in them This
consideration alone suggests using the theory of error�correcting codes Although we do
not need much of the classical machinery of coding theory� some of its terminology is very
useful

���� Codes

Let # be an alphabet of symbols� and m an integer Let a word be a string in #m The
distance between two words is the fraction of coordinates in which they di!er �This distance
function is the well�known Hamming metric� but scaled to lie in ��� 	�
 For 	 � ��� 	� let
Ball�y� 	
 denote the set of words whose distance to y is less than 	 

A code C is a subset of #m every word in C is called a codeword A word y is ��close to
C if there is a codeword in Ball�y� �
 �We say just ��close when C is understood from the
context


The minimum distance of C� denoted �min� is the minimum distance between two code�
words Note that if word y is �min���close� there is exactly one codeword z in Ball�y� �min��

�for� if z� is another such codeword� then by the triangle inequality� ��z� z�
 	 ��z� y
 �
��y� z�
 
 �min� which is a contradiction
 Let N�y
 denote this nearest codeword to y

A code C is useful to us as an encoding object� using it we can encode strings of bits

	�
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For any integer k such that �k 	 jCj� let  be a one�to�one map from f�� 	gk to C �such
a map clearly exists in our applications it will be de�ned in an explicit fashion
 For
x � f�� 	gk� we call the codeword �x
 an encoding of x Note that �x� y � f�� 	gk � we have
���x
� �y

� �min We emphasize that  need not be onto� that is� �� is not de�ned for
all codewords

Example ���� Let F be the �eld GF�q
� and h an integer less than q�� Consider F as an
alphabet and de�ne a code C� � F�h as the following set �of size jFjh��

�
�
hX
i	�

aib
i
��

hX
i	�

aib
i
�� � � � �

hX
i	�

aib
i
�h
 � a�� � � � � ah � F

�

where b�� � � � � b�h are distinct elements of F Note that a codeword is the sequence of values
taken by some polynomial

Ph
i	� aix

i at these �h points Since two distinct polynomials of
degree h agree on at most h points� the minimum distance between any two codewords in
C� is at at least �h��h � ���

What is the alphabet size� q �� jFj
� as a function of the code�size� jC�j� Let N denote
the number of codewords� that is� qh�� We assumed that q � �h� so we have �q
q�� � N 
Hence q � &� logN

log logN 


Here�s one way to de�ne  � f�� 	gh�� � F�h For a�� � � � � ah � f�� 	g de�ne

�a�� � � � � ah
 � �
hX
i	�

aib
i
��

hX
i	�

aib
i
�� � � � �

hX
i	�

aib
i
�h
�

���� Proof of the PCP Theorem� an Outline

We know of no simple� direct proof of the PCP Theorem �Theorem �	
 The only known
proof " the one presented here " uses � di!erent veri�ers which are combined in a hierarchical
construction using Lemma �	 There is a trade�o! between the number of random�bits
and query�bits used by the two veri�ers� which the construction exploits To enable this
construction we require the veri�ers to be in a certain normal form� which is described below
Moreover� we associate a new parameter with a veri�er namely� decision time� which is the
chief parameter of interest in the hierarchical construction

Recall �from the description before De�nition ��
 that a veri�er�s operation may be
viewed as having three stages The �rst stage reads the input and the random string� and
decides what locations to examine in � The second stage reads symbols from � onto the
work�tape The third stage decides whether or not to accept

De�nition ���� The decision time of a veri�er is the time taken by the third stage
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Next� we describe the normal form For ease we describe veri�ers for the language �SAT
�Since �SAT is NP�complete� veri�ers for other NP languages are trivial modi�cations of
the veri�er for �SAT
 Denote by � the input �CNF formula� and by n the number of
its variables Identify� in the obvious way� the set of strings in f�� 	gn with the set of
assignments to variables of � Finally� let � denote the provided proof�string

De�nition ���� A veri�er for �SAT is in normal form if it satis�es the following properties

	 Has a certain alphabet� The veri�er expects the proof to be a string over a certain
alphabet� say # �the size of # may depend upon the input size n
 A query of a
veri�er involves reading a symbol of #� and not just a bit

� Can check assignments that are split into many parts� The veri�er has a
special subroutine for e�ciently checking proofs of a very special form Let p be any
given positive integer The subroutine behaves as follows

�i� It de�nes an associated code C over the alphabet #� with �min � ��� The code

has an associated one�to�one map  from strings in f�� 	gnp to codewords

�ii� It expects � to have the special form

�a�
 � �a�
 �    � �ap
 � �

�� � concatenation of strings
� where � is a string that is supposed to show that
the string a� �    � ap is a satisfying assignment

More formally� we say that the subroutine can check assignments split into p
parts if it has the following behavior on proofs of the form z� �    � zp � �� where
zi�s and � are strings over alphabet #

� If z�� � � � � zp are codewords such that ���z�
 �   ���zp
 is a satisfying
assignment� then there is a � such that

Pr� subroutine accepts z� �    � zp � �� � 	�

� If �i � 	 	 i 	 p such that zi is not �min���close� then for all ��

Pr� subroutine accepts z� �    � zp � �� 

	

�
�

� If all zi�s are �min���close� but ���N�z�

�  ����N�zp

 is not a satisfying
assignment� where N�zi
 is codeword nearest to zi� then again for all �

Pr� subroutine accepts z� �    � zp � �� 

	

�
�

Now we modify De�nition �� to make it meaningful for a veri�er in normal form
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De�nition ���� A veri�er in normal form is �r�n
� q�n
� t�n

�restricted if on inputs of
size n it uses O�r�n

 random bits� reads O�q�n

 symbols from �� and has decision time
poly�t�n

 While checking assignments split into p parts� it reads O�p  q�n

 symbols

Note� The parameter q�n
 refers to the number of symbols �that is� elements of the
alphabet #
� read from � Thus the number of bits of information read from the proof is
O�q�n
 log j#j
 We choose not to make j#j a parameter� since there is already an implicit
upperbound for it in terms of the above parameters Realize that the decision time includes
the time to process O�q�n
 log j#j
 bits of information� so O�q�n
 log j#j
 	 poly�t�n

 This
upperbound is good enough for our purposes

Now we describe a general technique to reduce the decision time� and in the process�
the number of bits of information read from the proof

Lemma ��� �Composition Lemma�� Let V� and V� be normal�form veri�ers for �SAT
that are �R�n
� Q�n
� T�n

�restricted and �r�n
� q�n
� t�n

�restricted respectively� Then
there is normal form �SAT veri�er that is �R�n
�r��n
� Q�n
q��n
� t��n

�restricted� where
r��n
 � r�poly�T �n


� q��n
 � q�poly�T �n


� and t��n
 � t�poly�T �n


�

Note� Whenever we use this lemma� both Q�n
� q�n
 are O�	
 Then the three veri�ers re�
spect the bounds �R�n
� 	� T �n

� �r�n
� 	� t�n

� and �R�n
�r�poly�T �n


� 	� t�poly�T �n



respectively Think of t as being some slowly�growing function like log Then the decision
time of the new veri�er is at most log�poly�T �n


 � O�log�T �n

� an exponential improve�
ment over T �n


We will prove the Composition Lemma at the end of this section First we outline how
it is used to prove the PCP Theorem The essential ingredients are Theorem �� and ���
which will be proved in Chapter �

Theorem ���� �SAT has a �logn� 	� logn
�restricted normal form veri�er�

Although the above veri�er reads only O�	
 symbols in the proof� the number of bits it
reads is poly�logn
 We use the Composition Lemma to improve it

Corollary ���� �SAT has a normal�form veri�er that is �logn� 	� log log n
�restricted�

Proof� Use the veri�er of theorem �� to play the role of both V� and V� in the Composition
Lemma �

Since the veri�er of Corollary �� is in normal form we could apply the Composition
Lemma again �the reader may wish to calculate the best PCP result obtained this way

Instead we use a new veri�er to terminate the composition It requires a huge number of
random bits� but is really e�cient with its queries
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Theorem ���� �SAT has a normal�form veri�er that is �n�� 	� 	
�restricted� and uses the
alphabet f�� 	g�

Now we can prove the following theorem� a strong form of the PCP theorem

Theorem ���� There exists a normal form veri�er for �SAT that is �logn� 	� 	
�restricted�
and uses the alphabet f�� 	g�

Proof� Use the veri�ers of corollary �� and theorem �� as V� and V� respectively in the
Composition Lemma �

The veri�er of Theorem ��� like all our veri�ers� is a veri�er for �SAT By examining
its performance not only do we conclude that NP � PCP�logn� 	
� but also that the veri�er
in question is in normal form �For this and other strong forms of the PCP theorem� see
Chapter �


Our outline of the proof of the PCP Theorem is complete We have shown that it su�ces
to prove the Composition Lemma� which we will do now� and Theorems �� and ��� which
we will do in chapter �

Proof� �Of Composition Lemma
 The ideas underlying the composition are simple Once
we �x the random string of the �rst veri�er V�� its decision depends upon a very small
portion of the proof string� and is computed in very little time �namely� the decision time

The Cook�Levin Theorem implies that a tiny �CNF formula describes whether the decision
is an accept or a reject We modify veri�er V� to use veri�er V� � which is in normal form
" to check that the above�mentioned portion of the proof is a satisfying assignment to this
tiny �SAT formula Doing this involves using V��s ability to check split assignments� and
requires that relevant portions of the proof�string be present in an encoded form �using V��s
encoding


Now we provide details Let n be the size of the input given to veri�er V�� and let
Q�R� T denote� respectively� the number of queries made by the veri�er� the number of
random bits it uses� and its decision time �The hypothesis of the lemma implies that
Q�R� T are O�Q�n
� O�R�n

 and poly�T �n

 respectively


Let the random string of veri�er V� be �xed to r � f�� 	gR This �xes the sequence of
locations in proof � that the veri�er will examine Let i�� i�� � � � � iQ denote these locations
�Strictly speaking� we should express the dependence upon r explicitly and denote these
by i��r
� i��r
� � � � � etc
 The decision process of V� is a computation that runs in time T

using an input ��i�� ���i�� �    ���iQ�� where ��j� denotes the symbol in the jth location
of proof �� and � denotes concatenation of strings The strong form of the Cook�Levin
theorem �Fact A	
 implies we can write down a �SAT formula �r of size poly�T 
 such that
V� accepts i!

�yr st ��i�� ���i�� �    ���iQ� � yr is a satisfying assignment for �r� ��	
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�Here we are thinking of each symbol ��ij � as being represented by a string of bits


To make our description cleaner� we assume from now on that � contains a sequence of
additional locations� one for each choice of the random string r The rth location supposedly
contains yr Further� we assume that V� when using the random string r makes a separate
query to this location to read yr Let iQ�� be the index of this location Then V� accepts
using the random string r i!

��i�� ���i�� �    ���iQ��� is a satisfying assignment for �r� ���


But there is a very e�cient way to determine the truth of a statement like the one in ���
�
Use V��s subroutine for checking assignments split into Q� 	 parts Of course� this requires
the structure of � to be somewhat di!erent The symbol in each location of � is now
required to be encoded using V��s map  from bit�strings to codewords

The next page contains the program of V�� the new veri�er obtained by the composition
It uses V� to check assignments for �r that are split into Q�	 parts �We assume ' without
loss of generality� by �padding� with irrelevant bits ' that the string yr in ��	
 has the
same length as each ��j� So these Q � 	 parts have equal size
 Let m denote the number
of variables in �r �Note� m � poly�T 

 Let  denote V��s map from bit�strings of size
m��Q�	
 to codewords� and let R� be the number of random bits it uses while checking the
split assignment �Note� By the hypothesis of the lemma� R� � O�r�m


 For convenience�
we assume �by repeating the program of V� some O�log 	��
 times
 that when the input
formula is not satis�able� V� rejects with probability at least 	 
 �� instead of just 	�� as
required by de�nition of a veri�er �� is a small enough constant� say ��	


Complexity� We analyze V��s e�ciency Let m denote j�rj The veri�er uses R � R� �
R�r�m
 random bits� which is O�R�n
�r�poly�T �n



 Further� the number of queries it
makes and its decision time are exactly those of V��s subroutine Since V� is �r�n
� q�n
� t�n

�
restricted� its subroutine makes �Q� 	
  q�m
 queries while checking assignments split into
Q � 	 parts� and has decision time t�m
 We conclude that V� is �R � r�m
� �Q � 	
 
q�m
� t�m

�restricted But m � j�rj � poly�T �n

� so the parameters for V� are as claimed

Program of V��

Given� Table �new with the same number of locations as
�
Table ( with �R entries

Pick a random r � f�� 	gR and a random r� � f�� 	gR�


Use V� to generate locations i��r
� � � � � iQ���r
� and �SAT formula �r
Run V��s subroutine �using random string r�
 to check that the

proof z� �    � zQ�� � �r encodes a satisfying assignment for �r�
where zj is the entry �new �ij�r
� and �r the entry (�r�

ACCEPT i! V��s subroutine accepts
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i (r)
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 i (r)
1

r 

Π Π

Γ

new

   (  a  ) (  b  )

i   
Q+1

(r) i   
Q+1

(r)

Figure �	� �a
 Proof that V� expects �b
 Proof that V� expects Shaded area in �new

represents the assignment split into Q � 	 parts that corresponds to V��s random seed r

Correctness� Showing that V� is a correct veri�er for �SAT consists in two parts In both
parts� let ar denote the string ��i��r
��  ���iQ���r
 and sr denote the string ���i��r
�
�
  ���iQ���r
�
 It will be clear from the context what � refers to

First� suppose the input � is satis�able Then there is a proof � that V� accepts with
probability 	 We show that there exists a proof ��new�(
 which V� accepts with probability
	

Since V� accepts � with probability 	� we have

Pr
r�f���gR

� ar is a satisfying assignment for �r� � 	

where �r is the �SAT formula representing the veri�er�s computation De�nition �� about
what it means to �check assignments split into Q�	 parts� implies that for every r � f�� 	gR
there is a string �r such that

Pr
r��f���gR�

�V��s subroutine accepts sr � �r using r� as a random string� � 	� ���


Construct the desired new proof ��new �(
 as follows Let �new be a table with the
same number of locations as �� whose jth location contains the codeword ���j�
 Let (
be a table of �R locations� viewed as being in one�to�one correspondence with f�� 	gR For
r � f�� 	gR� let the location r of ( contain the string �r de�ned in Equation ���
 The

decision of the new veri�er V� when it picks r from f�� 	gR� and r� from f�� 	gR�

is just the
decision of V��s subroutine on the proof�string sr � �r Our construction insures that the
subroutine accepts irrespective of r� r� Hence

Pr
r�r�

�V� accepts ��new�(
� � 	�

Now we turn to the second half� � is unsatis�able Let ��new �(
 be any proof and let
p be the probability with which V� accepts it We show that p 
 	�� � ��
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First� modify the proof�string as follows� replace each entry of �new by the codeword
nearest to it �or a codeword nearest to it� if there is more than one choice
 Call this new
table ��

new  Then V� must accept ���
new �(
 with probability at least p
 � For� V� accepts

i! V��s subroutine for checking split assignments accepts The subroutine accepts with
probability no more than � if even one of the parts in �the encoding of
 the split assignment
is not �min�close Hence turning the entries of �new into codewords as above can lower the
probability of acceptance by at most �

Next� we turn ��
new into a proof that the original veri�er V� accepts with almost the

same probability as V� does De�ne � by making its jth entry the preimage of the jth entry
of ��

new � that is� ��j� � �����
new �j�
 �note� if �����

new
 is not de�ned� use an arbitrary
symbol instead


Let � be the probability with which V� rejects � �Since � is unsatis�able� � is more
than 	��
 That is to say� � is the fraction of r � f�� 	gR for which

Pr
r�f���gR

�ar does not satisfy �r� � ��

Let r be one of the choices of the random string for which ar does not satisfy �r That
is� ��i��r
� �    ���iQ���r
� does not satisfy �r Since sr is ���i��r
�
 �   ���iQ���r
�
�
we have

Pr
r��f���gR�

�V��s subroutine accepts sr � � using the random string r�� 	 ��

irrespective of � In particular� V��s subroutine accepts the proof sr � (�r� with probability
at most � Hence we have

Pr
r�r�

�V� accepts ���
new �(
� 	 �� � �	
 �
�

But we assumed that V� accepts ��
new �( with probability is at least p
 � Therefore we

have

p
 � 	 	

�
� �

	

�
�

which implies p 
 	�� � �� Thus the claim of correctness is proved �

���� History and Background

The �rst PCP�type veri�er appears in the result MIP � NEXPTIME �BFL�	� When
Babai et al ��BFLS�	�
 scaled down that result to NP� they noticed that their PCP�
type veri�er for NP has a low decision time �Actually their exact result was somewhat
stronger
 This observation motivated the work in ��AS���
� where the Composition Lemma
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is implicit The use of large�distance codes in the de�nition of the normal form veri�er was
also motivated by a similar situation in �BFLS�	� Composition was termed �Recursion� in
�AS��� because in that paper veri�ers were composed only with themselves Full use of the
lemma �as described in this section
 was made in �ALM����� where Theorems �� and ��
were proven �The best veri�er of �AS��� was �logn� �log log n
�� �log logn
�
�restricted

The idea of composing veri�ers has been crucial in more recent developments in the area of
probabilistically checkable proofs �speci�cally� in constructing more e�cient PCPs
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Chapter �

A Proof of the PCP Theorem

This chapter contains a proof of the PCP theorem As per the outline in Chapter �� it
su�ces to construct the veri�ers of Theorems �� and �� First we give a brief overview
of the techniques used

Underlying the description of both veri�ers is an algebraic representation of a �SAT
formula The representation uses a simple fact� every assignment can be encoded as a
multivariate polynomial that takes values in a �nite �eld �see Section �	
 A polynomial
that encodes a satisfying assignment is called a satisfying polynomial Just as a satisfying
boolean assignment can be recognized by checking whether or not it makes all the clauses
of the �SAT formula true� a satisfying polynomial can be recognized by checking whether
it satis�es some set of equations involving the operations � and  of the �nite �eld

Each of our veri�ers expects the proof to contain a polynomial� plus some additional
information showing that this polynomial is a satisfying polynomial �in other words� it
satis�es the above�mentioned set of equations
 The veri�er checks this information using
some algebraic procedures connected with polynomials These procedures are described in
a �black�box� fashion in Section �		� and in full detail in Section �� The black�box de�
scription should su�ce to understand Sections �� and ��� in which we prove Theorems ��
and �� respectively

All results in this chapter are self�contained� except Theorem �	� about the performance
of the low�degree test� whose proof takes up Chapter �

Throughout the chapter � denotes the �SAT formula for which proofs are being checked
We use n to denote both the number of clauses and the number of variables �We defend
this usage on the grounds that the number of variables and clauses could be made equal by
adding irrelevant variables " which do not appear in any clause " to the set of variables


A note on error probabilities� While describing veri�ers we write in parenthesis
and in italics the conditions that a proof must satisfy in the good case �ie� the case
when � is satis�able
 The reader may wish to check that there exists a proof meeting
those conditions� and which is therefore accepted with probability 	 Upperbounding the

��
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probability of rejection in the bad case " when � is not satis�able " by 	�� is more di�cult�
and requires proof

The overall picture� After reading the proof� a look at Figure �� might help the
reader recall all important steps

���� Polynomial Codes and Their Use

Let F be the �nite �eld GF�q
 and k� d be integers A k�variate polynomial of degree d
over F is a sum of terms of the form axj�� x

j�
�   xjkk where a � F and integers j�� � � � � jk

satisfy j� �   � jk 	 d Let Fd�x�� � � � � xk� be the set of functions from Fk to F that can
be described by a polynomial of total degree at most d �

We will be interested in representations of polynomials by value A k�variate polynomial
de�nes a function from Fk to F� so it can be expressed by jFjk � qk values In this
representation a k�variate polynomial �or any function from Fk to F for that matter
 is a
word of length qk over the alphabet F

De�nition ���� The code of k�variate polynomials of degree d �or just polynomial code

when k� d are understood from context
 is the code Fd�x�� � � � � xk� in Fqk 

Note that the distance between two words is the fraction of points in Fk they disagree
on The following lemma �for a proof see Appendix A
 shows that the polynomial code has
large minimum distance

Fact ��� �Schwartz�� Two distinct polynomials in Fd�x�� � � � � xk� disagree on at least 	

d�q fraction of points in Fk� �

In our applications� d 
 q�� Thus if f � Fk � F is a ��close function �� 
 	��� say

then the polynomial that agrees with it in at least 	 
 � fraction of the points is unique
�In fact� no other polynomial describes f in more than even � � d�q fraction of the points

We will often let � denote a suitably less constant� say ��	

De�nition ���� For a ��	�close function f the unique nearest polynomial is denoted by ef 

Polynomials are useful to us as encoding objects We de�ne below a canonical way �due
to �BFLS�	�
 to encode a sequence of bits with a polynomial For convenience we describe a
more general method that encodes a sequence of �eld elements with a polynomial Encoding
a sequence of bits is a sub�case of this method� since �� 	 � F

�The use of Fd above should not be confused with the practice in some algebra texts of using Fq as a
shorthand for GF�q��
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[ 0, h ] m

F  m

Figure �	� A function from ��� h�m to F can be extended to a polynomial of degree mh

Let h be an integer such that the set of integers ��� h� is a subset of the �eld F �Readers
uncomfortable with this notation can think of ��� h� as any subset of the �eld F that has
size h � 	


Theorem ���� For every function s � ��� h�m � F there is a function bs � Fmh�x�� � � � � xm�
such that s�y
 � bs�y
 for all y � ��� h�m�

Proof� For u � �u�� � � � � um
 � ��� h�m let Lu be the polynomial de�ned as

Lu�x�� � � � � xm
 �
mY
i	�

lui�xi
�

where lui is the unique degree�h polynomial in xi that is 	 at xi � ui and � at xi � ��� h�nfuig
�That lui�xi
 exists follows from Fact A�
 Note that the value of Lu is 	 at u and � at all
the other points in ��� h�m Also� its degree is mh

Now de�ne the polynomial bs as

bs�x�� � � � � xm
 �
X

u����h�m
s�u
  Lu�x�� � � � � xm
�

�

Example ���� Let m � �� h � 	 Given any function f � ��� 	�� � F we can map it to a
bivariate degree � polynomial� bf � as follows

bf�x�� x�
 � �	
 x�
�	
 x�
f��� �
 � x��	
 x�
f�	� �


��	
 x�
x�f��� 	
 � x�x�f�	� 	
�

De�nition ���� For a function s � ��� h�m � F� a polynomial extension of s is a functionbs � Fmh�x�� � � � � xm� that satis�es

bs�y
 � s�y
 �y � ��� h�m�

�note� the extension need not be unique
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The encoding� Let h be an integer such that ��� h� � F� and l an integer such that
l � �h � 	
m for some integer m De�ne a one�to�one map from Fl to Fmh�x�� � � � � xm� �in
other words� from sequences of l �eld elements to polynomials in Fmh�x�� � � � � xm�
 as follows
Identify in some canonical way the set of integers f	� � � � � lg and the set ��� h�m � Fm �For
instance� identify the integer i � f	� � � � � lg with its m�digit representation in base h � 	

Thus a sequence s of l �eld elements may be viewed as a function s from ��� h�m to F
Map the sequence s to any polynomial extension bs of this function This map is one�to�one
because if polynomials bf and bg are the same� then they agree everywhere and� in particular�
on ��� h�m� which implies f � g

The inverse map of the above encoding is obvious A polynomial f � Fmh�x�� � � � � xm� is
the polynomial extension of the function r � ��� h�m � F de�ned as r�x
 � f�x
� �x � ��� h�m

Note that we encode sequences of length l � �h�	
m by sequences of length jFjm � qm
In later applications this increase in size is not too much The applications depend upon
some algebraic procedures to work correctly� for which it su�ces to take q � poly�h
 Then
qm is hO�m� � poly�l
 Hence the increase in size is polynomially bounded

Next� we indicate how we will use the above encoding

De�nition ���� Let � be a �CNF formula with n variables and F be a �eld A sequence of
�eld elements a�� a�� � � � � an � F is said to represent a satisfying assignment if the following
�partial
 boolean assignment makes all clauses in � true� If ai � � �resp� ai � 	
� let the
ith variable be false �resp� true
 and otherwise do not assign a value to the ith variable

A key concept connected with our veri�ers is that of a satisfying polynomial

De�nition ���� Let � be a �CNF formula with n variables and F be a �eld A satisfying
polynomial of � is a polynomial extension �for any appropriate choice of parameters m and
h as above
 of a sequence of �eld elements that represents a satisfying assignment to �

�As noted above� when the parameters m� h� jFj are chosen appropriately� the satisfying
polynomial can be represented by poly�n
 bits


Representing clauses by equations� We give a simple algebraic condition to charac�
terize sequences of �eld elements that represent satisfying assignments �Our veri�ers will
use these conditions to check whether or not a given polynomial is a satisfying polynomial


Lemma ���� Let � be a �SAT instance with n variables and n clauses� Let F be any
�eld and let X�� � � � � Xn be formal variables taking values over F� There is a set of n cubic
equations fpi�Xi�� Xi�� Xi�
 � � � i � 	� ��� ng� such that a sequence a�� � � � � an � F represents
a satisfying assignment i�

pi�ai� � ai�� ai�
 � � �i � �	� n� ��	




���� POLYNOMIAL CODES AND THEIR USE �	

The set of equations can be constructed in poly�n
 time�

Proof� Let y�� � � � � yn be the variables of � Arithmetize each clause of � as follows For
i � 	� � � � � n� associate the �eld variable Xi with the boolean variable yi In each clause
replace yi by 	
Xi� the operation � by  � � multiplication over F
 and �yi by Xi Thus
for example� clause yi��yj �yk is replaced by the cubic equation �	
Xi
 Xj �	
Xk
 � �
Note that the expression on the left hand side of this equation is is � i! Xi � 	� or Xj � ��
or Xk � 	 That is to say� values of Xi� Xj� Xk that satisfy the equation correspond in a
natural way to boolean values of yi� yj� yk that make the clause true

If the variables involved in the ith clause are yi� � yi� � yi� � the arithmetization above
yields a cubic equation pi�Xi� � Xi�� Xi�
 � � for this clause Thus we get n equations�
one per clause� such that the assignment X� � a�� � � �Xn � an satis�es all of them i! the
corresponding boolean assignment to y�� � � � � yn satis�es � �

������ Algebraic Procedures for Polynomial Codes

In this section we give a �black�box� description of some algebraic procedures concerning
polynomial codes �for details of how they work refer to Section ��
 First we explain how
a veri�er uses them

The veri�er de�nes �using the polynomial extension encoding from De�nition ��
 a
mapping from boolean assignments to polynomials of degree d for some suitable d� and
expects the proof to contain one such polynomial Recall that polynomials are represented
by value� so the proof actually contains some table of values f � Fm � F How can the
veri�er check that f � Fd�x�� � � � � xm�� Our �rst procedure� the test for ��closeness� allows
it to do almost that By looking at very few values of f the procedure determines whether
or not f is ��close �where � is some suitably small constant
 So suppose f is indeed found
to be ��close Our second procedure can reconstruct values of ef � the polynomial closest to
f � at any desired points Together� the two procedures allow the veri�er to assume for all
practical purposes that f is exactly a polynomial

Actually we describe two pairs of procedures The �rst pair is somewhat specialized�
and works only for a special polynomial code called the linear function code� which is the
code Fd�x�� � � � � xm� where F is GF��
� the �eld of two elements� and degree d is 	 This
code will be used in Section ��

Procedure ��� �Procedures for the linear function code��� Let F be the �eld GF��


�i
 Test for ��closeness� Given any function f � Fm � F and � 
 ��	� the procedure tests
f for ��closeness� by examining only O�	��
 values of f  If f is a codeword� the procedure
accepts with probability 	 If f is not ��close it rejects with probability � 	��

�ii
 Reconstructing Values of ef � Given any ��close function f � Fm � F� and b � Fm

this procedure outputs ef�b
 with probability at least 	
 �� It reads the value of f at only
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� points

Complexity� The procedures examine f in O�	��
 random locations which� assuming � is
a constant� requires O�log jFjm
 � O�m
 random bits Apart from the time taken to read
these values� the procedures perform only O�	
 operations in GF��
� which takes only O�	

time

Next� we describe the procedures for polynomial codes of degree higher than 	 Two
di!erences should be noted First� the procedures for general degree d require additional
information� in the form of a separate table T  �We emphasize that the correctness of the
procedure does not depend upon the contents of the table before using any information
from the table� the procedure �rst checks "probabilistically" that it is correct Nevertheless�
reading information from the table helps e�ciency� since checking that it is correct is easier
than generating it from scratch
 Second� the total number of entries read by the procedures
is some constant independent of the degree d and number of variables m Even more
signi�cantly� in part �ii
� the number of entries read is independent of c� the number of
points at which the procedure is constructing values of ef  The fact that both procedures
examine only O�	
 entries in the tables will be crucial for our strongest constructions

Procedure ��� �Procedures for the general polynomial code��� Let F be the �eld
GF�q

�i
 Test for ��closeness� Given f � Fm � F� a number d such that q � 	��d�� and and table
T 
If f is a codeword there exists a table T such that the procedure accepts with probability
	 If f is not ��close to Fd�x�� � � � � xm�� the procedure rejects with probability at least 	��
�irrespective of T 
 The procedure reads O�	��
 entries from T and the same number of
values of f 

�ii
 Reconstructing Values of ef � Let c� d be integers satisfying 	��cd 
 q
Given� a ��close function f � Fm � F� a sequence of c points z�� � � � � zc � Fm� and a table
T 
The procedure reads 	 values of f and 	 entry from T  If f is a codeword� there exists a
table T such that the procedure always outputs the correct values of ef�z�
� � � � � ef �zc
 �and
in particular never outputs REJECT
 But otherwise with probability 	
�

p
� �irrespective

of T 
 the procedure either outputs REJECT� or correct values of ef �z�
� � � � � ef�zc


Complexity� The �rst procedure runs in time poly�m � d � log 	��
� the second in time
poly�m � d � c
 Randomness is required only to generate O�	
 elements of Fm� so only
O�m log jF j
 random bits are needed

Note� Whenever we use Procedure ��� the function f is supposed to represent a sequence
of n bits The �eld size� the degree and the number of variables have been carefully chosen
so that jFjm � poly�n
 Thus the procedures require O�m log jFj
 � O�logn
 random bits
Also� the degree� the number of variables �and c� the number of points in Procedure ����ii


is poly�logn
� so both the running time and the size of the table entries are poly�logn
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������ An Application� Aggregating Queries

As an immediate application of Procedure �� we prove a general result about how to
modify any veri�er so that all its queries to the proof get aggregated into O�	
 queries The
modi�cation causes a slight increase in the number of random bits and the alphabet size

Lemma ���� Let L be any language� For every normal form veri�er V for L that uses
O�r�n

 random bits and has decision time poly�t�n

 there is a normal form veri�er V � for
L that is �r�n
�	 � log t�n�

log r�n�
� 	� t�n
 � r�n

�restricted�

Proof� �For starters� we ignore the property of normal form veri�ers having to do with
checking assignments that are split into many parts


The main idea in the construction of the new veri�er V � is that the proof is now supposed
to be in a di!erent format It contains a polynomial extension of a string of bits that the old
veri�er V would have accepted as a proof with probability 	 What enables V � to �bunch
up� its queries to a proof in this format is the magical ability of Procedure ����ii
 to extract
many values of a provided polynomial by reading only O�	
 entries in some accompanying
tables

Now we state the construction more precisely Let us �x an input x of size n Let R
and t stand for the number of random bits and the decision time of V respectively Note
that R � O�R�n

� t � poly�t�n

 The number of bits of information that V can read and
process is upperbounded by the decision time� t We will assume wlog that exactly t bits
are read in each run Since there are only �R di!erent possible runs �one for each choice
of the random string
� and in each run� exactly t bits are read� we may assume that every
provided proof�string has size N � where N 	 �Rt Let us call a string in f�� 	gN as perfect
if V accepts it with probability 	

Assume �by allowing the proof to contain unnecessary bits if necessary
 that N � �l�	
j

for some integers j� l Let F be a �eld such that ��� l� � F �we specify the values of the
paramaters later
 Recall from De�nition �� that every string s in f�� 	gN �in other words�
s is a proof that the old veri�er can check
 has a polynomial extension bs in Fjl�x�� � � � � xl�
The sequence of values that bs takes on ��� j�l is exactly s

The new veri�er V � expects� as a proof that the input is in the language� a function that
is a polynomial extension of a perfect string But given such a function� say g � Fl � F� how
to check that it represents a perfect string� First� the veri�er checks " using Procedure ���
�i
 " that g is ��close for some small enough � Then it must check whether the sequence of
values of eg on ��� j�l is a perfect string �Admittedly� the sequence of values of eg is a string
of �eld elements and not of bits� but we can view it as a string of bits by interpreting the
zero of the �eld as the bit � and every non�zero as the bit 	
 To do this� V � runs the old
veri�er V on the sequence� and accepts i! V rejects Since V queries t bits while checking
a proof� the new veri�er V � needs to reconstruct the values taken by eg at some t points
in ��� l�j It uses Procedure ����ii
 for this purpose� and therefore needs to read only O�	

entries in some provided table
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Our informal description of V � is complete A more formal description appears on the
next page Next� we prove that V � is a correct veri�er for language L

If x � L� there is a perfect string When V � is provided with a polynomial extension
of this string� along with all the proper tables required by Procedure ��� it accepts with
probability 	

Program of V ��

Given� f � Fj � F� tables P and P�� � � � � P�R

�i� Use Procedure ����i
 and table P to check that f is ���	�close
if the procedure fails

�� f is not a polynomial
output REJECT and exit

�ii� Pick a random r � f�� 	gR
Compute the sequence of t locations in �	� N � that
V would examine in a proof using r as random string

�� �As indicated above� these locations may be
�� viewed as points in ��� l�j��

Use Table Pr and Procedure ����ii
 to reconstruct

the values of ef on these t locations
�� �As indicated above� these values may be
�� viewed as bits��

If the Procedure rejects�
REJECT

else
simulate V �s computation on these t bits
and ACCEPT i! it accepts

exit

We show that when x �� L then V � rejects every proof with probability at least 	�� 

�
p

���	 Let �f� P� P�� � � � � P�R
 be any proof given to V � If f is not ���	�close� part �i
 of
the program rejects with probability at least 	�� So assume wlog that f is ���	�close
Let ( be the string of bits whose extension is ef  Since x �� L� the old veri�er V must reject
( with probability at least 	�� But the new veri�er merely simulates V on (� except that
the simulation may sometimes be erroneous if Procedure ����ii
 fails to produce the correct
bits of ( The probability that Procedure ����ii
 outputs an erroneous answer is at most
�
p

���	� since f is ���	�close Thus the probability that the new veri�er V � rejects while
simulating V is at least 	��
 �

p
���	

Hence we have shown the correctness of V as a veri�er for language L
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Complexity� The properties of Procedure �� imply that V � reads only O�	
 entries from
the provided tables By viewing each table entry as a symbol in some alphabet� we conclude
that V � reads only O�	
 symbols from the proof Now we specify the minimum �eld size
that makes everything else work out Recall that N � �Rt Assume l � poly�logN
 Since
lj � N � this means j � )�logN�log logN
 Let �eld size q be the larger one of poly�jl

and poly�jT 
 This is the minimum we need for Procedure �� to work as claimed

The decision time of V � is �Decision time of V 
 � �Time for procedure ��
� which is
T � poly�jlT 
 � poly�R� T 
 The amount of randomness it uses is

R � O�log jFjj
 � O�R� j logT 
 � O�R �
R logT

logR

�

Thus V � respects the claimed bounds

Checking assignments split into p parts� The modi�cation is the same That is to
say� V � expects each of the p split parts to be represented by its polynomial extension� along
with tables similar to the ones above

�

���� A Veri	er Using O�logn� Random Bits

In this section we prove Theorem ��� one of the two theorems we wanted to prove in
this chapter One essential ingredient is the following lemma� whose proof appears in
Section ��	

Lemma ���� There exists a normal form veri�er for �SAT that is �logn� poly�logn
� logn
�
restricted�

Theorem �� follows easily from this lemma by using the general procedure for aggre�
gating queries into O�	
 queries

Proof� �Theorem ���
 The veri�er of Lemma �� fails the requirements of Theorem �� in
just one way� it reads poly�logn
 symbols in the proof instead of O�	
 However� Lemma ��
allows us to aggregate the queries of this veri�er� and replace them with O�	
 queries A
quick look at the accompanying blow�up in decision time and amount of randomness shows
that it is not too much

Using Lemma �� on the veri�er of Lemma ��� we obtain a �logn� 	� logn
�restricted
veri�er �
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������ A Less E�cient Veri	er

This section contains a proof of Lemma �� The exposition of the proof uses a mix of ideas
from �BFL�	� BFLS�	� FGL��	�

Let � be an instance of �SAT and F a �nite �eld The veri�er will use the fact �see
De�nition ��
 that every assignment can be encoded by its polynomial extension

De�nition ��
� A satisfying polynomial for �SAT instance � is a polynomial extension of
a satisfying assignment for � �Note� see De�nition ��� for a more detailed de�nition��

De�nition ���� The sum of a function g � Fk � F on a set S � Fk is the value
P

x�S g�x
�

The veri�er expects the proof to contain a satisfying polynomial� for some speci�ed
choice of parameters m� h Using the procedure described in Section �		� the veri�er
checks that the provided function f is ��close Next� it has to check that ef � the polynomial
nearest to f � is a satisfying polynomial The veri�er reduces this question probabilistically
�using Lemma ��
 to whether or not a certain related polynomial P sums to � on a certain
�nicely behaved� set S �A set S is �nicely behaved� if it is of the type ��� l�i for some
integers l� i
 The Sum�check procedure �Procedure ��
 can e�ciently verify the sum of a
polynomial on a �nicely behaved� set The veri�er uses this procedure to verify that the
sum of polyomial P on S is � if it is not� the veri�er rejects �While doing the Sum�check�
the veri�er needs to reconstruct values of ef � which is also easy to do using the the procedure
in Section �		


Now we set out the parameters used in the rest of this section Assume m� h are integers
such that h � O�logn
� n � �h � 	
m �if n is not of this form� we add unnecessary
variables and clauses until it is
 Note that this means m � ���logn
�log log n
 Finally�
let F � GF�q
 be a �eld of size poly�h
 Then a function f � Fm � F is represented by
qm � hO�m� � poly�n
 values

The following lemma describes an algebraic condition that characterizes a satisfying
polynomial

Lemma ��
 �Algebraic View of �SAT�� Given A � Fmh�x�� � � � � xm�� there is a poly�
nomial time constructible sequence of poly�n
 polynomials PA

� � P
A
� � � � � � F��mh�x�� � � � � x�m�

such that

� If A is a satisfying polynomial for � then each of PA
� � P

A
� � � � � sums to � on ��� h��m�

Otherwise at most 	��th of them do�

�� For each i� evaluating PA
i at any point requires the values of A at � points�

Proof� In Lemma �� we replaced clauses of � by cubic equations A sequence of �eld
elements satis�es these equations i! it represents a satisfying assignment to � In this
lemma we replace that set of equations by a more compactly stated algebraic condition
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Since �h � 	
m � n� the cube ��� h�m has n points By de�nition� polynomial A is
a satisfying polynomial i! the sequence of values �A�v
 � v � ��� h�m
 �ordered in some
canonical way
 represents a satisfying assignment� in other words� satisfy the set of cubic
equations in Lemma ��

For j � 	� �� �� let �j�c� v
 be the function from ��� h�m � ��� h�m to f�� 	g such that

�j�c� v
 � 	 if v is the j
th

variable in clause c� and � otherwise Similarly let sj�c
 be a

function from ��� h�m to f�� 	g such that sj�c
 � 	 if the j
th

variable of clause c is unnegated�
and � otherwise The following is a restatement of the set of equations in Lemma ���
A is a satisfying polynomial i! for every clause c � ��� h�m and every triple of variables
v�� v�� v� � ��� h�m� we have

�Y
j	�

�j�c� vj
  �sj�c

A�vj

 � �� ���


that is to say� i!
�Y

j	�

c�j�c� vj
  � bsj�c

A�vj

 � �� ���


where in the previous condition we have replaced functions �j and sj appearing in condition
���
 by their polynomial extensions� c�j � F�m � F and bsj � Fm � F respectively Con�
ditions ���
 and ���
 are equivalent because by de�nition� a polynomial extension takes
the same values on the underlying cube �which is ��� h�m for sj and ��� h��m for �j
 as the
original function

Let gA � F�m � F� a polynomial in Fmh�x�� � � � � x�m�� be de�ned as

gA�z� w�� w�� w�
 �
�Y

j	�

c�j�z� wj
  � bsj�z

 A�wj

 ���


where each of z� w�� w�� w� is a vector of m variables� z � �x�� � � � � xm
� w� � �xm��� � � � � x�m
�
w� � �x�m��� � � � � x�m
� w� � �x�m��� � � � � x�m
�

Then we may restate condition ���
 as� A is a satisfying polynomial i!

gA is � at every point of ��� h��m ���


in other words� i! for every polynomial Ri in the �zero�tester� family we will construct in
Lemma ���

Ri  gA sums to � on ��� h��m� ���


Further� if the condition in ���
 is false� the statement of Lemma �� implies that the
condition ���
 is false for at least ��� of the polynomials in the �zero�tester� family

Now de�ne the desired family of polynomials
n
PA
� � P

A
� � � � � �

o
by

PA
i �z� w�� w�� w�
 � Ri�z� w�� w�� w�
 gA�z� w�� w�� w�
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where Ri is the ith member of the �zero�tester� family Note that PA
i � F��mh�x�� � � � � x�m�

Further� evaluating PA
i at any point requires the value of gA at one point� which �by

inspecting ���

 requires the value of A at three points

Thus the claim is proved

Constructibility� The construction of the polynomial extension in the the proof of The�
orem �� is e!ective We conclude that the functions c�j � bsj can be constructed in poly�n

time

Thus� assuming Lemma ��� Lemma �� has been proved

�

The following lemma concerns a family of polynomials that is useful for testing whether
or not a function is identically zero on the cube ��� h�j for any integers h� j

Lemma ���� 	�Zero�tester� Polynomials� 	BFLS�� FGL���� There exists a family of
qO�m� polynomials fR�� R�� � � �g in F�mh�x�� � � � � x�m� such that if f � ��� h��m � F is any
function not identically �� then if R is chosen randomly from this family�

Pr�
X

y����h��m
R�y
f�y
 � �� 	 	

	��
� ���


This family is constructible in qO��m� time�

Proof� In this proof we will use the symbols �� 	� � � � � h to denote both integers in f�� � � � � hg�
and �eld elements We use boldface to denote the latter use Thus  � F for example

For now let t�� � � � � t�m be formal variables �later we give them values
 Consider the
following degree h polynomial in t�� � � � � t�m

X
i
�
�i
�
�����i

�m
� ���h�

f�i
�
� i
�
� � � � � i

�m


�mY
j	�

t
ij
j � ���


This polynomial is the zero polynomial i! f is identically  on ��h��m Further� if it
is not the zero polynomial then its roots constitute a fraction no more than �hm�q of all
points in F�m Assume that this fraction is less than 	�	��

We prove the lemma by constructing a family of q�m polynomials�
fRb������b�m � b�� � � � � b�m � Fg� such thatX

�i��i������i�m�� ���h�

Rb������b�m�i
�
� i
�
� � � � � i

�m

f�i

�
� i
�
� � � � � i

�m

 � 
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i! �b�� � � � � b�m
 is a root of the polynomial in ���


Denote by Iti�xi
 the univariate degree�h polynomial in xi whose values at � �� � � � �h � F
are �� ti� � � � � t

h
i respectively �such a polynomial exists� see Fact A�


Let g be the following polynomial in variables x�� � � � � x�m� t�� � � � � t�m

g�t�� � � � � t�m� x�� � � � � x�m
 �
�mY
i	�

Iti�xi
�

Note that X
i
�
�i
�
�����i

�m
� ���h�

f�i
�
� i
�
� � � � � i

�m

 g �t�� � � � � tm� i� � i� � � � � � i�m


�
X

i
�
�i
�
�����i

�m
� ���h�

f �i
�
� i
�
� � � � � i

�m


�mY
j	�

t
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Now de�ne Rb������b�m as the polynomial obtained by substituting t� � b�� � � �� t�m � b�m
in g

Rb������b�m�x�� � � � � x�m
 � g�b�� � � � � b�m� x�� � � � � x�m
�

This family of polynomials clearly satis�es the desired properties �

Example ���� We write a polynomial g for checking the sums of functions on ��h�p for
h � � and p � �

g�t�� t�� x�� x�
 � ��� x��t� 
 �

��� x��t� 
 �

� ���


Hence we haveX
x��x��������

f�x�� x�
g�t�� t�� x�� x�
 � f�� 
 � f��� 
t� � f�� �
t� � f��� �
t�t�� ��	�


Clearly� the polynomial in ��	�
 is nonzero if any of its four terms is nonzero

Now we give a black�box description of Sum�check� a procedure that checks the sums of
polynomials on the cube ��� p�l for some integers p� l Section ��	 describes the procedure
more completely

Procedure ��� �Sum	Check�� Let F � GF�q
 and d� l be integers satisfying �dl 
 q
Given� B � Fd�y�� � � � � yl�� p � F� a value c � F� and a table T 
If the sum of B on ����p�l is not c� the procedure rejects with probability at least 	�� But
if the sum is c� there is a table T such that the procedure accepts with probability 	

Complexity� The procedure uses the value of B at one random point in Fl and read another
O�ld log jFj
 bits from the proof It runs in time poly�l � d � log jFj




�� CHAPTER �� A PROOF OF THE PCP THEOREM

Now we prove Lemma ��

Proof� �Of Lemma ���
 �For now we ignore the aspect of normal form veri�ers having to
do with checking split assignments


Our veri�er expects the proof to contain a function f � Fm � F� and a set of tables
described below �In a good proof� f is a satisfying polynomial�


One of these tables allows the veri�er to check that f is ���	�close �using Procedure ���
�i



Another set of tables allows the veri�er to perform a Sum�check on each polynomial

in the family

�
P
ef
� � P

ef
� � � � � �

�
constructed in Lemma �� concerning the algebraic view of

�SAT

Another set of tables allows the veri�er to reconstruct the value of ef at any three points

The veri�er works as follows It checks that ef is ���	�close Then� to checks that ef is
a satisfying polynomial� it uses the algebraic view of �SAT  It uses O�logn
 random bits
to select a polynomial P uniformly at random from the family of Lemma ��� and uses the
Sum�check �Procedure ��
 to check that P sums to � on ��� h��m �We have described the
veri�cation as a sequence of steps� but actually no step requires results from the previous
steps� so they can all be done in parallel


The Sum�check requires the value of the selected polynomial P at one point� which by
the statement of Lemma �� requires values of ef at � points The veri�er reconstructs these
three values using Procedure ����ii
� and the appropriate table in the proof

Correctness� Suppose � is satis�able The veri�er clearly accepts with probability 	 any
proof containing the polynomial extension of a satisfying assignment� as well as proper
tables required by the various procedures

Now suppose � is not satis�able If f is not ���	�close� the veri�er rejects with probability
at least 	�� So assume wlog that f is ���	�close The veri�er can accept only if one of the
three events happens �i
 The selected polynomial P sums to � on ��� h��m By Lemma ��
this event can happen with probability at most 	�� �ii
 P does not sum to �� but the
Sum�check fails to detect this The probability of this event is upperbounded by the error
probability of the Sum�check� which is O�mh�q
 � o�	
 �iii
 Procedure ����ii
 produces
erroneous values of ef  The probability of this event is upperbounded by �

p
���	 	 ���

To sum up� if � is not satis�able� the probability that the veri�er accepts is at most
	�� � ��� � o�	
� which is less than 	 By running it O�	
 times� the probability can be
reduced below 	��

Complexity� By inspecting the complexity of the Sum�check� the low�degree test� and the
test for ��closeness� we see that the veri�er needs only log jFj�m � O�logn
 random bits for
its operation
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To achieve a low decision time the veri�er has to do things in a certain order In its
�rst stage it reads the input� selects the above�mentioned polynomial P and constructs P
as outlined in the proof of Lemma �� All this takes poly�n
 time� and does not involve
reading the proof The rest of the veri�cation requires reading the proof� and consists of the
following procedures� the test for ���	�closeness� the Sum�check� and the reconstruction of
three values of ef  All these procedures run in time polynomial in the degree h� the number
of variables O�m
 and the log of the �eld size� log jFj We chose these parameters to be
poly�logn
 Hence the decision times is poly�logn
� and so is the alphabet size and the
number of queries

To �nish our claim that the veri�er is in normal form� we have to show that it can check
split assignments We do this next �

������ Checking Split Assignments

We show that the veri�er of Lemma �� can check assignments that are split into k parts
for any positive integer k

Recall �from De�nition ��
 that in this setting the veri�er de�nes an encoding method
� and expects the proof to be of the form �S�
�  ��Sk
��� where � is some information
that allows an e�cient check that S� �   �Sk is a satisfying assignment �� � concatenation
of strings


In this case we assume the �SAT instance � has nk variables� split into k equal blocks�
�y�� � � � � yn
� � � � � �yn�k������ � � � � ynk


Let n � �h � 	
m� with m� h the same as in the proof of Lemma �� The veri�er uses
the encoding  that maps strings in f�� 	gn to their degree�mh polynomial extensions In
other words the proof is required to contain k functions f�� � � � � fk � Fm � F Part � has to
contain a set of tables �In a good proof� f�� � � � � fk are m�variate extensions of assignments
to the k blocks� such that the overall assignment is a satisfying assignment�


While checking such a proof� the veri�er follows the program of Lemma �� quite closely
It �rst checks that each f�� � � � � fk is ��	�close Then� using a modi�cation of the algebraic
view of �SAT �Lemma ��
� it reduces the question of whether or not ff� � � � �ffk together
represent a satisfying assignment to a single Sum�check The modi�cation is the following

Corollary ���� Given A�� � � � � Ak � Fmh�x�� � � � � xm�� there is a sequence of polynomials
P
A������Ak
� � PA������Ak

� � � � � �� F��mh�x�� � � � � x�m� such that

� If A�� � � � � Ak together represent a satisfying assignment then all of P
A� �����Ak
� � PA������Ak

� �
� � � sum to � on ��� h��m and otherwise at most 	�� of them do�

�� the value of PA������Ak
i at any point can be constructed from the values of A�� A�� � � � � Ak

at � points each�
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Proof� For j � 	� �� � and i � 	� �� � � � � k let pij be a function from ��� h�m� ��� h�m to f�� 	g
such that pij�c� v
 is 	 i! y�i���n�v is the j�th variable in clause c �Note� pij is some kind
of �multiplexor� function


Use the same arithmetization as in lemma ��� except replace A�vj
 by
Pk

i	� cpij�vj
Ai�vj

�

���� A Veri	er using O��� query bits

Now we prove Theorem �� about the existence of a �n�� 	� 	
�restricted normal form veri�er
for �SAT In this section G denotes the �eld GF��
 and ��  denote operations in G �We
will often write x  y as xy where this causes no confusion
 Let � denote a �CNF formula
that is the veri�er�s input� and let n be the number of variables and clauses in it

A function f � Gk � G is called linear if for some a�� � � � � ak � G it can be described as
f�x�� � � � � xk
 �

Pk
i	� aixi Since each coe�cient ai can take only two values� the set of n�

variate linear functions is in one�to�one correspondence with the set of possible assignments
to �

De�nition ���� A linear function
Pn

i	� ai  xi is called a satisfying linear function for � if
its coe�cients a�� � � � � an constitute a satisfying assignment to � �where we view 	 � G and
� � G as the boolean values T � F respectively


The veri�er expects the proof to contain a satisfying linear function� plus some other
information As in Section �	� we assume that functions are represented by a table of their
values at all points in the �eld A satisfying linear function is represented by jGjn � �n

values�

In its basic outline� this veri�er resembles the one in Lemma �� First it checks that
the provided function� f � is ���	�close to the set of linear functions Then it writes down a
sequence of algebraic conditions which characterize satisfying linear functions� and checks
that ef � the linear function closest to f � meets these conditions Instead of the Sum�check�
it uses Fact �	�

The following lemma describes the set of algebraic conditions

Lemma ���� Let � be a �SAT instance with n variables and n clauses and let X�� � � � � Xn

be variables taking values over GF��
� There is a poly�n
 time construction of n cubic
equations fpi�Xi�� Xi� � Xi�
 � � � 	 	 i 	 ng� such that any linear function

Pn
i	� aixi is a

satisfying linear function for � i�

pi�ai� � ai�� ai�
 � � �i � �	� n� ��		


�There is no problem with the proof being of size 
n� Recall that the veri�er has random access to the
proof string� so it requires only O�log 
n� � O�n� time to access any bit in this proof�
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Proof� Identical to that of Lemma �� �

The following fact about a non�zero vector of bits forms the basis of the veri�er�s prob�
abilistic tests

Fact ���� Let c�� � � � � ck be elements of G that are not all zero� Then for r�� � � � � rk picked
randomly and independently from G�

Pr
r������rk

�
X
i

ci  ri �� �� �
	

�
�

Proof� Assume wlog that ck �� � After r�� � � � � rk�� have been picked� the sum
P

i ci  ri
is still equally likely to be � or 	 �

We describe an application of the above fact We need the following de�nition

De�nition ���� Let b� c be the following linear functions in k and l variables respectively�Pk
i	� bixi and

Pl
j	� cixi The tensor product of b and c� denoted b�c� is the following linear

function in kl variables��
Pk

i	�

Pl
j	� bicjzij 

The following lemma implicitly gives a procedure for testing� given linear functions
b� c� d� whether or not d is the tensor product of b and c The probabilistic test appearing
in the statement of the lemma requires one value each of all three functions

Lemma ���� �Testing for Tensor Product�� Let b� c� d be the following linear functions
in k� l and kl variables respectively�

Pk
i	� bixi�

Pl
j	� cixi and

Pk
i	�

Pl
j	� dijzij If d �� b� c

then for u�� � � � � uk� and v�� � � � � vl chosen randomly from G

Pr
u� �����v������

�
X
i�j

dij  ui  vj �� �
X
i

bi  ui
�
X
j

cj  vj
� � 	��

�where the indices i� j take values in �	� k� and �	� l� respectively��

Proof� Consider the two k� l matrices M�N de�ned as M�i�j� � �dij
 and N�i�j� � �bi  cj

If d �� b � c then M �� N  Let a vector bu � �u�� � � � � uk
 be picked randomly from Gk
Fact �	� implies that with probability at least 	���

buM �� buN
�where buM stands for the product of vector bu with the matrix M as de�ned normally


�In normal mathematical usage� d would be called the linear function whose sequence of coe�cients is
the tensor product of the sequence of coe�cients of b with the sequence of coe�cients of c�
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Now let vector bv � �v�� � � � � vl
 be also picked randomly from Gl Fact �	� implies that
with probability at least 	��� buTM bv �� buTN bv�
Hence the lemma is proved �

Now we prove Theorem ��

Proof��Theorem ���� The veri�er expects the proof to contain tables of three functions�

f � Gn � G� g � Gn� � G� and h � Gn� � G �In a good proof� f is a satisfying linear
function and g � f � f � h � f � g�
 For ease of exposition� we describe the veri�cation as
consisting of a sequence of three steps However� the veri�er can actually do all three in
parallel� since no step uses the results of the previous step

Step � The veri�er runs Procedure �	��i
 to check f� g� h for ���	�closeness� and rejects
outright if that procedure rejects any of f� g� h

Procedure �	��i
 reads only O�	
 values each of f� g� h� and rejects with high probability
if either of the three is not ���	�close Assume for argument�s sake that the probability that
it rejects is not high Then all three functions are ���	�close Let ef � eg� eh be the linear
functions closest to f� g� h respectively

Step �� The veri�er runs a test that rejects with high probability if either eg �� ef � ef � oreh �� ef � eg

The statement of Lemma �		 implicitly shows how to do Step � For instance� to checkeg � ef � ef � the veri�er can repeat the following test O�	
 times� Pick random �u�� � � � � un

and �v�� � � � � vn
� and check that

eg��uivj

 � ef �u�� � � � � un
 ef�v�� � � � � vn
�

where �uivj
 is used as shorthand for a vector of length n� whose �i� j
 coordinate for
i� j � �	� n� is uivj 

For this test the veri�er needs to reconstruct values of ef at � points and that of eg at 	
point It uses Procedure �	��ii
� to do this� while reading the values of f� g� h at only O�	

points in the process

Assume for argument�s sake that Step � does not reject with high probability Theneg � ef � ef and eh � ef � eg In other words� if the ef �
P

i aixi� then

eg��yij

 �
X
i�j

aiajyij and

eh��zijk

 �
X
i�j�k

aiajakzijk�
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where i� j� k � �	� n�

Step �� The veri�er runs a test that rejects with high probability if ef is not a satisfying linear
function� that is� its coe�cients a�� � � � � an do not satisfy condition ��		
 in Lemma ��

The veri�er picks a random vector �r�� � � � � rn
 � Gn� and checks that

nX
i	�

ri  pi�ai� � ai� � ai�
 � ��

Suppose a�� � � � � an are such that the n�bit vector �pi�ai� � ai� � ai�
 � i � f	� � � � � ng
 is not
the zero vector Then Fact �	� implies that the test rejects with probability 	��

But how can the veri�er compute the sum
Pn

i	� ri  pi�ai� � ai� � ai�
� Note that the sum
is a linear combination of the pi�s� which since the pi�s are cubic� can be expressed as the
sum of one value each of the functions

P
i aixi�

P
i�j aiajyij � and

P
i�j�k aiajakzijk  In other

words� the veri�er only needs to reconstruct one value each of ef � eg� eh respectively This is
easy

This �nishes the description of the veri�er

Complexity� Steps 	� � and � require reading only O�	
 bits from the proof They require

O�log jGjn�
 random bits� in other words� O�n�
 random bits

Correctness� Suppose formula � is satis�able It is clear that Steps 	� � and � never reject
a proof containing a satisfying linear extension and its tensor products

Now suppose � is not satis�able� and so there is no satisfying linear function either
One of the following must be true� one of f� g� h is not ���	�close� or the tensor�product
property is violated� or the condition in ��	
 is violated In each case� one of Steps � � or
� rejects with probability at least 	��

We still have to show how the veri�er can check assignments split into many parts� as
required by De�nition �� We show this next �

������ Checking Split Assignments

We sketch how the veri�er of Theorem �� can also check assignments split into many parts

Recall �from De�nition ��
 that in this setting the veri�er de�nes an encoding method
� and expects a proof to be of the form �S�
 �   ��Sk
 ��� where � is some information
that allows an e�cient check that S��  �Sk is a satisfying assignment �� � concatenation


In this case we assume the �SAT instance � has nk variables split into k equal�sized
blocks� �y�� � � � � yn
� � � � � �yn�k������ � � � � ynk
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The veri�er uses the encoding  that maps a string �a�� � � � � an
 � f�� 	gn to the linear
function

Pn
i	� aixi� In other words the proof is required to contain k functions f�� � � � � fk �

Fm � F Part � contains a set of tables �In a good proof� fi is a linear function representing
an assignment to the variables in the ith block� such that the overall assignment represented
by f�� � � � � fk is a satisfying assignment� Part � contains f � f and f � f � f � where f is
the linear function de�ned below�


The veri�er uses Procedure �	 to check that f�� � � � � fk are ���	�close Suppose the
procedure does not reject Then the veri�er de�nes a function f � Gnk � G as

f�x�� � � � � xnk
 �
kX
i	�

efi�xn�i������ � � � � xni
�
Clearly� f is a linear function and its nk coe�cients form a sequence that is the concatenation
of the sequences formed by the coe�cients of ff�� � � � � and ffk Now the veri�er uses f in
Steps � and � exactly as before Clearly� if f is not a satisfying linear function� the veri�er
rejects with high probability

From the de�nition of f it should be clear that only O�	
 values each of f�� f�� � � � � fk
need to be read

���� The Algebraic Procedures

Now we describe in some detail the Procedures �	� �� and �� Throughout this section
F denotes a �eld A procedure may work only for certain �eld sizes� in which case we will
specify these sizes explicitly

������ Sum
Check

We describe Procedure ��� the Sum�Check The inputs to the procedure consist of a degree�
d polynomial B in l variables� a set H � F� and a value c � F The procedure has to verify
that the sum of the values of B on the subset H l of Fl is c It will need� in addition to the
table of values of B and the integers l and d� an extra table We describe �rst what the
table must contain

For a � F let us denote by B�a� y�� � � � � yl
 the polynomial obtained from B by �xing
the �rst variable to a

When we �x all variables of B but one� we get a univariate polynomial of degree at most
d in the un�xed variable It follows that the sumX

yi�� ����yl�H
B�a�� ��� ai��� yi� yi��� ��� yl
 ��	�
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for i st 	 	 i 
 l� and a�� � � � � ai�� � F� is a degree�d univariate polynomial in the variable
yi We denote this sum by Ba�����ai��

�yi
 �For i � 	 the notation Ba��y�
 does not make
sense� so we use the notation B��y�
 instead


Example ���� The univariate polynomial B��y�
 is represented by d�	 coe�cients When
we substitute y� � a in this polynomial we get the value B��a
� which� by de�nition� is the
sum of B on the following sub�cube�

f�x�� � � � � xl
 � x� � a� and x�� � � � � xl � Hg �
�Alternatively� we can view the value B��a
 as the sum of B�a� y�� � � � � yl
 on H l��


Thus B��y�
 is a representation of q � jFj sums using d � 	 coe�cients Suppose f�y�

is another degree�d univariate polynomial di!erent from B��y�
 Then the two polynomials
agree at no more than d points Hence for q 
 d values of a� the value f�a
 is not the sum
of B�a� y�� � � � � yl
 on H l�� This observation is useful in designing the Sum�check

De�nition ���� A table of partial sums is any table containing for every i� 	 	 i 	 l� and
every a�� ���� ai�� � F� a univariate polynomial ga����ai��

�yi
 of degree d The entire table is
denoted by g

Now we describe Procedure �� It expects the table T to be a table of partial sums
�In a good proof� the table contains the set of polynomials de�ned in ������


Sum	Check

Inputs� B � Fd�x�� � � � � xl�� c � F
To Verify� Sum of B on H l is c
Given� Table of partial sums� g

current�value � c
Pick random a�� � � � � al � F
For i � 	 to l do

if current�value �� P
yi�H ga�����ai��

�yi

output REJECT exit

else

current�value � ga�����ai��
�ai


If g�a�� � � � � al��
�al
 �� B�a�� � � � � al

output REJECT

else

output ACCEPT

Complexity� The procedure needs l log q random bits to generate elements a�� � � � � al ran�
domly from F It needs the value of B at one point� namely� �a�� � � � � al
 In total� it
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reads l entries from the table of partial sums� where each entry is a string of size at most
�d � 	
 log q It performs O�ldh
 �eld operations� where h � jH j Therefore the running
time is poly�ldh log q


Correctness� Suppose B sums to c on H l The procedure clearly accepts with probability
	 the table of partial sums containing the univariate polynomials B�� Ba��y�
� etc de�ned
in � �	�


Suppose B does not sum to c The next lemma shows that the procedure rejects with
high probability

Lemma ����� �B � Fd�x�� � � � � xl�� c � F� if B does not sum to c on H l then

Pr�the Sum�check outputs REJECT � � 	
 dl

q

regardless of what the table of partial sums contains�

Proof� The proof is by induction on the number of variables� l Such an induction works
because the Sum�check is essentially a recursive procedure� it randomly reduces the problem
of checking the sum of a polynomial in l variables to checking the sum of a polynomial in
l 
 	 variables

To see this� view the table of partial sums as a tree of branching factor q �see Fig�
ure ��
 The polynomial g��y�
 is stored at the root of the tree� and the set of polynomials
fga��y�
 � a� � Fg are stored on the children of the root� and so on

The �rst step in the Sum�check veri�es that that the sum of the values taken by g� on
the set H is c Suppose the given multivariate polynomial B does not sum to c on H l
Then the sum of the values taken by B� on H is not c� and the �rst step can succeed only
if g� �� B� But if g� �� B� then� as observed in Example ��� g��a
 �� B��a
 for q 
 d vals of
a in F That is to say� for q
d values of a� the value g��a
 is not the sum of B�a� y�� � � � � yl

on H l�� Since d� q it su�ces to picks a value for y� randomly out of F� say a�� and check
�recursively
 that B�a�� y�� � � � � yl
 sums to g��a�
 on H l�� �Note� While checking the sum
of B�a�� y�� � � � � yl
 on H l��� the recursive call must use as the table of partial sums the
sequence of polynomials stored in the a�th sub�tree of the root
 This is exactly what the
remaining steps of the Sum�check do In this sense the Sum�check is a recursive procedure

Now we do the inductive proof

Base case� l � 	 This is easy� since B�y�
 is a univariate polynomial� and B� � B
The table contains only one polynomial g� If g� � B� then g� doesn�t sum to c either and
is rejected with probability 	 If g� �� B� then the two disagree in at least q 
 d points
Therefore Pra� �g��a�
 �� B�a�
� � 	
 d�q

Inductive Step� Suppose the assumption is true for all polynomials in l 
 	 variables
Now there are two cases
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g   (y  )1

g   (y  )

g     (y  )

a 1

a1

a al −11
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=  | F |

ε
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Figure ��� A table of partial sums may be conceptualized as a tree of branching factor q
The Sum�check follows a random path down this tree

Case �i
� g� � B� In this case�X
y��H

g��y�
 �
X
y��H

B��y�
 �� c�

so the procedure will REJECT rightaway �ie� with probability 	
 So the inductive step is
complete

Case �ii
� g� �� B� In this case� as observed in Example ��� for q 
 d vals of a�

g��a
 �� B��a
� ��	�


Let a� � F be such that g��a�
 is not the sum of B�a�� y�� � � � � yl
 on H l�� By the inductive
assumption� no table of partial sums can convince the Sum�check with probability more
than d�l
 	
�q that g��a�
 is the sum of B�a�� y�� � � � � yl
 on H l�� In particular� the table
of partial sums stored in the subtree rooted at the a�th child of the root cannot make the
Sum�check accept with probability more than d�l
 	
�q Since this is true for q 
 d values
of a�� the overall probability of rejection is at least � q�dq 
�	
 d�l
 	
�q
 � 	
 dl�q

In either case� the inductive step is complete

�

������ Procedures for the Linear Function Code

In this section� F denotes the �eld GF��
 Our �rst procedure checks whether or not a given
function f � Fm � F is ��close to a linear function It uses the following obvious property
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of linear functions A function h � Fm � F is linear i! for every pair of points �y�� � � � � ym

and �z�� � � � � zm
 in Fm it satis�es

h�y� � z�� � � � � ym � zm
 � h�y�� � � � � ym
 � h�z�� � � � � zm
� ��	�


�The only if part of the statement is easy the if part follows from Fact A� in the
appendix


The procedure uses a stronger version of the above statement� if h satis�es the property
in �	� for �most� pairs of m�tuples� then h is ��close for some small �

Test for �	closeness� Procedure ���	�i��

Given� f � Fm � F where F � GF��


repeat ��� times�
Pick points y� z randomly from Fm
if f�y
 � f�z
 �� f�y � z


�� Note� � on the left is addition mod � and
�� that on the right is componentwise addition mod ��

exit and REJECT
exit and ACCEPT

Complexity� The test requires 	�m�� random bits� and reads 	��� values of f 

Correctness� Note that if f � F��x�� � � � � xm� then the test accepts with probability 	
According to the contrapositive to the next lemma� if f is not ���close� then the basic step
in the test fails with probability at least � Hence� after repeating the basic step ��� times�
the test rejects with probability close to 	
 	�e�

Theorem ���� ��BLR���� Let F � GF��
 and f be a function from Fm to F such that
when we pick y� z randomly from Fm�

Pr�f�y
 � f�z
 � f�y � z
� � 	
 ��

where � 
 	��� Then f is ���close to some linear function�

Proof� The proof consists in three claims

Claim � For every point b � Fm there is a value g�b
 � f�� 	g such that

Pr
w�Fm

�f�w � b

 f�w
 � g�b
�� 	
 ���
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Proof� Let b � Fm Denote by p the probability Prw�f�w�b

f�w
 � 	�� where w is picked
uniformly at random in Fm De�ne random variables v�� v� �taking values in F
 as follows
Pick points y� z � Fm randomly and independently from Fm� and let v� � f�y � b

 f�y
�
and v� � f�z � b

 f�z
 Clearly� v�� v� are independent random variables that take value
	 with probability p and � with probability �	
 p
 The probability of the event �v� � v��
is exactly p� � �	
 p
� We show that actually this event happens with probability at least
	
 ��� whence it follows that either p � 	
 �� or p 
 �� If p � 	 
 ��� setting g�b
 to 	
ful�lls the requirements of the lemma in the other case� setting g�b
 to � does

Note that � and 
 are the same over GF��
� so

v� 
 v� � f�y � b

 f�y

 �f�z � b

 f�z



� �f�z�y�b

 f�y�b

 � �f�z�y�b

 f�z�b


 f�y

 f�z


Further� y�b and z�b are independently chosen random points Hence the probability that
each of the following two events happens is at least 	
 �� �f�z� y � b

 f�y � b
 � f�z
��
and �f�z � y � b

 f�z � b
 � f�y
� So the probability that they both happen is at least
	
 ��� that is�

Pr��f�z � y � b

 f�y � b

 � �f�z � y � b

 f�z � b


 f�y

 f�z
 � �� � 	
 ���

Thus Pr�v� � v�� � 	
 ��� which �nishes the proof of Claim 	

Claim �� The function g constructed in Claim 	 agrees with f in at least 	
 �� fraction of
b in Fm

Proof� Let � be the fraction of points b � Fm such that f�b
 � g�b


Pick y� z randomly from Fm� and denote by A the event �f�y�z
 � g�y�z
�� and by B

the event �f�y
 � f�y
 � f�y� z
� Note that A and B need not be independent However�
the hypothesis of the theorem implies that Pr�B� � 	
 � Further our assumption was that
Pr�A� � � Now note that

Pr�B� � Pr�B �A� � Pr�B �A�

	 Pr�A� � Pr�B j A�

	 � � ��

where the last line uses the following implication of Claim 	�

Pr��f�y
 � f�z
 � f�y � z
�j�f�y � z
 �� g�y � z
�� 	 ���

But as we observed� Pr�B� � 	
 � Hence � � 	
 �� This �nishes the proof of Claim
�

Claim �� Function g is linear� that is

�a� b � Fm� g�a� b
 � g�b
 � g�a
�
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Proof� Fix arbitrary points a� b � Fm To prove g�a�b
 � g�a
�g�b
� it su�ces to prove the
existence of points y� z � Fm such that each of the following is true� �i
 f�b�a�y�z

f�y�
z
 � g�a�b
 �ii
 f�b�a�y�z

f�a�y�z
 � g�b
 and �iii
 f�a�y�z

f�y�z
 � f�a


For� if �i
� �ii
 and �iii
 are true for any y� z � Fm then

g�b� a
 � f�b� a � y � z

 f�y � z


� f�b� a � y � z

 f�a � y � z
 � f�a � y � z

 f�y � z


� g�b
 � g�a


We prove the existence of the desired y� z in a probabilistic fashion Choose y� z inde�
pendently at random from Fm The probability that any of �i
� �ii
� and �iii
 is true is �by
Claim 	
 at least 	 
 ��� and so the probability that all three are true is at least 	 
 ��
Since �� 
 	� the probability is strictly more than � that we obtain a pair y� z satisfying all
the conditions of the claim It follows that the desired pair y� z exists This proves Claim
�

Finally� note that Claims � and � imply �together with the fact in Equation �	�
 that
f is �	
 ��
�close

�

Now we describe the other procedure connected with the linear function code

Producing a value of ef � Procedure ���	�ii��
Given� f � Fm � F that is ��close F � GF��

Point b � Fm

Pick random point y in Fm
output f�y � b

 f�y


Complexity� The procedure uses �m random bits and reads � values of f 

Correctness� If f is a linear function� then f � ef � and Pry �f�y � b

 f�y
 � ef�b
� � 	

Now suppose f is just ��close to some linear function The following lemma shows that
the procedure works correctly

Lemma ����� Pry �f�y � b

 f�y
 � ef�b
� � 	
 ���

Proof� Both y and y � b are uniformly distributed in Fm �although they are not indepen�
dent
� hence

Pr�f�y
 � ef�y
� � 	
 � and Pr�f�y � b
 � ef�y � b
� � 	
 ��
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Since ef�b
 � ef�b � y

 ef�y
� we conclude that Pr�f�b� y

 f�y
 � ef�b
� � 	
 �� �

������ Procedures for General Polynomial Code

Both procedures are randomized they use randomness only to pick O�	
 points uniformly at
random from Fm This requires O�m log jFj
 random bits Each procedure also requires that
some table be provided in addition to f  The entries in the table have size poly�d�m� logq
�
and the procedure reads O�	
 entries from the table

Procedure ����i
� the Low�degree Test� veri�es that a given function f � Fm � F is
��close to a degree�d polynomial It uses the notion of a line

De�nition ����� A line in Fm is a set q points with a parametric representation of the form
f*u� � t  *u� � t � Fg for some *u�� *u� � Fm �The symbol � denotes componentwise addition
of two vectors of length m
 Note that it is identical to the line f*u� � t  c*u� � t � Fg for any
c � F n f�g Our convention is to �x one of the representations as canonical

De�nition ����� Let l be a line in Fm whose canonical representation is f*u� � t  *u� � t � Fg�
and g � F � F be a function of one variable� t The value produced by g at the point *u��a*u�
of l is g�a


Note that if a function f is in Fd�x�� � � � � xm�� then the values of f on any line are
described by a univariate degree�d polynomial in parameter t We illustrate this fact with
an example

Example ���� Let f � F��x�� x�� be a bivariate polynomial of degree � de�ned as f�x�� x�
 �
x�x

�
� � x�� Consider the line f�a�� a�
 � t  �b�� b�
 � t � Fg De�ne a function h � F � F as

h�t
 � �a� � b�t
�a� � b�t

� � �a� � b�t


��

It is a univariate polynomial of degree �� and describes f at every point on the line For
instance� the value produced by h at the point �a�� a�
 is h��
 � a�a

�
� � a�� � f�a�� a�


The Low�degree Test picks lines uniformly at random from all lines in Fm� and checks
how well the restriction of f is described by a univariate polynomial For purposes of
e�ciency it requires that a table T be provided along with f � supposedly containing for
each line the best univariate degree d polynomial describing f on that line It performs many
repetitions of the following trial� Pick a line uniformly at random and a point uniformly at
random on this line Read the univariate polynomial provided for the line in the table� and
check whether it describes f at the point
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Low	degree Test� Procedure ���	�i�

Inputs� f � Fm � F� � 
 	����
To Verify� f is ��close to Fd�x�� � � � � xm�
Given � A table T containing� for each line l� a univariate
degree d polynomial Pl

Pick k � ��� random lines l�� � � � � lk and a
random point on each of these lines z� �R l�� � � � � zk �R lk
Read Pl� � � � � � Plk and f�z�
� � � � � f�zk

If for i � 	� � � � � k� Pli correctly describes f at zi

ACCEPT
else

REJECT

Complexity� Generating a random line requires picking the line parameters *u�� *u� randomly
from Fm This requires only �m log q random bits Also� the test reads only ��� values of
f and the same number of line polynomials

Correctness� Clearly� if f is a degree�d polynomial� then by making the table T contain the
univariate polynomials that describe the lines in Fm� the test can be made to accept with
probability 	 The next theorem shows that if f is not ��close� then the test rejects with
high probability irrespective of the contents of the table

Theorem ����� Let the �eld size q be &�d�m
� If f is not ��close� for � 
 	���� then the
low�degree test accepts with probability 
 	����

We defer the proof of Theorem �	� until Chapter �

Next� we describe Procedure ����ii
 This procedure� given a ��close function f � Fm �
F �where � is a su�ciently small constant
 and a sequence of l points z�� � � � � zs� recovers the
values ef�z�
� � � � � ef�zs
 �The procedure sometimes produces erroneous output with some
small probability
 The procedure uses the notion of a curve� whose de�nition generalizes
that of a line

De�nition ����� A degree�k curve in Fm is a set of q points with a parametric represen�
tation of the form n

*u� � t  *u� �   � tk *uk � t � F
o

where *u�� *u�� � � � � *uk � Fm �the symbol � denotes componentwise addition of two vectors of
length m
 Note that it is identical to the curven

*u� � t  c*u� �   � tk  ck*uk � t � F
o
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for any c � F n f�g Our convention is to �x one of the representations as canonical

De�nition ����� Let C be a degree�k curve in Fm whose canonical representation isn
*u� � t  *u� �   � tk *uk � t � F

o
� and g � F � F be a function of one variable� t The

value produced by g at the point *u� � a  *u� �   � ak  *uk of C is g�a


Note that if a function f is in Fd�x�� � � � � xm�� then the values of f on any degree�k curve
are described by a univariate degree�dk polynomial in parameter t

In describing the procedure� we assume that elements of �eld F are ordered in some
canonical fashion Thus we can talk about the ith point of a curve� for any positive integer
i less than q � 	 Furthermore� when we refer to the �set of points on a curve�� we are
actually referring to a multiset� since a curve could pass through the same point more than
once Having clari�ed this� we observe next that a degree k curve is �xed once we know its
�rst k � 	 points

Fact ���
� For any set of k � 	 points z�� � � � � zk�� � Fm �where there could be repetitions
among z�� � � � � zk���� there is a unique degree k curve whose �rst k�	 points are z�� � � � � zk���

Proof� To specify a degree�k curve
n

*u� � t  *u� �   � tk*uk � t � F
o

in Fm� we need to

specify its coe�cients *u�� � � � � *uk� which are m�tuples over F Clearly� an equivalent speci�
�cation consists of m univariate polynomials g�� � � � � gm in the curve parameter t Each gi
has degree at most k� and the tth point on C is �g��t
� � � � � gm�t

 � Fm

Fact A� �Appendix A
 implies that once we �x the �rst k�	 points of C� the polynomials
g�� � � � � gm are uniquely determined Hence the curve is also uniquely determined �

De�nition ����� For any points z�� � � � � zk in Fm� let P �
 z�� � � � � zk �
 denote the set of
degree�k curves whose �rst k points are z�� � � � � zk

Let z�� � � � � zs be the points at which the procedure has to reconstruct values of ef  Since
s � 	 points �x a degree�c curve� the number of curves in P �
 z�� � � � � zs �
 is qm The
procedure requires a table containing� for each such curve� a degree�sd polynomial that best
describes f on the curve It picks a curve uniformly at random from the set and reads the
polynomial corresponding to it in the table It checks that the polynomial agrees with f
on a random point on the curve As we will show� this provides good con�dence that the
polynomial correctly describes ef � and therefore the procedure outputs the values taken by
this polynomial at z�� � � � � zs
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Extracting s values of ef � Procedure ���	�ii�
Input� A function f � Fm � F that is ��close to
Fd�x�� � � � � xm�� and c points z�� � � � � zs � Fm
Aim� To obtain ef�z�
� ef�z�
� � � � � ef�zs

Given� A table T containing� for each degree�c curve C

passing through z�� � � � � zs� a univariate polynomial TC in
the parameter t of degree ds

Pick a degree�s curve C randomly from P �
z�� � � � � zs�

Pick a point y randomly from the set of points in C
Look up the polynomial TC�t
 and the value f�y


If T
C

correctly describes f at y
then

output the values produced by T
C

�t
 at z�� � � � � zs
as ef�z�
� � � � � ef�zs


else

REJECT

Note that if f � Fd�x�� � � � � xm� and the table contains curve polynomials that de�
scribe f correctly� the procedure will never output REJECT� and correctly output ef�z�
�ef�z�
� � � � � ef �zs


Lemma ����� If f is ��close� then

Pr�the procedure outputs values that are not ef �z�
� � � � � ef�zs
� 
 �
p
� � o�	
�

no matter what the table of curve polynomials contains�

Proof� For a curve C let us denote by ef jC �t
 the univariate polynomial in t of degree sd

that describes ef on points in C The only case in which our procedure can output incorrect
values of ef is when it picks a curve C such that the polynomial TC �t
 provided in the table
is di!erent from ef j

C
�t
 We will show that on most curves such an incorrect T

C
�t
 does not

describe f on most points of the curve Hence the procedure outputs REJECT with high
probability when it compares the values of T

C
�t
 and f on random point y of the curve

First� we state a claim� which we will prove later

Claim� Let � � 	
p� For at least � fraction of curves in P �
 z�� � � � � zs �
 the following
is true Let C denote the curve Thenef j

C
�t
 describes f at � fraction of points in C� ��	�


Let C be a curve that satis�es the condition in ��	�
 Recall that two di!erent degree�ds
univariate polynomials agree at no more than ds points in F Hence if ef j

C
describes f on �



���� THE OVERALL PICTURE ��

fraction of points in the curve� then every other univariate polynomial of degree d describes
f in no more than 	
 � 
 ds�q fraction of points In particular� suppose T

C
�� ef j

C
 Then

TC describes f at no more than 	
 � � cd�q �
p
� � ds�q fraction of points in C

Hence an upperbound on the probability of outputting incorrect values of ef is

Pr
C

�C does not satisfy condition ��	�
� �
p
� �

ds

q
�

which is at most 	
 � �
p
� � ds

q � �
p
� � o�	


Hence the lemma is proved Now we prove the claim

Proof of the claim� Let S � Fm be the set of points where functions f and ef disagree
Then S constitutes a fraction at most � of Fm Lemma A� implies that when we pick a
curve randomly from P �
 z�� � � � � zk �
� the expected fraction of points on the curve that

are in S is jSj
jFjm � which is at most � The Averaging Principle �Fact A�
 implies that the

fraction of curves on which

more than
p
� fraction of points of the curve are in S

is no more than
p
�

This proves the claim� and hence Lemma �	� �

���� The Overall Picture

Our proof of the PCP Theorem consists in de�ning two veri�ers �namely� the ones in
Theorems �� and ��
� and composing them �using the Composition Lemma
 to construct
a �logn� 	� 	
�restricted veri�er

While describing each veri�er we described how to encode a satisfying assignment� such
that the veri�er accepts the encoding with probability 	 When we compose two veri�ers�
their associated encoding schemes get composed as well �where �composition� has to be
de�ned appropriately using the construction in the proof of the Composition Lemma


In other words� our proof of the PCP Theorem basically consists of a �complicated

de�nition of an encoding scheme� itself de�ned as a composition of other schemes Figure ��
gives a bird�s�eye view of di!erent steps in the encoding scheme Each step corresponds to
a di!erent veri�er Next to each veri�er we have written down the parameters associated
with it� the number of random bits� the number of queries� and the decision time

��
� History�Attributions

The techniques in this section are inspired by the phenomenon of random�self�reducibility
A function f �on domain say� f�� 	gn
 is said to exhibit this phenomenon if the computation
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of f on a worst�case input� x� can be reduced in polynomial time to the computation of f
on a small number of inputs that are uniformly �not necessarily independently
 distributed
in f�� 	gn

The phenomenon in some sense underlies cryptography For example� the pseudo�
random generator of �BM��� uses the fact that the discrete log problem is random self�
reducible The term random�self�reducible appears to have been explicitly de�ned �rst in
�AFK��� �see also �FKN���
 Many $avors of random�self�reducibility have since been de�
�ned and studied ��FF��� Fei���


Blum ��BK���
 and Lipton ��Lip���
 rephrased the rsr property as follows Given
any program that computes f on �most� inputs� a randomized algorithm can recover the
value of f at an arbitrary input x This observation was the starting point for the theory
of self�testing�self�correcting programs ��BK��� Lip��� BLR���
 Most functions to which
this theory seemed to apply were algebraic in nature �see �Yao��� for some nonalgebraic
examples� though


A new insight was made in �BF�	� Sha��� LFKN���� it is possible to represent logical
formulae using low degree polynomials But recall that di!erent classes of logical formulae
are complete for complexity classes like PSPACE� NEXPTIME� NP etc This at once
suggests that randomized techniques from program�testing�correcting should be applicable
to the study of conventional complexity classes The results in this chapter are precisely of
this character

Techniques of this chapter� attributions� The �rst algebraic representation of �SAT
is due to �BFL�	� That representation �using multilinear polynomials
 has a problem� the
�eld�size and number of variables required to represent a string of n bits are such that
generating a random point in the space Fm requires more than O�logn
 random bits The
polynomial extension used in this chapter does not su!er from this problem It is due to
��BFLS�	�
 The Sum�check procedure �Procedure ��
 is due to �LFKN���

Thus Lemma �� could be proved with minor modi�cations of the above�mentioned
results� although no previous paper had proved it explicitly before �AS��� All other results
in this chapter� except the Low�degree Test and the idea of checking split assignments� are
from �ALM���� The idea of checking split assignments is from �AS��� The history of the
Low�degree Test will be covered in the next section

The discovery of the proof of Lemma �� was in$uenced by the parallelization procedures
of �LS�	� FL���� although the ideas used in this lemma can be traced back to �BF���
LFKN��� The design of the veri�er of Section �� owes much to existing examples of
self�testing�correcting programs from �BLR��� Fre���
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 veri�er accepts with
probability 	
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Chapter �

The Low�degree Test

This chapter contains a proof of the correctness of the Low�degree Test� speci�cally� a proof
of Theorem �	�

Let d be an arbitrary integer that is �xed for the rest of the chapter Let F be the
�nite �eld GF�q
� where q might depend on d We continue to use Fd�x�� � � � � xm�� the code
of m�variate polynomials of degree d� which was de�ned in Section �	 We will also use
properties of lines in Fm� which were de�ned in Section ��� �De�nitions �		 and �	�


We remind the reader of the following observation from Section ��� �speci�cally� Ex�
ample ��
� If a function f is in Fd�x�� � � � � xm�� then the values of f on any line are described
by a univariate degree�d polynomial in the line parameter t The Low�degree Test is based
on a strong contrapositive of that observation� If on �most� lines� �most� values of f are
described by a univariate polynomial of degree d� then f itself is ��close to Fd�x�� � � � � xm� for
some small � To state this contrapositive more precisely we need to de�ne some concepts

De�nition ���� Let f � Fm � F be a function and l be a line The symbol P f
l denotes the

univariate degree d polynomial �in the line parameter t
 that describes f on more points of l
than any other degree d polynomial �We arbitrarily break ties among di!erent polynomials
that describe f equally well on the line


Note� �i
 To make the degree d explicit� we could have used the symbol P f
d �l
 instead of

P f
l  But the degree d can always be inferred from the context �ii
 Suppose line l is such

that polynomial P f
l describes f on more than 	�� � d��q fraction of points in l Then no

other univariate polynomial can do better �For� if any other polynomial does as well as

P f
l � then there is a set of at least d � 	 points on which they both describe f  But if two

degree d polynomials agree on d � 	 points� they are the same
 In other words� for such a

line l� the best line polynomial P f
l is uniquely�de�ned

Now we introduce some notation Let S be any �nite set and let � be a real�valued
function de�ned on S The average value of � on S is denoted by Ex�S ���x
� We justify

�	



�� CHAPTER �� THE LOW�DEGREE TEST

this notation on the grounds that if we pick x uniformly at random from S� the expectation
of ��x
 is exactly the average value of � on S �When S is clear from context� we drop S

and use Ex���x
�


De�nition ���� Let f � Fm � F be a function and l be a line The success rate of f on l�
denoted �f �l
� is de�ned as

�f �l
 � fraction of points on l where P f
l describes f 

The success rate of f is de�ned as the average success rate of f among all lines� that is� as
El�L ��f �l
� where L is the set of lines in Fm

The following theorem is the precise statement of the contrapositive mentioned above It is
proved in Section �� A crucial component in its proof is Lemma ��

Theorem ���� Let d�m be integers satisfying 	��d�m 
 q� Every function f � Fm � F
whose success rate is �	
 �
� for � 	 	���� is ���close to Fd�x�� � � � � xm��

�The proof can be tightened so that it works for larger � Whether it works for � � ���
�say
 is open


Now we prove that the Low�degree Test works as claimed

Proof� �Of Theorem ���
 Let f � Fm � F be a function and T be a table of line
polynomials provided to the Low�degree Test Let p

T
denote the success probability of the

following trial� Pick a random line l and a random point y � l Call the trial a success if
the polynomial provided for l in table T correctly describes f at x

By de�nition� the success rate of f is the maximum� over all tables T � of pT  Hence if f
is not ��close� where � 	 	���� then Theorem �	 implies that p

T

 	
 ��� for every table

T 

Recall that the Low�degree Test performs ��� repetitions of the above trial� and accepts
i! all succeed Now suppose f is not ��close After repeating the trial ��� times� the test
will reject with probability at least 	�� Thus Theorem �	� is proved �

The proof of Theorem �	 relies on the following Lemma� which asserts the truth of
the theorem statement when the number of variables� m� is � The lemma is proved in
Section �	

Lemma ���� Let integer d be such q � &�d�
� Every g � F � � F whose success rate is
	
 �� for � 
 ����	� is 	�

p
��close�
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Convention� A typical lemma statement in this chapter says �If the hypothesis H holds
for a number � where � is small enough� then the conclusion C holds for the number c� ��
where c� is explictly de�ned in terms of � �In Lemma �� for example� c� is 	�

p
�
 When

applying the lemma later we will need to make c� smaller than some suitably small constant�
which we can do by making � some other suitably small constant Having clari�ed this�
from now on we will never state explicit values of such constants

���� The Bivariate Case

This section contains a proof of Lemma ��

For an element a � F let the the row fy � bg be the line of points in Fm whose second
coordinate is b� ie� the set f�x� b
 � x � Fg The column fx � ag for a � F is de�ned

similarly �We often use the shorthand �row b� for �row fy � bg�
 As usual� P f
fy	bg is the

the degree�d polynomial �in x
 that best describes f in the row fy � bg For clarity we
denote it by Rb Likewise� Ca denotes a degree�d polynomial �in y
 that best describes f
on the column fx � ag The following lemma says that if on most points in F� the row and
column polynomial describe f correctly� then f is ��close for some small � �At the end of
this section we derive Lemma �� easily from this lemma


Lemma ���� Let f � F � � F be a function� Suppose at more than fraction 	
 � of points
�a� b
 � F� we have

f�a� b
 � Rb�a
 � Ca�b
�

where � is small enough� Then f is �
p
��close to a polynomial of bidegree �d� d
�

Let a function be called a rational polynomial if it can be expressed as h�g� where h and
g are polynomials

We divide our goal of proving Lemma �� into two subgoals

Subgoal �� Show that there are bivariate polynomials h� g with fairly low degree� such that
on most points in F�� function f agrees with the rational polynomial h�g�

Subgoal �� Show that the rational polynomial h�x� y
�g�x� y
 obtained from Subgoal  is a
bivariate polynomial of degree d�

Why is Subgoal � realistic� Using the hypothesis of Lemma �� and an averaging
argument� we can show that f �s restriction to most rows and columns is ��close� for some
small � Further� the statement of Subgoal 	 says that f and h�g agree on most points
Another use of averaging shows that the restriction of h�g on most rows and columns is
���close� for some �� A simple argument� using Euclid�s division algorithm for polynomials�
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will then show that h�g is a bivariate polynomial of degree d �For details see the proof of
Lemma ��


Why is Subgoal 	 realistic� We give a motivating example from the univariate case

Example ��� ��BW��� Let k be an integer much bigger than d Let �a�� b�
� �a�� b�
�
� � � � �ak� bk
 be a sequence of pairs of the type �point� value
� where the points ai are in F
and so are the values bi Further� suppose there is some univariate polynomial r of degree
d that describes ���th of the pairs� that is�

r�ai
 � bi for �k
� values of i � f	� �� � � � � kg�

We show how to construct univariate polynomials c� e of degree at most k
� � d and k

�
respectively� such that

c �ai
 � bi e�ai
 �i � f	� � � � � kg �
In other words� we construct a rational polynomial c�x
�e�x
 that describes the entire
sequence of pairs

Let e be a non�zero univariate polynomial of degree k�� that is � on the set fai � r�ai
 �� big
�Fact A� implies that such a polynomial e exists
 Then we have

e�ai
r�ai
 � bi e�ai
 �i � f	� � � � � kg �
By de�ning c as c�x
 � e�x
r�x
� we�re done �

Let us consider the relevance of Example �	 to Subgoal � Recall that the hypothesis of
Lemma �� says that at a �typical� point in F�� the row polynomial� the column polynomial�
and f all agree Pick k �typical� columns� say a�� � � � � ak Pick a �typical� row� fy � cg
Denote by b�� b�� � � � � bk the values taken by the column polynomials Ca��y
� � � � � Cak�y

respectively in this row �that is� bi is Cai�c

 Since we chose typical columns and row� the
row polynomial Rc should describe most of these values correctly For argument�s sake�
suppose it describes ���th of the values� that is

Rc�ai
 � bi for �k
� values of i � f	� �� � � � � kg�

Then the construction of Example �	 applies to the sequence of pairs �a�� b�
� �a�� b�
� � � � �
�ak� bk
� and we can construct a low�degree rational polynomial c�x
�e�x
 that describes all
of b�� � � � � bk

But there is an added twist The values b�� � � � � bk are not any arbitrary elements of
F Each is itself the value of the corresponding column polynomial� which is a degree d

polynomial in a separate parameter� y Hence a more proper way to view the bi�s in this case
is as elements of F�y�� the domain of polynomials in the formal variable y This viewpoint�
along with the fact that a good fraction of rows are �typical�� allows us to �nd a good
description of f in terms of a rational bivariate polynomial

Now we state the results precisely First we make explicit the algebraic object that
underlies Example �	 � an overdetermined system of linear equations
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Lemma ���� Let f�a�� b�
� � � � � �a�d� b�d
g be a sequence of ��d �point� value� pairs for
which there is a univariate degree�d polynomial r such that

r�ai
 � bi for ��d values of i � f	� �� � � � � ��dg�

Then the following system of equations �over F� in the variables �c�� � � �c��d� e�� � � � � e�d

has a nontrivial solution�

c� � c�a� � � � �� c��da
��d
� � b�  �e� � e�a� �   � e�da

�d
� 


c� � c�a� � � � �� c��da
��d
� � b�  �e� � e�a� �   � e�da

�d
� 


���

c� � c�a�d � � � �� c��da
��d
�d � b�d  �e� � e�a�d �   � e�da

�d
�d


Proof� As in Example �	� construct polynomials c� e of degree 	�d and �d respectively
such that

c�ai
 � e�ai
bi �i � f	� �� � � � � ��dg �
Wlog we assume that at least one of the polynomials e� c is not the zero polynomial

Now let e and c be expressed as e�x
 �
P�d

i	� eix
i� and c�x
 �

P��d
j	� ejx

j respectively
Then c�� � � � � c��d� e�� � � � � e�d is a nontrivial solution to the given linear system �

Note� The linear system in the statement of Lemma �� is overdetermined� it consists
of ��d equations in 	�d � � variables Represent the system in standard form as A  x �
�� where x is the vector of variables �c�� c�� � � � � c��d� e�� � � � � e�d
 The system has a non�
trivial solution Hence Fact A���i
 of the Appendix implies that the determinant of every
�	�d� 	
� �	�d� 	
 submatrix of A is �

De�nition ���� If l and m are integers� a bivariate polynomial g in the variables x and y
has bidegree �l�m
 if its degree in x and y is l and m respectively

The following Lemma achieves Subgoal 	

Lemma ���� Let f be the function of Lemma ���� Then there are polynomials g�x� y
�
h�x� y
 of bidegree ��d� ��d�
� �	�d� ��d�
 respectively such that h�x� y
�g�x� y
 describes f
in 	
 � fraction of the points� where � 
 �

p
��

Proof� The hypothesis of Lemma �� implies that in the average column� the column
polynomial describes f �and the row polynomials
 in a fraction 	 
 � of the the points
Since ��d � o�jFj
� an averaging argument shows the following There are ��d columns
a�� � � � � and a�d such that for i � 	� � � � � ��d� the column polynomial Cai�y
 describes f at
more than 	
 � 
 o�	
 fraction of the points in the column ai
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For counting purposes� we put a � at every point in these columns at which the row and
column polynomials agree Let y be a row that has at least ��d � �s Then the sequence
of pairs �a�� Ca��y

� � � � � �a�d� Ca��d�y

 satisfy the hypothesis of Lemma �� Hence the
following system of equations has a solution

c� � c�a� � � � �� c��da
��d
� � Ca��y
  �e� � e�a� �   � e�da

�d
� 


c� � c�a� � � � �� c��da
��d
� � Ca��y
  �e� � e�a� �   � e�da

�d
� 




c� � c�a��d � � � �� c��da
��d
�d � Ca��d�y
  �e� � e�a��d �   � e�da

�d
�d


Represent the system in standard form as A  x � �� where x is the vector of variables
�c�� c�� � � � � c��d� e�� � � � � e�d
� and A is the ��d� �	�d� �
 matrix�BBBB�

	 a� a��    a��d� 
Ca��y
 
a�Ca��y
    
a�d� Ca��y

	 a� a��    a��d� 
Ca��y
 
a�Ca��y
    
a�d� Ca��y




    


    

	 a�d a��d    a��d�d 
Ca��d�y
 
a�dCa��d�y
    
a�d�dCa��d�y


�CCCCA �

We take two di!erent views of this system In the �rst view it is a family of q separate
systems� one for each value of y in F The system corresponding to y � b has a solution
i! the number of � �s in the row is ��d Averaging implies there are q�	 
 �

���
 such
values of y Further� upon substituting any such value of y in A� the determinant of every
�	�d� 	
� �	�d� 	
 submatrix of A becomes � �See the note following Lemma ��


In the second view� A is the matrix of a system of equations over the domain F�y��
the domain of polynomials in the formal variable y We show that we can �nd a non�
trivial solution to c�� � � � � c��d� e�� � � � � e�d in this domain More speci�cally� we show that
the determinant of every �	�d � 	
 � �	�d � 	
 submatrix of A is the zero polynomial of
F�y�� and then use Fact A�� part 	

Let B be any �	�d � 	
 � �	�d � 	
 sub�matrix of A Fact A� implies that det�B
�
the determinant of B� is a polynomial of degree at most 	�d � 	 in the entries of B By
inspection� each entry of B is a polynomial in y of degree at most d Therefore det�B

is a polynomial in y of degree at most �	�d � 	
d Either det�B
 is the zero polynomial�
or it is has at most �	�d � 	
d roots But as already noted� the determinant of every
�	�d � 	
� �	�d � 	
 submatrix of A becomes � for at least q�	 
 �

���
 values of y Since

q�	
 �
���
 � �	�d� 	
d� we conclude det�B
 is the zero polynomial

We have shown that the system has a nontrivial solution in the domain F�y� Fur�
ther� Fact A�� part �� implies that a non�trivial solution can be found in which each of
c�� � � � � c��d� e�� � � � � e�d is itself a polynomial of degree 	�d� 	 in the entries of A In other
words� each ei and ci is a polynomial in y of degree �	�d�	
d Let c�� � � � � c��d� e�� � � � � e�d �
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F��d� �y� be such a solution De�ne the bivariate polynomials h� g as

h�x� y
 �
��dX
i	�

ci�y
xi and g�x� y
 �
�dX
i	�

ei�y
xi�

Clearly� h� g have bidegree �	�d� ��d�
� and ��d� ��d�
 respectively

It only remains to show the following

Claim � The rational polynomial h�g describes f in 	
 �
p
� fraction of points in F�

To this end we prove Claim �

Claim �� A �	
p�
 ��
 o�	

 fraction of rows satisfy all the following properties �i
 The
restriction of g to this row is not the zero polynomial in F�x� �ii
 The row contains at least
	�d � �s �iii
 The row polynomial describes f at a 	
 p

� fraction of points of the row

First we show that Claim � implies Claim 	

Let fy � bg be a row that satis�es conditions �i
 and �ii
 in the statement of Claim �
Then the univariate polynomial h�x� b
 
 Rb�x
g�x� b
 has degree 	�d but more than 	�d
roots Hence the polynomial is identically zero� in other words� h�x� b
�g�b� x
 � Rb�x

Now if the row also satis�es �iii
� then h�g describes f on at least �	


p
�
 fraction of points

in this row

Thus Claim � implies that h�g describes f on at least �	 
 p
� 
 �� 
 o�	

�	 
 p

�

fraction of points in F� This fraction is at least 	
 �

p
� Hence Claim 	 follows

Now we prove Claim �

Averaging shows that at most
p
� fraction of the rows fail to satisfy �iii


The polynomial g�x� y
 is non�zero� and its degree in y is at most ��d� Hence at most
��d� rows fail to satisfy �i


Finally� in each of columns a�� � � � � a�d a �	
 � 
 o�	

 fraction of points contain � �s
Averaging shows that the fraction of rows that fail �ii
 is at most �

����� that is� at most ��

Hence the fraction of rows that satisfy all of �i
� �ii
 and �iii
 is at least 	
��d��q
��
p�
Since d��q � o�	
� Claim � follows

�

Next� we move towards Subgoal �

Lemma ��
� If r� s� t are univariate polynomials in x of degree l�m� n respectively� and

r�x
 � s�x
 t�x
 for max fl�m� ng values of x
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then r � s  t�

Proof� The univariate polynomial r 
 s  t has degree max fl�m� ng If it has more than
max fl�m� ng roots� it is identically zero �

Note� Let r� s be univariate polynomials of degree l�m respectively Assume max fl�mg is
	 q� for some � � � Lemma �� implies that the rational polynomial r�s can only exhibit
two behaviors Either it is a univariate polynomial of degree l 
 m� or else it is not even
��close to any univariate polynomial of degree l
m

The following lemma achieves Subgoal �

Lemma ���� If h� g are polynomials obtained in Lemma ���� then h�g is a bivariate poly�
nomial of bidegree �d� d
�

Proof� The proof consists in three claims

The �rst claim is that the restriction of h�g on most rows and columns is a univariate
polynomial of degree d This uses two observations First� the restriction of h�g to most
rows and columns describes f quite well� and is therefore a ��close for some small � Second�
Lemma �� implies that if the restriction of h�g on any row or column is ��close� then the
restriction is a univariate polynomial

Claim �� For at least 	�� the elements a � F� h�x� a
�g�x� a
 is ����close �and hence by
Lemma �� is in Fd�x�


Indeed� by averaging� in at least 	 
 p
� of the rows� f is

p
��close Let � be as in

Lemma �� Then in at least 	
p� fraction of the rows h�x� y
�g�x� y
 describes f in 	
p�
fraction of points Hence in 	
 p

� 
 p
� fraction of rows the restriction of h�x� y
�g�x� y


is �
p
� �

p
�
�close Since

p
� �

p
�� 
 ���� so Claim 	 is proved

Let k� l stand for ��d�� �d respectively� so that the bidegrees of g� h are �l� k
 and �l�d� k

respectively

The second claim is that the degree of h�g in x is d

Claim �� Assuming Claim 	� there exists a polynomial s�y
 of degree dk such that hs�g
is a polynomial of bidegree �d� ��d�


Assume wlog that h� g have no common factor Represent g�x� y
� h�x� y
as
Pl

i	� pi�y
xi

and
Pl�d

i	� si�y
xi respectively where p��y
� � � � � pl�y
� and s��y
� � � � � sl�d�y
 are univariate
polynomials of degree k Using Euclidean pseudo�division for polynomials �see �Knu����
p ���
� we obtain polynomials q�x� y
� r�x� y
 of bidegree �d� k � dl
 and �l 
 	� k � dl

respectively such that

�pl�y

dh�x� y
 � q�x� y
g�x� y
 � r�x� y
�
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For every a � F such that g�x� a
jh�x� a
� it must be that r�x� a
 is a zero polynomial
By Claim 	� at least 	�� the points a � F have this property Hence r�a� x
 is the zero
polynomial for at least q�� values of a� which is more than ld � k� the degree of r in y
Hence r is identically �� and �pl�y

dh�x� y
 � q�x� y
g�x� y
 By using s�y
 as a shorthand
for �pl�y

d we get gjh  s and Claim � is proved

The next claim is that h�g has degree d in both x and y This proves the Lemma

Claim �� Assuming Claim �� h�x� y
�g�x� y
 has degree at most d in x� y

Thus far we only know that h�x� y
�g�x� y
 has the form
P��d

i	� x
iti�y
 where ti�y
 is a

rational polynomial whose degree in the numerator and denominator is at most ��d�

But� the restriction of h�g to more than 	�d columns is ����close �by applying the
reasoning of Claim 	 to columns instead of rows
 By Lemma �� these restrictions are
degree d polynomials It follows by interpolation that each ti�y
 is a degree�d polynomial
Similarly� we can argue that the degree in x is also d Thus Claim � is proved �

Proof��Of Lemma ��
 We show that every bivariate function with success rate 	
 � �ie
one satisfying the conditions of Lemma ��
 satis�es the conditions of Lemma �� with
� � �� 
 o�	
 This is seen as follows

Break up all lines into equivalence classes� with a class containing only lines parallel to
each other �See Fact A	� for a de�nition of parallel the de�nition is the obvious one
 An
averaging argument shows that there are two distinct classes in which the average success
rate is at least 	 
 � 
 o�	
 Now rotate coordinates to make these two directions the
x and y directions By construction� the best polynomials describing the rows describe
f in a fraction 	 
 � 
 o�	
 of points in F�� and so do the best polynomials describing
the columns Hence the fraction of points in F� on which both the row and the column
polynomial describe f is at least 	
��
o�	
 Lemma �� implies now that f is �

p
���close

to a bivariate polynomial of bidegree �d� d
 We have to show that it is close to a polynomial
of total degree d But the fact that the success�rate is 	
� implies that the restriction of f
to 	
 �� fraction of lines is at least 	���close to a univariate polynomial of degree d Hence
Fact A� implies that the polynomial that f is �

p
���close to actually has total degree d

Since �
p

�� 
 	�
p
�� we conclude that f is 	�

p
��close to a bivariate polynomial of total

degree d Hence the lemma has been proved �

���� Correctness of the Low�degree Test

This section is devoted to proving Theorem �	

De�nition ���� A plane in Fm is a set of q� points that has a parametric representation
of the form f*u � t�  *v � t�  *w � t�� t� � Fg� for some *u� *v� *w � Fm Note that it is identical
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to the set f*u � t�  c�*v � t�  c� *w � t�� t� � Fg for any c�� c� � F n f�g Our convention is to
�x one representation as the canonical one

Given a bivariate polynomial h in the parameters t�� t�� and a function f � Fm � F�
we say that h describes f at the point *u � a�  *v � a�  *w of the above plane i! h�a�� a�
 �
f�*u � a�  *v � a�  *w


De�nition ���� Let C be a plane and LC be the set of lines in the plane For a function
f � Fm � F the success rate of f in C is

El�LC ��f�l
��

in other words� the average success rate of f among lines in the plane

The general idea of the proof is that if the overall success rate of f is high� then symmetry
considerations imply that f has high success rate in almost every plane in Fm But the
restriction of f to a plane is a bivariate function� so if the success rate in a plane is high�
this bivariate function �by the bivariate case of the theorem� namely Lemma ��
 is ��close
for some small � Hence we conclude that for almost every plane in Fm there is a bivariate
polynomial �in the plane parameters t�� t�
 that describes f almost everywhere in the plane
This implies some very strong conditions on f �namely� the statement of Lemma �	�
� which
in turn imply that f itself is well�described by an m�variate polynomial

Throughout� our symmetry�based arguments use two obvious facts �i
 Every two points
in Fm together determine a unique line that contains them �ii
 Every line in Fm and every
point outside it together determine a unique plane that contains them

To state our calculations cleanly we introduce some simpli�cation in notation We �x
the letter f to denote the function from the statement of Theorem �	� whose success rate
is 	
 � for some small enough � Then we can make statements like �the line l is ��close�
instead of �the restriction of f to line l is ��close�� and �the value produced by line l at
point b � l�� instead of �value produced by line polynomial P f

l at the point b � l�� and so
on

Also� we make Lemma �� more user�friendly� and use the following loose form

Loose form of Lemma ���� If the success rate of f in a plane is at least �	
�
 for some
small enough �� then the restriction of f to the plane is ��close to a bivariate polynomial�
�

Note� We justify the loose form on the grounds that we are not keeping track of constants
anyway Thus the constant � in the conclusion of the loose form is not fundamentally
di!erent from the constant 	�

p
� in the correct conclusion

Now we can cleanly state an interesting property of planes with high success rate

De�nition ��
� Let b be a point in Fm Two lines that pass through b are said to be
coherent at b if they produce the same value at b Let S be a set of lines which all pass



���� CORRECTNESS OF THE LOW�DEGREE TEST �	

through b The set is c�coherent at b� for some number c � ��� 	�� if it is coherent at b and
in addition every line in S is c�close

We will show �in Lemma �	�
 that a high success rate implies that for every point� most
lines passing through it are coherent As a �rst step� we show this fact for the bivariate
case �In the following lemma� the reader may wish to skip reading part �ii
 for now and
return to it later


Lemma ���� Suppose plane C has success rate �	
 �
 for � 
 ����	� and b is any point
in C� Then the following holds�
�i� There is a

p
��coherent set of lines at b which contains 	
p� fraction of all lines in C

that pass through b�
�ii� Let g be the bivariate polynomial that best describes the values of f in this plane� and
let it produce the value gb at point b� Then the value produced at b by the coherent lines in
part �i� is also gb�

Proof� If the success rate of plane C is �	 
 �
� then Lemma �� shows that there is a
unique bivariate polynomial g that describes f on �	
 �
 fraction of points in C n fbg Let
gb denote the value produced by g at b

Let S be the lines of C that pass through b We show that the desired coherent set
S� � S is the one de�ned as

S� �
	
l � S � g describes f on at least 	
p

� fraction of points of l


�

First we show the set is coherent at b Let l be a line in S� Since the restrictions of g
and f agree in 	 
 p

� fraction of points on l and
p
� 
 	�� � d��q� it follows that the

restriction of g to the line is also the best univariate polynomial describing l In particular
the line polynomial for the line� P f

l � produces the value gb at b Since this is true for every
line l � S �� it follows that the lines in S� are coherent at b Further� the de�nition of S� also
implies that each line in S� is

p
��close Hence S� is

p
��coherent at b To complete the

proof of part �i
 we show that jS�j � �	
p
�
 jSj

Every point in C n fbg is connected to b by a unique line Hence the lines in S partition
C n fbg For line l � S� denote by ��l
 the fraction of points on l where f and g disagree
Then El�S ���l
� � 	
 � Averaging shows that ��l
 � 	 
p

� for at least 	
 p
� fraction

of lines l � S Hence jS�j � �	
 p
�
 jSj� and part �i
 is proved

Part �ii
 follows from an observation in the �rst para of the proof� namely that all lines
in S� produce the value gb at b �

Note� Why is Lemma �� signi�cant� Recall the de�nition of success rate� it is the expec�
tation

El � fraction of points in l where P f
l describes f �

where l is picked randomly from lines in Fm Symmetry implies the the following expectation
is also the success rate

Ex�Fm �among lines intersecting x� the fraction of those that describe f at x��
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Hence high success rate implies that for �most� points x� �most� lines passing through
x produce the same value at x� namely� f�x
 In other words� �most� points have an
associated coherent set of lines and the set is large Lemma �� says that at least in the
bivariate case� this is true for all points x and not just for �most� x Lemma �	� will show
that an analogous statement holds for the m�variate case as well

First we point out the following symmetry�based fact

Lemma ���� Let p denote the success rate of f � and let b be a �xed point in Fm� Let C be
the set of planes that contain b� Then we have

EC�C�success rate of f in C� � p
 o�	
�

Proof� Recall the de�nition of success rate� it is the expected success rate of a line picked
randomly from among all lines But note that only a o�	
 fraction of all lines pass through
b Hence the expectation is almost unchanged if we pick the line randomly from among
all lines that do not pass through b Let q be this new expectation As we just argued�
q � p
 o�	


Now we use symmetry to obtain an alternative de�nition of q Every line outside b
determines a unique plane containing itself and b All planes containing b contain the same
number of lines that don�t contain b So q is also the expected success rate of a line picked
as follows� First pick a random plane C � C� and then randomly pick a line in C that does
not contain b But the new expectation is exactly the one occuring in the lemma statement�
so we have proved the lemma

�

Lemma ���� �Main Lemma
 Let f � Fm � F have success rate 	 
 � where � is small
enough� and let b be any point in Fm� Then there is a ��coherent set at b that contains a
fraction at least �	
 ��
 of all lines passing through b� where � � �

p
��

Proof� Let b � Fm� and L be the set of lines passing through b Let L�� L�� � � � be maximal
��coherent subsets of L satisfying �i
 and �ii
 Maximality implies that the Li�s are mutually
disjoint Denote by �i the fraction jLij � jLj� and by � the largest of the �i�s

Let the term pair refer to a pair of lines �l�� l�
� where l�� l� are distinct lines in L We
call the pair �l�� l�
 agreeable if they are both ��close� and further� their line polynomials
produce the same value at b Notice that both the lines in an agreeable pair must come
from the same subset out of L�� L�� � � �  Hence the fraction of pairs that are agreeable is at
most X

i

�
jLij
jLj 
� �

X
i

��i

	 �� � 	

�
� ��
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We will show that at least 	
 �� of all pairs are agreeable� which implies � � 	
 ��� thus
proving the Lemma

To count the fraction of agreeable pairs� we use symmetry Since each pair de�nes a
unique plane containing b� and since each plane containing b contains the same number of
pairs� the total number of pairs is

Number of planes containing b � Number of pairs per plane

Lemma �� implies that the average success rate of planes passing through b is 	
 �

o�	
 � 	 
 �� Averaging shows that at least 	
 �� fraction of them have success rate at
least 	
 �� Let C be a plane that has success rate 	
 �� Lemma �� implies that of all
lines in C that pass through b� at least a fraction 	 
 � are coherent It follows that the
fraction of pairs in C that are agreeable is at least �	


p
��
�� which is at least 	
 ��

We have shown that in � 	 
 �� fraction of planes containing b� the fraction of pairs
in the plane that are agreeable is � �	 
 ��
 Hence the fraction of pairs overall that are
agreeable is at least �	
 ��
�	
 ��
� which is at least 	 
 �� Thus the Lemma has been
proved �

De�nition ���� Let a function bf � Fm � F be de�ned as

bf�x
 � majorityl�x fvalue of Pl at xg �

�Note� Lemma ��� implies that this majority is an overwhelming majority��

The following lemma shows that bf coincides with f almost everywhere

Lemma ����� Let f � Fm � F be a function with success rate 	
�� where � is a su�ciently

small constant� The set of points
n
x � Fm � f�x
 �� bf�x


o
constitutes a fraction at most ��

of all points�

Proof� Let t denote the fraction of points x such that f�x
 �� bf�x
�

As noted above� one way to view the success rate is as

Pr
x�l

�P f
l describes f at x��

where x is picked randomly from among all points and l is picked randomly from the set of
lines containing x

Let x � Fm be such that f�x
 �� bf �x
 Lemma �	� implies that function f is described
at x by at most a fraction �� of the lines through x� where � � �

p
� Therefore an upper

bound on the the success rate is ��t � �	 
 t
 Since the success rate is at least 	
 �� we
have �t� � 	
 t � 	
 �� which implies t 	 ���	
 ��
 	 �� �
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For any line l� let P
bf
l denote the the univariate polynomial that best describes values ofbf on l

The following lemma shows that on every line l� the polynomial P
bf
l describes bf on every

point of l

Lemma ����� For every line l and every point b � l the value produced by P
bf
l at b is bf�b
�

Proof� Let l be a line and b � l be a point

Let y be any point on l We say a line l� � y is nice for y if l� is in y�s coherent set
�whose existence is proved in Lemma �	�
 In other words� l� is ��close� and produces the
value bf�y
 at y Let C be a plane containing l We say C is good for y if among all lines in
C that pass through y� a fraction 	
 	��� are nice for y

Claim� There is a plane C containing l that is good for b� and good also for a ����� fraction
of points on l�

First we show how to complete the proof of the lemma using the Claim Let C be the
plane mentioned in the claim Fact A	�� part �iii
 implies that line l intersects almost
all the lines in C� more speci�cally� a fraction 	 
 O�	�q
� which is 	 
 o�	
 Since plane
C is good for ����� fraction of points in l� the fraction of lines in C that are ��close is
�	
 	���
� ������ �	
 o�	

 Hence the success rate of C is at least �	
 �
� ������ which
we assume is more than ���� Lemma �� implies there exists a bivariate polynomial h that
describes f on ���� fraction of points of the plane Let z � l be a point and hz denote the
value that h produces at z Since the success rate in plane C is high� Lemma ���part�ii

implies that z has an associated set of coherent lines in C� each of which produces the value
hz at z Now suppose z is one of the points for which C is good By de�nition of �good��
most lines that pass through z produce the value bf at z But we know that most lines lie
in the above�mentioned coherent set for z Hence the values bf�z
 and hz must be identical
In other words� for ����� fraction of points on l� including b� we have bf�z
 � hz  Sincebf is described by h on ����� fraction of points of l� the line polynomial P

bf
l must be the

restriction of h to l In particular� the value produced by P
bf
l at b must be hb But as noted�

hb � bf�b
 Hence the Lemma is proved

Next� we prove the Claim We prove the existence of the desired plane probabilistically
Let C be the set of planes that contain l We pick C randomly from C Let y be a point in
l We upperbound the probability that C is not good for y

De�ne the random variable IC to be the fraction of lines� among all lines of C that
contain y� that are nice for y Recall that every line l� � y that is not l determines a unique
plane together with l Symmetry implies that every plane C containing l contains the same
number of lines l� � y Therefore we have

E
C�C

�IC � � 	
 ���
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Assume that
p

�� 
 	��� Hence if plane C is not good for y then IC 
 	
 p
�� The

Averaging Principle implies that

Pr
C�C

��C is not good for y�� � Pr
C

�IC 	 	

p

��� 

p

���

Hence the probability that C fails the conditions of the claim is at most

Pr
C

��C is not good for b���Pr
C

��C is not nice for ����	 fraction of points of l��

	
p

�� �

p
��

����	

Assuming 	���
p

�� �
p

�� 
 	� the probability that C fails the conditions of the claim
is less than 	 Hence there exists a plane meeting all the conditions

�

Now we prove Theorem �	� the main theorem of this chapter

Proof��Of Theorem �	
 We de�ned a function bf in De�nition �� Lemma �	� shows that

on every line the restriction of bf is described exactly by the degree�d polynomial P
bf
l  Using

Fact A� in the appendix� we conclude that bf � Fd�x�� � � � � xm� But Lemma �		 shows
that bf agrees with f in 	
 �� fraction of points It follows that f is ���close �

���� Discussion

The results in this chapter comprise two parts One part� given in Section ��� shows that
the correctness of the Low�degree Test follows from the correctness of the bivariate case of
the test �in other words� from Lemma ��
 This part is due to Rubinfeld and Sudan�RS����
although our proof is somewhat di!erent in the way it uses symmetry arguments The other
part of the chapter� Section �	� shows the correctness of the bivariate case The proof of
the bivariate case is a consequence of a more general �multivariate
 result in �AS���� which
is stated in the next section �The proof of the bivariate case as given here uses a little
modi�cation due to �Sud���


No simpler proof of the general result of �AS��� is known But a somewhat simpler proof
for the bivariate case appears in �PS��� More importantly� that paper lowers the �eld size
required in the lemma to O�d
 an improvement over O�d�
 as required by our proof

Many people have conjectured the following� although a proof still eludes us

Conjecture ���� Let jF j � poly�d
� If f � Fm � F is a function whose success rate is p�
for p � d�

pjF j� then f is �� �	
 p
��close to Fd�x�� � � � � xm�� �
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If the �eld size jFj is allowed to be exponential in the degree the previous conjecture is
true We do not give the proof here

������ History

Improvements to the Low�degree Test have accompanied most advances in the theory of
probabilistically checkable proofs The �rst such test� the multilinearity test� enabled the
result MIP �NEXPTIME ��BFL�	� Subsequent tests given in �BFLS�	� FGL��	� were
crucial for scaling down the result for NEXPTIME to NP An improvement in the e��
ciency of those tests was in turn used to prove a new characterization of NP in terms of
PCP ��AS���
 Finally� the discovery of the most e�cient test �the one in this section
 led
to the discovery of the PCP Theorem ��ALM����


Actually� the above list of tests includes two kinds of low�degree tests The �rst kind
upper�bounds the the degree of the given function in each variable The second kind " and
the one in this chapter is of this kind " upper�bounds the total degree

The tests in �BFL�	� BFLS�	� FGL��	� AS��� are of the �rst kind �A particu�
larly beautiful exposition of this type of test ��She�	�
 was never published� although a
later version appears in �FSH���
 Low�degree tests of the �rst kind consist in estimat�
ing the success rate of the given function on axis�parallel lines �A line is called axis�
parallel if for some i � f	� � � � � mg and a�� � � � � ai��� ai��� � � � � am � F� it is of the form
f�a�� � � � � ai��� xi� ai��� � � � � am
 � xi � Fg
 Note� on the other hand� that the test in this
chapter estimates the success rate on all lines The strongest result about low�degree tests
of the �rst kind is due to �AS���

Theorem ���� ��AS����� Let f � Fm � F be a function� If the success rate of f on axis�
parallel lines is 	 
 O�	�m
� then f is ��close to a polynomial in x�� � � � � xm whose degree
in each variable is at most d�

Note that Lemma ��� which was used in our proof of the bivariate case� is equivalent
to the special subcase m � � of the above theorem

Low�degree tests of the second kind arose in program checking The earliest such test
appears in �BLR���� where it is called the multilinearity test Subsequent tests appearing
in �GLR��	� RS��� work for higher degree In fact� these latter tests are identical to the
one used in this chapter� but their analysis was not as good �it could not show that the test
works when the success rate is less than 	
O�	�d



The idea of combining the work of �AS��� and �RS��� to obtain the low�degree test of
this chapter is due to �ALM����This combination allows the test to work even when the
success rate is a constant �independent of the degree
 To estimate that the success rate is
some high enough constant� the test needs to only pick O�	
 random lines� and therefore
reads only O�	
 �chunks� of information in the provided tables This property plays an
important part in the proof of the PCP Theorem Speci�cally� such a low�degree test enables
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queries to be �aggregated� �see Section �	�
� a property crucial in constructing the veri�er
in Theorem ��

The algebraic ideas used in the proof of Lemma �� were originally inspired by a Lemma
of �BW�� as used in �GS���
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Chapter �

Hardness of Approximations

In Chapter �� we proved the following consequence of the PCP Theorem� There is a constant
� � � such that if MAX��SAT can be approximated within a factor of 	 � �� then P � NP
�Corollary ��
 Similar hardness results are now known for a host of other optimization
problems� namely that if they can be approximated within some explicit factor �where
the exact factor in question depends upon the problem
 in polynomial time� then some
well�known complexity�theoretic conjecture is false

The reductions used to prove this body of results go via either � Prover 	 Round proofs
for NP �a discussion on � Prover proofs appears in Chapter �
� or the PCP theorem Often
the best reduction for a given problem �ie� one that proves the strongest inapproximability
result for the problem
 uses techniques speci�c to that problem� and sometimes also details
of the construction of the PCP veri�er

Quite understandably� this new way of doing NP�completeness reductions is generally
perceived as not very �user�friendly� Traditionally� NP�completeness reductions " which
prove NP�hardness only of exact optimization " are far simpler� each one is based� in a
simple way� upon one of a few canonical NP�complete problems �The number of canonical
problems in �GJ��� is six


In this chapter we attempt to identify problems that can serve as canonical problems
for proving inapproximability results The aim is to to derive all known inapproximability
results using as few assumptions �in other words� as few canonical problems
 as possible We
�nd that two canonical problems su�ce The �rst is a version of MAX��SAT The second is
a new problem� Label Cover� de�ned expressly for the purpose of proving inapproximability
Note that reductions from these two cannot� for every given problem� prove the strongest
possible inapproximability results for that problem But the reductions always prove results
that are in the right ball�park� for instance� the factor of approximation they prove hard
is not much smaller than the best that can be proven otherwise In some cases reductions
from Label Cover prove approximation to be only almost�NP�hard �this term is de�ned in
De�nition ��
� whereas direct reductions using the PCP veri�er would prove it NP�hard
We could partially remedy this latter state of a!airs by including a third �less natural


��
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canonical problem in our list� but we choose not do so The hope is that further progress
in the construction of PCP �like veri�ers �Conjecture �	 says precisely what else needs to
be proved
 will allow NP�hardness to be proved using Label Cover

We �rst de�ne a few terms that appear throughout this chapter

De�nition 
��� Let � be an optimization problem involving maximization �resp� mini�
mization
 and let OPT �I
 denote the value �resp� cost
 of the optimum solution on input
I  For a rational number c � 	� an algorithm is said to c�approximate � if for every input
I the algorithm produces a solution that has value at least OPT �I
�c �resp� has cost at
most c OPT �I



Note� Making c larger makes the algorithm�s task easier� the set of acceptable solutions it
can output gets enlarged In many applications it makes sense to allow c to grow with the
input size� since �xing c to be a constant seems to rule out polynomial time approximation
algorithms For example it makes sense to let c be logn� where n is the input size Now we
de�ne one such factor that often crops up in inapproximability results

De�nition 
��� An approximation factor is large if for some �xed number � in the interval
��� ��
� it is at least �log

����� n� where n � input size

De�nition 
��� A computational problem is almost�NP�hard if a polynomial time algo�
rithm for it can be used to solve every NP problem in time npoly�logn�

Note� People believe that not only is NP �� P� but also that there are problems in NP whose
solution requires more than npoly�logn� time Hence proving a problem is almost�NP�hard
provides a good reason to believe that it will not have polynomial�time algorithms

Organization of the Chapter� Section �	 describes our canonical problems and their
properties Section �� de�nes the gap�preserving reduction� an essential ingredient of inap�
proximability results An example of a gap�preserving reduction is given using the CLIQUE
problem Section �� discusses MAX�SNP� a class of optimization problems� and shows that
approximating MAX�SNP�hard problems is NP�hard Section �� shows the inapproxima�
bility of a host of problems having to do with lattices� codes and linear systems The
reductions to these problems use the canonical problem Label Cover Section �� shows
how to exhibit the NP�hardness of n��approximation� where � is some �xed positive con�
stant Section �� contains a survey of known inapproximability results� and indicates how
they can be proved using our canonical problems


��� The Canonical Problems

Our reductions use two canonical problems� MAX��SAT�	�
 and Label Cover The latter
comes in two versions� one involving maximization and the other minimization The two
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versions are not really independent� since a form of weak duality links them �Lemma �	

However� we would like to keep the two versions separate� and for the obvious reason�
proving the inapproximability of minimization problems �as we do in Section ��
 requires
us to have a minimization problem in our list of canonical problems

De�nition 
��� 	 MAX	�SAT����� This is the version of MAX��SAT in which no
variable appears in more than 	� clauses �Note� �	�� has no special signi�cance
other than that it is a convenient constant


� LABEL COVER� The input consists of� �i
 A regular bipartite graph G � �V�� V�� E
�

�ii
 An integer N in unary We think of any integer in �	� N � as a label �iii
 For each
edge e � E a partial function �e � �	� N �� �	� N �

A labelling has to associate a set of labels with every vertex in V� � V� It is said to
cover an edge e � �u� v
 �where u � V�� v � V�
 if for every label a� assigned to v there
is some label a� assigned to v� such that �e�a�
 � a�
Maximization Version� Using a labelling that assigns 	 label per vertex� maximize the
number of covered edges
Minimization Version� Using more than 	 label per vertex if necessary� cover all the
edges Minimize the cost of doing this� where the cost is de�ned asX

v�V�
�number of labels assigned to v


�that is� the total number of labels� counting multiplicities� assigned to vertices in V�


Convention� To state results cleanly the value of the optimum will be stated as a
ratio In the maximization version of Label Cover� this ratio is the fraction of edges
covered In the minimization version this ratio is average number of labels used per
vertex in V�� that is�

cost of labelling

jV�j �

Also� the careful reader will realize that in the min version� an optimum labelling
never needs to assign more than one label to any vertex of V� We do not make this
a part of the de�nition because it makes our reductions more di�cult to describe

�

The Label Cover problem was implicit in �LY��� and was de�ned in �ABSS��� Although
an ungainly problem at �rst sight� it is quite useful in reductions We �rst give some
examples to clarify the de�nition of the problem �We currently don�t see a way to simplify
its de�nition� since all aspects of the de�nition seem to play a role when we do reductions


�For our purposes a bipartite graph is regular if for some integers d�� d�� every vertex on the left �resp��
right� has degree d� �resp�� d���
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Figure �	� Label Cover instance for formula �x��x���x�
� �x���x��x�
 The symbols
on edge e represent map �e

Example 
��� �SAT is reducible to Label Cover �max version
 Given a �SAT instance
� de�ne a Label Cover instance as follows Let V� have one vertex for each clause and V�
have a vertex for every variable let adjacency corresponds to the variable appearing in the
clause� whether negated or unnegated �For the moment we ignore the regularity condition�
and leave it to the reader to �x
 The set of labels is ��� ��� where the signi�cance of the
number of labels is that it is ��� the number of possible assignments to the � variables in
a clause We denote the labels in binary For a vertex in V�� if the corresponding clause
involves variables xi� xj � xk� the reader should think of a label b�b�b� as the assignment
xi � b�� xj � b�� xk � b� For a vertex in V�� say one corresponding to variable xi� the set
of admissible labels is f���� 			g to be thought of as assignments � and 	 respectively to
that variable

The edge function �e is described as follows Suppose e is the edge �u� v
 where u � V�
corresponds to clause �x� � x� � �x�
� and v � V� corresponds to variable x� The partial
function �e for this edge has the domain ��� �� n f��	g� in other words� the � assignments
to x�� x�� x� that satisfy the clause Every label of the type x� � 	� x� � �� x� � � �� means
�anything�
 is mapped under �e to 			 and every label of the type x� � �� x� � �� x� � �
is mapped to ���

Figure �	 shows the above transformation as applied to the formula �x� � x� � �x�
 �
�x� ��x��x�
 The �gure uses the shorthand ��� and �	� for ���� 			 respectively for the
vertices on right

Since each vertex is allowed only 	 label� the labels on the right hand size vertices
consitute a boolean assignment to x�� x�� � � � The label on a left�hand vertex also constitute
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an assignment to the variables in the corresponding clause The edge joining a clause�vertex
and a variable�vertex is covered i! it is assigned the same value by both assignments

Clearly� if all edges are covered then the assignment is a satisfying assignment Con�
versely� if there is no satisfying assignment� some edge is left uncovered by all labellings

Actually we can make a stronger statement� which will be useful later Any labelling
that covers a fraction � of edges yields an assignment that satis�es 	 
 �� fraction of the
clauses

Example 
��� Hitting Set is a sub�case of Label Cover �min version
 Recall that the
input to Hitting Set is a set U � and some sets S�� � � � � SK � U  The output is the smallest
subset of U that has a nonempty intersection with all of S�� � � � � SK  �This problem is the
dual of set�cover


Hitting set is a trivial reformulation of the following sub�case of Label Cover �min ver�
sion
� there is just one vertex on the left �that is� jV�j � 	
� and for all edges e� the map �e

has exactly one element in its image�set �Note in particular that each vertex v � V� has a
unique edge incident to it� say ev � and �ev has an image�set of size 	


Given such an instance of Label Cover� de�ne U to be �	� N � De�ne the set Sv � U as
fa� � label a� is a preimage of �evg Solving hitting set gives us the smallest set S � �	� N �
such that S � Sv is nonempty for each v � V� Then S is the solution to Label Cover� since
it is the smallest set of labels that must be assigned to the lone vertex in V�� such that all
edges are covered

A similar transformation works in the other direction� from Hitting Set to Label Cover

The following weak duality �implicit in �LY���
 links the max and min versions of Label
Cover Note how our convention about stating costs�values as ratios allows a clean state�
ment

Lemma 
��� For any instance I of Label Cover� if OPTmax�I
 and OPTmin�I
 are� respec�
tively� the optimum value in the max� version and the minimum cost in the min� version�
then

OPTmax�I
 � 	

OPTmin�I

�I�

Proof� Consider the solution of the minimization version� namely� a labelling using on an
average OPTmin�I
 labels per vertex in V� and covering all the edges For any vertex u � V�
let it assign nu labels to this vertex Then by de�nition of costX

u�V�
nu � OPTmin�I
 jV�j �

We randomly delete all labels for each vertex in V� � V� except one This gives a
labelling that assigns only 	 label per vertex� in other words� a candidate solution for the
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maximization version We claim that the probability that any particular edge �u� v
 is still
covered is 	�nu For� the original labelling covered �u� v
 for every label a� it assigned to
v it assigned some preimage ���

e �a�
 that was assigned to u The probability that this
preimage survives is 	�nu

In the new �randomly constructed
 labelling the expected number of edges still left
covered is at least X

e�	�u�v��

	

nu
�

Since each vertex in V� has the same degree� say d� the number of edges� jEj� is d jV�j� and
the above expectation can be rewritten as

X
u�V�

d

nu
� d

X
u�V�

	

nu
� d

jV�j�P
u�V� nu

� d
jV�j�

OPTmin�I
 jV�j �
jEj

OPTmin�I


�The crucial fact used above is that the sum
P

u 	�nu is minimized when all nu are equal


Thus we have shown a randomized way to construct a candidate solution to the max ver�
sion� such that the expected fraction of edges covered is at least �OPTmin�I

�� It follows
that there must exist a candidate solution that covers this many edges Hence we have
proved

OPTmax�I
 � 	

OPTmin�I

�

�

Note� Lemma �	 uses the fact that the bipartite graph in the Label Cover instance is
regular This is the only place where we need this fact we do not need it for our reductions

Now we give the hardness results for our canonical problems

Theorem 
��� There is a �xed positive constant � for which there is polynomial time re�
duction from any NP problem to MAX��SAT��� such that YES instances map to satis�able
formulae and NO instances map to formulae in which less than 	
 � fraction of clauses can
be satis�ed�

Proof� In Corollary �� we described such a reduction for MAX��SAT� For some �xed
constant � it satis�es the property that YES instances map to satis�able formulae and NO
instances to formulae in which no more than 	 
 � fraction of the clauses can be satis�ed
We show how to change instances of MAX��SAT into instances of MAX��SAT�	�
� without
changing the gap of � by much The reduction is a slight simpli�cation of the one in �PY�	�
�although their reduction yields instances of MAX��SAT��
� and uses weaker expanders


We need the following result about explicit constructions of expander graphs ��LPS���
�
There is a procedure that� for every integer k� can construct in poly�k
 time a ��regular
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graph Gk on k vertices such that for every set S of size at most k��� there are more than
jSj edges between S and its complement� S

Let the instance of �SAT have n variables y�� � � � � yn� and m clauses Let mi denote
the number of clauses in which variable yi appears Let N denote the sum

P
imi Since a

clause contains at most � variables� N 	 �m

For each variable do the following If the variable in question is yi� replace it with mi

new variables y�i � y
�
i � � � � � Use the jth new variable� yji � in place of the jth occurence of yi

Next� to ensure that the optimal assignment assigns the same value to y�i � � � � � y
mi
i � add the

following �mi new clauses For each j� l 	 mi such that �j� l
 is an edge of the expander
Gmi � add a pair of new clauses �yli � �yji 
 and ��yli � yji 
 Together� this pair just says

�yli � yji 
 an assignment satis�es the pair i! it assigns the same value to yli and yji 

Hence the new formula contains �N new clauses and m old clauses Each variable occurs
in exactly 	� new clauses and 	 old clause If the old formula was satis�able� so is the new
formula Next� we show that if every assignment satis�es less than 	
 � fraction of clauses
in the old formula� then no assignment satis�es less than 	
 ��	� fraction of clauses in the
new formula

Consider an optimal assignment to the new formula� namely� one that satis�es the
maximum number of clauses We claim that it satis�es all new clauses For� suppose it
does not satisfy a new clause corresponding to yi Then it does not assign the same value to
all of y�i � � � � � y

mi
i  Divide up these mi variables into two sets S and S according to the value

they were assigned One of these sets has size at most mi�� say it is S In the expander
Gmi � consider the set of jSj vertices corresponding to vertices in S Expansion implies there
are at least jSj� 	 edges leaving this set Each such edge yields an unsatis�ed new clause
Hence by $ipping the value of the variables in S� we can satisfy at least 	 � jSj clauses
that weren�t satis�ed before� and possibly stop satisfying the �at most jSj
 old clauses that
contain these variables The net gain is still at least 	 Therefore our assumption that the
assignment we started with is optimal is contradicted

We conclude that �i � f	� � � � � ng� the optimal assignment assigns identical values to
the di!erent copies y�i � � � � � y

mi
i of yi Now suppose no assignment could satisfy more than

�	
�
m clauses in the original formula Then in the new formula no assignment can satisfy
more than �N � �	 
 �
m clauses Since N 	 �m� we see that the fraction of unsatis�ed
clauses is at least �

��m�m � ��	� Hence the theorem has been proved for any value of �
that is less than ��	�

�

The following corollaries are immediate

Corollary 
��� There is an � � � such that �nding �	 � �
�approximations to MAX�
�SAT��� is NP�hard� �
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Corollary 
��� Finding �	 � ���
 approximations to Label Cover �max� version� is NP�
hard� where � is the same as in Corollary ����

Proof� Use the reduction from �SAT to Label Cover in Example �	 As observed there�
any labelling that covers a fraction 	
 p of the edges for some p yields an assignment that
satis�es 	
 �p of the clauses

�

Approximating Label Cover even quite weakly is also hard

Theorem 
��� Let � be any large factor �as de�ned in De�nition ����� There is a npoly�logn��
time reduction from any NP problem to Label Cover �max� version� such that YES instances
map to instances in which the optimum value is 	� and NO instances map to instances in
which the optimum value is less than 	���

Proof� Proved in Chapter � �

Hence we have the following corollary

Corollary 
�
� Approximating Label Cover �max� version� within any large factor is almost�
NP�hard� �

The following theorem gives the hardness of approximating the min version of label�
cover

Theorem 
��� Approximating the minimization version of Label Cover within any large

factor is almost�NP�hard� More speci�cally� for every large factor �� there is a npoly�logn��
time reduction from NP to Label Cover �min� version� that maps YES instances to instances
in which optimum cost is 	� and NO instances to instances in which the optimum cost is
more than ��

Proof� Consider the instances of Label Cover arising out of the reduction in Theorem ���
by using the same value of � The optimum value of the max version is either 	 or less
than 	�� When the optimum cost is 	� there is a labelling that uses 	 label per vertex
and and covers all the edges� hence the optimum cost of the min version is 	 When the
optimum value in the max version is less than 	��� Lemma �	 implies the optimum cost
of the min version is at least � �
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��� Gap�Preserving Reductions

In Theorems �� and �� we proved that approximating our canonical problems is hard To
extend these inapproximability result to other problems� we need to do reductions carefully�
so that they are gap�preserving

De�nition 
��� Let � and �� be two maximization problems and �� �� � 	 A gap�
preserving reduction with parameters �c� �
� �c�� ��
 from � to �� is polynomial�time algo�
rithm f  For each instance I of �� algorithm f produces an instance I � � f�I
 of �� The
optima of I and I �� say OPT �I
 and OPT �I �
 respectively� satisfy the following property

if OPT �I
 � c then OPT �I �
 � c� and if OPT �I
 	 c�� then OPT �I �
 	 c���� ��	


�

Example 
��� For a �CNF formula �� de�ne OPT��
 as the maximum fraction of clauses
that can be satis�ed by an assignment Recall the expander�based reduction from MAX�
�SAT to MAX��SAT�	�
 in Theorem �� It maps formulae in which OPT � 	 to formulae
in which OPT � 	 Further� it maps formulae in which OPT 	 	
 � to formulae in which
OPT 	 	
 ��	�

Hence the reduction is gap�preserving with parameters �	� �	
 �
��
� �	� �	
 ��	�
��
�
for every positive fraction �

Comments on De�nition 
��� �� Suppose there is a polynomial time reduction from
NP to � such that YES instances are mapped to instances of � of cost � c and NO
instances to instances of cost 	 c�� Then the reduction of Lemma �� �if it exists
 implies
that �nding ���approximations to �� is NP�hard ��� Like most known reductions ours will
also map solutions to solutions in an obvious way For instance� given a solution to I � of
cost � c�� a solution to I of cost � c can be produced in polynomial time But we keep this
aspect out of the de�nition for simplicity ��� The above de�nition can be modi�ed in an
obvious way when one �or both
 of the optimization problems involve minimization ��� A
gap�preserving reduction� since its �niceness� �namely� equation �	
 holds only on a partial
domain� is a weaker notion than the L�reduction introduced in ��PY�	�
� where �niceness�
has to be maintained on all instances of � An L�reduction� coupled with an approximation
algorithm for ��� yields an approximation algorithm for � The previous statement is false
for a gap�preserving reduction On the other hand� for exhibiting merely the hardness of
approximation� it su�ces �and is usually easier
 to �nd gap�preserving reductions �Indeed�
for some of the problems we will cover later� L�reductions are not known to exist


Often our gap preserving reductions work with values of the factors �� �� that are func�
tions of the input length The reduction in the following result is in this vein Let CLIQUE
be the problem of �nding the largest clique �ie� a vertex�induced subgraph that is a com�
plete graph
 in the given graph
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Theorem 
��� For every � � �� �nding �log
����� n�approximations to CLIQUE is almost�

NP�hard�

Proof� We give a gap�preserving reduction from Label Cover �max version
 to CLIQUE
such that the optimum in the CLIQUE instance is exactly the optimum value of the Label
Cover instance In other words� for every c� � � �� the reduction satis�es the parameters
�c� �
� �c� �
 Since Label Cover is hard to approximate within any large factor �Lemma ��
�
it follows that so is CLIQUE

Let �E� V�� V�� N��
 be an instance of Label Cover

For an edge e and labels a�� a�� let a labelling scenario �or scenario for short
 be a triple
�e� a�� a�
 such that �e�a�
 � a� If e � �u� v
� we think of the scenario as assigning label
a� to vertex u and label a� to v �Clearly� any labelling that assigned labels this way would
cover e
 Two scenarios are inconsistent with each other if the two edges involved share a
vertex� and the scenarios assign di!erent labels to this shared vertex �To give an example�
the scenarios ��u� x
� a�� a
 and ��u� y
� a��� b
 are inconsistent regardless of what x� a� y� b are�
since one scenario assigns label a� to u while the other assigns a��


Now we construct a graph G � �V � E
 using the given instance of Label Cover

The set of vertices in G is the set of labelling scenarios Two di!erent scenarios are
adjacent in G i! they are not inconsistent

Claim� Size of largest clique in G � Number of edges covered by optimum label�cover

The proof is in two parts

��
 For any labelling of V� � V� that covers K edges� take the set of scenarios occuring at
the covered edges All the scenarios in this set are consistent with one another� so they
form a clique in G The clique has size K

�	
 For any clique S � V of size K construct as follows a labelling that assigns labels to a
subset of vertices� and covers K edges �Clearly� such a partial labelling can be extended to
a complete labelling that covers at least K edges
 Notice that no two scenarios in a clique
can be inconsistent with one another Hence for any vertex in V� � V�� no two scenarios
present in the clique assign di!erent label to that vertex Now assign to each vertex any
label �if one exists
 that gets assigned to it by a scenario in the clique This de�nes a
�partial
 labelling that covers every edge e which appears in a scenario in S The number
of such edges is K

�

Note� The graph G produced by this reduction has special structure� it is a union of jEj
independent sets �for any edge e � �u� v
� the two distinct vertices �e� a�� a�
 and �e� a��� a��

must have either a� �� a��� or a� �� a�� and so are not connected in G
 Further� the size of
the largest clique is either jEj or jEj�� This property of the graph G is useful in doing a
further reduction to Chromatic Number �see Section ��
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��� MAX�SNP

NP�hard optimization problems exhibit a vast range of behaviors when it comes to approxi�
mation Papadimitriou and Yannakakis ��PY�	�
 identi�ed a large sub�class of them that
exhibit the same behavior The authors de�ned a class of optimization problems� MAX�SNP�
as well as a notion of completeness for this class Roughly speaking� a MAX�SNP�complete
problem behaves just like MAX��SAT in terms of approximability This made MAX��SAT
a plausible candidate problem to prove hard to approximate� and in particular motivated
the discovery of the PCP theorem

MAX�SNP contains constraint�satisfaction problems� where the constraints are local
More formally� the constraints are de�nable using a quanti�er�free propositional formula
The goal is to satisfy as many constraints as possible

De�nition 
�
� A maximization problem is in MAX�SNP if given an instance I we can
in polynomial time write a structure G and a quanti�er�free formula ��G� S� x
 with the
following properties Formula � involves the relations in G� a relation symbol S �not part
of G
 and a vector of variables x� where each variable in x takes values over the universe of
G

The value of the optimum solution on instance I � OPT�I
� is given by

OPT�I
 � max
S

j fx � ��G� S� x
 � TRUEg j�

Note� The above de�nition is inspired by Fagin�s model�theoretic characterization of
NP ��Fag���
� and an explanation is in order for those unfamiliar with model theory G

consists of a sequence of relations of �xed arity� over some universe U  If U � n� then G
implicitly de�nes an �input� of size O�nk
 where k is the largest arity of a relation in G
The role of S is that of a �nondeterministic guess�

Example 
��� Let MAX�CUT be the problem of partitioning the vertex�set of an undi�
rected graph into two parts such that the number of edges crossing the partition is max�
imised Here�s how to see it is in MAX�SNP The universe is the vertex�set of the graph
Let G consist of E� a binary relation whose interpretation is �adjacency� Let S be a unary
relation �interpreted as one side of the cut
� and ��E� S� �u� v

 � E�u� v
� �S�u
 �� S�v



Both MAX��SAT and MAX��SAT�	�
 are also in MAX�SNP For every MAX�SNP
problem� there is some constant c � 	 such that the problem can be c�approximated in
polynomial time ��PY�	�
 The smallest such value of c for MAX�CUT is approximately
		� ��GW���
� for example

There is a notion of completeness in the class MAX�SNP According to the original
de�nition� a MAX�SNP problem is complete for the class if every MAX�SNP problem can
be reduced to it using an L�reduction We are interested in hardness of approximation
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For us it will su�ce to consider a problem MAX�SNP�hard if every MAX�SNP problem
has a gap�preserving reduction to it with parameters �� �� some absolute constants greater
than 	 �See the note following De�nition �� to see why the original de�nition is more
restrictive
 Examples of MAX�SNP�hard problems include MAX�CUT� MAX��SAT�	�
�
and many others �See Section �� for a partial list
 From Theorem �� the following is
immediate

Corollary 
��� For every MAX�SNP�hard problem� there exists some c � 	 such that
�nding c�approximations to it is NP�hard� �


��� Problems on Lattices� Codes� Linear Systems

This section contains inapproximability results for a large set of NP�hard functions All
the results involve gap�preserving reductions from Label Cover The functions considered
include well�known minimum distance problems for integral lattices and linear codes as well
as the problem of �nding a largest feasible subsystem of a system of linear equations �or
inequalities
 over Q In this section� n denotes the length of the input and m the dimension
of the lattice� code etc under consideration

������ The Problems

An integral lattice L�b�� � � � � bm
 in Rk� generated by the basis fb�� � � � � bmg is the set of all
linear combinations

Pm
i	� �ibi� where the fbig is a set of independent vectors in Zk and

�i � Z

De�nition 
��� �Shortest Vector Problem in �p norm� SVp
� Given a basis fb�� � � � � bmg�
�nd the shortest non�zero vector �in �p norm� in L�b�� � � � � bm
 �

De�nition 
��� �Nearest Vector Problem in �p norm� NVp�� Given a basis fb�� � � � � bmg�
and a point b� � Qk� where b� �� �� �nd the nearest vector �in �p norm� in L�b�� � � � � bm
 to
b��

Next we de�ne three other problems all of which in one way or another involve distances
of vectors

De�nition 
��� Nearest Codeword� INPUT � An m � k matrix A over GF ��
 and
a vector y � GF ��
k
OUTPUT � A vector x � GF ��
m minimizing the Hamming distance between xA

and y
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Max	Satisfy INPUT � A system of k equations in m variables over Q
OUTPUT � �Size of the
 largest subset of equations that is a feasible system

Min	Unsatisfy INPUT � A system of k equations in m variables over Q
OUTPUT � �Size of
 The smallest set of equations whose removal makes the system
feasible

The next problem is a well�known one in learning theory� learning a halfspace in the
presence of malicious errors The problem arises in the context of training a perceptron�
a learning model �rst studied by Minsky and Papert �MP��� Rather than describing
the learning problem in the usual PAC setting��Val���
� we merely present the underlying
combinatorial problem

The input to the learner consists of a set of k points in Rm� each labelled with � or 

�These should be considered as positive and negative examples of a concept
 The learner�s
output is a hyperplane� a  x � b �a� x � Rm� b � R
 The hypothesis is said to correctly
classify a point marked � �resp 

 if that point� say y satis�es a  y � b �a  y 
 b� resp

Otherwise it is said to misclassify the point

Finding a hypothesis that minimizes the number of misclass�cations is the open hemi�
spheres problem� which is NP�hard �GJ��� De�ne the error of the algorithm as the number
of misclassi�cations by its hypothesis� and the noise of the sample as the error of the best
possible algorithm Let the failure ratio of the algorithm be the ratio of the error to noise

De�nition 
��� Failure Ratio� Input� A set of k points in Rm� each labelled with �
or 

Output� A hypothesis that makes the ratio of error to noise 	

Note that to c�approximate Failure Ratio means to output a hypothesis whose failure ratio
is at most c

������ The Results

We prove the following results

Theorem 
��� � Approximating each of NVp� Nearest Codeword� Min�Unsatisfy� and
Failure Ratio �i� within any constant factor c � 	 is NP�hard� �ii� within any large�
factor is almost�NP�hard�

�� Approximating SV�within any large factor is almost�NP�hard�

We note that our reductions use only vectors�systems with all entries ���	 Hence it follows
that approximation in those sub�cases is equally hard Part � of Theorem �	� is proved
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in Section ��� Part 	 follows easily from Lemma �		� in conjunction with the hardness
result for Label Cover �Theorem ��
 Lemma �		 is proved in Section ��� �although an
important gadget used there is described earlier in Section ���


Lemma 
���� For each of the problems in part  of Theorem ���� and every factor �

there is some cost c and some polynomial time gap�preserving reduction from Label Cover
�min� version� to the given problem which has parameters �	� �
� �c� ��
� where �� � � for all
the reductions except for NVp� where it is p

p
��

Note the values of the parameters� more speci�cally� the fact that the reduction maps
Label Cover instances with optimum cost at most 	 to instances of the other problem with
optimum cost at most c By de�nition� the cost of the min version cannot be less than
	 So what the gap�preserving reduction actually ensures is that Label Cover instances
with optimum cost exactly 	 are mapped to instances with cost at least c This is an
example of a reduction for which we do not know whether an L�reduction �in the sense of
�PY�	�
 exists However� the gap�preserving reduction as stated above is still good enough
for proving inapproximability in conjunction with the reduction stated in Theorem ���
since that other reduction �quite conveniently� it seems
 did map YES instances to Label
Cover instances with optimum cost exactly 	

For Max�Satisfy we will prove a stronger result in Section ��	

Theorem 
���� There is a positive constant � such that �nding n��approximations to Max�
Satisfy is NP�hard�

Better Results For NEAREST�CODEWORD and NVp for all p � 	� we we can prove

almost�NP�hardness up to a factor �log
��� n instead of �log

����� n These results appear in
�ABSS��� Also� in our reductions the number of variables� dimensions� input size etc are
polynomially related� so n could be any of these

Previous or Independent Work Bruck and Naor ��BN���
 have shown the hardness of
approximating the NEAREST�CODEWORD problem to within some 	 � � factor Amaldi
and Kann ��AK���
 have independently obtained results similar to ours for MAX�SATISFY
and MIN�UNSATISFY

������ Signi	cance of the Results

We discuss the signi�cance of the problems we de�ned

Lattice Problems� The SV problem is particularly important because even relatively
poor polynomial�time approximate solutions to it �within cm� �LLL���
 have been used in a
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host of applications� including integer programming� solving low�density subset�sum prob�
lems and breaking knapsack�based codes �LO���� simultaneous diophantine approximation
and factoring polynomials over the rationals �LLL���� and strongly polynomial�time algo�
rithms in combinatorial optimization �FT��� For details and more applications� especially
to classical problems in the �geometry of numbers�� see the surveys by Lov%asz �Lov��� or
Kannan �Kan���

Lov%asz�s celebrated lattice transformation algorithm �LLL��� runs in polynomial time
and approximates SVp �p � 	
 within cm A modi�cation of this algorithm �Bab��� yields
the same for NVp Schnorr modi�ed the Lov%asz algorithm and obtained� for every � � ��
approximations within O���m
 in polynomial time for these problems �Sch���

On the other hand� Van Emde Boas showed that NVp is NP�hard for all p � 	 ��vEB�	� 
see �Kan��� for a simpler proof
 Lagarias showed that the shortest vector problem is NP�
hard under the �� �ie max
 norm But it is still an open problem whether SVp is NP�hard
for any other p� and speci�cally for p � �

While we do not solve this open problem� we obtain hardness results for the approximate
solutions of the known NP�hard cases

We mention that improving the large factors in either the NV� or the SV� result top
m �m � dimension
 would prove hardness of SV�� a long standing open question The

reason is that approximating either SV� or NV� to within a factor
p
m is reducible to

SV� To see this for SV�� notice that the solutions in SV� and SV� are always within a
factor

p
m of each other For NV� the implication follows from Kannan�s result �Kan���

that approximating NV� within a factor &�
p
d
 is reducible to SV�

We also note that approximating NV� within any factor greater than m��� is unlikely
to be NP�complete� since Lagarias et al �LLS��� have shown that this problem lies in
NP � co�NP

Problems on Linear Systems� Note that a solution to MAX�SATISFY is exactly the
complement of a solution to MIN�UNSATISFY� and therefore the two problems have the
same complexity �Indeed� it is known that both are NP�hard this is implicit eg in �JP���

However� the same need not be true for approximate solutions For instance� vertex�cover
and independent�set are another �complementary� pair of problems� and seem to di!er
greatly in how well they can be approximated in polynomial time �Vertex cover can be
approximated within a factor �� and independent�set is NP�hard up to a factor nc for some
c � � �FGL��	� AS��� ALM����


We �nd it interesting that large factor approximation is hard for our two complementary
problems We do not know of any other complementary pair with the same behavior

We know of no good approximation algorithms for any of these problems Kannan has
shown us a simple polynomial time algorithm that uses Helly�s theorem to approximate
MIN�UNSATISFY within a factor of m � 	



�� CHAPTER 	� HARDNESS OF APPROXIMATIONS

Failure Ratio� That the failure ratio is hard to approximate has often been conjectured
in learning theory �HS��� We know of no good approximation algorithms A failure ratio
	 m can be achieved by Kannan�s idea� mentioned above

������ A Set of Vectors

In this section we use Label Cover instances to de�ne a set of vectors that will be used by
all the reductions

Let �V�� V�� E��� N
 be an instance of Label Cover �min version
 Think of a labelling
as a pair of functions �P��P�
� where the set of labels assigned to the vertex v� � V�� is
P��v�
� and the set of labels assigned to the vertex v� � V� is P��v�
 Let us call a labelling
that covers every edge a total cover

First simplify the structure of the edge functions �e For a vertex v� � V� prune as
follows the domains of the edge functions of each edge containing it Restrict the set of
labels that can be assigned to v� to contain only labels a� � �	� N � such that for every edge
e incident to v�� there is a label a� such that �e�a�
 � a� In other words� prune �e so that
the domain contains only those labels a� that can be used to cover all edges incident to v�
Call such a label valid for v� and call �v�� a�
 a valid pair

Allowing only valid labels to be assigned to vertices does not hurt us The reduction�
being gap�preserving with parameters �	� �

� can assume that the total cover uses either
exactly 	 label per vertex� or at least � labels per vertex on average In the former case�
each label used must be valid And in the latter case� restricting the set of possible �vertex�
label
 pairs to be valid can only increase the minimum cost of a total cover

The set of vectors contains a vector V�v��a�� for each v� � V� and a� � �	� N �� and a
vector V�v��a�� for each valid pair �v�� a�
� where v� � V� and a� � �	� N � Note that any
linear combination of these vectors implicitly de�nes a labelling� where label a is assigned
to vertex v i! V�v�a� has a nonzero coe�cient in the combination

De�nition 
���� Let x �
P
c�vi�ai�  V�vi�ai� be a linear combination of the vectors in the

set� where the coe�cients c�vi�ai� are integers The labelling de�ned by the vector x� denoted
�Px

� �Px
� 
� is the one that assigns to v� � V� the set of labels Px

� �v�
 � fa� j c�v��a�� �� �g
The set of labels Px

� �v�
 assigned to v� � V� is de�ned similarly

De�ne the vectors in the set as follows Each has jEj�	 �N
 coordinates� 	 �N consec�
utive coordinates for each edge e � E Call the coordinates corresponding to e in a vector
as its e�projection �See Figure ��


For j � 	� �� � � � � N � let uj be a vector with 	 � N coordinates� in which the j�th entry
is 	 and all the other entries are � With some abuse of notation we�ll associate the vector
ua� with the label a� � �	� N � Let �� and �	 be the all�zero vector and all�one vectors�
respectively
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Figure ��� Figure showing the e�projections of vectors V��v��a��� and V��v��a��� in the vector
set� where e � �v�� v�


For v� � V�� a� � �	� N �� let the e�projection of the vector V�v��a�� be ua� if e is incident

to v� and �� otherwise

For each valid pair v�� a�� let the e�projection of the vector V�v��a�� be �	
 u
e�a�� if e is

incident to v� and �� otherwise

Note that the e�projections of the vectors form a multi�set comprised of exactly one copy
of the vector ua� for each label a�� zero or more copies of the vector �	
 ua� � and multiple
copies of �� The following lemma says that a linear combination of vectors in the multiset
is �	 i! for some label a� both the vectors ua� and �	
 ua� appear in it

Lemma 
���� Suppose some integer linear combination of the vectors fua� ja� � �	� N �g �n
�	
 ua� ja� � �	� N �

o
is �	� Then there is some a� � �	� N � such that the coe�cients of both

ua� and �	
 ua� in the linear combination are nonzero�

Proof� The vectors fu�� � � � � uNg are linearly independent and do not span �	 Therefore ifX
a�

�ca�  ua� � da�  ��	
 ua�

 � �	

then ca� � da� for all a� Furthermore� there exists an a� for which these are not zero �

Corollary 
���� If x is a nontrivial linear combination of the vectors fV�vi�ai�g and x � �	�
then �Px

� �Px
� 
 is a total cover�
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Proof� For any edge e � �u� v
� the e�projections of the vectors fV�vi�a��g form a system
described in the hypothesis of Lemma �	� Note that the e�projections of the type ua�
belong to the vector of V�v�a��� and the e�projection ��	
 �ua�
 belong to a vector V�u�a�� such
that �e�a�
 � a� The fact that the linear combination x assigns nonzero coe�cients to
both �ua� and ��	
 �ua�
� for some a�� implies that �Px

� �Px
� 
 assigns some label a� to v and a

a� to u such that �e�a�
 � a� Since this happens for every e� labelling �Px
� �Px

� 
 covers all
edges and is a total�cover �

������ Reductions to NV� and others

Now we prove Lemma �		

Proof� �Lemma �		
 First� we show the reduction to the Nearest Lattice Vector problem
with the �� norm results for the other problems will follow easily The main idea in the

reduction is to use the set of vectors
n
V�vi�ai�

o
from Section ��� as part of the lattice

de�nition The �xed point is chosen in such a way that all vectors that are near to it

involve an integer linear combination of the set
n
V�vi�ai�

o
that is �	 Thus vectors near to

the �xed point are forced to de�ne a total cover �as seen in Corollary �	�


The basis vectors have jEj  �	 � N
 � jV�j N coordinates� jV�j N more than vectors
in the previous section

Let L be the integer jEj  �	 � N
 The �xed point� W�� will have an L in each of the
�rst jEj�	 � N
 dimensions and � elsewhere

The basis of the lattice consists of the following vectors� for every vector in the above

set
n
V�vi�ai�

o
� there is a basis vector W�vi�ai� In the �rst jEj  �	 � N
 coordinates� the

vector W�vi�bi� equals L V�vi�bi� We think of the last jV�j N coordinates as being identi�ed
one�to�one with a valid pair �v�� a�
 Then the coordinate identi�ed with �v�� a�
 contains
	 in W�v��a�� and � in all other vectors

Since corresponding to every basis vector there is a unique coordinate in which this
vector is 	 but no other vector is� the following claim is immediate

Claim� Let x �
P
c�vi�ai� W�vi�ai� be a vector in the lattice Then jj 
 W� � xjj� �

jV�j  cost of �Px
� �Px

� 
 �where cost is being measured as usual as a ratio


Now let OPT be the minimum cost of a total cover We show that every vector x in the
lattice satis�es jj
W� �xjj� � min fL� jV�j OPTg Notice that each entry of W�
x in the
�rst jEj�	 � N
 dimensions is a sum of integer multiples of L If it isn�t �� its magnitude
is � L� and so jj 
W� � xjj� � L On the other hand� if all those entries are � then� by
Corollary �	�� �Px

� �Px
� 
 is a total�cover� and so by the above claim jj 
W� � xjj� � jV�j 

OPT
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Finally� if there is a total�cover �P��P�
 of cost 	� then the following vector has length
jV�j
x � 
W� �

P
v��V� W�v��P��v��� �

P
v��V� W�v��P��v���� �

Now we show the hardness of the other problems Let m be the number of basis vectors�
and U be an integer such that the number of coordinates is m � U 

NV� with ��	 vectors� Replace each of the last U coordinates by a set of L new
coordinates If a vector had an L in the original coordinate� it has a 	 in each of the new
L coordinates� and � otherwise

Other Finite Norms� Changing the norm from �� to �p changes the gap from c to p
p
c�

hence the result claimed for �p norms also follows

l� Norm� See �ABSS��� for details

Nearest	Codeword� View the vectors b
�

�� � � � � b
�

m obtained from the reduction to �NV�

with ��	 vectors� as generators of a binary code Let the received message be b
�

� Then the
minimum distance of b

�

� to a codeword is exactly K in one case and c K in the other

Min	Unsatisfy� Consider the instance b
�

�� b
�

�� � � � � b
�

m again Each vector has m � L  U
coordinates This instance implicitly de�nes the following system of m�L U equations in
m variables �


b�� �
X

�i  b�i � ���

where the �i�s are the variables and �� is the vector whose all coordinates are � The
structure of the problem assures us that if we satisfy the �rst L  U equations� then the
non�zero variables must yield a set�cover �and then each nonzero variable gives rise to an
unsatis�ed equation among the last m ones
 Thus the minimal number of equations that
must be removed in order to yield a satis�able system is K in one case� and � c K in the
other

Learning Halfspaces� Notice that minimizing the failure ratio involves solving the fol�
lowing problem� Given a system of strict linear inequalities� �nd the smallest subset of
inequalities whose removal from the system makes it feasible Now we take the system of
equations in the MIN�UNSATISFY reduction and replace each equation by two inequalities
in the obvious way This does not give a system of strict inequalities� however� it does give
a gap in the number of inequations that must be removed in order to make the system
feasible The inequalities can be made strict �for this special case
 by introducing a new
variable � and changing each inequation ��� � �� � � to ��� � �� � � � �� at the same time
introducing L identical new inequations � 
 	�L It is now easily seen that any solution to
the largest feasible subsystem must have � 
 	�L� which in turn forces the variables to be
��	 �
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������ Hardness of Approximating SV�

Proving the correctness of our reduction to SV� involves delving into the geometric struc�
ture of Label Cover instances produced with a speci�c proof system� namely� the one due
to Feige�Lov%asz proof�system �FL���
 We do not know whether a gap�preserving reduction
exists from Label�Cover

For the reduction to SV� we�ll need to prove the hardness of a related �and not very
natural
 covering problem

De�nition 
���� Let �V�� V�� E��� N
 be an instance of Label Cover �min version
 Let
�P��P�
 be a labelling and e � �v�� v�
 be an edge The edge is untouched by the labelling
if P��v�
 and P��v�
 are empty sets It is cancelled if P��v�
 is empty� P��v�
 is not empty�
and for every b� � P��v�
 there is an b�� � P��q�
 such that both �e� b�� a�
 and �e� b��� a�

are in � for some a� � A�

De�nition 
���� A labelling �P��P�
 is a pseudo�cover if it assigns a label at least one
vertex� and every edge is either untouched� cancelled or covered by it

Note that in a pseudo�cover the only case not allowed is that for some edge �v�� v�
� the set
of labels P��v�
 is empty but P��v�
 is not

De�nition 
���� The �� cost of a labelling �P��P�
 is

max fjP��v�
j � v� � V�g �

One of our main theorems is that approximating the minimum �� cost of a pseudo�cover
is hard

Lemma 
���� For every large factor �� there is a npoly�logn��time reduction from any
NP language to instances of Label�Cover� such that YES instances map to instances which
have a pseudo�cover with �� cost � and NO instances map to instances where every pseudo�
cover has has �� cost at most ��

We indicate in Chapter � how this lemma is proved Now we show the hardness of
approximating SV�

Theorem 
��
� For any large factor �� approximating SV�within a factor
p
� is almost�

NP�hard�

To prove the theorem we again use the vectors from Section ���
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Lemma 
���� Let fV�vi�ai�g be the set of vectors de�ned for the Label Cover instances of
Lemma ���� constructed as in Section ������ If x is a nontrivial linear combination of the
vectors and x � ��� then �Px

� �Px
� 
 is a pseudo� cover�

Proof� For any edge e � �u� v
� the e�projections of the vectors fV�vi�a��g form a system
described in the hypothesis of Lemma �	� Note that the e�projections of the type ua�
belong to the vector of V�v�a��� and the e�projection ��	
 �ua�
 belong to a vector V�u�a�� such
that �e�a�
 � a� Since the set of vectors ua� are linearly independent� it follows that for
every linear combination of these vectors that is ��� for every label a�� either both �ua� and
��	 
 �ua�
 have coe�cient �� or both have a non�zero coee�cient Hence in terms of the
labelling �Px

� �Px
� 
 de�ned by this combination� if Px

� assigns some label a� to v then Px
�

must assign a label a� to u such that �e�a�
 � a� Since this happens for every e� labelling
�Px

� �Px
� 
 pseudo�cover �

The reduction uses an �� � Hadamard matrix ie a ��	
 matrix such that H t
�H� � �I�

�H� exists eg when � is a power of �� cf �Bol��� p���


Lemma 
���� Let z � Z�� If z has at least k nonzero entries then jjH�zjj� � p
k�

Proof� The columns of �p
�
H� form an orthonormal basis Hence jj �p

�
H�zjj� � jjzjj� �

p
k

�

Proof��of Theorem ���
 We use the set of vectors from Lemma �	�� and extend them �by
adding new coordinates
 to get the basis set for our lattice

Let L be the integer jEj jA�j The vectors in the basis have jEj  �	 � N
 � jV�j  N
coordinates each� that is� jV�j N more than the vectors of Lemma �	� For each vector
V�vi�ai� of that other set� the basis contains a vector W�vi�bi� The basis also contains an
additional vector� W�� that has L in each of the �rst jEj  �	 � N
 coordinates and �
elsewhere

As in the NV� reduction� W�vi�ai� will equal L V�vi�ai� in the �rst jEj �	�N
 coordinates
The remaining jV�jN coordinates will be viewed as blocks of N coordinates� each associated
with a v� � V� We refer to entries in the block associated with v� as v��projection of the
vector

We may assume there exists a Hadamard matrix H� for � � N  With each label
a� � �	� N � we identify a unique column vector of Hl� denoted ha�  Then the v��projection
of W�v�a�� is ha� if v � v� and �� if v �� v�

Let OPT be the minimum ���cost of a pseudo�cover

Claim� For any vector x in the lattice jjxjj� � p
OPT�

Proof� The entry in any of the �rst jEj�	� jA�j
 coordinates is a sum of integer multiples
of L� so if it is not �� its magnitude is � L� and hence � OPT So all these entries must be
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� But then by Lemma �	�� we conclude that the labelling de�ned by x is a pseudo�cover�
and must therefore assign � OPT labels to some v� � V� But then jjxjj� � p

OPT by
Lemma �	��

Finally� if OPT � 	 and �P��P�
 achieves it� then the following vector has �� norm 	


W� �
X
v��V�

W�v��P��v��� �
X
v��V�

W�v��P��v����

�


��� Proving n��approximations NP�hard

In this section we give some idea of how to prove the NP�hardness of n��approximations
Original proofs of these results were more di�cult� and we present a simpli�cation due to
�AFWZ��� All the results could also be proved in a weaker form using reductions from
Label Cover� but that would prove only almost�NP�hardness of large factors �although see
the open problems in Chapter � speci�cally Conjecture �	


Often problems in this class have a self�improvement property We illustrate this prop�
erty with the example of clique

De�nition 
���� Given graphs G� � �V�� E�
 and G� � �V�� E�
� their product� G� � G�

is the graph whose vertex�set is the set V� � V�� and edge�set is

f��u�� v�
� �u�� v�

 � �u�� u�
 � E� and �v�� v�
 � E�g �

Example 
��� Let ��G
 be the size of the largest clique in a graph It is easily checked
that ��G� �G�
 � ��G�
��G�


Now suppose a reduction exists from �SAT to clique� such that the graph G produced
by the reduction has clique number either l� or �	
 �
l� depending on whether or not the
�SAT formula was satis�able In other words� �	
 �
���approximation of clique number is
NP�hard We claim that as a consequence� any constant�factor approximation is NP�hard
Consider Gk� the kth power of this graph Then ��Gk
 is either lk or �	
�
klk by increasing
k enough� the gap in clique numbers� �	
 �
�k � can be made arbitrarily large This is what
we mean by self�improvement

Note however that Gk has size nk � so k must remain O�	
 if the above construction has
to work in polynomial time

�There exist other ways of de�ning graph�products as well�
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The rapid increase in problem size when using self�improvement may seem hard to
avoid Surprisingly� the following combinatorial object �speci�cally� as constructed in The�
orem �	�
 often allows us to do just that

De�nition 
��
� Let n be an integer A �k� n� �
 booster is a collection S of subsets of
f	� � � � � ng� each of size k For every subset A � f	� � � � � ng� the sets in the collection that
are subsets of A constitute a fraction between ��
 �
k and ��� �
k of all sets in S� where

� � jAj
n 

Convention� When � 
 �� the quantity ��
 �
k should be considered to be �

Example 
�
� The set of all subsets of f	� � � � � ng of size k is a booster with � � � This
is because for any A � f	� � � � � ng� jAj � �n� the fraction of sets contained in A is

�	n
k

�
�
�n
k

�
�

which is � �k The problem with this booster is that its size is
�n
k

�
� O�nk
� hence k must

be O�	
 for any use in polynomial time reductions

The following theorem appears in �AFWZ��� Its proof uses explicit constructions of
expander graphs ��GG�	�


Theorem 
���� For any k � O�logn
 and � � � an �n� k� �
 booster of size poly�n
 can
be constructed in poly�n
 time� �

Let G be a graph on n vertices Using any �n� k� �
 booster " for any k� � " we can
de�ne a booster product of G This is a graph whose vertices are the sets of the booster S�
and there is an edge between sets Si� Sj � S i! �u� v � Si � Sj either u � v or fu� vg is an
edge in G

Lemma 
��� For any graph G� and any �k� n� �
 booster� the clique number of the booster
product of G lies between ���G

 �
k jSj and ���G
 � �
k jSj �

Proof� Let A � f	� � � � � ng be a clique of size ��G
 in graph G Then the number of sets
from S that are subsets of A is between ����G

�
k jSj � ���G
��
k jSj� Clearly� all such
sets form a clique in the booster product

Conversely� given the largest clique B in the booster product� let A be the union of all
sets in the clique Then A is a clique in G� and hence must have size at most ��G
 The
booster property implies that the size of B is as claimed �

Theorem 
���� Approximating Clique within a factor n� for some � � � is NP�hard�

Before proving Theorem ��	 �which is due to �ALM����
� we prove a weaker result
about a related problem� Vertex Cover Let VCmin�G
 denote the size of the minimum
vertex cover in graph G
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Theorem 
���� There exist �xed constants c� � and a polynomial time reduction from a
SAT instance � to a graph with n vertices� m � O�n
 edges and degree �� such that if � is
satis�able then V Cmin � cn� and if � is not satis�able then V Cmin � �	 � �
cn�

Proof� Consider the transformation from MAX��SAT�	�
 to Vertex Cover in �GJ���� p��
The degree of any vertex is no more than the maximum number of clauses that a variable
appears in� in this case 	� So in particular� the number of edges is linear in the number
of vertices Further� the reduction is gap�preserving �in the sense of De�nition ��
 with
�� �� � ��	
 Hence by combining this reduction with the hardness result for MAX��SAT�	�

�Theorem ��
 we get the desired result �

Corollary 
���� The statement in Theorem ���� holds for Clique as well� except the graph
produced by the reduction may not have linear size�

Proof� In general for any graph G we have �see �GJ��� again


��G
 � n
 V Cmin�G
�

where G is the complement graph of G� that is� a graph with the same vertex set as G but
with edge�set f�u� v
 � �u� v
 �� Gg 

Let G be the graph of Theorem ��� Then ��G
 is either �	
 c
n or �	 
 �	 � �
c
n
Thus there is a gap of )�n
 between the clique numbers in the two cases This proves the
theorem �Of course� the number of edges in G is not linear in n it is ��n�

 �

Now we prove that n��approximation to clique is NP�hard

Proof��Of Theorem ���
 Take the graph G from Corollary ���� which we know has clique
number either � cn or 	 c�	
 �
n for some �xed c� �

Now construct a �n� logn� �
 booster� S� using Theorem �	�� by choosing � 
 c��	��
�say
 Construct the booster product of G Lemma ��� says the clique number is either
� clogn jSj or � ��	
 �
c
logn jSj Hence the gap is now n
 for some � � �� and further�
jSj � poly�n
� so this gap is jSj� for some � � � �

For a history of the various results on the Clique problem� see the note at the end of
the section

We must emphasize that for some problems� including chromatic number ��LY��� LY���

the known hardness results for a factor n� do not use a self�improvement property Instead
a direct reduction is given from instances of Clique obtained in Theorem ��	� and the
following property �ensured by a careful reduction and booster construction
 is crucial� the
graph obtained from the clique reduction is r�partite for some r� and furthermore� in one
of the cases� the clique number is exactly r It is open whether a reduction exists in the
absence of this property
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Finally we note that reductions from Label�Cover are easier to describe than the above
reductions �eg� see the Clique result in Theorem ��
� and also have the above�mentioned r�
partiteness property In other words� we can prove the hardness of approximating Chromatic
Number in a somewhat easier fashion when we reduce from Label Cover This is one of the
reasons why we prefer Label�Cover as a canonical problem However� reductions from Label�
Cover prove almost�NP�hardness instead of NP�hardness� and there is room for improvement
there

An open problem� Are all self�improvable problems NP�hard to approximate within
a factor n� for some � � �� A possible exception might be the Longest Path problem
��KMR���
� for which we do not know a booster construction analogous to the one given
above for Clique

������ MAX
SATISFY

This section proves the hardness of n��approximations to MAX�SATISFY �De�nition ��


Proof��of Theorem �	�
 We �rst show the hardness of �	��
�approximations� and then use
self�improvement to show hardness for n��approximation� just as for the Clique problem

We will reduce from the vertex cover instances of Theorem ��� to a system of N �
n��m linear equations� of which at most �m�n
V Cmin can be simultaneously satis�able
This implies a gap of )�N
 in the optimum in the two cases� since m � O�n


For each vertex i there is a variable xi and an equation xi � � For each edge� fi� jg�
there are � equations�

xi � xj � 	� xi � 	 xj � 	�

Notice that at most � of the � equations for each edge can be satis�ed simultaneously
Further� to satisfy � of these equations� xi and xj must take on values from f�� 	g and at
least one must take the value 	

We claim that the maximum number of equations are satis�ed when all the xi�s are ��	
Suppose� under some assignment� xi is not ��	 Then note that the following resetting of
variables strictly increases the number of satis�ed equations� If xi 


�
� then set xi � �� and

if xi � �
� then set xi � 	 Hence the optimum setting is a ��	 setting

Now notice that under any optimal assignment� the set of vertices fi � xi � 	g constitutes
a vertex cover For� if not� then there must be be an edge fi� jg such that both xi and xj
are � Thus all three equations associated with this edge are unsatis�ed Resetting xi
to 	 will satisfy � equations associated with this edge� and violate one equation� xi � ��
which was previously satis�ed Thus there is a a net gain of 	 equation� which contradicts
the assumption that the original assignment was optimal It follows that the optimum
assignment satis�es �m� n
 VCmin equations
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Self	Improvement� Suppose we have �as above
 N equations� in which the answer to
MAX�SATISFY is either OPT or OPT�	
�
 for some � � � Let the equations be written
as p� � �� p� � �� � � � � pN � � Let k� T be integers �to be speci�ed later
 The new set
of equations contains� for every k�tuple of old equations� pi� � � � � � pik � a set of T equationsPk

j	� pijy
j � �� where y � 	� �� � � � � T  Thus the number of equations is

�N
k

�  T 

Using the fact that a polynomial of degree k has at most k�	 roots� it is easily seen that
then the number of equations that can be satis�ed in the two cases is either � �OPTk � T or

	 �Nk �  k �
�OPT �����

k

� T  By choosing T � Nk��� we see that the gap between the optima
in the two cases is approximately �	
 �
k

Now it should be clear that instead of using the trivial booster� namely� the set of all
subsets of size k� we can use the booster of Theorem �	� Write down T equations for every
subset of k equations that form a set in the booster Use k � logN � � 
 �c�	�� Thus the
NP�hardness of N ��approximation follows �


�
� Other Inapproximability Results� A Survey

This section contains a brief survey of other known inapproximability results All can
be proved using reductions from MAX��SAT�	�
 and Label Cover Original proofs for
many used direct reductions from � Prover 	 Round proof systems �see Chapter � for a
de�nition
 The Label Cover problem extracts out the the combinatorial structure of these
proof systems� so we can modify all those reductions easily to use only Label Cover We do
not go into further details here

The hardness results using Label Cover are somewhat peculiar They don�t just use the
fact that Label Cover is hard to approximate� but the following stronger result� For Label
Cover �max version
� it is hard to distinguish between instances in which the optimum is
exactly 	 and those in which the optimum is at most 	��� where � is a large factor �see
Theorem ��
 For an example of such a peculiar hardness result see the comment after
Theorem ��

Problems seem to divide into four natural classes based upon the best inapproximability
result we can prove for them

Class I� This class contains problems for which �	��
�approximation� for some �xed � � ��
is NP�hard �The value of � may depend upon the problem
 All the problems known
to be in this class are MAX�SNP�hard �as de�ned in Section ��
 Consequently
Corollary �� implies the above inapproximability result for them The following is
a partial list of MAX�SNP�hard problems � MAX�SAT� MAX��SAT�	�
� Indepen�
dent Set� Vertex Cover� Max�Cut �all in �PY�	�
� Metric TSP ��PY��b�
� Steiner
Tree ��BP���
� Shortest Superstring ��BJL��	�
� Multiway Cuts��DJP����
� and ��D
Matching ��Kan���
 Many more continue to be found Since �ALM����� there have
been improvements in the value of the constant � for which the above results are
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known to hold Currently the constant is of the order of 	��� for most problems� and
about ���� for MAX��SAT ��BGLR��� BS���


Class II� This class contains problems for which &�logn
�approximation is hard Cur�
rently it contains only Set Cover and related problems like Dominating Set A re�
duction in �LY��� shows that if there is a polynomial�time algorithm that computes
��logn
�approximations for these then all NP problems can be solved in nO�log logn�

time The reduction can be trivially modi�ed to work with Label Cover �It is also
known that any constant factor approximation is NP�hard �BGLR��� this result can
also be proved using Label Cover


Class III� This class contains problems for which ��approximation is almost�NP�hard�
where � is a large factor �large factors are de�ned in De�nition ��
 These prob�
lems may be further divided into two subclasses� based upon how inapproximability
is proved for them

Subclass IIIa� This contains problems for which inapproximability results are based
upon Label Cover Some of these problems are Nearest Lattice Vector� Near�
est Codeword� Min�Unsatisfy� Learning Halfspaces in presence of error �all in
�ABSS��� and in Section ��
� Quadratic Programming ��FL��� BR���
� and
an entire family of problems called MAX���Subgraph��LY���
 A problem is
in MAX���subgraph if it involves computing� for some �xed non�trivial graph
property � that is closed under vertex deletion� the largest induced subgraph of
the given graph that has property � A recent result of Raz �see Section ��

improves the inapproximability result for these somewhat� they are hard upto a
factor �log

��� n for some � � �

Subclass IIIb� This contains self�improvable problems for which we do not know of
a booster�type construction analogous to the one given for the Clique problem
�Section ��
 The way to prove these results is to �rst prove that �	 � �
�
approximation is NP�hard �using reductions from MAX��SAT�	�

� and then
use self�improvement �see Example ��
 to get a hardness result for a factor

�log
��� n for some � � � This set of problems includes Longest Path ��KMR���


and the Nearest Codeword problem ��ABSS���� although for the latter a more
direct reduction is given in Section ��
 The Label Cover Problem is also in this
class� although with a weaker notion of self�improvement �see Section ��


Class IV� This contains problems for which n��approximation is NP�hard� for some � � �
The class includes Clique and Independent Set ��ALM����� see Section ��
� Chro�
matic Number ��LY���
� Max�Planar�Subgraph� the problem of computing the largest
induced planar subgraph of a graph� ��LY���
� Max�Set�Packing� and constrained ver�
sions of the �	 problems in Karp�s original paper �the last two results are in �Zuc���

All these results are provable using MAX��SAT�	�


The lone problem that does not �t into the above classi�cation is the Shortest Vector
Problem using the �� norm The reduction to it outlined in Section ��� uses in an
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intimate way the structure of the proof�system in �FL���� speci�cally� the fact that the
protocol involves a higher dimensional geometry of lines and points

Finally� we mention a recent result by Ran Raz ��Raz���� see Chapter � for an introduc�
tion
 that allows the hardness of Label Cover to be proved using just the hardness result for
MAX��SAT�	�
 However� since we need the peculiar hardness result for Label Cover that
was described at the beginning of this section� we need to use something stronger than just
the fact that MAX��SAT�	�
 is hard to approximate We need Theorem ��� For some �xed
� � �� it is NP�hard to distinguish between instances of MAX��SAT�	�
 that are satis�able�
and instances in which every assignment satis�es less than a fraction 	
 � of the clauses

In particular� Raz�s result implies that all known hardness results �except the above�
mentioned version of the Shortest Lattice Vector
 can now be derived from Theorem ��
But his proof is very complicated� so it seems prudent to just retain Label Cover as a
canonical problem in our list


�� Historical Notes�Further Reading

The lure of proving better inapproximability results for Clique has motivated many devel�
opments in the PCP area The �rst hardness result for Clique was obtained in �FGL��	�
NP�hardness �of constant�factor approximation
 was proved in �AS��� Further� as observed
�rst in �Zuc�	�� the constant factor hardness result can be improved to larger factors by
using a pseudo�random graph�product The result of �AFWZ��� stated in Section �� is the
cleanest statement of such a construction The NP�hardness of n��approximation is due to
�ALM����� although with a di!erent reduction �namely� the one due to �FGL��	�� plus the
idea of �Zuc���
 The connection between MAX�SNP and Clique �albeit with a randomized
booster construction
 was �rst discovered in �BS���

A result in �Zuc��� shows the hardness of approximating the k times iterated log of the
clique number� for any constant k

Free bits� The constant � in the Clique result has seen many improvements �ALM����
BGLR��� FK��b� BS��� The latest improvements center around the concept of free bits
��FK��b�
 This is a new parameter associated with the PCP veri�er that is upperbounded
by the number of query bits� but is often �eg� in the veri�er we constructed
 much smaller
Improvements in this parameter lead directly to an improvement in the value of � in the
Clique result As a result of many optimizations on this parameter� Bellare et al have
recently shown that if there is a polynomial�time algorithm that �

p
n�approximates Clique�

then every NP language has a subexponential randomized algorithm �A related result says
�
p
n�approximation to Clique is NP�hard
 This result also implies that Chromatic Number

is hard to approximate upto a factor of �
p
n ��F+ur���


Finally� we must mention older inapproximability results that are not based upon PCP
These include a result on the hardness of approximating the unrestricted Travelling Sales�
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man Problem ��SG���
� and a result about an entire class of maximal subgraph problems
��Yan���


Further reading� A recent unpublished survey by the author and Carsten Lund ��AL���

provides a more comprehensive treatment of results on the hardness of approximations than
the one given here For a listing of optimization problems according to their approximation
properties� consult �CK���
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Chapter �

PCP Veri�ers that make � queries

The veri�ers referred to in the title of this chapter are better known as � Prover 	 Round
interactive proof systems These systems constitute an alternative probabilistic setting"
somewhat di!erent from the PCP setting " in which NP has been studied Our reason for
renaming them is that� as noted by many researchers� their de�nition ��BGKW��� FRS���

specializes that of PCP

We need them to prove the hardness of approximating Label Cover� one of our two
canonical problems in Chapter � For this reason our de�nition is geared to a careful study
of Label Cover� and is therefore less general than the de�nition of � Prover 	 Round systems

De�nition ���� A restricted PCP veri�er inherits all the properties of the veri�er in the
de�nition of PCP �see the description before De�nition ��
 In addition it has the following
restrictions

	 Uses a certain alphabet� The proof has to be a string in #�� where # is the
veri�er�s alphabet �# depends upon the input size


� Expects two tables in the proof� The proof has to consist of two tables� T� and
T� A certain length �depending upon the input size
 is prescribed for each table

� Makes two randomly	distributed queries� The veri�er reads the symbol in one
location each in both T� and T� That location in T� �resp� T�
 is chosen uniformly
at random from among all locations in T� �resp� T�


� Expects T� to con�rm what T� says� Suppose we �x the veri�er�s random string�
and thus also the locations it queries in T� and T� For every choice of symbol a� � #�
there is at most one symbol a� � # such that the veri�er accepts upon reading a� in
T� and a� in T�

Note� Condition �� some kind of a regularity condition� does not require that the queries
to tables T� and T� come from independent distributions For example� if both tables have

	��
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t entries� the following way of generating queries is legal� since both queries are uniformly
distributed in �	� t�

Pick i randomly from �	� t� Query location i in T� and location �i� 	
 mod t in
T�

De�nition ���� For integer valued functions r� s� p� a language L is in RPCP�r�n
� s�n
� p�n


if there is a restricted veri�er which on inputs of size n uses O�r�n

 random bits� an al�
phabet of size �O�s�n�� �that is� every symbol can be represented by O�s�n

 bits
 and
satis�es�

� If input x � L� there is a proof � such that the veri�er accepts for every choice of
random string �ie� with probability 	


� If input x �� L� the veri�er accepts no proofs with probability more than ��p�n�

Example ���� We give an example of an RPCP veri�er to clarify the de�nition Hopefully�
it will also motivate the connection to Label Cover� since the veri�er�s program is intimately
related to the Label Cover instance constructed in Example �	

Let L be a language in NP We give a RPCP veri�er for L that uses O�logn
 random
bits� examines � bits in T�� and 	 bit in T� There is a �xed positive constant � �independent
of the input size
 such that if an input is not in L then the veri�er rejects with probability
at least 	
 �

Given any input x� the veri�er reduces it to an instance � of MAX��SAT�	�
 by using
the reduction of Theorem �� Assume every variable of � appears in exactly � clauses� and
every clause has exactly � literals �this can be arranged


The veri�er expects the tables to be structured as follows Table T� has to contain� for
each clause in �� a sequence of � bits representing an assignment to the variables of this
clause� and T� to contain� for each variable in �� a bit representing the assignment to this
variable The veri�er picks a clause uniformly at random from among all clauses of �� and
a variable uniformly at random out of the � variables appearing in it It accepts i! the �
bits given for this clause in T� satisfy the clause� and if this assignment is consistent with
the assignment to this variable in T�

If x �� L� every assignment in T� fails to satisfy a fraction � of the clauses Hence the
veri�er rejects with probability at least ��� The fact that the the queries are uniformly
distributed follows from the special structure of � Also� the veri�er satis�es Condition � of
the de�nition� since it accepts i! the value assigned by T� to a variable con�rms the value
assigned by T� to that variable

The following theorem represents the best construction about restricted PCP veri�ers
�A recent result by Raz� described later� improves it




��� HARDNESS OF APPROXIMATING LABEL COVER 			

Theorem ��� ��FL����� For all integers k � ��

NP � RPCP�log�k�� n� logk�� n� logk n
�

�

��� Hardness of Approximating Label Cover

Label Cover captures exactly the underlying combinatorial structure of an RPCP veri�er�
a veri�er yields� once the input has been �xed� an instance of Label Cover Vertices of
the bipartite graph �V�� V�� E
 represent locations in the tables T� and T� The set of edges
corresponds to the set of possible random strings the veri�er can use The labels correspond
to the veri�er�s alphabet The edge functions represent the veri�er�s decisions upon reading
pairs of labels The regularity condition on the veri�er�s queries ensures that the graph
thus produced is regular� as required by de�nition of Label Cover Now we describe this
construction

Fix an input x This �xes the length of the tables T� and T� in the proof� say they are
n�� n� respectively the size of the veri�er�s alphabet� say N  and the number of choices for
the random string� say R We identify symbols in the alphabet with numbers in �	� N �� and
the set of possible random strings of the veri�er with with numbers in �	� R�

Condition � on the query to T� being uniformly distributed implies that for each location
q� in T��

jfr � r � �	� R� and r causes q� to be queriedgj �
R

n�
� ��	


Similarly� each location in T� is queried by R�n� random strings

Note that �xing the veri�er�s random string to r �xes the locations it queries in T� and
T�� say q� and q� respectively If V accepts using random seed r and reading a� in location
q� and a� in q�� we denote this by V �r� a�� a�
 � 	 Condition � in De�nition �	 implies
that

�r � �	� R�� a� � �	� N � there is a unique a� � �	� N � � V �r� a�� a�
 � 	� ���


Now we construct the instance of label�cover The graph �V�� V�� E
 has jV�j � n�� jV�j �
n� Vertices in V��V� are identi�ed 	�to�	 with locations in T� and T� Let the set of edges
E be de�ned as

f�u� v
 � u � V�� v � V� and � r � �	� R� using which V queries these locationsg �
Thus we can identify E and R in a one�to�one fashion� and jEj � R The condition in
Equation �	 implies that the graph �V�� V�� E
 is regular

Let the set of labels be �	� N � For e � r � �u� v
� de�ne the partial function �e �
�	� N �� �	� N � as

�e�a�
 � a� i! V �r� a�� a�
 � 	�
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The condition in Equation �� implies that �e is well�de�ned as a partial function

The construction can be performed in time which is at most polynomial in the running
time of the veri�er� and R � N � and produces instances of size O�RN


Lemma ���� The optimum value of the max� version of label�cover on the above instance
is exactly

jEj � max fPr�V accepts � on input x� � � a proof�stringg �

Proof� In this lemma� �labelling� refers to an assignment of 	 label per vertex in V� � V�
The set of labellings is in 	�to�	 correspondence with the set of possible ways to construct
the tables T�� T� For any edge e � �u� v
 � E� if r � �	� R� is the corresponding random
string� then labels a�� a� assigned to u� v respectively cover e i! V �r� a�� a�
 � 	 Thus the
set of edges covered by a labelling is exactly the set of random strings for which the veri�er
accepts the corresponding tables T�� T� �

Theorem ��
 is a simple corollary to Theorem �	 and Lemma ��

Proof� �Of Theorem ���� Let L � NP Let V be the veri�er in Theorem �	 when k � �
�� 

For any input x construct a label�cover instance as above using V  If T � �log
�k�� n� the

reduction runs in poly�T 
 time� and produces instances of size O�T �
 Lemma �� implies
that if x � L there exists a labelling covering all the edges and otherwise no labelling covers

more than �� logk n fraction of edges Since �log
k n � �log

k��k�� T � �log
����� T � the gap is as

claimed �

����� Hardness of SV�

Recall that the hardness result for SV� used Lemma �	� In this section we give some
idea of how this result is proved more details appear in �ABSS���

The main idea is that Label Cover instances produced in the above reduction represent
the following algebraic object Let m be an integer and F a �eld Let lines in Fm be de�ned
as in Section ���

In the bipartite graph �V�� V�� E
 constructed by the reduction� V� is the set of all lines
passing through points of a �xed set S � Fm� where S contains an a�ne basis for Fm
The other side V� corresponds to points in Fm An edge �v�� v�
 is in E if the point of Fm

represented by v� lies on the line represented by v� The set of labels and the edge relations
�e also has a related algebraic description

The result is proved using an expansion�like property of the graph �V�� V�� E
� which we
don�t state here
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��� Unifying Label�Cover and MAX��SAT����

In this section we state a recent result of Ran Raz from �Raz��� An immediate consequence
is that the inapproximability result for Label Cover can be derived from the inapproximabil�
ity result for MAX��SAT�	�
 Before this development we knew how to prove the hardness
of Label Cover only by using the result in �FL��� " a result that seemed independent of the
PCP Theorem

Raz proves the so�called parallel repetition conjecture� a longstanding conjecture from the
theory of interactive proofs We describe only the consequence for restricted PCP veri�ers

Let V be any restricted veri�er using alphabet # Let us de�ne V � k� the kth product of
V � as follows Veri�er V � k expects tables T ��� T �� of size jT�jk and jT�jk respectively� where
the set of locations in T �� is in 	�to�	 correspondence with the set of all possible k�tuples of
locations in T�� and table T �� bears a similar relation to T� The alphabet of V � k is #k
Veri�er V � k performs k independent runs of V � except it bunches up the sequence of k
queries to T� into a single query to T ��� and the sequence of queries to T� into a single query
to T� It reads the k�tuples of symbols from these locations in T ��� T ��� and accepts i! all k
runs of V would have accepted

For any �xed input� if there exist tables �T�� T�
 which V accepts with probability 	�
then there clearly exist tables �T ��� T ��
 which V � k accepts with probability 	

Claim� �Raz
 For a given input� suppose veri�er V accepts every pair of tables T�� T� with
probability less than p where p 
 	 Then V � k will accept every pair of tables T ��� T ��
with probability less than p

ck
logN � where c is �xed positive constant depending only upon

the veri�er �and not the input size
 and N is the number of strings that V could give as
answers �

The proof of this claim is very complicated

As an immediate consequence we can improve Theorem �	

Theorem ���� For all positive increasing functions k of the input size�

NP � RPCP�k�n
 logn� k�n
� k�n

�

Proof� Example �	 implies that NP � RPCP�logn� 	� 	
 Take the O�k�n

�th product
of that veri�er Since the number of possible answers for the original veri�er is O�	
 �actually
�
� probability of incorrect acceptance becomes ��ck�n� Hence NP � RPCP�k�n
 logn� k�n
� k�n

�
�

Implications for Label Cover� We saw in Lemma �� that Label Cover captures ex�
actly the combinatorial structure of RPCP veri�ers Raz�s result implies that Label�Cover
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�maxversion
 is self�improvable under the following operation

Given an instance �V�� V�� E�N��
 of Label Cover �max version
� de�ne its kth product
as follows The underlying graph is �V k

� � V
k
� � E

k
 �where V k
� denotes cartesian product of

the set V� with itself k times
� and the set of labels is �	� Nk� The set of labels is viewed
actually as �	� N �k� the set of k�tuples of labels Thus a labelling must now assign a k�tuple
of labels from �	� N � to vertices in V k

� � V k
�  The new set of edge�functions� denoted �k�

are de�ned as follows Let e be a k�tuple of edges �e�� � � � � ek
 in the original graph Then
de�ne

�k
e�a

�
�� a

�
�� � � � � a

k
�
 � �a��� a

�
�� � � � � a

k
�


i! the labels satisfy
�j � 	� � � � � k� �ej �a

j
�
 � aj��

Raz�s result implies that if the value of the optimum in original instance is at most p�
then the value of the optimum in the kth product of the instance is pck In other words�
so long as the original optimum is some constant less than 	� the new optimum decreases
exponentially as we increase k

We already gave a reduction from MAX��SAT�	�
 to Label Cover �max version
 that
shows the hardness of �	 � �
�approximation As a consequence of the above result about
self�improvement� this reduction can be modi�ed �using the above notion of kth product

to give a hardness result for approximation within large factors �namely� the hardness result
in Theorem ��
 as well

This leaves a tantalizing open problem� Is there a booster�like construction �in the sense
of Section ��
 for Label Cover� which can prove that n��approximation is NP�hard� for some
�xed � � �� A recent result by Feige and Killian suggests that such boosters do not exist
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Applications of PCP Techniques

The techniques used to prove the PCP Theorem have found other applications besides the
hardness of approximations This chapter surveys some such applications

Many applications rely upon stronger forms of the PCP Theorem We recall the setting
of the PCP theorem� and then describe alternate settings that occur in its stronger forms

The Basic Situation� A probabilistic polynomial time veri�er needs to decide whether its
input x satis�es a predicate ,� where , is computable in nondeterministic polynomial
time The veri�er is given random access to a remote database that purports to show that
,�x
 � 	 In verifying the database� the veri�er has to minimize the following two resources�
the number of bits it examines in the data�base� and the amount of randomness it uses
What minimum amounts �as a function of input size n
 of the two resources does it need�
in order that the database have a reasonable chance of convincing it if ,�x
 � 	� and a
negligible chance otherwise�

According to the PCP theorem� upperbounds on the resources are� O�logn
 random bits�
and O�	
 query bits �Further� if these amounts could be lowered any further� then P � NP
��AS���

 Now we consider modi�cations of the Basic Situation The �rst modi�cation
considers the complexity of constructing the database

Situation �� In the Basic Situation� suppose the input x is a �CNF formula� and the pred�
icate � is de�ned to be 	 i! x is satis�able Minimize the time required to construct the
database� assuming the database constructor is already provided with a satisfying assign�
ment Also� give a way to construct the database such that the veri�er can recover any
desired bit of the satisfying assignment as e�ciently as possible

Situation �� Similar to the Basic Situation� except that the predicate � is computable
in nondeterministic time t�n
� where t�n
 � &�poly�n

 Make the veri�er as e�cient as

		�
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possible

���� Strong Forms of the PCP Theorem

We state stronger forms of the PCP Theorem that deal with the above two situations

Theorem ��� �Strong Form ��� In Situation �� the database constructor runs in time
poly�n
� Further� it can construct the database in a way such that it contains an encoding
of the assignment� which the veri�er can decode bit�by�bit� Decoding a bit of the assignment
requires examining O�	
 bits in the database� �The decoding algorithm is probabilistic��

Proof� �Sketch
 Recall the constructive nature of the proof of the PCP Theorem To obtain
a database from a satisfying assignment one needs to construct the polynomial extension of
the assignment� and the tables required by the various component procedures� Low�degree
Test� the sum�check� the procedure that aggregates queries� and so on A quick look at the
descriptions of all these tables shows that they can be constructed in time poly�n
 �Also�
the Composition step of Chapter � is also quite constructive in nature
 Hence the �rst half
of the Theorem is proved

We give an indirect proof of the second half� speci�cally� the fact that the veri�er can
recover bits of the assignment from such a database �A direct proof� using properties of
the polynomial extension� is also possible We do not give it here


Recall that in our construction the database has two parts The �rst contains an encod�
ing of the assignment �The encoding uses polynomial extensions of bit�strings
 The second
contains information showing that the assignment satis�es the formula Now suppose the
veri�er wants to be convinced that the assignment satis�es a second NP�predicate �� Then
only the second part needs to be changed� the database constructor just adds information
showing that the string encoded by the �rst part also satis�es ��

In particular� the following predicate is computable in polynomial time �and therefore
is an NP�predicate
� YES on a string i! the ith bit of the string is 	 Denote this predicate
by �i

The veri�er stipulates that the second part of the database contain the following ad�
ditional information� for each bit�position i in the assignment� if the ith bit is 	� a proof
that the assignment satis�es �i and otherwise a proof that the assignment satis�es �i� the
negation of �i

If the veri�er feels the need to decode the ith bit of the assignment� it can check �using
O�	
 queries
 a proof for �i� or �i� as the case may be If the check succeeds� then the ith
bit has e!ectively been recovered �

Polishchuk and Spielman ��PS���
 have further strengthened Strong Form 	 They
show that the size of the database is just O�n���
� where n is the running time of the
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nondeterministic computation that computes ,� and � is any positive constant

Next� we state the result about Situation �

Theorem ��� �Strong Form ��� �	BFLS�� ALM����� In Situation �� the veri�er needs
O�log t�n

 random bits and O�	
 query bits� Its running time is poly�log t�n
 � n
� where
n is the size of the input x� Further� the database continues to have the decoding property
mentioned in Strong Form �

Proof� �Sketch
 First we describe the �trivial
 modi�cation to the proof of the PCP Theo�
rem that has all the right properties� except the veri�er runs in time poly�t�n

 instead of
poly�log t�n
 � n


Using the obvious extension of the Cook�Levin theorem� do a reduction from predicate �
�which is computable in nondeterministic time t�n

 to instances of �SAT of size poly�t�n


Then use the veri�er of the PCP Theorem on such instances of �SAT It uses O�log t�n


random bits� queries O�	
 bits and runs in time poly�t�n



Now we describe how to make the veri�er run in time poly�log t�n
 � n
 First� notice
that the veri�er of the PCP Theorem uses poly�t�n

 time solely because of Lemma �� �the
algebraic view of �SAT
 All other sub�procedures used to de�ne the veri�er contribute only
time poly�log t�n

 to the running time �For instance� the technique of aggregating queries
�Lemma ��
 involves two simple algebraic procedures that run in time poly�d�m
� where
m� d are respectively the degree of and the number of variables in the polynomial extensions
being used A similar statement holds for the sum�check Recall that in all those cases� m
and d are poly�log t�n




To improve Lemma �� we need an idea from �BFLS�	� Use Levin�s Theorem ��Lev���

to reduce the decision problem on input x to an instance of Tiling The Tiling problem asks
for square unit�sized tile to be put on each vertex of a K �K grid� such that each tile is
one of a set of possible types� and the set of tiles around each grid�point looks valid �The
�rst line of the grid is already tiled the �nal tiling has to extend this
 The size K of the
desired tiling is poly�t�n

� the number of allowable tile�types is c� and the number of valid
neighborhoods allowed in the tiling is d� where c and d are some constants �independent of
n
 Levin�s reduction runs in time poly�n � log t�n

 �An aside� Levin�s Theorem follows
easily from the tableau viewpoint described earlier in Chapter �


Modify the veri�er of Lemma �� to work with the Tiling problem instead of �SAT It
now expects the database to contain a polynomial extension of a valid tiling Modify the
ideas of Lemma �� to produce an algebraic view of the tiling problem �There is no need
to write the functions �j � sj etc of that Lemma now Instead� there is a more direct way
to write an algebraic formula that represents the set of valid neighborhoods We don�t give
further details here


This allows the veri�er to run in time poly�t � logn
 �
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Note� This theorem was proved in �BFLS�	� in a somewhat weaker form their veri�er
required poly�log t�n

 random bits and as many query bits

���� The Applications

This section describes various applications of the above Strong Forms

������ Exact Characterization of Nondeterministic Time Classes

This application uses Strong Form �

Let Ntime�t�n

 for t�n
 � poly�n
 denote the set of languages computable in nondeter�
ministic time t�n
 The following is a restatement of Strong Form �

Theorem ���� Ntime�t�n
� � PCP� log t�n
� 	� � t�n
 � poly�n
��

This characterization generalizes the result MIP � NEXPTIME in �BFL�	�� which can

be equivalently stated as Ntime��poly�n�
 � PCP�poly�n
� poly�n

 It also generalizes the
work of �BFLS�	� FGL��	� whose result could be interpreted as saying that Ntime�t�n


� PCP�poly�log t�n

� poly�log t�n




������ Transparent Math Proofs

In this section we show that formal proofs in �rst order logic can be checked very e�ciently
by a probabilistic algorithm The algorithm needs to examine only a constant number of
bits in the proof This application of Strong Forms 	 and � was suggested by Babai et al
��BFLS�	�


We have to restrict ourselves to reasonable axiomatic systems over �rst order logic
These are axiomatic systems for which a Turing Machine can check proofs in polynomial
time More speci�cally� given any alleged theorem T and a claimed proof � for it� the Turing
Machine can determine in time poly�jT j � j�j
 whether or not the proof is correct in the
system Most popular axiomatic systems �for instance� the Zermelo�Fraenkel axioms
 are
reasonable They involve a constructible set of axioms and induction rules� and checking
whether each step of a given proof is deduced correctly from preceding steps involves a
simple syntactic check

For a reasonable axiomatic system� let the term proof�checker refer to any Turing Ma�
chine �probabilistic or deterministic
 that can check proofs in that system The following
theorem shows that the proof�checker can be made quite e�cient
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Theorem ���� For any reasonable axiomatic system� there is a probabilistic proof�checker
Turing Machine that� given a theorem�candidate T and a proof�candidate �� runs in time
poly�jT j� log j�j
� examines only O�	
 bits in the proof� and satis�es the following�

� If theorem�candidate T has a proof in the system of size N � then there exists a string
� of size poly�N
 such that the checker accepts �T��
 with probability 	�

�� If T has no proofs� the checker rejects �T��
 with probability at least ���� where � is
any string whatsover�

�� The following two transformations can be done in polynomial time� �a� Transforming
any string � that is accepted by the veri�er with probability at least � 	�� �in partic�
ular� ��� implies that T in this case must be a theorem� to a proof in the axiomatic
system� �b� Transforming any valid axiomatic proof to a proof that is accepted by the
checker with probability 	�

Notes� Condition ��
 shows a polynomial�time equivalence between provability in the
classical sense in the axiomatic system� and provability for our veri�er The advantage of
our system is that the running time of the veri�er grows as a polynomial in the logarithm
of the proof�size Also� only a constant number of bits are examined in the proof�string

Proof� Use the well�known connection between mathematical proofs and nondeterministic
Turing Machines For every reasonable system� by de�nition there is a nondeterministic Tur�
ing Machine that accepts the language f�T� n
 � T is a theorem that has a proof of size ng
�Note� the machine guesses a proof of length n� and then checks in poly�n
 time that it is
correct
 Using Theorem ��� parts 	 and � of the theorem statement follow

Further� part � �a
 follows from the fact that the database is e�ciently constructible
Part � �b
 uses the �decoding property� mentioned in Strong Forms 	 and �� Given a
database that is accepted with high probability� the veri�er can decode the original non�
deterministic guess �in this case� a proof of theorem T 
 bit by bit

�

A philosophical problem needs to be pointed out here It may appear that our con�
struction has simpli�ed the checking of math proofs� since our checker needs to examine
only O�	
 bits in the proof However� in another sense� the new checker�s program is quite
complex At least the way we proved the above theorem� the checker must write down a
�SAT formula �or set of acceptable tile types
 that expresses an axiomatic system This is
not an easy task� and certainly not so for humans

������ Checking Computations

Strong Form � also enables constructions of certi�cates for all nondeterministic compu�
tations The certi�cate�s length is polynomial in the running time of the computation�
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and checking it requires examining only O�	
 bits in the certi�cate �This application of
PCP�type results was also suggested in �BFLS�	�


The situation we have in mind is a restatement of Situation � Suppose a user has a
nondeterministic program P and an input x The user would like to know if the nondeter�
ministic program has an accepting computation on the input

A database constructor with unlimited computational power �say� a supercomputer

can go through all possible branches of the nondeterministic program P � �nd an accepting
branch �if one exists
� and change it into a database that the veri�er can check by examining
only O�	
 bits in it This database can therefore be viewed as an �easily checkable
 certi�cate
that P accepts x

Of course� as a special sub�case� the above construction also applies to deterministic
programs More importantly� in many cases� a complicated deterministic program can be
replaced by a trivial �but equivalent
 nondeterministic program Hence a certi�cate that the
nondeterministic version accepts is also a certi�cate for the more complicated deterministic
version We illustrate this point with an example

Example ���� Suppose we are given a number N  There is a well�known deterministic
algorithm that checks in time nO�log logn� whether or not N is composite� where n � logN 
But this algorithm is complicated� and therefore we might have reasons to mistrust any
software that claims to implement it

Now consider the following nondeterministic program� Guess a number between 	 and
N � and accept i! it is a nontrivial divisor of N  This program runs in time O�n�
 or so and
has an accepting branch i! N is composite

Hence certi�cates for the nondeterministic program are much shorter " and simpler "
than those for the deterministic program

�Note� however� that �nding a certi�cate for the nondeterministic computation is equiv�
alent to �nding a divisor of the number N � which is the celebrated factoring problem The
best known algorithms for it run in time �

�
p
n Hence by insisting that it wants to see only

certi�cates for the nondeterministic program� the veri�er has made the task of the certi�cate
constructor much more di�cult


A caveat is in order Our technique does not represent a way to check software We
assumed throughout that software for the nondeterministic program P is reliable

������ Micali�s Certi	cates for VLSI Chips

Micali �Mic��� notes that the above idea of checking computations� since it assumes that
software is reliable� makes more sense in the context of checking VLSI chips Chips are
designed carefully �in other words� they are programmed with reliable software
� but the
fabrication process might introduce bugs in the hardware Instead of testing the chip
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exhaustively� we could require �by adding the necessary hardware to the chip
 that it always
give us a certi�cate that its computation was done according to speci�cations However�
input�output from chips is slow� so e�ciency would be terrible if we use the large certi�cates
described above �since their size polynomial in the running time of the computation
 Micali
shows how to hash down the certi�cate to polylogarithmic size in a cryptographic fashion
By �cryptographic hashing� we mean that although it is possible to produce a fraudulent
certi�cate� doing so takes a lot of time �which the chip does not have


Micali�s idea works also with the weaker result about checking nondeterministic compu�
tations that appears in �BFLS�	�� but e�ciency is better using the PCP theorem Also� he
points out an interesting extension of the class IP �Section ��


������ Characterization of PSPACE �Condon et al��

Condon� Feigenbaum� Lund and Shor ��CFLS���
 give a new characterization of PSPACE�
the set of languages accepted by machines that run in polynomial space Their result
PSPACE � RPCDS�logn� 	
 uses the Strong Form 	 of the PCP Theorem

RPCDS�r�n
� 	
 is a class of languages de�ned using a debate between two players� �
and ��� where �� is just a source of independent random bits The players alternate in
setting down strings of bits on a debate�tape� which is checked at the end by a polynomial
time veri�er� who accepts or rejects �The veri�er has random access to the debate tape

Language L is in RPCDS�r�n
� 	
 if the veri�er on inputs of size n uses O�r�n

 random
bits� examines O�	
 bits in the tape� and satis�es� For all inputs in L� there is an � player
such that the debate is accepted with probability 	� and for all inputs not in L the debate
is rejected with probability at least 	�� �irrespective of what the � player does


Shamir�s result ��Sha���
 implies that PSPACE � RPCDS��� poly�n

 Condon et al
obtain their improvement by stipulating that the player � write down at the end of the
debate a �certi�cate� �that is� the database referred to in Strong Form 	
 showing that
the veri�er would have accepted the debate Recall that this means that the �certi�cate�
contains an encoding �using polynomial extensions
 of the debate� lots of other tables and
so on Strong Form 	 implies that the veri�er can check this certi�cate by examining only
O�	
 bits in it Only one task remains� how to verify that the debate encoded in such a
certi�cate is the actual debate that took place In the �CFLS��� paper it is shown �using
Shamir�s result
 that the veri�er only needs to decode O�	
 bits from the encoded debate
�the decoding requires reading only O�	
 bits� according to Strong Form 	
� and check them
o! against the corresponding bits in the actual debate

Condon et al use their characterization of PSPACE to show the hardness of approximat�
ing some PSPACE�hard problems
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������ Probabilistically Checkable Codes

Recall the de�nition of a code from Section �	 For now we restrict attention to codes on
the alphabet f�� 	g

De�nition ���� A family of Probabilistically Checkable Codes is a family of codes� �ie�
with one code for each codeword size
� whose minimum distance �min is some constant �like
��	
 indenpendent of the codeword size Further� the family has an associated polynomial
time randomized checker Given a word of size n� the checker uses O�logn
 random bits�
examines O�	
 bits in the word� and has the following properties

	 If the word is a codeword then the checker accepts with probability 	

� If the word is not �min���close then the checker rejects with probability 	��

Proposition ��� �ALMSS�� For some c 
 	 there exist probabilistically checkable codes
in f�� 	gn that contain �n

c
strings�

We can use stronger versions of De�nition �	� none of which a!ect the validity of the
previous proposition� the codes have associated coding�decoding algorithms that run in
polynomial time the veri�er runs in time poly�logn
 instead of poly�n
 a probabilistic
decoding of any bit in a �min���codeword requires examining only O�	
 bits in the word�
and so on

We will not prove Proposition �	 here The construction uses techniques from the proof
of the PCP Theorem Recall that the proof of the PCP theorem consisted of a sequence of
encoding schemes for assignments �see Figure �� for a bird�s�eye view
 The same sequence
of schemes works also for encoding bit�strings

����� Kilian�s Communication
e�cient Zero
Knowledge Arguments

We will not attempt to give an exact de�nition of zero�knowledge arguments here Roughly
speaking� the situation involves two parties " both of whom run in probabilistic polynomial
time " and a �SAT formula One party has a satifying assignment to the formula� and
wants to convince the other of this fact in such a way that the other party does not learn
even a single bit in the satisfying assignment

Protocols for doing this are known� but they require too much communication between
the parties Kilian ��Kil���
 shows how to reduce the communication requirement His idea
is to hash down� in a cryptographic fashion� the �probabilistically checkable� database of
Strong Form 	 �Recall that Micali�s idea is similar


He needs something more than the Strong Form 	� speci�cally� the fact �proved in
�BFLS�	� PS���
 that the database given by Strong Form 	 has size n���� where n is the
size of the �SAT formula
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������ Khanna et al��s Structure Theorem for MAX
SNP

The class APX contains optimization problems which can be approximated within some
constant factor in polynomial time An open question posed in �PY�	� was� is APX con�
tained in MAX�SNP� The answer turns out to depend upon how MAX�SNP is de�ned It
appears that the de�nition intended in �PY�	� �although never stated explicitly thus
 was
that every problem that has an approximation�preserving reduction to MAX��SAT should
be considered to be in MAX�SNP With this de�nition� MAX�SNP equals APX ��KMSV���

The proof is not too di�cult� the PCP Theorem can be used to give a reduction from any
APX problem to MAX��SAT

������ The Hardness of 	nding Small Cliques

Given a graph of size n� how hard is it to determine whether or not it has a clique of size
dlogne� The trivial algorithm based upon exhaustive search takes O�nlogn
 time Does a
polynomial time algorithm exist�

This question was raised in �PY��a�� and is also related to the study of �xed parameter
intractability ��DF���


Recently� Feige and Killian ��FK��a�
 related this question to another question about
traditional complexity classes They show that if a polynomial time algorithm exists� then
Ntime�t�n

 � Dtime��t�n�

���

 for some small positive constant �

They use the version of Strong Form 	 due to �PS��� �see the note following Strong
Form 	
 Their idea is to do a reduction to clique using this strong form� and then apply a
booster�like construction as in Section ��

Note� Noam Nisan has since shown the same result without using the PCP Theorem�
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Chapter 


Open Problems

We list two types of open problems The �rst type� contained in Section �	� concern the
hardness of approximation The second type� in Section ��� concern �PCP techniques�
The latter term is an umbrella term for ideas like program�checking� self�testing�correcting�
random self�reducibility� and algebraic properties of polynomials " in other words� the in�
gredients of the new results in complexity theory

Finally� in Section �� we discuss the following open problem� Does the PCP Theorem
have a simpler proof�

���� Hardness of Approximations

There are two major open areas here� First� to show the inapproximability of problems for
which this is not known Second� to improve existing inapproximability results

������ Proving hardness where no results exist

Despite great progress on proving hardness results for problems like clique� chromatic num�
ber� set cover� etc� similar results elude us for the following problems

Shortest Lattice Vector� Given an integer lattice
nP

i �i
*bi � �i � Z

o
� the problem is to

�nd a non�zero lattice vector whose �� norm is the smallest �see Section ��
 It is open
even whether exact optimization is NP�complete The best factor of approximation
currently achievable in polynomial time is �O�n� logn� ��Sch���
 The best inapproxima�
bility result says that the version of the problem using the �� norm is almost�NP�hard
upto a factor �log

����� n ��ABSS���� also Section ��
 Improving the �� result to a
factor of

p
n will prove hardness of the �� version as well� since the optima in the two

norms are related by a factor of
p
n

	��
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The rigid structure of the lattice makes it di�cult to come up with reductions The
geometric arguments used in the �� result may provide a hint on how to proceed

Euclidean TSP� This is the version of the Travelling Salesman Problem where points lie
in a Euclidean space Exact optimization is NP�hard even when all points lie in a
plane ��GGJ��� Pap���
 The best factor of approximation currently achievable in
polynomial time is ��� ��Chr���
 No inapproximability results exist It is known
however that Metric TSP� the version in which the underlying space is a �possibly
non�Euclidean
 metric space� is MAX�SNP�hard ��PY��b�
� so as a consequence of
Theorem ��� �nding �	 � �
�approximations is NP�hard

The NP�hardness of exact optimization in the Euclidean case is proved using the
NP�completeness of planar�SAT But MAX�SAT restricted to planar instances has a
polynomial time approximation scheme ��AKM���
� which rules out the use of planar�
SAT in proving hardness of approximation

Instances of SAT produced by the current proof of the PCP theorem represent high�
dimensional objects �namely� a geometry involving the points and lines of a log n�
dimensional space see chapter �� and also Lemma ��
 It seems di�cult to do
reductions from these to planar TSP� but perhaps a reduction is possible to higher�
dimensional TSP

Edge	deletion type problems� This group of problems� proposed by Yannakakis ��Yan�	�

consists of any problem stated in the following form� for some property T of graphs
that is closed under edge�deletion �for example �disconnectedness�
� Remove the min�
imum possible number of edges so that the remaining graph satis�es T 

The following are two well�known examples� Graph bisection �T � there is a set of
connected components which together include exactly n�� vertices
� and Minimum�
feedback Arc Set �T � acyclicity


A series of papers starting with ��LR���
 use $ow techniques to approximate many
edge�deletion problems within factors like logn� or poly�logn
 �For graph bisection�
the approximate solution produces not an exact bisection� but a 	�� � ��� split of the
vertex set


No good hardness results are known in many cases �like graph bisection
 not even
MAX�SNP�hardness is known The following clean problem seems to be a good can�
didate to prove hard to approximate� Given an instance of MAX��SAT� delete the
smallest number of clauses so as to make it satis�able �To see why this �ts the edge�
deletion framework� and also an approximation algorithm for a related problem� refer
to �KARR��� GVY���


������ Improving existing hardness results

There are two ways to improve existing hardness results First� to base the result on
the assumption P �� NP �many results are currently based upon stronger assumptions
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Second� to show that approximation within larger factors is also hard For most problems
there is a large gap between those factors of approximation known to be NP�hard� and those
achievable in polynomial time

Basing results on P �� NP�

One shortcoming of many existing hardness results is that they are based upon complexity
assumptions stronger than �P �� NP� This was also originally the case with the clique
problem ��FGL��	�
� but as a result of ��AS���
 we are now able to base that hardnes result
upon P �� NP So there is hope that the same may be possible with other problems

The reason for resorting to strong complexity assumptions is that many hardness results
involve reductions from Label Cover �for a de�nition see Chapter �
 Approximating Label

Cover upto a factor of �log
����� n is known to be only almost�NP�hard� instead of NP�hard

�Approximating within constant factors is NP�hard� however
 Thus reductions from Label
Cover also prove almost�NP�hardness of large factor approximation On the other hand� a
proof that n��approximation to Label Cover is NP�hard �for instance
 would immediately
make Label Cover much more useful as a canonical problem One way to prove such a result
is to prove the following conjecture �for a de�nition of RPCP see De�nition ��


Conjecture ���� For all k 	 O�logn


NP � RPCP�logn� k� k
�

�

The conjecture is true for the case k � O�	
 ��FK��b�
� In general� if conjecture �	
holds for any given k� then approximating Label Cover within a factor �k is NP�hard

Approximation Problems for which Conjecture ��� implies NP	hardness�

	 Set�Cover upto a factor O�logn
 For this result it su�ces that the conjecture be true
for k � O�log log n
��LY���
� or even that the conjecture be true with O�	
 tables
instead of just � ��BGLR���


� Lattice and other Problems An entire group of problems �involving lattices� systems
of linear equations and inequalities
 from section ��� upto a factor of n� for some
small �

� Vertex Deletion problems An entire family of problems� upto a factor of n� ��LY���


�A very recent result by Feige and Killian suggests that the conjecture is hard to prove�
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In addition� the longest path problem is currently known to be NP�hard to approximate
within any constant factor Assuming SAT cannot be solved in subexponential time the
factor can be pushed up to �log

��� n ��KMR���
 It is not clear how to base the second result
on P �� NP� even if conjecture �	 is true� since the known reduction �from MAX��SAT��


inherently blows up the size of the instance beyond any polynomial �See also the note in
Section ��


Improving the Factors

The other way to improve known hardness results would be to prove that approximation is
hard even for larger factors The following is a list of some of the signi�cant problems

Clique and Independent Set� Assuming NP problems cannot be solved probabilistically
in subexponential time� �

p
n�approximation to Clique and Independent Set is impos�

sible in polynomial time ��BS���
 The best polynomial�time algorithms achieve a
factor n�poly�logn
 Can we prove hardness for a factor n����

Chromatic Number� �i
 The discussion from independent set applies to chromatic num�
ber too �ii
 Given a ��colorable graph� what is the least number of colors with which
we can color it in polynomial time� The best algorithms use n���� colors ��KMS���

The best hardness result says that at least � colors are needed if P �� NP ��KLS���

Can ��� be improved to n�� for some small enough �� as many believe� A result by
A Blum shows that if coloring ��colorable graphs with even poly�logn
 colors is hard�
then approximating Clique within a factor n��� is hard� where � is an arbitrarily small
positive constant �A relevant fact here " which Blum also uses in his result " is that
chromatic number is �self�improvable�� as shown in �LV���


Classic MAX	SNP	hard problems� These include vertex cover� TSP with triangle in�
equality� MAX�SAT� etc The best polynomial time algorithms achieve approximation
factors of �� ��� and ���
���	 respectively We only know that �	��
�approximations
are hard for � � ���	 Can the hardness result be improved� A surprising development
in this area is the result of Goemans and Williamson �GW���� where it is shown that
MAX��SAT and MAX�CUT� two other MAX�SNP�hard problems with with classic ��
approximation and ����approximation algorithms respectively� can be approximated
within a factor better than 	�	�

������ Obtaining Logical Insight into Approximation Problems

In Section �� we gave a survey of known inapproximability results Problems seem to fall
into four main classes� according to the factor of approximation which is provably hard to
achieve in polynomial time

Why do problems fall into these four classes� Is there a method �at least at an intuitive
level
 for recognizing� for a given problem� which of these classes it falls in�
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No satisfactory answers to such questions are known any class except the �rst �Recall
that this class contains only MAX�SNP�hard problems


Further� the edge�deletion problems seem to form a class of their own It would be nice to
�nd a �complete� problems in this class� in other words� a problem whose inapproximability
implies the inapproximability of the entire class

���� Open Problems connected with PCP techniques

The class PCP�r�n
� r�n

 for r � o�logn
� The class PCP�o�logn
� o�logn

 is contained
in NP � but does not cotain any NP�complete problems if P �� NP ��AS���
 A re�
sult in �FGL��	� shows how to reduce the question of membership in a language in
PCP�r�n
� r�n

 to an instance of Clique of size �O�r�n�� So the membership problem
seems to involve limited nondeterminism �PY��a�
 but it is open if there is an exact
characterization lurking there

Size of the proof� In the proof of the PCP theorem� what is the minimum size of the
proof needed for �SAT formulae of size n� In our proofs we were sloppy with the
numbers� but the best size that achievable is n��� ��Sud���
 A tighter construction
��PS���
 achieves size n��� Can we achieve size n poly�logn
� The size is important
for cryptographic applications �Kil���

Size of probabilistically checkable codes� These codes were de�ned in Section ���
The best construction ��PS���
 achieves a constant minimum distance �say� �min �
���	
 and encodes n bits with n��� bits Can the size of the encoding be reduced to
n poly�logn
� or better still� to O�n
� Shannon�s theorem says the size would be O�n

if we didn�t impose the probabilistic checkability condition �MS���


Improving the low	degree test� Does the low�degree test work even for high error rates�
In other words� is Theorem �	 in Chapter � true even when the success rate is less
than ��� �say
� and jFj � poly�d
�

Self	correction on polynomials� Can polynomials be self�corrected �for de�nition see
�BLR���
 in the presence of high error�rates� A self�corrector is a probabilistic pro�
gram that is given a rational number p � � and a function f � Fm � F that is
�	 
 p
�close to Fd�x�� � � � � xm� The self�corrector�s task� given an arbitrary point b
in Fm� is to produce g�b
 in time poly�d� 	�p� log jFj
� where g � Fd�x�� � � � � xm� is any
polynomial that agrees with f in a fraction p of the points Self�correctors are known
to exist for all p such that p � ��� � � for some � � � The case p 	 ��� is open
In general we seem to be missing some crucial insight into �	
 p
�close functions for
p 	 ���� which is possibly why the previous problem is also open

Applications to cryptography� Do the algebraic techniques of the PCP results have
applications in cryptography and program checking� For instance� a key result in
cryptography is the construction of a hard�core bit for pseudo�random generation
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��GL���
 At the heart of this result is a simple self�corrector �in the sense of �BLR���

for linear functions over GF��
 �these functions were also encountered in Section ��

Now we know of much stronger results about polynomials �eg� those in Chapter �

What are the applications �if any
 for cryptography� One possible application could
be pseudo�random generation in parallel� a longstanding open problem

Implications for complexity classes� We now know of PCP�like characterizations not
only for non�deterministic time classes �Section ��	
 but also for PSPACE and PH
�see Section ���
 What are the implications of these new characterizations� if any�
Can new characterizations be given for any other complexity classes� say P or EXP�
TIME�

���� Does the PCP theorem have a simpler proof�

We mentioned earlier� while describing the overall picture of the proof of the PCP theorem in
Section ��� that central to our proof of the PCP Theorem is a new way to encode satisfying
assignments The encoding uses polynomials �represented by value instead of by coe�cient

Speci�cally� it uses the fact that the set of low�degree polynomials� when represented by
value� form a code of large minimum distance �see Section �	
 The de�nition of the
encoding is not simple it involves many steps� where each step consists of de�ning a new
veri�er The veri�ers are composed at the end to give a �nal veri�er �and a �nal encoding

Figure �� gives a bird�s�eye view of this process

Must every proof of the PCP Theorem be this complicated� There is no easy answer
In fact it is not even clear why the proof needs to involve an encoding process In Claim �
given below� we try to give intuition why Further� we try to explain at an intuitive level
why the encoding must make use of error�correcting codes �as ours did
 We actually argue
something stronger� that the encoding must use an object very much like a probabilistically
checkable code� �see De�nition �	


We state two claims� the �rst rigorous� and the second intuitive

The �rst Claim makes the following intuition precise� If a PCP�logn� 	
 veri�er accepts
one string but rejects the other� then the two strings must di!er in many bits

Claim �� Every PCP�logn� 	
 veri�er V � has an equivalent uniform form� in which it has
the following property� There is a positive integer C such that for every two proof�strings
�� and �� and any input x�

jPr�V accepts �� on input x�
 Pr�V accepts �� on input x�j 	 C  ����� ��
 ��	


where ����� ��
 is the Hamming distance between �� and �� �as de�ned in Section ����

Proof �Sketch�� Note that the veri�er will not give di!erent answers on two strings unless

�Our argument in this section is somewhat imprecise� It is made more precise in �Aro	���
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if it queries a bit�position in which they di!er In other words� for any strings �� and ���
an upper bound on the quantity

jPr�V accepts �� on input x�
 Pr�V accepts �� on input x�j

is given by Pr�V queries a bit�position in which �� and �� di!er� We show how to make
the queries of the veri�er uniformly distributed� so that the above upper bound can be
given in terms of the distance between �� and ��

Let K � poly�n
 be the size of the proof�string� and q � O�	
 be the number of bits the
veri�er queries in a single run Consider the following probability distribution

pi � Pr� V queries bit�position i in the provided proof in its �rst query�� ���


We �rst modify the veri�er so that this distribution becomes uniform� and furthermore� is
identical for all q queries �Important� The queries could be correlated� just their distribution
is uniform�
 Then the claim follows� since if

Pr�the �rst bit queried in �� and �� is di!erent� � p�

then
jPr�V accepts �� on input x�
 Pr�V accepts �� on input x�j 	 qp�

Finally� the uniformity of the above distribution implies p � ����� ��
 By substituting
C � q the claim is proved

Now we explain the modi�cation to V to achieve uniformity First make the above
distribution identical for all q queries by randomly scrambling the order in which V makes
its q queries �recall� V queries the proof nonadaptively
 To do this the veri�er requires a
random permutation of a set of C elements� in other words� O�	
 random bits Now pick
a su�ciently large integer R � poly�n
 Modify V so that it expects a proof of size RK�
containing bRpic copies of the ith bit of the old proof

Whenever V reads the ith bit in its proof� the modi�ed veri�er will choose two bits
randomly from among all bRpic copies of this bit� check that they have the same value� and
if so� use that common value

The distribution induced by this query pattern is almost uniform when

R � Number of choices for the original veri�er�s random string

�

Claim � �Intuitive�� Whenever we construct a PCP�logn� 	
 veri�er V� for �SAT� we
must implicitly de�ne for every �SAT instance �� a one�to�many map  from assignments
�for �� to sets of proof�strings such that
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� If assignment A satis�es �� there is a proof�string � � �A
 such that

Pr�V� on input � accepts �� � 	�

� If any proof�string � satis�es

Pr�V� on input � accepts �� � �

�

then � has a unique pre�image under � Further� the pre�image is a satisfying assign�
ment�

Justi�cation� The construction of such a V� is an implicit proof of NP�completeness of
the following language

L �

�
� � � is a �CNF formula and �� st Pr�V� accepts � on input �� � �

�
�

�
�To see that this problem is in NP� look at the proof of Corollary ��


All known NP�completeness results map witnesses to witnesses in a one�to�many fashion�
We quote this as intuitive justi�cation for our claim �

Suppose we believe in Claim � Then we show how to use any uniform form PCP�logn� 	

veri�er for �SAT to de�ne a code �over the alphabet f�� 	g
 that is quite close to being
probabilistically checkable Fix the input � De�ne the code as

f� � Pr�the veri�er on input � accepts �� � 	g �

The checker for this code is the uniform form veri�er It accepts all codewords with
probability 	 Conversely� if it rejects any word with probability more than 	��� then� since
it examines only O�	
 bits in the word� Claim 	 implies that the word is not ��close� for
some small enough constant �

We cannot rigorously prove that the code has minimum distance c for some �xed c � �
�independent of �
 However� we can prove it under the assumption that the proof�strings
in the code are in one�to�one correspondence with satisfying assignments For� let ��� �� be
two codewords �representing di!erent satisfying assignments
 whose mutual distance is less
than c Let �� be any word that that agrees with both of them in 	 
 c fraction of points
Then the probability that the veri�er accepts �� is �by Claim 	
 �close� to 	 By Claim ��
�� must be decodable to a unique pre�image This contradicts the assumption that ��� ��
represented distinct satisfying assignments

�The well�known randomized reduction from NP to UNIQUE�SAT ��VV���� does not map every witness
to a witness� We do not consider this reduction a counterexample because it succeeds with probability less
than ��n� which in the PCP context is negligible� A deterministic �or low�error� version of this reduction
would be a valid counterexample� though�
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Conclusion� We have tried to argue that constructing probabilistically checkable codes
�PCC�s
 is a pre�condition to proving the PCP Theorem Currently the only way to con�
struct such codes involves a small modi�cation of the proof of the PCP Theorem� just take
out the sum�check part from the �rst step of Figure �� We feel that a simpler construction
of PCC�s will very likely yield a simpler proof of the PCP Theorem

Finally� note the following �machineless� analogue of a PCC �in the spirit of Lemma ���
which replaced a �logn� 	
�restricted veri�er with a �CNF formula
 Any PCC yields a
�CNF formula in n variables such that for some constants c� d � �� �i
 the set of satisfying
assignments form a code with minimum distance c �ii
 the set of words that are not c

��close
satisfy fewer than �	
 d
 fraction of clauses �Ideally� we want the formula to also satisfy
the condition that the number of satisfying assignments is at least �n

�
for some � � �


Currently� we do not know how to prove the existence of such �CNF formulae� except
as a by�product of the PCP Theorem Hence an alternative proof of existence �say� a
non�constructive proof
 would also yield fresh insight into PCC�s
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Appendix A

Library of Useful Facts

We include proofs of some simple facts assumed in the thesis

Fact A�� �Cook	Levin Theorem� Stronger Form�� For any language L � NP there is
a �xed constant c such that given any input size n we can in time poly�n
 construct a �SAT
formula � in the variables x�� � � � � xn� y�� � � � � ync such that the an input b � f�� 	gn is in L
i�

�y�� � � � � ync � ��b�� � � � � bn� y�� � � � � ync
 � TRUE

where b�� � � � � bn are the bits of b�

Proof� Follows from an easy modi�cation of the proof of the standard version of the Cook�
Levin theorem �

The following fact often goes by the name �Markov�s inequality�

Fact A�� �Averaging Principle�� Suppose the average of a set of numbers from ��� 	� is
�� Then �i� The fraction of them that are greater than k� is at most 	�k� �ii� The fraction
of them that are greater than

p
� is less than

p
��

Proof� �i
 For� if not� then the average is more than 	�k  k� � � This is a contradiction

Part �ii
 follows by using k � 	�
p
� �

In the rest of this section� F denotes the �eld GF�q
 Some lemmas require q to be
lowerbounded by a function of some other parameters

Fact A��� For every set of k �point� value� pairs f�ai� bi
 � 	 	 i 	 kg� �where ai� bi � F
and no point ai is repeated in the list� there is a unique polynomial p�x
 of degree k
	 such
that

p�ai
 � bi�

	��
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Proof� Let

Li�x
 �
Y
j �	i

�x
 aj


ai 
 aj

be the polynomial that is 	 at ai and zero at all aj for j �� i Then the desired polynomial
p is given by

p�x
 �
X
i�k

biLi�x
�

Uniqueness is easy to verify �

Fact A�� �Schwartz�� An m�variate polynomial of degree d is � at no more than d�q

fraction of points in Fm� where q � jFj�

Proof� Proved by induction on m Truth for m � 	 is clear� since a univariate degree d

polynomial has at most d roots

A degree�d polynomial p�x�� � � � � xm
 has a representation as

kX
i	�

xi�  pi�x�� � � � � xm
 �A	


where k 	 d and each pi�x�� � � � � xm
 is a nonzero �m 
 	
�variate polynomial of degree at
most d
 i

By the inductive hypothesis� for at least �	
�d
k
�q
 fraction of values of �x�� � � � � xm
�
pk�x�� � � � � xm
 �� � For any such value of �x�� � � � � xm
 the expression in Equation A	 is a
degree k polynomial in x�� and so is zero for at most k values of x�

Hence the fraction of non�zeroes of p is at least �	
 �d
 k
�q
�	
 k�q
 � �	
 d�q
 �

Fact A��� Let �d 
 q and f be an m�variate polynomial of degree at most d� If its restric�
tion on d�q fraction of lines is �	�� � d�q
�close to a univariate degree k polynomial� where
k 
 d� then the degree of f is exactly k�

Proof� A line is speci�ed as f�u�� � � � � um
 � t  �v�� � � � � vm
 � t � Fg for some u�� � � � � um�
v�� � � � � vm � F The restriction of f on such a line is given by

dX
i	�

tipi�u�� � � � � um� v�� � � � � vm


where each pi is a polynomial in u�� � � � � um� v�� � � � � vm of total degree at most d In fact� a
little thought shows that pd is a function only of v�� � � � � vm and is exactly the sum of those
terms in f whose total degree is d



	��

On any line where f �s restriction is �	���d�q
�close to a univariate polynomial of degree
k� pd� pd��� � � � � pk are � The hypothesis says that this happens for d�q fraction of the lines
Hence pd must be identically zero Thus f has no terms of total degree d Repeating this
argument shows that it has no terms of total degree more than k �

Fact A�
� Suppose �d 
 q and f � Fm � F is a function whose restriction on every line is
described by a univariate degree�d polynomial� Then f � Fd�x�� � � � � xm��

Proof� By induction on m The case m � 	 is trivial

Let m � 	 Let a�� � � � � ad be distinct points in F According to the inductive hypothesis�
the restriction of f on the m 
 	�dimensional subspace f�ai� x�� � � � � xm
 � x�� � � � � xm � Fg
is described by an �m
 	
�variate polynomial of degree d Let fi denote this polynomial

Let Li be the univariate polynomial that is 	 at ai and � at all aj for j �� i Consider
the m�variate polynomial g de�ned as

dX
i	�

Li�x�
fi�x�� � � � � xm
�

The restriction of g on any line that is parallel to the x��axis " that is� a line of the
form f�t� b�� � � � � bm
 � t � Fg " is a degree d polynomial in x� This univariate polynomial
describes f when t � a�� a�� � � � � ad Hence it must be the univariate polynomial that
describes f on the entire line

Since the set of lines parallel to the x��axis intersects all points in Fm� we conclude
that g � f  In particular� f is a polynomial of degree at most �d But on every line it is
described by a degree d univariate polynomial So Fact A� implies that f has degree d �

Fact A��� Let A � �aij
 be an n � n matrix� where the entries aij are considered as
variables� Then the determinant of A is a polynomial of degree n in the aij�s�

Proof� Follows from inspection from the expression for the determinant

det�A
 �
X
��Sn

sgn�
 
Y
i�n

ai��i��

where Sn is the set of all permutations of f	� � � � � ng �

The following fact is used in Section �	 The reader may choose to read it by mentally
substituting �F�y�� the set of polynomials over �eld F in a formal variable y� in place of R

Fact A�� �Cramer�s Rule�� Let A be an m�n matrix whose entries come from an inte�
gral domain R� and m � n� Let A  x � � be a system of m equations in n variables �note�
it is an overdetermined homogeneous system��
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� The system has a non�trivial solution i� all n�n submatrices of A have determinant
��

�� If the system does have a solution� then it has one of the type �x� � u�� � � � � xn � un

where each ui is a sum of determinants of submatrices of A�

Proof� Normally we would solve such equations by identifying the largest nonsingular
submatrix of A� say B� �xing the variables that are not in B� and multiplying both sides
by the inverse B�� of B Since the system is homogeneous� it is easily seen that we can
also multiply both sides any matrix that is a scaling of B�� In this case we multiply by
det�B
  B�� But each entry of det�B
  B�� is itself a determinant of submatrices of B
Hence the claim is proved �

The following lemma uses terms de�ned in De�nition �	� and �	� It says that the
�average� curve in P �
 x�� � � � � xk �
 hits every subset of Fm of size �  jFjm in about �  jFj
points Recall that when we say �set of points on a curve�� we are actually talking about
a multiset �for example� the sequence x�� � � � � xk below could have repetitions


Lemma A�� �Well	distribution Lemma for Curves�� Let x�� � � � � xk � Fm be points
�not all xi�s are the same� and S � Fm be any set� Then the average of jC � Sj� among all
curves C � P �
 x�� � � � � xk �
� is jSj

jFjm �

Proof� Let C be the set of curves of degree k whose �rst k points are fx�� � � � � xkg Consider
the following enumeration of elements of C

For every x � Fm and j such that k 
 j 	 jFj the curve in C whose jth point is
x

This counts each curve in C and each x � Fm exactly jFj 
 k times

Hence the average fraction of points from S on a curve in C is jSj
jFjm  �

Fact A�� �Geometry of a plane�� The lines and points of the plane F� have the fol�
lowing properties� �i� the number of lines is q�q � 	
� �ii� Let two lines be parallel to each
other if they do not intersect� For any �xed line� there are q 
 	 other lines parallel to it�
�iii� Every line intersects q� � 	 other lines�

Proof� Every two points determine a unique line Every line has q points Hence the the

number of lines is
�q�
�

�
�
�q
�

�
� q�q � 	
 Thus �i
 is proved

The set of lines that are parallel to a given �xed line are mutually disjoint Each has q
points Hence their number is at most �q�
 q
�q � q 
 	 It is easily seen that the number
is exactly q 
 	 Thus �ii
 is proved



	��

Finally� a line intersects every line it is not parallel to The number of such lines� using
�i
 and �ii
� is q�q � 	

 �q 
 	
� which is q� � 	 Hence �iii
 is proved

�
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