
The Annals of Applied Probability
2005, Vol. 15, No. 1A, 69–92
DOI 10.1214/105051604000000512
© Institute of Mathematical Statistics, 2005

LEARNING MIXTURES OF SEPARATED
NONSPHERICAL GAUSSIANS
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Princeton University and Yale University

Mixtures of Gaussian (or normal) distributions arise in a variety of
application areas. Many heuristics have been proposed for the task of finding
the component Gaussians given samples from the mixture, such as theEM
algorithm, a local-search heuristic from Dempster, Laird and Rubin [J. Roy.
Statist. Soc. Ser. B 39 (1977) 1–38]. These do not provably run in polynomial
time.

We present the first algorithm that provably learns the component
Gaussians in time that is polynomial in the dimension. The Gaussians may
have arbitrary shape, but they must satisfy a “separation condition” which
places a lower bound on the distance between the centers of any two
component Gaussians. The mathematical results at the heart of our proof are
“distance concentration” results—proved using isoperimetric inequalities—
which establish bounds on the probability distribution of the distance between
a pair of points generated according to the mixture.

We also formalize the more general problem of max-likelihood fit of a
Gaussian mixture to unstructured data.

1. Introduction. Finite mixture models are ubiquitous in a host of areas
that use statistical techniques, including artificial intelligence (AI), computer
vision, medical imaging, psychology and geology (see [15, 23]). A mixture of
distributionsD1,D2, . . . with mixing weightsw1,w2,w3, . . . (where

∑
i wi = 1)

is the distribution in which a sample is produced by first picking a component
distribution—theith one is picked with probabilitywi—and then producing a
sample from that distribution. In many applications the component distributions
are multivariate Gaussians.

Given samples from the mixture distribution, how can one learn (i.e., recon-
struct) the component distributions and their mixing weights? The most popular
method is probably the EM algorithm of Dempster, Laird and Rubin [7]. EM is a
local search heuristic that tries to converge to amaximum-likelihood description of
the data by trying to cluster sample points according to which Gaussian they came
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from. Though moderately successful in practice, it often fails to converge or gets
stuck in local optima. Much research has gone into fixing these problems, but has
not yet resulted in an algorithm that provably runs in polynomial time. A second
known technique is calledprojection pursuit in statistics [12]. In this, one projects
the samples into a random low-dimensional space and then, in the projected space,
tries to do the clustering (exhaustively) exploiting the low dimensionality.

We note that some combinatorial problems seemingly related to learning
Gaussian mixtures are NP-hard. For instance, Megiddo [18] shows that it is
NP-hard to decide, given a set of points in�n, whether the points can be covered by
two unit spheres. This problem seems related to learning a mixture of two spherical
Gaussians.

Nevertheless, one may hope that when the data is generated from the mixture
of Gaussians (as opposed to being unstructured as in Megiddo’s result) then the
algorithm could use this structure in the data. Recently, Dasgupta [5] took an
important step in this direction by showing how a mixture ofk identical Gaussians
could be learned in polynomial time provided the Gaussians are “spherelike”
(their probability mass is concentrated in a thin spherical shell) and their centers
are “well-separated.” (Such separation conditions correspond to a nondegeneracy
assumption: if the mixture contains two identical Gaussians whose centers are
arbitrarily close, then they cannot be distinguished even in principle.)

Though Dasgupta’s algorithm is a good first step, it leaves open the question
whether one can design algorithms that require weaker assumptions on the
Gaussians. This is the topic of the current paper: our algorithms make no
assumption about the shape of the Gaussians but they require the Gaussians
to be “well-separated.” Even for the special case of spherical Gaussians, our
result improves Dasgupta’s (and a result of Dasgupta and Schulman [6] that is
independent of our work). We describe our results in more detail in Section 2.3
and compare them to other work.

We also define a more general problem of Gaussian fitting, whereby we make
no assumptions about the data and have to fit the mixture ofk Gaussians that
maximizes the log-likelihood it assigns to the dataset (see Section 2.1). We
use techniques developed in the context of approximation algorithms to design
algorithms for one of the problems (see Section 4). The exact problem is NP-hard.

2. Definitions and overview. The univariate distributionN(µ,σ ) on �
has the density functionf (x) = (

√
2πσ)−1 exp(− (x−µ)2

2σ2 ). It satisfiesE[(x −
µ)2] = σ 2. The analogous distribution in�n is the axis-aligned Gaussian
N(µ̄, σ̄ ), whereµ̄, σ̄ ∈ �n and the density function is the product distribution of
N(µ1, σ1),N(µ2, σ2), . . . ,N(µn,σn). A random sample(x1, x2, . . . , xn) satisfies
E[∑i (xi − µi)

2] = ∑
i σ

2
i . (Similarly, E[∑i (xi − µi)

2/σ 2
i ] = n.)

A general Gaussian in�n is obtained from an axis-aligned Gaussian by
applying an arbitrary rotation. Specifically, its probability density function has the
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form

FQ,p(x) = 1

(2π)n/2∏
i

√
λi(Q)

exp
(−(x − p)T Q−1(x − p)/2

)
,(1)

where Q is an n × n positive definite matrix with eigenvaluesλ1(Q), . . . ,

λn(Q) > 0, and p ∈ �n is the center. Since Q can be rewritten asR−1 ×
diag(λi(Q))R, whereR is a rotation, the quantitiesλi(Q) play the same role as the
variancesσ 2

i in the axis-aligned case. From our earlier discussion,E[(x − p)T ×
(x −p)] is

∑
i λi(Q) andE[(x −p)T Q−1(x −p)] = ∫

x FQ,p(x)(x −p)T Q−1(x −
p) = n.

For any finite sample of points in�n we can try to fit a Gaussian by computing
theirvariance–covariance matrix. Let x1, x2, . . . , xN beN points in�n in general
position (i.e., we assume that they do not all lie on a hyperplane). LetX be the
n × N matrix whose columns are the vectorsx1 − q, x2 − q, . . . , xN − q, where
q = 1

N
(x1 + x2 + · · · + xN) is the sample mean. Then the variance–covariance

matrix A = 1
N

XXT ; note that it is positive definite by definition.
This fit may, of course, be poor for an arbitrary point set. However, for every

ε > 0, there is a constantcε > 0 such that ifN ≥ cεn logn and theN points
are independent, identically distributed samples from a GaussianFG,p, then with
probability at least 0.99,FA,q is a(1 + ε)-fit to FG,p in every direction [3, 22] in
the sense that|q − p|2 ≤ ε

∑
i λi(Q) and |Gv|(1 − ε) ≤ |Av| ≤ (1 + ε)|Gv| for

every unit length vectorv. (The proof of this is highly nontrivial; but a weaker
statement, when the hypothesis is strengthened toN ≥ cεn

2, is easier to prove.)

Spherical and spherelike Gaussians. In an axis-aligned Gaussian with center
at the origin and with variancesσ 2

1 , . . . , σ 2
n , the quantity

∑
i x

2
i /σ 2

i is the sum
of n independent identical random variables fromN(0,1) so this sum is tightly
concentrated about its meann. In a spherical Gaussian, allσi ’s are the same, so
even

∑
i x

2
i is tightly concentrated. (These observations go back to Borel.) More

generally,E[∑i x
2
i ] = ∑

i σ
2
i . If the σi ’s are not “too different,” then distance-

concentration results (similar to Lemma 5 below) show that that almost all of
the probability mass is concentrated in a thin spherical shell of radius about
(
∑

i σ
2
i )1/2; such Gaussians may be thought of asspherelike. Roughly speaking, if

radius/σmax= �(logn), then the Gaussian is spherelike. Known algorithms (such
as [5]) work only for such spherelike Gaussians. By contrast, here, we wish to
allow Gaussians of all shapes.

2.1. Max-likelihood learning. Now we formalize the learning problems.
Consider a mixture of Gaussians(w1,F1,w2,F2, . . . ,wm,Fm) in �n, where the
wi ’s are the mixing weights. With any pointx ∈ �n, one can associatem numbers
(Fi(x))i=1,...,m corresponding to the probabilities assigned to it by the various
Gaussians according to (1). For any sampleS ⊆ �n this imposes a natural partition
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into m blocks: each pointx ∈ S is labeled with an integerl(x) ∈ {1, . . . ,m}
indicating the distribution that assigns the highest probability tox. (Ties are broken
arbitrarily.) Thelikelihood of the sample is∏

x∈S

Fl(x)(x).

It is customary to work with the logarithm of this likelihood, called thelog-
likelihood.

Thus one may mean several things when talking about “learning mixtures of
Gaussians” [21]. The following is the most general notion.

DEFINITION 1 (Max-likelihood fit). In themax-likelihood fit problem, we are
given an arbitrary sampleS ⊆ �n and a numberk; we desire the Gaussian mixture
with k components that maximizes the likelihood ofS.

2.2. Classification problem. Now we define the subcase of the learning
problem when the data is assumed to arise from an unknown mixture ofk

Gaussians, wherek is known.

DEFINITION 2 (Classification problem). In theclassification problem, we
are given an integerk, a real numberδ > 0 and a sampleS generated from an
unknown mixtureF1,F2, . . . ,Fk of k Gaussians in�n, where the mixing weights
w1,w2, . . . ,wk are also unknown. The goal is to find the “correct” labeling for
each point inS (up to permutation), namely to partitionS into k subsets such that
with probability at least 1− δ, the partition ofS is exactly into the subsets of
samples drawn according to eachFi .

Viewing the unknown mixture as a “source” we may view this as the “source
learning” problem. Note that once we know the partition, we can immediately
obtain estimates of the unknown Gaussians and their mixing weights.

So, the classification problem has a stronger hypothesis than the maximum-
likelihood problem in that it assumes that the data came from a mixture. It also
then requires the result to satisfy the stronger requirement that it is exactly the
partition into the actualS1, S2, . . . , Sk , whereSi was generated according to the
GaussianFi . (We abuse notation here slightly; we can only know the realSi up to
a permutation of their indices. However, to avoid extra notation, we will say the
partition has to beS1, S2, . . . , Sk.)

2.3. Our results. Our main result concerns the classification problem. Clearly,
the problem has no unique solution if the Gaussians in the mixture are allowed to
be arbitrarily close to each other. We will assume a certain separation between the
centers of the Gaussians. The required separation is an important consideration and
will be motivated in detail in Section 3.2. Here we will just state it and mention
two important features of it.
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NOTATION. First, we introduce some notation which we will use throughout.
We let p1,p2, . . . , pk denote the (unknown) centers, respectively, of thek

GaussiansF1,F2, . . . ,Fk comprising the mixture; the maximum variance ofFi

in any direction will be denotedσi,max. We denote byRi the “median radius” of
Fi;Ri has the property that theFi-measure of a ball of radiusRi aroundpi is
exactly 1/2. Henceforth, we will reserve the word “radius” of a Gaussian to mean
its median-radius.

Here is our formal definition of separation.

DEFINITION 3. For anyt > 0, we say that the mixture ist-separated if

|pi − pj |2 ≥ −|R2
i − R2

j | + 500t (Ri + Rj)(σi,max+ σj,max)

+ 100t2(σ 2
i,max+ σ 2

j,max) ∀ i, j.
(2)

We point out here quickly two features of this definition. First, if two Gaussians
Fi,Fj are both spherical of the same radii (Ri = Rj ), then the required separation
is O∗(Ri/n1/4). Second, ifFi,Fj are still spherical, but ifRj > Ri , the term
−|R2

i − R2
j | is negative and makes the separation required less. Indeed ifRj =

(1 + �∗(1/
√

n))Ri , then the two GaussiansFi,Fj are allowed be to concentric!
The superscript∗ onO,� indicates that we have omitted factors logarithmic inn.

THEOREM 1. There is a polynomial-time algorithm for the classification
problem. The algorithm needs to know a lower bound wmin on the mixing weights,
and the number s of sample points required is O(n2k2 log(kn2)/(δ2w6

min)). The
Gaussians may have arbitrary shape but have to be t-separated, where t =
O(

logs
δ

).

We also present an approximation algorithm for a special case of the max-
likelihood fit problem.

THEOREM 2. There is a polynomial-time approximation algorithm for the
max-likelihood fit problem in �n when the Gaussians to be fitted to the data have
to be spherical of equal radii (the radius and the centers of the k Gaussians have to
be determined by the algorithm). There is a fixed constant c such that the algorithm
produces a solution whose log-likelihood is at least the best possible minus c.

The algorithm of Theorem 2 is combinatorial and appears in Section 4. We note
even this subcase of the maximum-likelihood fit problem is at least as hard as the
clustering problemk-median (sum-of-squares version with Steiner nodes), which
is NP-hard [8]. Indeed, our algorithm is obtained by reducing to thek-median
algorithm of [4] (recent more efficientk-median algorithms would also work). We
feel that this way of viewing the learning problem as an approximation problem
may be fruitful in other contexts.
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2.4. Comparison with other results. The algorithm in [5] makes the following
assumptions: (i) all the Gaussians have the same variance–covariance matrix�;
(ii) the maximum and minimum eigenvaluesσ 2

max and σ 2
min, respectively, of�

satisfy σmax
σmin

∈ O(
√

n/ logk); (iii) the centers of any two of thek Gaussians are at
distance (at least)�(

√
nσmax) apart.

Dasgupta and Schulman [6] showed that the EM algorithm learns (and indeed
does so in just two rounds) a mixture ofspherical GaussiansF1,F2, . . . ,Fk , where
Fi has radiusRi (the Ri may be different). They require now only a separation
between centers ofFi,Fj of �((Ri + Rj)/n1/4). (This amount of separation
ensures among other things that the densities are “nonoverlapping”; i.e., there are
k disjoint balls, each containing the samples picked according to oneFi .)

As mentioned, our result is stronger in two ways. First, we allow Gaussians
of arbitrary (and different) variance–covariance matrices and, second, we allow
densities to overlap, or even be concentric. More specifically, the term−|R2

i −R2
j |

(which is nonpositive) can make the minimum required separation negative (and
so a vacuous requirement) in some cases; it allows the centers to be close (or
even coincide) if the radii are very different. This allows a “large feature” to
have an identifiable smaller “feature” buried inside. For the case dealt with by
[6], their requirement is the same as ours (since in this caseRi ≈ √

nσi,max) but
for this term and logarithmic factors and thus their result essentially follows as
a special case of ours. For the case dealt with by [5], our requirement is again
weaker than that paper’s but for logarithmic factors [since

√
nσi,max ∈ O(Ri)].

After the first appearance of our paper [2], Vempala and Wong [25] improved
the separation requirement to essentially the optimal one for the special case of
spherical Gaussians:|pi − pj | = �((Ri + Rj)/

√
n ). Their spectral technique is

entirely different from ours.

3. Algorithm for classification problem. First we fix notation for the rest of
the section. We are given a setS of samples, picked according to an unknown
mixture w1F1 + w2F2 + · · · + wkFk of GaussiansF1,F2, . . . ,Fk. The known
quantities arek and a numberwmin that is a lower bound on thewi ’s. We have
to decomposeS asS = S1 ∪ S2 ∪ · · · ∪ Sk , whereSi are the samples that were
generated usingFi .

Section 3.1 describes the algorithm at an intuitive level. This description
highlights the need for a “well-separated” condition on the Gaussians, which we
explain in Section 3.2. The description also highlights the need for “distance
concentration” results for Gaussians, which are then proved in Section 3.3. In
Section 3.5 we formally describe the algorithm and prove its correctness.

3.1. Algorithm overview. The algorithm uses distance-based clustering, mean-
ing that we repeatedly identify some sample pointx and some distancer , and all
sample points inB(x, r) all put into the same cluster. Such distance-based clus-
tering is not new and it appears in many heuristics, including [5, 6]. The choice
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of x, r is of course the crucial new element we provide. Since distance-based
methods seem restrictive at first glance, the surprising part here is that we get
provable results which subsume previously known provable results for any algo-
rithm. This power arises from a “bootstrapping” idea, whereby we learn a little
about the Gaussians from a coarse examination of the data and then bootstrap
from that information to find a better clustering.

In general, distance-based clustering is most difficult when the Gaussians have
different shapes and sizes, and overlap with each other (all of which we allow).
It is easy to see why: a sample point from GaussianFi might be closer to some
sample points of another GaussianFj than to all the sample points ofFi . One
crucial insight in our algorithm is that this is unlikely to happen if we look at the
Gaussian with the smallest radius in the mixture; hence we should use clustering
to first identify this Gaussian, and then iterate to find the remaining Gaussians.

Now we give an overview of the algorithm. LetF1 be the Gaussian of smallest
radius. Using our distance-concentration results, we can argue that for anyx ∈ S1,
there is anr such that (i)B(x, r) ∩ S = S1; (ii) there is a “sizable” gap afterr ,
namely, the annulusB(x, r ′)\B(x, r) for somer ′ noticeably larger thanr contains
no samples from anySj for j > 1; (iii) there is no spurious large gaps beforer ,
which would confuse the algorithm.

Even after proving the above statements, the design of the algorithm is still
unclear. The problem is to figure out the size of the gap between whereS1 ends
andS \ S1 begins, so we know when to stop. (Note: there will be gaps beforer ;
the point is that they will be smaller than the one afterr .) Our separation condition
ensures that the gap betweenS1 and the otherSj is �(σ1,max); so we need an
estimate ofσ1,max. We get such an estimate by bootstrapping. We show that if we
have any fractionf of the samples inS1, then we may estimateσ1,max to a factor
of O(1/f 2) with high probability. We use this to get a rough estimateβ of σ1,max.
Using β, we increment the radius in steps which are guaranteed to be less than
σ1,max (which ensures that we do not step over the “gap” into anotherSj ) until we
observe a gap; by then, we have provably picked upmost of S1. Now we use this
to better estimateσ1,max and then incrementing the radius by another�(σ1,max),
we capture all ofS1. (The guaranteed gap ensures that we do not get any points
from any other Gaussian while we increment the radius.)

To make all the above ideas rigorous, we need appropriate distance-
concentration results which assert that the distance between certain pairs of
sample points considered as a random variable is concentrated around a certain
value. Some distance-concentration results—at least for spherical or spherelike
Gaussians—were known prior to our work, showing a sharp concentration around
the mean or median. However, for the current algorithm we also need concentration
around values that are quite far from the mean or median. For example, to show the
nonexistence of “spurious gaps,” we have to show that if a ball of radiusr centered
at a sample pointx ∈ Si hasFi-measure, say, exactly 1/4, then, for a smallδ > 0,
the ball of radiusr +δ with x as center hasFi-measure at least 0.26. If such a result
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failed to hold, then we might see a “gap” (an annulus with no sample points) and
falsely conclude that we have seen all ofSi . Such concentration results (around
values other than the median or mean) are not in general provable by the tradi-
tional moment-generating function approach. We introduce a new approach in this
context: isoperimetric inequalities (see Theorem 3). Our method does not always
prove the tightest possible concentration results, but is more general. For example,
one may derive weaker concentration results for general log-concave densities via
this method (see [17]).

3.2. Separation condition and its motivation. Now we motivate our separation
condition, which is motivated by the exigencies of distance-based clustering.
Consider the very special case of spherical GaussiansFi,Fj with Ri = Rj .
Supposex, x′, y are independent samples,x, x′ picked according toFi and y

according toFj . Lemma 5 will argue, that with high probability [we will use≈
here to mean that the two sides differ by at mostO(R2

i /
√

n )],

|x − pi |2 ≈ R2
i

and similar concentration results for|x′ − pi |, |y − pj |. It is an intuitive fact that
x − pi, x

′ − pi,pi − pj , y − pj will all be pairwise nearly orthogonal (a sample
from a spherical Gaussian is almost orthogonal to any fixed direction with high
probability). So, one can show that

|x − x′|2 ≈ |x − pi |2 + |pi − x′|2 ≈ 2R2
i ,(3)

|x − y|2 ≈ |x − pi |2 + |pi − pj |2 + |y − pj |2 ≈ 2R2
i + |pi − pj |2.(4)

(The first assertion is proved rigorously in greater generality in Lemma 7 and
the second one in Lemma 8.) Thus, it is clear that if|pi − pj |2 is at least
�(R2

i /
√

n ), then with high probability|x − x′| and |x − y| will lie in different
ranges. (Aside: One can also show a sort of converse with different constants,
since the concentration results we get are qualitatively tight. However, we will not
establish this, since it is not needed.) This intercenter separation then is

O(Ri/n1/4).

Our separation condition for this case is indeed this quantity, up to a factor logn.
A weaker separation condition would be to require a separation of�(Ri/

√
n );

at this separation, one can still show thatwith high probability the hyperplane
orthogonal to the line joining the centers at its midpoint has all the samples of one
Gaussian on one side and the samples of the other Gaussian on the other side. An
algorithm to learn under this condition would be a stronger result than our distance-
based algorithm in this case. Since the conference version of our paper appeared,
Vempala and Wang [25] have indeed developed a learning algorithm under this
weaker separation for the case of spherical Gaussians using spectral techniques.
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3.3. Concentration results using isoperimetric inequalities. Suppose we have
some probability densityF in �n and a pointx in space. For proving distance
concentration results, we would like to measure the rate of growth or decline of
F(B(x, r)) as a function ofr . This will be provided by the isoperimetric inequality
(see Corollary 4).

THEOREM 3 [14]. Let F(x) = e−xT A−1xg(x) be a function defined on �n,
where A is a positive definite matrix whose largest eigenvalue is σ 2

max and g(x) is
any positive real-valued log-concave function. Suppose ν is a positive real and we
have a partition of �n into three sets K1,K2,K3 so that, for all x ∈ K1, y ∈ K2,
we have |x − y| ≥ ν. Then

∫
K3

F(x) dx ≥ 2νe−ν2

√
π

1

σmax

min
(∫

K1

F(x) dx,

∫
K2

F(x) dx

)
.

The phrase “isoperimetric inequality” has come to mean a lower bound on the
surface area of a set in terms of its volume. IfK1 is fixed and we defineK3 to
be the set of points not inK1 which are at distance at mostν from some point
in K1 and defineK2 = �n \ (K1 ∪ K3), then asν goes to zero,K3 tends to the
boundary surface ofK1 and the above theorem can be shown to yield a lower
bound on the surface integral ofF over this surface. We will make this connection
rigorous below for the context we need. Such isoperimetric inequalities for general
log-concave measures over multidimensional sets were first proved for use in
establishing rapid convergence to the steady state of certain Markov chains for
approximating volumes of convex sets and for sampling according to log-concave
measures [1, 9, 16]. The proof of Theorem 3 uses a specialization of the above
techniques to the case of Gaussians, where we get better results.

COROLLARY 4. We borrow notation from Theorem 3 and also assume that
F(�n) = 1:

(i) If a ball B(x, r) has F(B(x, r)) ≤ 1/2, then

d(ln(F (B(x, r))))

dr
≥ 2√

πσmax
.

(ii) If a ball B(x, r) has F(B(x, r)) ≥ 1/2, then

d(ln(1− F(B(x, r))))

dr
≤ −2√

πσmax
.

REMARK. The corollary says that ln(F (B(x, r))) grows at a rate of
�(1/σmax) until F(B(x, r)) is 1/2, and then ln(1− F(B(x, r))) declines at a rate
of �(1/σmax). Intuitively, it is easy to see that this would lead to distance concen-
tration results since once we increase (decrease)r by O(σmax) from its median
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value, the mass outsideB(x, r) [inside B(x, r)] is small. The first lemma below
(Lemma 5) is derived exactly on these lines; the subsequent three Lemmas 6–8
discuss the distances between different samples from the same and from different
Gaussians.

PROOF OFCOROLLARY 4. Letν be an infinitesimal. Then
d(ln(F (B(x, r))))

dr
= 1

F(B(x, r))

d(F (B(x, r)))

dr

= lim
ν→0

1

νF (B(x, r))

[
F

(
B(x, r + ν)

) − F
(
B(x, r)

)]
.

Now we letK1 = B(x, r) andK2 = �n \B(x, r + ν) and apply the theorem above
to get the first assertion of the corollary. The second assertion follows similarly.

�

LEMMA 5. Suppose F is a general Gaussian in �n with maximum variance
in any direction σ , radius R and center p. Then, for any t > 0, we have

F({x :R − tσ ≤ |x − p| ≤ R + tσ }) ≥ 1− e−t .

PROOF. For anyγ > 0, letF(B(p,γ )) = g(γ ). Then, forγ < R, we have by
Corollary 4 that

d ln(g(γ ))

dγ
≥ 1

σ
.

Integrating fromγ to R, we get that

F
(
B(p,γ )

) ≤ 1
2e−(R−γ )/σ .

Forγ > R, isoperimetry implies that

d(ln(1− g(γ )))

dγ
≤ −1

σ
.

Again integrating fromR to γ , we get 1− g(γ ) ≤ (1/2)e−(γ−R)/σ . Combining
the two, the lemma follows.�

LEMMA 6. Let F,p,R,σ be as in Lemma 5 and suppose z is any point in
space. Let t ≥ 1. If x is picked according to F , we have that, with probability at
least 1− 2e−t ,

(R + tσ )2 + |z − p|2 + 2
√

2
√

t|z − p|σ
≥ |x − z|2
≥ (

(R − tσ )+
)2 + |z − p|2 − 2

√
2
√

t|z − p|σ,

(5)

where (R − tσ )+ is R − tσ if this quantity is positive and 0 otherwise.
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PROOF. We have

|x − z|2 = (
(x − p) + (p − z)

) · (
(x − p) + (p − z)

)
= |x − p|2 + |p − z|2 + 2(x − p) · (p − z).

(6)

Now 2(x − p) · (p − z) is a normal random variable with mean 0 and variance
at most 4|p − z|2σ 2, so the probability that|2(x − p) · (p − z)| is greater than
2
√

2
√

t|z − p|σ is at moste−t . From Lemma 5, we have thatR − tσ ≤ |x − p| ≤
R + tσ with probability at least 1− e−t . Combining these two facts, the current
lemma follows. �

LEMMA 7. Suppose F,p,R,σ as in Lemma 5. Suppose x, y are independent
samples each picked according to F . Then for any t ≥ 1, with probability at least
1− 3e−t , we have

2R2 − 8tσR ≤ |x − y|2 ≤ 2(R + 2tσ )2.

PROOF. We may assume thatx is picked first and theny (independently).
Then from Lemma 5, with probability 1−e−t , we haveR− tσ ≤ |x−p| ≤ R+ tσ .
From Lemma 6 (oncex is already picked), with probability at least 1− 2e−t , we
have(R + tσ )2 + |x − p|4√

tσ + |x − p|2 ≥ |x − y|2 ≥ R2 − 2Rtσ − 4|x −
p|√tσ +|x−p|2. Both conclusions hold with probability at least 1−3e−t , whence
we get

|x − y|2 ≤ (R + tσ )2 + 4tσ (R + tσ ) + (R + tσ )2 ≤ 2(R + 2tσ )2.

For the lower bound on|x − y|2, first note that ifR ≤ 4tσ , then 2R2 − 8tσ ≤ 0,
so the lower bound is obviously valid. So we may assume thatR > 4tσ . Thus,
|x − p| ≥ 3tσ and under this constraint,|x − p|2 − 4

√
tσ |x − p| is an increasing

function of |x − p|. So, we get

|x − y|2 ≥ R2 − 2Rtσ − 4tσ (R − tσ ) + (R − tσ )2,

which yields the lower bound claimed.�

LEMMA 8. Let t ≥ 1. If x is a random sample picked according to Fi and y

is picked independently according to Fj , with Fi,Fj satisfying the separation
condition (2), then, with probability at least 1− 6e−t , we have

|x − y|2 ≥ 2 min(R2
i ,R

2
j ) + 60t (σi,max+ σj,max)(Ri + Rj)

+ 30t2(σ 2
i,max+ σ 2

j,max).
(7)

PROOF. Assume without loss of generality thatRi ≤ Rj . Applying Lemma 6,
we get that, with probability at least 1− 2e−t , we have

|y − pi |2 ≥ R2
j − 2tσj,maxRj + |pi − pj |2 − 2

√
2
√

t |pi − pj |σj,max.(8)
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CLAIM 1.

|y − pi |2 ≥ R2
i + 154t (σi,max+ σj,max)(Ri +Rj ) + 30t2(σ 2

i,max+ σ 2
j,max).(9)

PROOF. Case 1. R2
j ≥ R2

i + 250t (Ri + Rj)(σi,max+ σj,max) + 30t2(σ 2
i,max+

σ 2
j,max). Note that |pi − pj |2 − 4

√
tσj,max|pi − pj | + 4tσ 2

j,max ≥ 0. So,

|pi − pj |2 − 4
√

tσj,max|pi − pj | ≥ −4tσ 2
j,max. Plugging this into (8), and using

the case assumption, we get

|y − pi|2 ≥ R2
i + 250t (Ri + Rj )(σj,max+ σi,max)

+ 30t2(σ 2
j,max+ σ 2

i,max) − 2tσj,maxRj − 4tσ 2
j,max.

It is easy to see thatRj ≥ (2/3)σj,max—this is becauseR2
j is clearly at least the

median value of(u · x)2 underFj , whereu is the direction achievingσj,max;
now it is easy see that, for the one-dimensional Gaussianu · x, the median value
of (u · x)2 is at least 2/3 times the variance by direct calculation. Plugging
σ 2

j,max≤ (3/2)Rjσj,max into the above inequality, we easily get the claim.

Case 2. R2
j < R2

i + 250t (Ri + Rj)(σi,max + σj,max) + 30t2(σ 2
i,max + σ 2

j,max).
Then by the separation condition, we have

|pi − pj |2 ≥ 250t (Ri + Rj )(σi,max+ σj,max) + 70t2(σ 2
i,max+ σ 2

j,max).

Now, since |pi − pj |2 − 2
√

2
√

tσj,max|pi − pj | is an increasing function of
|pi − pj | for |pi − pj | ≥ 2

√
2
√

tσj,max, we have

|pi − pj |2 − 2
√

2
√

tσj,max|pi − pj |
≥ 250t (Ri + Rj )(σi,max+ σj,max) + 70t2(σ 2

i,max+ σ 2
j,max)

− 2
√

2
√

tσj,max
(
16

√
t
√

Rj + Ri

√
σj,max+ σi,max+ 9t (σj,max+ σi,max)

)
≥ 156t (Ri + Rj )(σi,max+ σj,max) + 34t2(σ 2

i,max+ σ 2
j,max),

using the inequality
√

a + b ≤ √
a + √

b, ∀a, b ≥ 0 and observing thatσj,max ≤
(3/2)Rj andσj,max(σj,max+ σi,max) ≤ √

2(σ 2
i,max+ σ 2

j,max).
Putting this into (8), we get

|y − pi |2 ≥ R2
i − 2tσj,maxRj + 156t (Ri + Rj )(σi,max+ σj,max)

+ 34t2(σ 2
i,max+ σ 2

j,max),

which yields the claim in this case.�

Imagine nowy already having been picked andx being picked independently
of y. Applying Lemma 6, we get that, with probability at least 1− 2e−t , we have
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(again using the inequality,
√

a + b ≤ √
a + √

b, ∀a, b ≥ 0)

|x − y|2 ≥ R2
i − 2Ritσi,max+ |y − pi |2 − 2

√
2
√

tσi,max|y − pi|
≥ R2

i − 2Ritσi,max+ R2
i + 154t (σi,max+ σj,max)(Ri + Rj )

+ 30t2(σ 2
i,max+ σ 2

j,max)

− 2
√

2
√

tσi,max
(
Ri + 13

√
t
√

σi,max+ σj,max
√

Ri + Rj

+ √
30t (σi,max+ σj,max)

)
[because under condition (9), |y − pi |2 − 2

√
2
√

tσi,max|y − pi | is an increasing
function of |y − pi |]

|x − y|2 ≥ 2R2
i + (

154− 2− 2
√

2
(
1+ 13

√
3/2+ 1.5

√
30

))
× t (σi,max+ σj,max)(Ri + Rj ) + 30t2(σ 2

i,max+ σ 2
j,max),

from which the lemma follows. �

3.4. Warm-up: case of spherical Gaussians. As a consequence of our concen-
tration results we first present our algorithm for the simple case when all theFi

are spherical. In this case,σi,max ≈ Ri/
√

n, where the error is small enough that
our calculations below are valid. Choosingt = �(log(|S|/δ)) as before, it is easy
to see from the distance concentration results that, with high probability,

|x − y|2 ∈
[
2R2

i

(
1− 4t√

n

)
,2R2

i

(
1+ 5t√

n

)]
∀x, y ∈ Si, ∀ i,(10)

and by appropriately choosing the constant in the definition oft-separation we can
also ensure that with high probability there is a positive constantc′ > 12 such that

|x − y|2 ≥ 2 min(R2
i ,R

2
j ) + c′t (Ri + Rj)

2

√
n

∀x ∈ Si, ∀y ∈ Sj , ∀ i �= j.(11)

For each pairx, y ∈ S find |x − y| and supposex0, y0 is a pair (there may be
several) at the minimum distance. Then from (10) and (11) it follows that ifx0 ∈ Si ,
then for ally ∈ Si , |x − y| ≤ (1+ 3t√

n
)|x0 − y0| and furthermore, for allz ∈ S \ Si ,

|x−z| ≥ (1+ 6t√
n
)|x0−y0|. So, we may identifySi byS∩B(x0, |x0−y0|(1+ 3t√

n
)).

Having thus foundSi , we may peel it off fromS and repeat the argument. The
important thing here is that we can estimate the radius of the ball—namely,
|x0 − y0|(1 + 3t√

n
)—from observed quantities; this will not be so easily the case

for general Gaussians.
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3.5. The general case. Now we consider the case when the Gaussians may not
be spherical or even spherelike. Letδ > 0 be the probability of failure allowed. We
are given a set of samplesS drawn according to an unknown mixture of Gaussians
w1F1 +w2F2 + · · · +wkFk ; but we are given awmin > 0 with wi ≥ wmin for all i.
We assume that|S| ≥ 107n2k2 log(kn2)/(δ2w6

min). In what follows, we choose

t = 100 log|S|
δ

.

THE ALGORITHM. Initialization:T ← S.

1. Letα > 0 be the smallest value such that a ballB(x,α) of radiusα centered at
some point inx ∈ T has at least 3wmin|S|/4 points fromT . (This will identify
a GaussianFi with approximately the least radius.)

2. Find the maximum variance of the setQ = B(x,α) ∩ T in any direction. That
is, find

β = max
w : |w|=1

1

|Q|
∑
y∈Q

(
w · y − w ·

(
1

|Q|
∑
z∈Q

z

))2

.

(This β is our first estimate ofσmax. Note that computingβ is an eigenvalue
computation, and an approximate eigenvalue suffices.)

3. Letν =
√

wminβ
8 . (We will later show thatν ≤ σmax; so increasing the radius in

steps ofν ensures that we do not miss the “gap” between theSi thatx belongs
to and the others.) Find the least positive integers such that (we will later prove
that such as exists)

B(x,α + sν) ∩ T = B
(
x,α + (s − 1)ν

) ∩ T .

4. Let Q′ = B(x,α + sν) ∩ T . As in step 3, find the maximum varianceβ ′ of
the setQ′ in any direction. (We will prove that thisβ ′ gives a better estimate
of σmax.)

5. RemoveB(x,α + sν + 3
√

β ′(log |S| − logδ + 1)) ∩ T from T . (We will show
that the set so removed is precisely one of theSi .)

6. Repeat untilT is empty.

REMARK 1. Ball B(x,α + sν) will be shown to contain all butwmin/(10wi)

of the mass of the GaussianFi we are dealing with; the bigger radius ofB(x,α +
sν + 3

√
β ′(log |S| − logδ + 1)) will be shown to include all butδ/(10|S|2) of the

mass ofFi . This will follow using isoperimetry. Then we may argue that with high
probability all ofSi is now inside this ball. An easier argument shows that none of
the otherSj intersect this ball.
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Now we prove why this works as claimed. Letδ > 0 be the probability of failure
allowed. Recall that

t = 100 log|S|
δ

.

We will now show using the distance-concentration results that several desirable
events [described below in (12)–(18)] happen, each with probability at least 1− δ

10.
We will assume from now on that conditions (12)–(18) hold after allowing for
the failure probability of at most 7δ/10. The bottom line is that the sample is
very likely to represent the mixture accurately: the component Gaussians are
represented essentially in proportion to their mixing weights; the number of
samples in every sphere and half-space is about right and so forth.

First, since|Si | can be viewed as the sum of|S| Bernoulli independent 0–1
random variables, where each is 1 with probabilitywi , we have [using standard
results, e.g., Hoeffding’s inequality, which asserts that fors i.i.d. Bernoulli random
variablesX1,X2, . . . ,Xs with Prob(Xi = 1) = q, for all real numbersα > 0,
Prob(|∑s

i=1 Xi − sq| ≥ α) ≤ 2e−α2q/4s ] that, with probability at least 1− δ/10,

1.1wi|S| ≥ |Si | ≥ 0.9wi|S| ∀ i.(12)

For eachi,1 ≤ i ≤ k, and eachx ∈ Si , let η(x) be the least positive real number
such that

Fi

(
B

(
x,η(x)

)) ≥ 1− δ

10|S|2 .

Now, we assert that, with probability at least 1− δ
10,

∀ i,1 ≤ i ≤ k, ∀x ∈ Si Si ⊆ B
(
x,η(x)

)
.(13)

To see this, focus attention first on one particularx ∈ S, say x ∈ Si . We may
imagine pickingx as the first sample inS and then independently picking the
others. Then sincex is fixed,η(x) andB(x,η(x)) are fixed; so from the lower
bound onFi(B(x, η(x)), it follows that Prob(Si ⊆ B(x,η(x))) ≥ 1 − δ/(10|S|).
From this we get (13).

We have from Lemma 7 that, with probability at least 1− δ/10, the following
is true for eachi,1 ≤ i ≤ k, ∀x, y ∈ Si :

2R2
i − 8tσi,maxRi ≤ |x − y|2 ≤ 2(Ri + 2tσi,max)

2.(14)

Further, from Lemma 8, we have that, with probability at least 1− δ
10,

∀ i, j ≤ k, i �= j, ∀x ∈ Si, ∀y ∈ Sj

|x − y|2 ≥ 2 min(R2
i ,R

2
j ) + 60t (Ri + Rj )(σi,max+ σj,max)

+ 30t2(σ 2
i,max+ σ 2

j,max).

(15)
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Next, we wish to assert that certain spherical annuli centered at sample points
have roughly the right number of points. Namely,

∀ i, ∀x, y, z ∈ Si lettingA = B(x, |x − y|) \ B(x, |x − z|)

we have
∣∣∣∣ |Si ∩ A|

|Si | − Fi(A)

∣∣∣∣ ≤ w
5/2
min

160
.

(16)

We will only sketch the routine argument for this. First, for a particular triplex, y, z

in someSi , we may assume that these pointsx, y, z were picked first and the other
points of the sample are then being picked independently. So for the other points,
the annulus is a fixed region in space. Then we may view the rest as Bernoulli
trials and apply Hoeffding’s inequality. The above follows from the fact that the
Hoeffding upper bound multiplied by|S|3 (the number of triples) is at mostδ/10.

Next, we wish to assert that every half-space in space contains about the correct
number of sample points. For this, we use a standard Vapnik–Chervonenkis (VC)
dimension argument [24]. They define a fundamental notion called VC dimension
(which we do not define here). If a (possibly infinite) collectionC of subsets of�n

has VC dimensiond andD is an arbitrary probability distribution on�n, then for
anyρ, ε > 0 and for a set of

4

ε
log

2

ρ
+ 8d

ε
log

8d

ε

independent identically distributed samples drawn according toD , we have that
with probability at least 1− ρ, for every H ∈ C, the fraction of samples that lie in
H is betweenD(H) − ε andD(H) + ε.

In our case,C consists of half-spaces; it is well known that the VC dimension
of half-spaces in�n is n. We consider each componentFi of our mixture in turn
asD . We have drawn a sample of size|Si | from Fi . Applying the VC dimension
argument for eachi, with ρ = δ/10k andε = wmin/100, and then using the union
bound, we conclude that, with probability at least 1− δ/10, the sample satisfies

∀ i, ∀ half-spacesH∣∣|Si ∩ H | − |Si |Fi(H)
∣∣ ≤ wmin|Si |/100.

(17)

From Lemma 12 (to come), it follows that, with probability at least 1− δ/10,
we have

∀ unit length vectorsw, ∀ i
1

|Si|
∑
x∈Si

(
w · (x − pi)

)2 ≤ 2σ 2
i,max.(18)

LEMMA 9. Each execution of steps 1–5 removes precisely one of the Si .

PROOF. The lemma will be proved by induction on the number of executions
of the loop. Suppose we have finishedl − 1 executions and are starting on thelth
execution.
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Let P be the set ofj such thatSj has not yet been removed. (By the inductive
assumption at the start of the loop,T is the union ofSj , j ∈ P .)

LEMMA 10. Suppose x ∈ S is the center of the ball B(x,α) found in the lth
execution of step 1 of the algorithm and suppose x belongs to Si (i unknown to
us). Then

B(x,α) ∩ S ⊆ Si,(19)

|x − y|2 ≥ 2R2
i + 50t (σi,max+ σj,max)(Ri + Rj )

(20) + 20t2(σ 2
i,max+ σ 2

j,max) ∀y ∈ Sj , ∀ j �= i, j ∈ P.

PROOF. For anyj ∈ P , and ally, z ∈ Sj , we have from (14) that|z − y|2 ≤
2(Rj +2tσj,max)

2. Thus, a ball of radius
√

2(Rj +2σi,max) with y as center would
qualify in step 1 of the algorithm by (12). So, by definition ofα in that step, we
must have

α ≤ √
2(Rj + 2tσj,max) ∀ j ∈ P.(21)

If now B(x,α) contains a pointz from someSj , j �= i, by the inductive assumption
in Lemma 9, we must havej ∈ P . Then by (15) we have

α2 ≥ 2 min(R2
i ,R

2
j ) + 60t (Ri + Rj)(σi,max+ σj,max) + 30t2(σ 2

i,max+ σ 2
j,max),

which contradicts (21) [noting that (21) must hold for bothi, j ]. This proves (19).
Now, from the lower bound of (14), it follows that

α2 ≥ 2R2
i − 8Riσi,maxt.

So from (21) it follows that

2R2
j ≥ 2R2

i − 8t (Ri + Rj)(σi,max+ σj,max) − 8t2σ 2
j,max ∀ j ∈ P.

Thus from (15), we get that, fory ∈ Sj , j �= i,

|x − y|2 ≥ 2R2
i − 8t (Ri + Rj )(σi,max+ σj,max) − 8t2σ 2

j,max

+ 60t (Ri + Rj)(σi,max+ σj,max) + 30t2(σ 2
i,max+ σ 2

j,max),
(22)

from which (20) follows. �

Now we can show thatβ is a rough approximation toσi,max.

CLAIM 2. The β,Q computed in step 2 of the algorithm satisfy

2|Si|
|Q| σ 2

i,max ≥ β ≥ |Q|2
4|Si |2σ 2

i,max.
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PROOF. For any unit length vectorw, we have, by (18),∑
x∈Q

(
w · (x − pi)

)2 ≤ ∑
x∈Si

(
w · (x − pi)

)2 ≤ 2|Si|σ 2
i,max.

Since this holds for everyw, and the second moment about the mean is less than
or equal to the second moment aboutpi , we have thatβ ≤ 2|Si ||Q|σ

2
i,max. This proves

the upper bound onβ.
Let u be the direction of the maximum variance ofFi . We wish to assert that

the variance ofQ alongu is at least|Q|σi,max/|Si |. To this end, first note that, for
any realsγ1, γ2, with γ1 > 0, we have

ProbFi
(γ2 − γ1 ≤ x · u ≤ γ2 + γ1) = 1

2
√

πσi,max

∫ γ2+γ1

γ2−γ1

e
−r2/2σ2

i,max dr

≤ γ1√
πσi,max

.

Let γ2 = 1
|Q|

∑
x∈Q(u ·x) and letγ1 = |Q|

|Si |σi,max. Then the stripH = {x :γ2 −γ1 ≤
u · x ≤ γ2 + γ1} satisfiesFi(H) ≤ γ1/(

√
πσi,max). So, by (17),

|Si ∩ H | ≤ |Si |Fi(H) + wmin|Si |
100

≤ 3
|Q|
4

using|Q| ≥ 3
4wmin|S|.

So, we have that

1

|Q|
∑
x∈Q

(u · x − γ2)
2 ≥ 1

|Q|
|Q|
4

|Q|2
|Si|2σ 2

i,max= 1

4
σ 2

i,max
|Q|2
|Si |2 ,

from which the lower bound onβ obviously follows. �

COROLLARY 11. The β computed in step 2 of the algorithm satisfies

4

wmin
σ 2

i,max≥ β ≥ 1

8
w2

minσ
2
i,max.

PROOF. Since|Q| ≥ 3wmin|S|/4, Claim 2 implies the corollary.�

From (14) we have

∀y ∈ Si |x − y|2 ≤ 2R2
i + 4tRiσi,max+ 4t2σ 2

i,max.

From (20) we have

∀ z ∈ ⋃
j∈P \{i}

Sj |x − z|2x ≥ 2R2
i + 50t (σi,max+ σj,max)(Ri + Rj )

+ 20t2(σ 2
i,max+ σ 2

j,max).
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Thus, there exists an annulus of size (where the size of an annulus denotes the
difference in radii between the outer and inner balls)σi,max aroundx with no
sample points in it. Since we are increasing the radius in steps ofν which is at
mostσi,max (Corollary 11) there is somes in step 3 of the algorithm. Also, we
have

B(x,α + sν) ∩ S ⊆ Si.

The trouble of course is that such a gap may exist even insideSi , soB(x,α+sν)

may not contain all ofSi . To complete the induction we have to argue that steps
4 and 5 will succeed in identifyingevery point ofSi . Forγ > 0, let

g(γ ) = Fi

(
B(x, γ )

)
.

FromB(x,α + sν) ∩ T = B(x,α + (s − 1)ν) ∩ T (see step 3 of the algorithm),
we get using (16) that

g(α + sν) − g
(
α + (s − 1)ν

) ≤ w
5/2
min

160
.

Sinceν =
√

wminβ
8 , we get using Corollary 11’s lower bound onβ that there exists

aγ ′ ∈ [(s − 1)ν + α sν + α] with

(
dg(γ )

dγ

)
γ=γ ′

≤ w
5/2
min

160ν
≤ wmin

20σi,max
.

(If not, integration would contradict the previous inequality.) Thus isoperimetry
(Corollary 4) implies that

g(α + sν) ≥ 1− wmin

10
or g

(
α + (s − 1)ν

) ≤ 0.1wmin.

The latter is impossible since even theα-radius ball contains at least 3|S|wmin/4
points. This implies thatg(α + sν) ≥ 0.9 and now again using (16), we see that
|Q′| ≥ 0.8|Si | (note thatQ′ is found in step 4). Thus from Claim 2 (noting that the
proof of works for any subset ofSi), we get thatβ ′ is a fairly good approximation
to σi,max:

2.5σ 2
i,max≥ β ′ ≥ 0.16σ 2

i,max.(23)

From the definition ofs in step 3 of the algorithm, it follows that there is some
y ∈ Si with |x − y| ≥ α + (s − 2)ν. So, from (14), we haveα + (s − 2)ν ≤√

2(Ri + 2tσi,max). So, we have

α + sν + 3
√

β ′
(

log
|S|
δ

+ 1
)

≤ √
2(Ri + 2tσi,max) + 2σi,max

+ 4σi,max

(
log

|S|
δ

+ 1
)
.

(24)
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Thus from (20), no point ofSj , j ∈ P \ {i}, is contained inB(x,α + sν +
3
√

β ′(log |S|
δ

+ 1)). So the set removed fromT in step 5 is a subset ofSi .
Finally, usingg(α + sν) ≥ 9/10, and isoperimetry (Corollary 4), we see that

g

(
α + sν + 3

√
β ′

(
log

|S|
δ

+ 1
))

≥ 1− δ

10|S|2 ,

which implies thatη(x) ≤ α + sν + 3
√

β ′(log |S|
δ

+ 1). Thus, by (13), all ofSi

is in B(x,α + sν + 3
√

β ′(log |S|
δ

+ 1)). This completes the inductive proof of
correctness. �

Now we prove a lemma that was used above when we estimatedσmax.

LEMMA 12. Suppose F is a (general ) Gaussian in �n. If L is a set of inde-
pendent identically distributed samples, each distributed according to F , then with
probability at least 1 − δ

10, we have [with ε = 20n(
√

logn + √
log(1/δ) )/

√|L| ],
every vector w satisfies

EF

(
w · (

x − EF (x)
)2)

(1− ε) ≤ ES

(
w · (

x − EF(x)
)2)

≤ EF

(
w · (

x − EF(x)
)2)

(1+ ε),
(25)

where ES denotes the “sample mean”; that is, it stands for 1
|L|

∑
x∈L.

PROOF. We may translate by−EF(x) and without loss of generality assume
that EF(x) is the origin. SupposeQ is the square root of the inverse of the
variance–covariance matrix ofF . We wish to prove, for all vectorsw,

EF

(
(w · x)2)(1− ε) ≤ ES

(
(w · x)2) ≤ EF

(
(w · x)2)(1+ ε).

Putting Q−1w = u (noting that Q is nonsingular and symmetric), this is
equivalent to saying, for all vectorsu,

EF

((
u · (Qx)

)2)
(1− ε) ≤ ES

((
u · (Qx)

)2) ≤ EF

((
u · (Qx)

)2)
(1+ ε).

But Qx is a random sample drawn according to the standard normal, so it suffices
to prove the statement for the standard normal. To prove it for the standard normal,
we proceed as follows. First, for each coordinatei, we have thatEF (|xi|2) = 1
and using properties of the standard one-dimensional normal density, for any
reals > 0,

Prob
(∣∣ES(|xi|2) − 1

∣∣ ≤ s
) ≥ 1− e−|L|s2/4.

Now consider a pairi, j ∈ {1,2, . . . , n}, wherei �= j . The random variablexixj

has mean 0 and variance 1.ES(xixj ) is the average ofN i.i.d. samples (each not
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bounded, but we may use the properties of the normal density again) concentrated
about its mean:

Prob(ES |xixj | ≤ s) ≥ 1− e−|L|s2/100.

Putting s = 10
√

logn√|L| , we see that all theseO(n2) upper bounds hold simultane-

ously with probability at least 1− δ/n8.
Thus we have that the “moment” of inertia matrixM of S whosei, j entry is

ES(xixj ) has entries between 1− 1
2ε and 1+ 1

2ε on its diagonal and the sum of
the absolute values of the entries in each row is at mostε/2. Thus by standard
linear algebra (basically arguments based on the largest absolute value entry of
any eigenvector), we have that the eigenvalues ofM are between 1− ε and 1+ ε,
proving what we want. �

4. Max-likelihood estimation. Now we describe an algorithm for max-
likelihood fit of a mixture ofk spherical Gaussians of equal radius to (possibly)
unstructured data. First we derive a combinatorial characterization of the optimum
solution in terms of thek-median (sum of squares, Steiner version) problem. In
this problem, we are givenM pointsx1, x2, . . . , xM ∈ �n in �n and an integerk.
The goal is to identifyk pointsp1,p2, . . . , pk that minimize the function

M∑
i=1

∣∣x − pc(j)

∣∣2,(26)

wherepc(j) is the point amongp1, . . . , pk that is closest toj and | · | denotes
Euclidean distance.

THEOREM 13. The mixture of k spherical Gaussians that minimizes the log-
likelihood of the sample is exactly the solution to the above version of k-median.

PROOF. Recall the density function of a spherical Gaussian of varianceσ (and
radiusσ

√
n ) is

1

(2πσ)n/2
exp

(
−|x − p|2

2σ 2

)
.

Let x1, x2, . . . , xM ∈ �n be the points. Letp1,p2, . . . , pk denote the centers
of the Gaussians in the max-likelihood solution. For each data pointxj let pc(j)

denote the closest center. Then the mixing weights of the optimum mixture
w1,w2, . . . ,wk are determined by considering, for eachi, the fraction of points
whose closest center ispi .

The log-likelihood expression is obtained by adding terms for the individual
points to obtain

−
[

Constant+ Mn

2
logσ + ∑

j

|xj − pc(j)|2
2σ 2

]
.
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The optimum valuêσ is obtained by differentiation,

σ̂ 2 = 2

Mn

∑
j

∣∣xj − pc(j)

∣∣2,(27)

which simplifies the log-likelihood expression to

Constant+ Mn

2
logσ̂ + Mn

4
.

Thus the goal is to minimizêσ , which from (27) involves minimizing the familiar
objective function from the sum-of-squares version of thek-median problem. �

We indicate how to use known results about thek-median to provide a constant
additive factor approximation to the log-likelihood. Charikar, Guha, Tardos and
Shmoys [4] provide anO(1) approximation to thek-median problem with sum-of-
squares distance. They do not indicate if their algorithm works when the centers are
not one of the sample points. However, the triangle inequality implies that picking
the center to be one of the sample points changes the objective of thek-median
problem by at most a factor 4. Hence we obtain a constant factor approximation
to σ̂ 2, and hence an approximation to log(σ̂ ) that is correct within anO(1) additive
factor. More efficient algorithms fork-median are now known, so there is some
hope that the observations of this section may lead to some practical learning
algorithms.

5. Conclusions. Several open problems remain. The first concerns solving
the classification problem for Gaussians with significant overlap. For example,
consider mixtures of spherical Gaussians with pairwise intercenter distance only
O(max{σ1, σ2}). In this case, a constant fraction of their probability masses
overlap, and the solution to the classification problem is not unique. Our algorithm
does not work in this case, though a recent spectral technique of Vempala and
Wang [25] does apply. (However, it does not apply to nonspherical Gaussians.)

The second problem concerns general Gaussians whose probability masses
do not overlap much but which appear to coalesce under random projection.
For example, consider a pair of concentric Gaussians that have the same axis
orientation. (Of course, these axes are unknown and are not the same as the
coordinate axes.) Inn − 2 axis directions their variance isσ 2, and in the other
remaining two directions their variances are 1, σ and σ,1, respectively. Ifσ =
�(logn), the difference in the last two coordinates is enough to differentiate
their samples with probability 1− 1/poly(n). But after projection to anO(logn)-
dimensional subspace, this difference disappears. Hence neither distance-based
clustering nor projection-based clustering seems able to distinguish their samples.

The third open problem concerns max-likelihood estimation, which seems to
involve combinatorial optimization with very bizarre objective criteria once we
allow nonspherical Gaussians.
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We suspect all the above open problems may prove difficult.
We note that Dasgupta (personal communication) has also suggested a variant

of the classification problem in which the sample comes from a “noisy” Gaussian.
Roughly speaking, the samples come from a mixture of sources, where each source
is within distanceε of a Gaussian. We can solve this problem in some cases for
small values ofε, but that will be the subject of another paper. Broadly speaking,
the problem is still open.
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