
A Combinatorial, Primal-Dual Approach
to Semidefinite Programs

[Extended Abstract]

Sanjeev Arora
∗

Satyen Kale
∗

Computer Science Department, Princeton University
35 Olden Street, Princeton, NJ 08540
{arora, satyen}@cs.princeton.edu

ABSTRACT
Semidefinite programs (SDP) have been used in many recent
approximation algorithms. We develop a general primal-
dual approach to solve SDPs using a generalization of the
well-known multiplicative weights update rule to symmet-
ric matrices. For a number of problems, such as Spars-
est Cut and Balanced Separator in undirected and di-
rected weighted graphs, and the Min UnCut problem, this
yields combinatorial approximation algorithms that are sig-
nificantly more efficient than interior point methods. The
design of our primal-dual algorithms is guided by a robust
analysis of rounding algorithms used to obtain integer solu-
tions from fractional ones.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems

General Terms
Algorithms, Theory

Keywords
Matrix Multiplicative Weights, Semidefinite Programming,
Sparsest Cut, Balanced Separator, Min UnCut

1. INTRODUCTION
Semidefinite programming (SDP) has proved useful in de-

sign of approximation algorithms for NP-hard problems, and
often (as in case of MaxCut, Sparsest Cut, Min UnCut,
Min 2CNF Deletion, etc.) yields better approximation
ratios than known LP-based methods.

∗Supported by NSF grants MSPA-MCS 0528414, CCF
0514993, ITR 0205594. Part of this work was done when
the authors were visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07,June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

But in several ways, our understanding of SDPs seriously
lags our understanding of LPs. One is running time: though
LP and SDP are syntactically similar when viewed as sub-
cases of cone optimization and can theoretically be solved
in the same amount of time [4, 23], in practice SDP solvers
are slower. Another is conceptual: LP-inspired notions such
as duality are ubiquitous in algorithm design whereas cor-
responding SDP-inspired concepts are rarely used.

Both points come into focus when we consider primal-
dual algorithms in the LP world, by which we refer actually
to two classes of algorithms. The first compute (1 + ε)-
approximation to special families of LPs —such as multi-
commodity flow. They eschew interior point methods in
favor of more efficient (and combinatorial) Lagrangian relax-
ation methods; see Plotkin, Shmoys, Tardos [24], Young [30],
Garg, Könemann [13], etc.

The second class consists of primal-dual approximation
algorithms for NP-hard problems. Though these usually
evolve out of (and use the same intuition as) earlier approx-
imation algorithms that used LP as a black box, they do
not solve the LP per se. Rather, the algorithm incremen-
tally builds a dual solution together with an integer primal
solution, updating them at each step using “combinatorial”
methods. At the end, the candidate dual solution is feasi-
ble and the bound on the approximation ratio is derived by
comparing the integer primal solution to the lower bound
provided by this feasible dual. Usually the update rule is
designed using intuition from the rounding algorithm used
in the original LP-based algorithm. Some canonical exam-
ples are network design problems [3] (or see the survey [14])
and O(1)-approximation for k-median (LP-based algorithm
in [11]; faster primal-dual algorithm in [18]). Arguably, a
primal-dual algorithm gives more insight than an algorithm
that uses LP as a black box. For instance, the primal-dual
algorithm for k-median problem inspired the discovery of al-
gorithms for many related problems, as well as algorithms
in the on-line and streaming models.

Since SDPs also satisfy a duality theorem, in principle one
should be able to solve them using primal-dual approaches.
But several conceptual difficulties arise. First, the basic ob-
ject in SDPs is a positive semidefinite matrix, whereas it is
a halfspace (equivalently, a vector) in LPs, and matrix op-
erations are just harder to visualize than vector operations.
Second, the recent spate of rounding algorithms for SDPs
use the global structure of optimum or near-optimum solu-
tions (e.g., the Arora, Rao, Vazirani (ARV)-style rounding
depends upon the geometry of `22 spaces), and it is unclear
how to use those rounding ideas in context of the grossly



infeasible solutions one might encounter during a primal-
dual algorithm. Finally, even if one surmounts the previous
two difficulties, there is the issue of implementing matrix
operations efficiently enough so that the running time is an
improvement over interior point methods.

We note that an ad hoc primal-dual approach did prove
useful for the Sparsest Cut problem, and resulted in an
O(
√

log n)-approximation in Õ(n2) time [5], improving upon

the Õ(n4.5) time using SDPs [8]. A related paper gives an

even more efficient Õ(m+n1.5) time algorithm for Sparsest
Cut, albeit with a worse approximation ratio of O(log2 n)
[19]. But there is no obvious way to generalize these ad hoc
approaches to other SDPs, especially as both rely upon the
connection between eigenvalues and expansion, which does
not extend to problems other than Sparsest Cut.

This paper overcomes the above-mentioned difficulties and
presents general techniques that lead to fast primal dual ap-
proximation algorithms for a number of problems (the final
version will contain a full list).

First, we give a general primal-dual approximation algo-
rithm for any SDP that uses an update rule that we call the
Matrix Multiplicative Weights algorithm. This has the form
x(t+1) ← x(t) exp(ε · f(x)), where f(x) is some “feedback”
function. A similar idea appears in many existing algorithms
(see the recent survey [7]), except there x and f(x) are both
numbers whereas in our context they are matrices. The ma-
trix version is useful in an SDP context because exp(A) is
positive semidefinite for all symmetric A. The analysis of
the algorithm uses the intuition that symmetric matrices
behave in some ways like real numbers, and obey inequal-
ities that are syntactically similar to inequalities such as
e−x ≥ 1 − x. We also need the Golden-Thompson inequal-
ity [16, 25] for matrix exponentials.

Second, we describe combinatorial algorithms to compute
the “feedback” function for some interesting SDPs. For gen-
eral SDPs the computation of the feedback function amounts
to solving a very simple LP (see Section 3), but the con-
vergence time of the algorithm depends upon the “width”
of the problem as in the corresponding LP algorithms [24].
We give very simple and combinatorial implementations of
the feedback function for several problems and prove that
the width is low, resulting in (very fast) polynomial running
times for the algorithms. Sometimes (as in our algorithm
for MaxCut) computing the feedback is as simple as sort-
ing; at other times it may involve multicommodity flows and
shortest paths (as in our algorithms for Sparsest Cut, Min
UnCut, and all related problems). Since the goal is an ap-
proximation algorithm for an NP-hard problems, one can
terminate the above process far before the primal SDP solu-
tion is (1+ ε)-approximate. Instead, one rounds the current
primal candidate and proves its goodness by comparing to
the dual. This is the basis for all approximation algorithms
in this paper. Not surprisingly, the computation of the feed-
back function is inspired by SDP rounding algorithms from
ARV[8] and subsequent papers such as [2] (though we had
to modify the rounding algorithms a bit). (This is the SDP
analog of what Young [30] called “Randomized Rounding
without solving the LP.”) We use the following observation
about ARV-style rounding techniques: if the rounding fails
to yield a good integer solution when applied to a candi-
date primal solution, then it actually uncovers gross devi-
ations from feasibility in the candidate solution, which can
be used as “feedback” (the vector y in the generic algorithm

of Section 3) to improve the primal. Specifically, we make
use of a structure theorem similar to ARV’s theorem about
well-separated sets to find feedback with bounded “width”
parameter, which in turn bounds the running time.

Third, we observe that in our context it suffices to com-
pute matrix exponentials only approximately, for which we
give efficient algorithms (based upon known ideas) that can
make use of sparsity. (By contrast, exact matrix exponen-
tiation is tricky and inefficient because of accuracy issues;
see [22].) This relies upon a subtle use of the Johnson-
Lindenstrauss lemma on random projections, while taking
care that the computation of the feedback function is “well-
conditioned” (c.f. Section 5). The exponentiation is shown
to reduce to a primitive available in packages for solving
linear differential equations, raising hope that our approach
may be practical.

Table 1 lists the running times of our algorithms for ap-
proximating various problems on a weighted graph with n
vertices and m edges, and compares the running time to
those of the previously known algorithms from [5, 2]. In this

paper, the Õ(·) notation suppresses polylog(n) and poly( 1
ε
)

factors.
A recent paper [19] suggested that the gold standard for

approximation algorithms in this area should be Tflow, the
time to compute single commodity max flows. Even though
methods based upon LP duality can not yet attain this gold
standard, that paper gave algorithms that attain it while
computing O(log2 n)-approximation to Sparsest Cut and
Balanced Separator in undirected graphs. We can at-
tain this gold standard for four of the problems even with
O(log n)-approximation (Tflow is Õ(m1.5) for directed graphs

and Õ(n1.5) undirected graphs). For the last three problems,
we do not know of any published primal-dual algorithms
(even in the LP world). Currently, we have an algorithm
for Min 2CNF Deletion that is not better than previous
algorithms in the worst case.

Related work.
Our primal-dual algorithm should not be confused with

earlier primal-only methods for approximate solutions to
SDPs, such as the authors’ previous paper with Hazan [6]
and an earlier paper [20]. They depend upon the standard
multiplicative weight update framework of [24] and have a
significant drawback – they find primal solutions which sat-
isfy every constraint up to an additive error ε, and the run-
ning time is proportional to 1/ε2. Since the recent wave
of SDP-based approximation algorithms for minimization
problems require ε to be quite small, it is difficult to get
significant running time improvement (though our earlier
paper [6] got around this hurdle with “hybrid” approaches).
This problem is exacerbated if the graph is weighted, when
ε may depend upon the largest weight in the graph. By con-
trast, our algorithm can round the current primal candidate
at each step and stop as soon as the gap with the dual is
small enough. Other than a binary search on the optimum
value, our algorithms are strongly polynomial so long as the
algorithm for max flow is.

A form of the Matrix Multiplicative Weights algorithm
for learning problems had been previously discovered in Ma-
chine Learning by Tsuda et al [26], as the Matrix Exponen-
tiated Gradient algorithm. Warmuth and Kuzmin [28] ex-
tended these ideas to independently discover the same Ma-
trix Multiplicative Weights algorithm as ours and gave fur-



Problem Previous best This paper This paper
O(
√

log n) approx O(
√

log n) approx O(log n) approx

Undirected Sparsest Cut Õ(n2) [5] Õ(n2) Õ(m + n1.5)

Undirected Balanced Separator Õ(n2) [5] Õ(n2) Õ(m + n1.5)

Directed Sparsest Cut Õ(n4.5) [2] Õ(m1.5 + n2+ε) Õ(m1.5)

Directed Balanced Separator Õ(n4.5) [2] Õ(m1.5 + n2+ε) Õ(m1.5)

Min UnCut Õ(n4.5) [2] Õ(n3) –

Table 1: Running times for approximation algorithms on a weighted graph with n vertices and m edges.

ther applications to online learning. They have a different
proof of convergence using the quantum relative entropy as
a potential function.

We also have some additional applications of the Matrix
Multiplicative Weights algorithm that will be the subject of
a future paper. Specifically, we can derandomize the Alon-
Roichman construction of expanders using Cayley graphs,
obtain a deterministic O(log n) approximation to the quan-
tum hypergraph cover problem (independently discovered
by Wigderson and Xiao [29] using the method of pessimistic
estimators à la Young [30]), and give an alternative proof
of Aaronson’s result [1] on the fat-shattering dimension of
quantum states. We think there may be other applications
to quantum computing, since the basic object in both set-
tings is the density matrix (see Section 6).

2. PRELIMINARIES
All matrices in the paper are symmetric. As usual, Tr(A)

is the sum of the diagonal entries (equivalently, the sum of
the eigenvalues) of A. Matrix A is positive semidefinite, or
PSD, if there is a matrix V such that A = VV> (equiva-
lently, if every eigenvalue of A is nonnegative). Such a V
is called the Cholesky decomposition of A; note that Aij =
vi · vj where vi is the ith row of V, and A is known as the
Gram matrix of the vectors vi. For matrices A and B, de-
fine A•B := Tr(AB) =

∑
ijAijBij . Notice, this is just the

usual inner product if we think of A,B as n2-dimensional
vectors. It is easily checked that A is PSD iff A •B ≥ 0 for
all PSD B. We say A � B if A − B is PSD. We will use
the `2 norm of matrices: ‖A‖ is the largest eigenvalue of A
in absolute value, i.e. min{λ ≥ 0 : −λI � A � λI}. Note
that ‖A + B‖ ≤ ‖A‖+ ‖B‖.

We often use the following special matrix. If G = (V, E)
is a graph with weight c{i,j} on edge {i, j} then its combi-
natorial Laplacian is a matrix C, with rows and columns
indexed by the nodes of G such that Cii =

∑
j 6=ic{i,j}, i.e.

the weighted degree of node i, and Cij is −c{i,j}. We will
use two important properties of Laplacians. First, if d is
the maximum degree in the graph, then 0 � C � 2dI. In
particular, C is PSD. Second, for any positive semidefinite
matrix X, if vi are the vectors obtained from its Cholesky
decomposition, then C•X =

∑
{i,j}∈Ec{i,j}‖vi−vj‖2. This

final expression should be familiar to readers who have en-
countered SDP relaxations of problems such as MaxCut
and Sparsest Cut.

Finally, we discuss matrix exponentials. If A is a matrix,

then the exponential is exp(A) =
∑∞

i=0
Ai

i!
. Notice, since

AB 6= BA in general, exp(A + B) 6= exp(A) exp(B). Since
exp(A) = exp( 1

2
A) exp( 1

2
A)> for all symmetric A, we con-

clude that exp(A) is PSD. In particular, we can assume
without loss of generality that algorithms for matrix expo-

nentiation can also output the Cholesky decomposition of
the output matrix.

Computing exact matrix exponentials is tricky. However,
it suffices to compute a “good enough” approximation. In
all the SDPs in this paper, the constraints involve squared
lengths of vectors obtained from the Cholesky decomposition
of the exponential. By the Johnson-Lindenstrauss lemma,
these squared lengths can approximated using random pro-
jection. The projection can be done very efficiently, and
Section 5 briefly discusses the details.

3. PRIMAL-DUAL APPROACH FOR
APPROXIMATELY SOLVING SDPS

This section describes a general primal-dual algorithm to
compute a near-optimal solution to any SDP (and not just
SDPs used in approximation algorithms). As an illustrative
example we also describe its use for the SDP relaxation for
MaxCut.

A general SDP with n2 variables (thought of as an n× n
matrix variable X) and m constraints, and its dual can be
written as follows:

max C •X min b · y
∀j ∈ [m] : Aj •X ≤ bj

∑m
j=1Ajyj � C

X � 0 y ≥ 0

Here, y = 〈y1, y2, . . . , ym〉 are the dual variables and b =
〈b1, b2, . . . , bm〉. Just as in the case of LPs, strong duality
holds for SDPs under very mild conditions (always satisfied
by the SDPs considered here) and the optima of the two
programs coincide.

Note that a linear program is the special case whereby all
the matrices involved are diagonal. (Aside: The recipe for
writing SDP duals is syntactically similar to the one for LP
dual, except instead of vector inequalities such as a ≥ b,
one uses matrix inequalities A � B.)

For notational ease assume that A1 = I and b1 = R. This
serves to bound the trace of the solution: Tr(X) ≤ R and is
thus a simple scaling constraint. It is very naturally present
in SDP relaxations for combinatorial optimization problems.

We assume that our algorithm uses binary search to re-
duce optimization to feasibility. Let α be the algorithm’s
current guess for the optimum value of the SDP. It is trying
to either construct a PSD matrix that is primal feasible and
has value > α, or a dual feasible solution whose value is at
most (1 + δ)α for some arbitrarily small δ > 0.

As is usual in primal-dual algorithms, the algorithm starts
with a trivial candidate for a primal solution, in this case
the trivial PSD matrix (possibly infeasible) of trace R, viz.

X(1) = R
n
I. Then it iteratively generates candidate primal

solutions X(2),X(3), . . .. At every step it tries to improve



X(t) to obtain X(t+1), and in this it has help from an auxil-
iary algorithm, called the Oracle, that tries to certify the
validity of the current X(t) as follows. Oracle searches for
a vector y from the polytope Dα = {y : y ≥ 0, b · y ≤ α}
such that

m∑
j=1

(Aj •X(t))yj − (C •X(t)) ≥ 0. (1)

If Oracle succeeds in finding such a y then we claim X(t)

is either primal infeasible or has value C • X(t) ≤ α. The
reason is that otherwise

m∑
j=1

(Aj •X(t))yj − (C •X(t)) ≤
m∑

j=1

bjyj − (C •X(t))

< α− α = 0,

which would contradict (1). Thus y implicitly contains some

useful information to improve the candidate primal X(t),
and we use y to update X(t) using a familiar-looking ma-
trix exponential update rule (step 5 in the algorithm). Our
observation about matrix exponentials ensures that the new
matrix X(t+1) is also PSD.

On the other hand, if Oracle declares that there is no
vector y ∈ Dα which satisfies (1), then it can be easily
checked using linear programming duality that (a suitably

scaled version of) X(t) must be a primal feasible solution of
objective value at least α.

The important point here is that the desired y is not dual
feasible: in fact the Oracle can ignore the PSD constraint
and its task consists of solving an LP with just one non-
trivial constraint (the others are just non-negativity con-
straints)! Thus, one may hope to implement Oracle effi-
ciently, and furthermore, even find y with nice properties,
so that the algorithm makes fast progress towards feasibil-
ity. Now we formalize one aspect of nice-ness, the width.
(Another aspect of niceness concerns a subtle condition that
allows quick matrix exponentiation; see the discussion in the
Section 5.)

The Primal-Dual SDP algorithm, shown on the right,
depends on the width parameter of the Oracle. This is
the smallest ρ ≥ 0 such that for every primal candidate
X, the vector y ∈ Dα returned by the Oracle satisfies
‖Ajyj − C‖ ≤ ρ. The constraint on width may seem like
a backdoor way to bring in the semidefiniteness constraint
into the oracle but it is more correctly viewed as a measure
of the Oracle’s effectiveness in helping the algorithm make
progress (high width equals slow progress). In all our appli-
cations the vector y will be computed using combinatorial
ideas, such as simple case analysis or multicommodity flow.
Thus our algorithms do adhere to the primal-dual philoso-
phy.

The following theorem bounds the number of iterations
needed in the algorithm. Let e1 = 〈1, 0, . . . , 0〉.

Theorem 1. In the Primal-Dual SDP algorithm, assume

that the Oracle never fails for T = 8ρ2R2 ln(n)

δ2α2 iterations.

Let ȳ = δα
R

e1 + 1
T

∑T
t=1y

(t). Then ȳ is a feasible dual solu-
tion with objective value at most (1 + δ)α.

As noted earlier, if all the matrices in question were di-
agonal, then the SDP reduces to an LP, and the algorithm
reduces precisely to the standard Multiplicative Weights al-
gorithm for LPs studied by many authors including Plotkin,

Primal-Dual Algorithm for SDP

Set X(1) = R
n
I. Let ε = δα

2ρR
, and let ε′ = − ln(1 − ε).

Let T = 8ρ2R2 ln(n)

δ2α2 . For t = 1, 2, . . . T :

1. Run the Oracle with candidate solution X(t).

2. If the Oracle fails, stop and output X(t).

3. Else, let y(t) be the vector generated by Oracle.

4. Let M(t) = (
∑m

j=1Ajy
(t)
j −C + ρI)/2ρ.

5. Compute W(t+1) = (1 − ε)
∑t

τ=1M
(τ)

=

exp(−ε′(
∑t

τ=1M
(τ))).

6. Set X(t+1) = RW(t+1)

Tr(W(t+1))
and continue.

Shmoys, Tardos [24] and Young [30]. (See the authors’ sur-
vey with Hazan [7] for more details on the LP version.)
Theorem 1 is a consequence of our more general Matrix
Multiplicative Weights algorithm, explored in more detail
in Theorem 9 of Section 6.

As a warmup, we illustrate the use of Theorem 1 in the
following simple application.

Theorem 2. In a d-regular graph G = (V, E) with n
nodes and m edges, the MaxCut SDP can be approximated
in Õ(m) time.

Remarks: For comparison, the previous best algorithm for
approximating the MaxCut SDP, by Klein and Lu [20],

runs in time Õ(mn). Our algorithm can be extended to the
family of weighted graphs in which all weighted degrees are
O(average degree).

Proof of Theorem 2. The MaxCut SDP in vector and
matrix form is as follows (the standard SDP has a factor of
1
4

in the objective, but we disregard it since the optimum
solution is the same):

max
∑

{i,j}∈E

‖vi − vj‖2 max C •X

∀i ∈ [n] : ‖vi‖2 ≤ 1 ∀i ∈ [n] : Xii ≤ 1

X � 0

The dual SDP is the following:

min
∑n

i=1xi

diag(x) � C

∀i ∈ [n] : xi ≥ 0

Here, C is the combinatorial Laplacian of the graph, and
diag(x) is the diagonal matrix with the vector x on the di-
agonal. Since the maximum degree in the graph is d, we
have 0 � C � 2dI.

We use the Primal-Dual SDP algorithm to solve this within
a factor of (1−δ). We may assume that nd ≤ α ≤ 3nd since
the optimum lies in this range. Furthermore, the trace of
the desired X is n. This is the R parameter. We now show
how to implement an Oracle whose width parameter ρ is
O(d), which ensures by Theorem 1 that the number of it-
erations is O(log n). Each invocation of Oracle and the

matrix exponentiation step will take Õ(m) time (the latter



uses Lemma 6 and the fact that the number of non-zero ma-
trix entries in C is O(m)). This yields the desired running
time.

It remains to describe Oracle. Given a candidate solu-
tion X, it needs to find a vector x ≥ 0 such that

∑
ixi ≤ α

and
∑

ixiXii −C •X ≥ 0. Intuitively, to make
∑

ixiXii as
large as possible, we should make xi large for all i where Xii

is large. However, we always keep xi ≤ O(α
n
) = O(d), since

this ensures the desired width bound: ‖diag(x)−C‖ ≤ O(d).

1. If C •X ≤ α, then set all xi = α
n

Then since
∑

iXii =
Tr(X) = n we have

∑
ixiXii−C•X ≥ α

n

∑
iXii−α =

0.

2. So assume C•X ≥ α. Let C•X = λα for some λ ≥ 1.
Since C � 2dI, we have λα = C • X ≤ 2nd. Since
α ≥ nd, we have that λ ≤ 2. Let S := {i : Xii ≥ λ},
and let k :=

∑
i∈SXii.

If k ≥ δ1n for some constant δ1 then we set xi =
λα
k

for all i ∈ S, and xi = 0 for all i /∈ S. Then∑
ixi = |S| · λα

k
≤ α since k =

∑
i∈S Xii ≥ λ|S|. Then∑

ixiXii −C •X = λα
k

∑
i∈SXii − λα ≥ 0.

3. If every other case we show that we can easily construct
a feasible primal solution from X with objective value
at least (1− δ)α, which is therefore approximately op-
timum.

Let v1, . . . ,vn be vectors obtained from the Cholesky
decomposition of X. Construct new vectors v′i such
that v′i = vi for i /∈ S, and v′i = v0 for i ∈ S, for
some fixed unit vector v0. Let X̃ be the resulting
Gram matrix of the v′i vectors. Let ES be the set of
edges with at least one endpoint in S. Now we have
C • (X̃ −X) ≥ −

∑
{i,j}∈ES

‖vi − vj‖2. We can lower

bound the RHS as follows:∑
{i,j}∈ES

‖vi − vj‖2 ≤
∑

{i,j}∈ES

2[‖vi‖2 + ‖vj‖2]

≤ 2d
∑
i∈S

‖vi‖2 + 2dλ|S| ≤ 4dk ≤ 4δ1nd.

The third inequality follows because for all i ∈ S, ‖vi‖2
appears in at most d edges, and for all j /∈ S, ‖vj‖2 ≤
λ, and there can be at most d|S| edges leading out of

S. This implies that C • X̃ ≥ λα − 4δ1nd. Given an
error parameter δ, if we choose δ1 ≤ δλ

4
, we can lower

bound the RHS by (1 − δ)λα. Furthermore, for all i,

X̃ii = ‖v′i‖2 ≤ λ. So the matrix X∗ = 1
λ
X̃ is a feasible

primal solution with objective value at least (1− δ)α.

3.1 Extension to minimization problems
Since the rest of the paper concerns minimization prob-

lems, we extend the above framework to it. First, given a
candidate solution X, the Oracle needs to find a vector y
from the polytope Dα = {y : y ≥ 0, b · y ≥ α} such that∑m

j=1(Aj •X)yj − (C •X) < 0. Second, the matrix expo-

nential is computed with base (1 + ε) rather than (1− ε).
Finally, and most important, we allow the Oracle to find

a matrix F(t) such that for all primal feasible X, we have
F(t) •X ≤ C •X, and a vector y(t) ∈ Dα such that∑m

j=1(Aj •X(t))y
(t)
j − (F(t) •X) ≤ 0. (2)

In this case, we use M(t) := (
∑m

j=1Ajy
(t)
j − F(t) + ρI)/2ρ.

In other words, we can replace C by F(t), which is under
our control. Note that if F(t) � C, then because any primal
feasible X is PSD, we have F(t) •X ≤ C•X. So it suffices to
find F(t) � C. (The reason for allowing F in the framework
is to reduce width; see Section 4.)

The proof of Theorem 1 goes through with these changes.

Theorem 3. In the modified Primal-Dual algorithm for
a minimization SDP as described above, assume that the

Oracle never fails for T = 8ρ2R2 ln(n)

δ2α2 iterations. Let ȳ =
δα
R

e1 + 1
T

∑T
t=1y

(t). Then ȳ is a feasible dual solution with
objective value at least (1− δ)α.

4. PRIMAL-DUAL APPROXIMATION
ALGORITHMS VIA SDPS

In this section, we apply our general framework of Sec-
tion 3.1 to design faster approximation algorithms for a host
of NP-hard problems for which thus far we needed to solve
SDPs. We give a few illustrative examples; the rest will
appear in the complete paper. The important difference
from Section 3 is that we do not try to solve the SDP to
near-optimality as that would take too long. Instead, we
use the framework to produce a dual solution of a certain
value together with an integer primal solution whose cost is
O(log n) or O(

√
log n) factor higher than the value of the

dual solution.
In this abstract, we only outline how to implement the

Oracle, which, as mentioned in the Introduction, uses the
known SDP rounding techniques (stemming from the Arora,
Rao, Vazirani paper and subsequent work) for the problem
in question. At each step the Oracle starts by applying the
rounding algorithm on the current primal solution. Either
the rounding succeeds, or else it fails so spectacularly that
the Oracle can see a clear way to move the primal closer
to feasibility. The main point is that the rounding could
potentially succeed even though the primal is quite far from
feasibility, which is why the algorithm may end only with
a feasible dual solution. (Of course, the general framework
of Section 3 could be used to continue the algorithm until
it also finds a feasible primal, but the Oracle’s width pa-
rameter increases, raising the running time a lot.) Thus the
running time of the Oracle (and the algorithm) depends
upon how efficiently it can compute the “feedback” when
the rounding algorithm fails, and often this running time
is much less for O(log n)-approximation as compared to a
O(
√

log n)-approximation.
The key insights in the implementation of the Oracle

are that: (a) the feedback, in the form of dual weights, can
be viewed as Laplacians of certain weighted graphs, whose
spectral behavior is easy to understand, and this allows us
to bound the width, and (b) the spectral behavior (in other
words, the width bound) is improved by careful choice of
these weights, and this was the main reason for allowing F
instead of C in Theorem 3 in the first place.

4.1 UndirectedBalanced Separator
We are given a capacitated graph G = (V, E) with |V | =

n, |E| = m, and capacity ce on edge e ∈ E. A cut (S, S̄) is
called c-balanced if |S| ≥ cn, and |S̄| ≥ cn. The minimum
c-Balanced Separator problem is to find the c-balanced
cut with minimum capacity. A t pseudo-approximation to



the minimum c-Balanced Separator is a c′-balanced cut
for some other constant c′ whose expansion is within a factor
t of that of the minimum c-Balanced Separator.

Theorem 4.

1. An O(log n) pseudo-approximation to the minimum c-

Balanced Separator can be computed in Õ(m +
n1.5) time using O(log2(n)) single commodity flow com-
putations.

2. An O(
√

log n) pseudo-approximation to the minimum

c-Balanced Separator can be computed in Õ(n2)
time using O(log n) multicommodity flow computations.

Proof (Sketch). We use the well-known SDP relaxation
with triangle inequalities, but to make the algorithm sim-
pler we use an equivalent formulation. We assign vectors vi

to the nodes in G. Let p = (i1, i2, . . . , ik) be a generic path
of nodes in the complete graph, and let a = 1

4
c(1− c). The

SDP in vector form is:

min
∑

e={i,j}∈E

ce‖vi − vj‖2

∀i : ‖vi‖2 = 1

∀p :
∑k−1

j=1‖vij − vij+1‖
2 ≥ ‖vi1 − vik‖

2∑
i,j‖vi − vj‖2 ≥ an2

(Note that the standard formulation of triangle inequality
only uses paths of length 3, but this formulation is equiv-
alent.) In the following matrix form of the SDP, X is the
Gram matrix of the vectors vi, C and K are the combi-
natorial Laplacians of the input graph and complete graph
respectively, and Tp is the difference of the Laplacian of p
and that of a single edge connecting its endpoints:

minC •X
∀i : Xii = 1

∀p : Tp •X ≥ 0

K •X ≥ an2

X � 0

The optimum of this SDP divided by 4 is a lower bound
on the minimum c-Balanced Separator.

The dual SDP is the following. It has variables xi for
every node i, fp for every path p, and z. Let diag(x) be the
diagonal matrix with the vector x on the diagonal.

max
∑

ixi + an2z

diag(x) +
∑

pfpTp + zK � C

∀p : fp, z ≥ 0

Now, we will briefly describe the implementation of the Or-
acle. Given a candidate solution X, the Oracle needs to
find variables xi, fp ≥ 0, z ≥ 0 and a matrix F � C (c.f.
Theorem 3) such that

∑
ixi + an2z ≥ α which satisfies

diag(x) •X +
∑

pfp(Tp •X) + z(K •X)− (F •X) ≤ 0.

First, it is easy to ensure, using techniques similar to the
ones used in solving the MaxCut SDP in Section 3, that
∀i : Xii = O(1) and K•X ≥ Ω(n2) (actually, we only check
this latter condition for a large subset of nodes). Further,
this can be done while ensuring that the width is O(α

n
).

The novel part is to nudge X towards satisfying the path
inequality constraints. At first, it is even unclear how to
check at any time that the path inequalities are satisfied,
since there are so many of them. For this we use multicom-
modity flow. First, some notation. For a flow which assigns
value fp to path p define fe to be the flow on edge e, i.e.
fe :=

∑
p3efp. Define fi to be the total flow from node i,

i.e. fi =
∑

p∈Pi
fp where Pi is the set of paths starting from

i. Finally, define fij to be the total flow between nodes i, j,
i.e. fij =

∑
p∈Pij

fp, where Pij is the set of paths from i to

j. A valid d-regular flow is one that satisfies the capacity
constraints: ∀e : fe ≤ ce, and ∀i : fi ≤ d.

Let v1, . . . ,vn be vectors obtained from the Cholesky de-
composition of X. Note that for all nodes i, we have ‖vi‖2 =
O(1). Also, K •X ≥ Ω(n2) implies that

∑
i,j‖vi − vj‖2 ≥

Ω(n2). Our main tool is the following lemma, which shows
that either we can find a nice flow to make progress (i.e.,
give substantial “feedback”), or a cut with the desired ex-
pansion (i.e., a near-optimal integer solution). This lemma
can be proved using the techniques of [8, 21]:

Lemma 1. Let S ⊆ V be a set of nodes of size Ω(n).
Suppose we are given, for all i ∈ S, vectors vi of length
O(1), such that

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2), and a quantity

α. Then:

1. There is an algorithm, which, using a single max-flow

computation, either outputs a valid O( log(n)α
n

)-regular

flow fp such that
∑

ijfij‖vi − vj‖2 ≥ α, or a c′-

balanced cut of expansion O(log(n)α
n
).

2. There is an algorithm, which, using a single multicom-
modity flow computation, either outputs a valid O(α

n
)-

regular flow fp such that
∑

ijfij‖vi − vj‖2 ≥ α, or a

c′-balanced cut of expansion O(
√

log(n)α
n
).

We apply the two algorithms of Lemma 1 to the set S = V ,
corresponding to the two cases of Theorem 4.

In case we find a cut with the desired expansion, then
we stop. Otherwise, we get a valid d-regular flow which

satisfies
∑

ijfij‖vi − vj‖2 ≥ α, where d = O( log(n)α
n

) or

O(α
n
) depending on the two cases.

Then we set F to be the Laplacian of the weighted graph
with edge weights fe. Since C − F is the Laplacian of the
residual graph, and a valid flow satisfies capacity constraints
fe ≤ ce, we conclude that F � C. Let D be the Laplacian
of the complete weighted graph where edge {i, j} has weight
fij .

Now, we have that D •X =
∑

ijfij‖vi − vj‖2 ≥ α. Then
we set all xi = α

n
, and z = 0. It can be checked easily that∑

pfpTp = F−D. Thus, the “feedback” matrix becomes

diag(x) + F−D− F =
α

n
I−D.

Then
(

α
n
I−D

)
•X ≤ α − α = 0. Also, since the flow is

d-regular, we have 0 � D � 2dI. Hence, −2dI � α
n
I−D �

α
n
I.
We now estimate the running time for the algorithms.

Using the sparsification algorithm of Benczúr and Karger
[10], we may assume the input graph has Õ(n) edges. The

Oracle ensures that the width is bounded by Õ(α
n
), and

R = n, so Theorem 1 implies that the algorithm needs



polylog(n) iterations. Each iteration requires a matrix expo-
nentiation and (possibly) a flow computation. The first al-
gorithm only uses single-commodity max-flow computations
in every iteration, which takes Õ(n1.5) time using Goldberg-
Rao [15]. The second algorithm uses multicommodity flow,

which takes Õ(n2) time by Fleischer [12]. Finally, the run-
ning time of matrix exponentiation using Lemma 6 is near-
linear in the number of entries of the matrix, which is no
more than the time taken by the flow computations.

4.2 UndirectedSparsest Cut
We have the same setup as in the previous section. The

Sparsest Cut in a graph G = (V, E) is the cut (S, S̄) with

minimum expansion, E(S,S̄)

min{|S|,|S̄|} .

Theorem 5.

1. An O(log n) approximation to the Sparsest Cut can

be computed in Õ(m+n1.5) time using O(log2(n)) sin-
gle commodity flow computations.

2. An O(
√

log n) approximation to the Sparsest Cut

can be computed in Õ(n2) time using O(log n) mul-
ticommodity flow computations.

We briefly sketch the Oracle. Given a candidate solutio
X in the form of the vectors v1, . . . ,vn obtained from its
Cholesky decomposition, the Oracle first checks that n2 ≥∑

ij ‖vi − vj‖2 ≥ Ω(n2) just as in Balanced Separator.
To check the triangle inequalities, the Oracle runs flow
computations as given in the following lemma:

Lemma 2. Suppose we are given, for all i ∈ V , vectors
vi, such that for some constant δ1, n2 ≥

∑
ij‖vi − vj‖2 ≥

(1 − δ1)n
2, and a quantity α. Then there is an algorithm,

which, using a single max-flow computation, outputs either

1. a valid O(α
n
)-regular flow fp, such that

∑
ijfij‖vi −

vj‖2 ≥ α, or,

2. a cut of expansion O(α
n
), or

3. a set of nodes S ⊆ V of size Ω(n), such that for all
i ∈ S, ‖vi‖2 = O(1), and

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2).

Note that in the third case, Lemma 1 applies, and the Or-
acle can either find a cut of small expansion, or a flow to
make progress in the Primal-Dual SDP algorithm.

Connection to KRV’sSparsest Cut algorithm.
Khandekar, Rao and Vazirani [19] obtain an O(log2 n)

approximation to the Balanced Separator and Spars-
est Cut in undirected graphs in Õ(m + n1.5) time. We
obtain O(log n)-approximation in the same time. Here we
note that despite superficial differences, their algorithm is
a close cousin of ours. At each iteration, their algorithm
maintains a (multi)graph that is a union of perfect match-
ings. It uses spectral methods (specifically, a random walk)
to identify sparse cuts in this graph. Then it computes a
single-commodity max flow across this sparse cut, finds a
new perfect matching via flow decomposition, and adds it
to the current multigraph before proceeding to the next it-
eration. The analysis of convergence uses an ad hoc poten-
tial function, and the main theorem says that the union of
matchings converges in O(log2 n) iterations to an expander.

Our algorithm is somewhat similar except we use matrix
exponentiation at each iteration instead of random walks.
However, the two are related. If L is a graph Laplacian,
and β < 1/(max degree) is any constant, then exp(−βL) is
the transition matrix after 1 time unit for the following con-
tinuous random walk: in each time interval δt, every node
sends out a βδt fraction of its probability mass to each of its
neighbors. The algorithm of [19] simulates such a random
walk, where L is the Laplacian of the union of the perfect
matchings found so far. In our case, L is the Laplacian of
the union of the flows found so far. Both algorithms com-
pute a projection of the rows of the transition matrix on a
random vector and then compute a max-flow based on the
projections.

Of course, their ad hoc analysis does not apply to the
other problems considered in this paper.

4.3 DirectedBalanced Separator
We have a directed graph G = (V, E). For a cut (S, S̄)

in the graph, define E(S, S̄) to be the total capacity of arcs
going from S to S̄. The minimum c-Balanced Separator
is the c-balanced cut (S, S̄) with minimum value of E(S, S̄).

Theorem 6.

1. An O(log n) pseudo-approximation to the minimum c-
Balanced Separator in directed graphs can be com-
puted in Õ(m1.5) time using polylog(n) single commod-
ity flow computations.

2. An O(
√

log n) pseudo-approximation to the minimum
c-Balanced Separator in directed graphs can be com-
puted in Õ(m1.5 + n2+ε) time using polylog(n) single
commodity flow computations, for any specified con-
stant ε. The Õ notation hides polynomial dependence
on 1

ε
.

We briefly sketch the Oracle. The Directed Balanced
Separator SDP relies on the directed distance between all
nodes pairs (i, j): ‖vi − vj‖2 − ‖vi − v0‖2 + ‖vj − v0‖2,
where v0 is an extra unit vector. Since it appears in all
directed distances, a simple implementation of the Oracle
runs into width issues. So we use the following idea: for
each node i, we associate a unit vector wi, which is sup-
posed to be its own private copy of v0, and use the directed
distance d(i, j) = ‖vi − vj‖2 − ‖vi − wi‖2 + ‖vj − wj‖2
instead. To enforce all the wi to be identical, we thrown in
the constraints ‖wi −wj‖2 = 0 for all i, j.

Now, given the vectors v1, . . . ,vn, and w1, . . . ,wn as a
candidate solution, the Oracle checks that almost all of
them are O(1) in length, that all pairs of nodes i, j sat-
isfy ‖wi −wj‖2 = o(1), and that

∑
ij ‖vi − vj‖2 ≥ Ω(n2).

Then, to check the triangle inequalities, the Oracle runs
flow computations as given in the following lemma:

Lemma 3. Let S ⊆ V be a set of nodes of size Ω(n).
Suppose we are given, for all i ∈ S, vectors vi,wi of length
O(1), such that

∑
i,j∈S‖vi − vj‖2 ≥ Ω(n2), and ∀ij, ‖wi −

wj‖2 ≤ o(1). Define the directed distance d(i, j) = ‖vi −
vj‖2 − ‖wi − vi‖2 + ‖wj − vj‖2. For any given value α,

1. There is an algorithm, which, using a single max-flow

computation, either outputs a valid O( log(n)α
n

)-regular
directed flow fp such that

∑
ijfijd(i, j) ≥ α, or a c′-

balanced cut of expansion O(log(n)α
n
).



2. There is an algorithm, which, using O(log n) max-flow
computations, outputs either:

(a) a c′-balanced cut of expansion O(
√

log(n)α
n
), or

(b) a valid O(α
n
)-regular directed flow fp flow such

that
∑

ijfijd(i, j) ≥ α, or

(c) Ω( n√
log n

) vertex-disjoint paths such that the path

inequalities (obtained by combining the triangle
inequalities along these paths) are violated by Ω(1).

Case 2(c) above is implemented using the dynamic decre-
mental spanners algorithm of Baswana [9]. In this case, the
Oracle generates feedback by setting the dual variables

fp = O(
√

log nα
n

) for all the paths p with violated path in-
equalities found by the algorithm. Note that this is not a
valid flow, but it suffices to make progress.

4.4 DirectedSparsest Cut
We have the same setup as in the previous section. The

Sparsest Cut in a directed graph G = (V, E) is the cut

(S, S̄) with minimum expansion, E(S,S̄)

min{|S|,|S̄|} .

Theorem 7.

1. An O(log n) pseudo-approximation to the Sparsest

Cut in directed graphs can be computed in Õ(m1.5)
time using polylog(n) single commodity flow computa-
tions.

2. An O(
√

log n) pseudo-approximation to the Sparsest

Cut in directed graphs can be computed in Õ(m1.5 +
n2+ε) time using polylog(n) single commodity flow com-

putations, for any specified constant ε. The Õ notation
hides polynomial dependence on 1

ε
.

This algorithm is exactly analogous to the algorithm for
Undirected Sparsest Cut, combined with some ideas from
Directed Balanced Separator, so we omit the details of
the implementation of the Oracle.

4.5 Min UnCut
The Min UnCut problem has various equivalent forms.

The one we will use is the following. We are given a ca-
pacitated graph G = (V, E) where the set of nodes V =
{−n, . . . ,−2,−1, 1, 2, . . . , n}, such that {i, j} ∈ E iff there
{−j,−i} ∈ E. Also, we assume that the capacities satisfy
cij = c−j,−i. A cut (S, S̄) is called symmetric if S̄ = −S
where −S = {−i : i ∈ S}. The Min UnCut problem is to
find the minimum symmetric cut in G.

Theorem 8. An O(
√

log n) approximation to Min Un-

Cut can be computed in Õ(n3) time.

We briefly sketch the Oracle. The SDP for MinUnCut
assigns vectors vi and v−i for all nodes i,−i respectively,
where v−i = −vi. By making this substitution for v−i in
the SDP, we may assume that the SDP is written only in
terms of v1, . . . ,vn, and the v−i are obtained by simply
negating them.

The Oracle first checks that all vi = Θ(1). Then, to
check the triangle inequalities, it runs a multicommodity
flow computation, as given in the following lemma:

Lemma 4. Assume we are given vectors vi for every node
in G such that for all i, ‖vi‖2 = Θ(1) and vi = −v−i and a
value α. Then there is an algorithm, which, using a single
multicommodity flow computation, can obtain either:

1. a valid O(α)-regular flow fp, such that
∑

ijfij‖vi −
vj‖2 ≥ α, or

2. a symmetric cut (S,−S) of value O(
√

log n · α).

In the first case, we make progress in the Primal-Dual SDP
algorithm just as in undirected Balanced Separator. The
second case is implemented by using the dual weights on the
edges obtained from the multicommodity flow computation
and using them to recursively produce (partial) symmetric
cuts in the graph.

5. FAST MATRIX EXPONENTIALS
In our general framework of Section 3, the candidate so-

lution X(t) at each step is exp(M) for some M. We show
how to do this exponentiation faster than the trivial O(n3)
time for the SDPs considered here.

The idea is that approximate computation suffices. Let
α be our current estimate of the optimum and δ > 0 be
such that we desire a dual solution of cost at most (1 + δ)α.

The Oracle’s task, when given a candidate solution X(t),
is to find appropriate dual variables y1, . . . , ym such that∑j

i=1(Aj•X(t))yj−(C•X(t)) ≥ 0. Let v1, . . . ,vn be vectors

obtained from the Cholesky decomposition of X(t) such that
Xij

(t) = vi · vj = 1
2
[‖vi‖2 + ‖vj‖2 − ‖vi − vj‖2]. Thus,

Oracle’s task is to find appropriate variables si and tij for
i, j ∈ [n] such that

∑
i si‖vi‖2+

∑
ij tij‖vi−vj‖2 ≥ 0. (Note

that the si and tij variables cannot be set independently,
since they are a linear transformation of y1, . . . , ym.)

The vectors vi obtained from the Cholesky decomposi-
tion of X(t) = exp(M) are just the row vectors of exp( 1

2
M).

Since we are only interested in the squared lengths of the
row vectors and their differences, we can apply Johnson-
Lindenstrauss dimension reduction. If we project the vec-
tors vi on a random d = O( log n

δ2 ) dimensional subspace,

and scale the projections up by
√

n
d

to get vectors v′i, then
by the Johnson-Lindenstrauss lemma, with high probability,
the squared lengths ‖v′i‖2 and ‖v′i−v′j‖2 are within (1± δ)

of ‖vi‖2 and ‖vi−vj‖2 respectively, for all i, j ∈ [n]. Thus,
we could run the Oracle with the X′ which is the Gram
matrix of the vectors v′i, and hope that the Oracle’s “feed-
back” for X′ would be also valid for X(t). (Note that the
exponential is only used for the Oracle’s computation at
this step, and never used again in the algorithm.)

Now we mention why Johnson-Lindenstrauss dimension
reduction does not suffice in general, and then state condi-
tions on the Oracle under which it does. The problem is
that the si and tij variables could take both positive and
negative values, so

∑
i si‖vi‖2 +

∑
ij tij‖vi − vj‖2 may no

longer be non-negative, even though the corresponding sum
for the v′i’s is. But the difference between the two is at
most δ

∑
i |si|‖v′i‖2 +

∑
ij |tij |‖v′i−v′j‖2. So if α is the cur-

rent estimate of the optimum, and the Oracle can also
ensure that

∑
i |si|‖v′i‖2 +

∑
ij |tij |‖v′i − v′j‖2 = O(α), then∑

i si‖vi‖2 +
∑

ij tij‖vi − vj‖2 ≥ −O(δα), and it can be
shown that Theorem 1 holds even with this relaxation for
the Oracle. We call such an Oracle “well-conditioned”.



Lemma 5 (Well-conditioned Oracle). In the above
setting if the Oracle can always set the si’s and tij vari-
ables such that

∑
i si‖vi‖2 +

∑
ij tij‖vi−vj‖2 ≥ 0 and also∑

i |si|‖vi‖2 +
∑

ij |tij |‖vi − vj‖2 ≤ O(α), then the algo-
rithm works even if instead of vi, the Oracle uses vectors
v′i obtained by Johnson-Lindenstrauss dimension reduction.

All our Oracles have the following property: they find
si and tij such that the sum

∑
i si‖vi‖2 +

∑
ij tij‖vi−vj‖2,

when restricted to the positive si and tij , is α; and when
restricted to the negative si and tij , is −α. Thus, all our
Oracles are well-conditioned.

Now we turn to details of computing the matrix expo-
nential exp(M). The Johnson-Lindenstrauss lemma allows
us to reduce this to computing exp( 1

2
M)u where u is one

of O( log n
δ2 ) random vectors. This has fast implementations

in solvers for linear differential equations, and one can give
good complexity bounds. Also, it suffices to do even this
computation approximately, namely, find a vector v such
that ‖ exp( 1

2
M)u− v‖ ≤ ε for some inverse polynomial ε.

One simple method is to approximate exp( 1
2
M) by the

first O(log n) terms of its Taylor expansion, which needs
O(log n) matrix-vector products. Each of these products can
be computed in time which is proportional to the number of
non-zero entries of the matrix.

A more sophisticated algorithm for this task uses the
Shift-and-Invert Lanczos (SI-Lanczos) method of van den
Eshof and Hochbruck [27], as analyzed by Iyengar, Phillips,
and Stein [17] for the very setting we have. They prove
that O(log2( 1

ε
)) of iterations of SI-Lanczos are needed to

achieve ε accuracy, assuming the matrix to be exponenti-
ated is well-conditioned. Since we normalize by dividing by
the trace anyway, all our matrices can be easily made well-
conditioned by simply adding an appropriate multiple of the
identity matrix. We have the following result:

Lemma 6. Let tM denote the time needed to compute the
matrix-vector product Mu. Using SI-Lanczos, we can com-
pute a vector v such that ‖ exp( 1

2
M)u − v‖ ≤ ε in Õ(tM)

time. Thus, if M has m non-zero entries, then tM = O(m),

and the product exp(M)u can be approximated in Õ(m) time,

and exp(M) itself can be approximated in Õ(mn) time.

6. THE MATRIX MULTIPLICATIVE
WEIGHTS ALGORITHM

Instead of just analyzing the matrix multiplicative up-
date rule in context of SDPs, we analyze a more general
algorithm. This algorithm is the matrix analogue of the
framework of our survey with Hazan [7]. For a symmetric
matrix A, we let λ1(A) ≥ λ2(A) · · · ≥ λn(A) denote its
eigenvalues.

Imagine a matrix generalization of the usual 2-player zero-
sum game. One player chooses a unit vector v ∈ Sn−1. The
other player chooses a matrix M such that 0 �M � I. The
first player has to pay the second v>Mv = M • vv>. We
allow the first player to choose his vector from a distribution
D over Sn−1. We are interested in the expected loss to the
first player, viz.

E
D
[v>Mv] = M • E

D
[vv>].

The matrix P = ED[vv>] is a density matrix: it is positive
semidefinite and has trace 1. (Density matrices appear in
quantum computation, for example.)

Now consider an online version of this game where the
first player has to react to an external adversary who picks
a matrix M at each step; this is called an observed event. An
online algorithm for the first player chooses a density ma-
trix P(t), and observes the event matrix M(t) in each round
t = 1, 2, . . . , T . After T rounds, the best fixed vector for the
first player in hindsight is the unit vector v which minimizes
the total loss

∑T
t=1v

>M(t)v. It is easy to see that this is

minimized when v is the unit eigenvector of
∑T

t=1M
(t) cor-

responding to the smallest eigenvalue. Our goal is to design
an algorithm whose total expected loss over the T rounds is
not much more than the minimum loss λn(

∑T
t=1M

(t)).

Matrix Multiplicative Weights algorithm

Fix an ε < 1
2
, and let ε′ = − ln(1− ε). In every round t,

for t = 1, 2, . . .:

1. Compute W(t) = (1 − ε)
∑t−1

τ=1M
(τ)

=

exp(−ε′(
∑t−1

τ=1M
(τ))).

2. Use the density matrix P(t) = W(t)

Tr(W(t))
and observe

the event M(t).

Theorem 9. The Matrix Multiplicative Weights Update
algorithm generates density matrices P1,P2, . . . ,PT such
that ∑T

t=1M
(t) •P(t) ≤ (1 + ε)λn(

∑T
t=1M

(t)) +
ln n

ε
.

Remark: The proof of Theorem 1 follows by thinking of the
event matrices as

M(t) := (
∑m

j=1Ajy
(t)
j −C + ρI)/2ρ.

The candidate solution X(t) is just RP(t) where P(t) is the
density matrix generated in the tth round.

Proof. The proof is based on a potential function. We
track the changes in Tr(W(t)) over time. The analysis is
complicated by the fact that matrix multiplication is non-
commutative, so exp(A + B) 6= exp(A) exp(B) in general.
However, we can use the Golden-Thompson inequality [16,
25]: Tr(eA+B) ≤ Tr(eAeB). Consider:

Tr(W(t+1)) = Tr(exp(−ε′
∑t

τ=1M
(τ)))

≤ Tr(exp(−ε′
∑t−1

τ=1M
(τ)) exp(−ε′M(t)))

(Golden-Thompson inequality)

= W(t) • exp(−ε′M(t))

(∵ Tr(AB) = A •B))

≤ W(t) • (I− εM(t))

(∵ (1− ε)A � (I− εA) if 0 � A � I)

= Tr(W(t)) · (1− εM(t) •P(t))

≤ Tr(W(t)) · exp(−εM(t) •P(t)).

By induction, since Tr(W1) = Tr(I) = n, we get that

Tr(WT+1) ≤ n exp(−ε
∑T

t=1M
(t) •P(t)).

On the other hand, we have:

Tr(WT+1) = Tr(exp(−ε′
∑T

t=1M
(t)))

≥ exp(−ε′λn(
∑T

t=1M
(t))).



because Tr(exp(A)) =
∑n

k=1 exp(λk(A)) ≥ exp(λn(A)).
Thus, we conclude that

exp(−ε′λn(
∑T

t=1M
(t))) ≤ n exp(−ε

∑T
t=1M

(t) •P(t)).

Taking logarithms and simplifying, we get the required in-
equality.

7. FUTURE WORK
We intend to apply the methods of this paper to other

problems for which the known SDP-based algorithms are
fairly inefficient, such as Min 2CNF Deletion and Min
Linear Arrangement. To obtain fast primal-dual algo-
rithms for these problems, we would first need to understand
the SDP well. Usually, this means devising robust round-
ing algorithms for obtaining integer solutions from fractional
ones.

Acknowledgements
We thank Inderjit Dhillon, Elad Hazan, David Philips, Satish
Rao, and Manfred Warmuth for useful discussions. Vijay
Vazirani suggested several years ago that primal-dual meth-
ods be investigated for SDPs.

8. REFERENCES
[1] S. Aaronson. The learnability of quantum states.

quant-ph/0608142, 2006.

[2] A. Agarwal, M. Charikar, K. Makarychev, and
Y. Makarychev. O(

√
log n) approximation algorithms

for Min UnCut, Min 2CNF deletion, and directed cut
problems. In STOC, pages 573–581, 2005.

[3] A. Agrawal, P. Klein, and R. Ravi. When trees collide:
an approximation algorithm for the generalized steiner
problem on networks. In STOC, pages 134–144, 1991.

[4] F. Alizadeh. Interior point methods in semidefinite
programming with applications to combinatorial
optimization. SIAM J. Optim., 5(1):13–51, 1995.

[5] S. Arora, E. Hazan, and S. Kale. O(
√

log n)

approximation to sparsest cut in Õ(n2) time. In
FOCS, pages 238–247, 2004.

[6] S. Arora, E. Hazan, and S. Kale. Fast algorithms for
approximate semidefinite programming using the
multiplicative weights update method. In FOCS,
pages 339–348, 2005.

[7] S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta algorithm and
applications. 2005. Preliminary draft of paper available
online at http://www.cs.princeton.edu/~satyen/

publications.php.

[8] S. Arora, S. Rao, and U. V. Vazirani. Expander flows,
geometric embeddings and graph partitioning. In
STOC, pages 222–231, 2004.

[9] S. Baswana. Dynamic algorithms for graph spanners.
In ESA, 2006.

[10] A. A. Benczúr and D. R. Karger. Approximating s− t

minimum cuts in Õ(n2) time. In STOC, pages 47–55,
1996.

[11] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the
k-median problem. In STOC, pages 1–10, 1999.

[12] L. Fleischer. Approximating fractional
multicommodity flow independent of the number of
commodities. SIAM J. Discrete Math., 13(4):505–520,
2000.

[13] N. Garg and J. Könemann. Faster and simpler
algorithms for multicommodity flow and other
fractional packing problems. In FOCS, pages 300–309,
1998.

[14] M. X. Goemans and D. P. Williamson. The
primal-dual method for approximation algorithms and
its application to network design problems. pages
144–191, 1997.

[15] A. V. Goldberg and S. Rao. Beyond the flow
decomposition barrier. J. ACM, 45(5):783–797, 1998.

[16] S. Golden. Lower Bounds for the Helmholtz Function.
Physical Review, 137:1127–1128, February 1965.

[17] G. Iyengar, D. J. Phillips, and C. Stein.
Approximation algorithms for semidefinite packing
problems with applications to maxcut and graph
coloring. In IPCO, pages 152–166, 2005.

[18] K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems
using the primal-dual schema and Lagrangian
relaxation. Journal of the ACM, 48(2):274–296, 2001.

[19] R. Khandekar, S. Rao, and U. V. Vazirani. Graph
partitioning using single commodity flows. In STOC,
pages 385–390, 2006.

[20] P. Klein and H.-I. Lu. Efficient approximation
algorithms for semidefinite programs arising from
MAX CUT and COLORING. In STOC, pages
338–347, 1996.

[21] J. R. Lee. On distance scales, embeddings, and
efficient relaxations of the cut cone. In SODA, pages
92–101, 2005.

[22] C. B. Moler and C. F. Van Loan. Nineteen dubious
ways to compute the exponential of a matrix. J. SIAM
Rev., 20(4):801–836, October 1978.

[23] Y. Nesterov and A. Nemirovskii. Interior Point
Polynomial Methods in Convex Programming: Theory
and Applications. SIAM, Philadelphia, 1994.

[24] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast
approximation algorithm for fractional packing and
covering problems. In FOCS, pages 495–504, 1991.

[25] C. J. Thompson. Inequality with applications in
statistical mechanics. Journal of Mathematical
Physics, 6(11):1812–1823, 1965.

[26] K. Tsuda, G. Rätsch, and M. K. Warmuth. Matrix
exponentiated gradient updates for on-line learning
and bregman projection. Journal of Machine Learning
Research, 6:995–1018, 2005.

[27] J. van den Eshof and M. Hochbruck. Preconditioning
lanczos approximations to the matrix exponential.
SIAM J. Sci. Comput., 27(4):1438–1457, 2006.

[28] M. K. Warmuth and D. Kuzmin. Online variance
minimization. In COLT, pages 514–528, 2006.

[29] A. Wigderson and D. Xiao. Derandomizing the
Ahlswede-Winter matrix-valued Chernoff bound using
pessimistic estimators and applications. ECCC
TR06-105.

[30] N. E. Young. Randomized rounding without solving
the linear program. In SODA, pages 170–178, 1995.


