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Abstract
We present VeriStar, a verified theorem prover for a decidable subset
of separation logic. Together with VeriSmall [2], a proved-sound
Smallfoot-style program analysis for C minor, VeriStar demonstrates
that fully machine-checked static analyses equipped with efficient
theorem provers are now within the reach of formal methods. As
a pair, VeriStar and VeriSmall represent the first application of the
Verified Software Toolchain [3], a tightly integrated collection of
machine-verified program logics and compilers giving foundational
correctness guarantees.

VeriStar is (1) purely functional, (2) machine-checked, (3) end-
to-end, (4) efficient and (5) modular. By purely functional, we mean
it is implemented in Gallina, the pure functional programming lan-
guage embedded in the Coq theorem prover. By machine-checked,
we mean it has a proof in Coq that when the prover says “valid”,
the checked entailment holds in a proved-sound separation logic
for C minor. By end-to-end, we mean that when the static analy-
sis+theorem prover says a C minor program is safe, the program
will be compiled to a semantically equivalent assembly program that
runs on real hardware. By efficient, we mean that the prover imple-
ments a state-of-the-art algorithm for deciding heap entailments and
uses highly tuned verified functional data structures. By modular,
we mean that VeriStar can be retrofitted to other static analyses as
a plug-compatible entailment checker and its soundness proof can
easily be ported to other separation logics.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Verification

Keywords Separation Logic, Paramodulation, Theorem Proving

1. Introduction
Can you trust your decision procedure? When your memory analysis
that calls upon this decision procedure returns “safe”, how confident
can you be that your C program won’t dereference a null pointer? If
you’re writing safety- or security-critical code then such questions
are crucial, but often difficult to answer: state-of-the-art theorem
provers are large, intricate programs (Z3, for example, is over 300k
lines of proprietary code [17]). A bug in the decision procedure
might camouflage a bug in your static analysis regime, which may
itself hide a disastrous bug in your safety-critical program.
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To bridge the trust gap, you can instrument the decision pro-
cedure to produce witnesses—as in proof-carrying code (PCC)
[4, 10, 26]—or implement and verify the decision procedure di-
rectly in a proof assistant [5, 11, 32]. Although one might suspect
that separating the prover from the checker is necessary for effi-
ciency, modern proof assistants have advanced to the point that it is
now feasible to implement and verify even sophisticated analyses in
a foundational way.

As evidence of this claim, we present VeriStar, an efficient
machine-verified decision procedure for entailments in separation
logic, the de facto standard for reasoning about shape properties
of heap data. Tools based on separation logic, such as SLAyer [9],
SpaceInvader [14], Infer [13] and Xisa [15], have been successfully
applied to industrial code bases but have lacked foundational certifi-
cation. VeriStar integrates with VeriSmall [2], a machine-checked
symbolic executor, to yield a fully verified shape analysis for sep-
aration logic. When connected to the CompCert certified C com-
piler [22], VeriSmall+VeriStar enables end-to-end automatic verifi-
cation of shape properties all the way from C to x86 or PowerPC
assembly. Because CompCert’s correctness theorem makes a claim
directly about the generated assembly, the user of our system need
trust only the Coq typechecker and CompCert’s model of either x86
or PowerPC assembly.

Contributions. The VeriStar system is:

• Purely functional. We implemented VeriStar in Gallina, the
pure functional language embedded in the interactive theorem
prover Coq. The use of a pure functional implementation lan-
guage gave us both an elegant programming environment and
an attractive proof theory for reasoning about our code.
• Machine-checked. We proved VeriStar sound with a machine-

checked proof in Coq. Soundness means that when the prover
returns “valid”, the entailment checked holds in an separation
logic for C minor [21]. The separation logic is proved sound, in
turn, with respect to C minor’s operational semantics.
• End-to-end. C minor programs verified with VeriStar can be

compiled to (PowerPC or x86) assembly by the semantics-
preserving compiler CompCert. The end-to-end machine-
checked proof ensures the absence of soundness bugs anywhere
along the chain.
• Efficient. VeriStar implements a state-of-the-art decision pro-

cedure based on paramodulation, a variant of resolution (cf.
Navarro Pérez and Rybalchenko [25]), and can be compiled
using Coq’s code extraction utility and the OCaml system to
native code for nearly any architecture. It uses highly tuned veri-
fied functional data structures such as a new implementation of
red-black trees to implement clause sets.
• Modular. Although VeriStar forms the core of the fully verified

static analysis VeriSmall, its modular structure means it can be
retargeted to third-party separation logics and retrofitted to ex-



isting static analysis tools such as Smallfoot [8]. As supporting
evidence, we describe two alternative separation logics (Sec-
tion 4) and demonstrate the integration of our prover into the
original (Berdine et al.) Smallfoot system.

To the best of our knowledge, VeriStar is the first machine-checked
theorem prover for separation logic that connects to a real-world
operational semantics (CompCert C minor). The VeriStar architec-
ture employs a novel abstraction of separation logic, the Separation
Logic Interface, in order to separate the system’s soundness proof
from the details of the separation logic implementation, and thus
increase modularity. More generally, the lessons we learned while
building VeriStar—on the effectiveness of code extraction as an
execution model for verified software, on the power of an elegant
proof theory for reasoning about functional programs, and on the
importance of modular interfaces to proofs—will inform the future
construction of large, verified software toolchains from independent,
machine-checked components.

We have evaluated VeriStar on a suite of separation logic entail-
ments generated by the original Smallfoot tool during symbolic exe-
cution. On these “real-world” entailments, VeriStar’s performance
is comparable to that of Smallfoot’s unverified entailment checker—
both systems are fast enough. On a suite of artificial entailments
designed to simulate the heap inconsistency checks often performed
during symbolic execution, VeriStar actually outperforms Small-
foot on the majority of entailments. On the other hand, VeriStar is
still a small system that lacks features found in more established
theorem provers. The current implementation of VeriStar supports
just four atomic predicates: the points-to predicate of separation
logic describing the singleton heap, a predicate describing acyclic
list segments, a predicate describing empty heaps and an equality
predicate on program variables. This assertion language resembles
Smallfoot’s quite closely but does not yet permit general intermix-
ing of predicates from other theories, as in SMT solvers. Finally,
although VeriStar’s performance is adequate for verification of small
to medium-sized programs, it could be further improved by memo-
izing common terms in the clause database through techniques such
as hash-consing, or by performing multiple inferences at once, as is
done in some state-of-the-art equational theorem provers [23]. None
of these limitations is insurmountable. We foresee few technical
difficulties in adding support for user-defined nonspatial predicates
and spatial predicates for other sorts of data structures such as trees.
Switching to a more efficient term and clause representation will
require straightforward engineering.

2. VeriStar by Example
Figure 1 presents the main components of the VeriStar theorem
prover. To build an intuition for how the pieces fit together, consider
the following (valid) VeriStar entailment

a 6= c ∧ b = d ∧ a 7→ b ∗ lseg(b, c) ∗ lseg(b, d) ` lseg(a, c)

which consists of two assertions separated by a turnstile (`). The
first assertion states that program variable a does not equal c, b
equals d and the heap contains a pointer from a to b and two list
segments with heads b and tails c and d , while the assertion to
the right of the turnstile states that the heap is just the list segment
with head a and tail c. The task of the theorem prover is either to
show that this entailment is valid—that every model of the assertion
on the left is a model of the assertion on the right—or to return a
counterexample in the process.

Most existing theorem provers for separation logic (e.g., Small-
foot [8], SLAyer [9]) attack the entailment problem top-down, by
systematically exploring proof trees rooted at the goal. Each step
of a top-down proof is an entailment-level deduction justified by a
validity-preserving inference rule.

Figure 1: The main components of the VeriStar system, each of
which is defined by a well-specified interface (Module Type) in Coq.
Superpose and HeapResolve form the heart of the heap theorem
prover, performing equational and spatial reasoning respectively.
The ClauseSet module defines the clausal embedding of assertions
as well as the prover’s clause database using a tuned red-black tree
implementation of the Coq MSets interface.

VeriStar, by contrast, is bottom-up and indirect. Instead of
exploring proof trees rooted at the goal, it first decomposes the
negation of the goal (hence indirect) into a logically equivalent
set of clauses (its clausal normal form), then attempts to derive
a contradiction from this set through the application of clausal
inference rules. One can think of the clauses that form this initial
set as a logically equivalent encoding of the original entailment into
its atomic parts.

In particular, a VeriStar clause is a disjunction

(π1 ∨ . . . ∨ πm) ∨ (π′1 ∨ . . . ∨ π′n) ∨ (σ1 ∗ . . . ∗ σr )

of positive pure literals π (by pure we mean those that are heap-
independent), negated pure literals π′ and a spatial atom Σ consist-
ing of the star-conjoined simple spatial atoms σ1 ∗ . . . ∗ σr . The
atom Σ may be negated or may occur positively but not both: we
never require clauses containing two atoms Σ and Σ′ of different
polarities. We write positive spatial clauses (those in which Σ occurs
positively) as Γ → ∆,Σ, where Γ and ∆ are sets of pure atoms
and Σ is a spatial atom, and use analogous notation for pure and
negative spatial clauses. For example, in negative spatial clauses, Σ
appears to the left of the arrow (Γ,Σ→ ∆), and in pure clauses Σ
does not appear at all (Γ → ∆). The empty clause ∅ → ∅ has no
model because on the left, the conjunction of no clauses is True, and
on the right, the disjunction of no clauses is False. Clauses such as
Γ→ a = a,∆ and Γ, a = b → a = b,∆ are tautologies.

To express the negation of the entailment as a set of clauses,
VeriStar passes the entailment to ClauseSet.cnf (Figure 1), which
takes advantage of the fact that it can encode any positive atom
π as the positive unit clause ∅ → π and any negative atom π′ as
the negative unit clause π′ → ∅. It can do the same for negative
and positive spatial atoms. Since the negation of any entailment
F ` G is equivalent, classically, to F ∧¬G , the original entailment
becomes:

a = c → ∅ (1)
∅ → b = d (2)
∅ → a 7→ b ∗ lseg(b, c) ∗ lseg(b, d) (3)

lseg(a, c)→ ∅ (4)

Here the spatial atom lseg(a, c) appears to the left of the arrow
in clause (4) since it appears in the right-hand side of the original
entailment. Likewise, the spatial atom a 7→ b∗lseg(b, c)∗lseg(b, d)



(a) Integration into the Verified Software Toolchain,
yielding an end-to-end soundness proof

(b) Compilation toolchain

Figure 2: VeriStar’s soundness proof (2a) and compilation toolchain (2b). Trusted components (dashed in red) are those that must be understood
by the user to have confidence in the system. Verified components (solid in blue) have machine-checked correctness proofs. Cminor opsem and
x86, PowerPC opsem are axiomatic definitions of the Cminor language and CompCert target languages respectively. When connected to the
Verified Software Toolchain (2a), machine-checked proofs from VeriSmall/VeriStar through CompCert to assembly provide a foundational
correctness guarantee with respect to the operational semantics of CompCert’s target languages, x86 and PowerPC assembly. The modular
construction of the soundness proof through the Separation Logic Interface facilitates retargeting VeriStar to third-party separation logics.
VeriSmall is proved directly with respect to the C minor separation logic, and therefore is slightly less portable. In Figure 2b, we use Coq’s
extraction mechanism and the OCaml system to compile VeriStar to an executable application.

appears to the right of the arrow in clause (3) since it appears in the
left-hand side of the original entailment.

After encoding the entailment as a set of clauses, VeriStar enters
its main loop (VeriStar.main loop in Figure 1). First, it filters the
pure clauses from the initial clauseset (clauses (1) and (2) above),
then passes these clauses to Superpose.check pures, the pure
prover. Superpose attempts to derive a contradiction from the pure
clauses by equational reasoning. In this case, however, Superpose is
unable to derive a contradiction, or indeed, any new clauses at all
from the set, so it constructs a model of the pure clauses by setting
b equal to d (completeness of the superposition calculus guarantees
that this model exists) and passes the model, along with the current
clauseset, to HeapResolve for spatial normalization and unfolding.

HeapResolve uses the fact that b equals d in the model as a hint
to normalize the spatial clauses (3) and (4) by clause (2), resulting
in the new spatial clause

∅ → a 7→ d ∗ lseg(d , c) ∗ lseg(d , d) (5)

in which b has been rewritten to d and therefore no longer appears.
But now the spatial prover recognizes that since list segments are
acyclic, lseg(d , d) can hold only if it denotes the empty heap. Thus
lseg(d , d) can be simplified to emp, resulting in the new clause

∅ → a 7→ d ∗ lseg(d , c). (6)

This new clause can almost be resolved against clause (4)
using spatial resolution—an inference rule allowing negative and
positive occurrences of spatial atoms in two different clauses to be
eliminated—but only if clause (4) is unfolded to accommodate
the next atom a 7→ d in clause (6). Unfolding lseg(a, c) to
a 7→ d ∗ lseg(d , c) is sound, in turn, only when lseg(a, c) is
nonempty, i.e., when a 6= c. To encode this fact, HeapResolve
generates the new clause

a 7→ d ∗ lseg(d , c)→ a = c. (7)

Clause (7) can then be resolved with clause (6) to produce the
positive unit clause

∅ → a = c. (8)

Superpose now resolves clause (8) with clause (1) to derive the
empty clause ∅ → ∅, which is unsatisfiable. Since the inference
rules of the HeapResolve and Superpose systems preserve all
models, the original set of clauses encoding the negation of the
entailment VeriStar set out to prove is unsatisfiable; the entailment
must therefore be valid.

2.1 Overview of the Rest of the Paper
In the next section, we introduce VeriStar in the context of the Veri-
fied Software Toolchain [3], a series of tightly integrated machine-
verified components that connect end-to-end to yield foundational
correctness guarantees. We also describe VeriStar’s execution model.
Sections 4 and 5 give the technical details of our model of separa-
tion logic and the VeriStar implementation and its soundness proof
in Coq. Section 7 makes a case for machine-checked proofs, with
examples from this case study. Section 8 describes our experience
optimizing VeriStar. In Section 9, we evaluate the relative sizes in
lines-of-code of the components of the prover and measure Veri-
Star’s performance on a suite of benchmarks.

3. The Verified Software Toolchain
The Verified Software Toolchain [3] connects machine-checked
program analyses to machine-checked program logics; the logics are
connected to machine-checked compilers such as Leroy’s CompCert,
giving an end-to-end result.

Figure 2a puts VeriSmall and VeriStar in the context of the
current instantiation of the Verified Software Toolchain: VeriStar is
proved sound with respect to an abstract axiomatization of separation
logic, the Separation Logic Interface (Section 4.2). VeriSmall is



proved sound directly with respect to the C minor separation logic.
Of course, VeriSmall’s soundness proof must rely on that of VeriStar
since VeriSmall frequently calls the prover to decide entailments
during symbolic execution.

We instantiate the Separation Logic Interface with Hobor et
al.’s separation logic for C minor [21], which has a machine-
checked soundness proof in Coq with respect to CompCert C
minor’s operational semantics. Because CompCert preserves the
semantics of safe C minor programs, properties proved at the source
level using VeriSmall/VeriStar will hold of the generated assembly.
Furthermore, although the operational semantics of C minor and
those of CompCert’s intermediate languages play a role in the end-
to-end proof, only the operational semantics of the target languages,
PowerPC and x86 assembly, must be trusted since the compiler’s
correctness theorem makes a claim directly about the behavior of
the target program.

3.1 Execution via Extraction
We use Coq’s extraction utility to generate OCaml code (veristar.ml,
Figure 2b) for VeriStar. A small, trusted translation from Smallfoot-
style entailments to VeriStar entailments (driver.ml) allows our mod-
ified Smallfoot to call VeriStar.check entailment as a subroutine,
thus replacing Smallfoot’s standard entailment checker with a for-
mally verified one and reducing the size of Smallfoot’s trusted com-
puting base by approximately 20% (modulo correctness of the Coq
typechecker1). When connected to the machine-checked static anal-
ysis VeriSmall, VeriStar’s trusted computing base is even smaller:
just the Coq typechecker and CompCert’s specifications of either
PowerPC or x86 assembly.

4. Separation Logic Semantics
To ensure VeriStar can be retargeted to separation logics for a variety
of languages and compiler frameworks, we proved the system sound
with respect to an abstract model of separation logic. We first defined
a generic Separation Logic Interface (Section 4.2) specifying the
operators of separation logic on which the proof depends. We then
constructed an abstract model of separation logic generically for
any concrete implementation satisfying the interface (Section 4.3).
We have instantiated the interface with two such implementations,
Hobor et al.’s Separation Logic for C minor [21] (Appendix C) and
a bare-bones implementation (Appendix B), but expect the interface,
and hence VeriStar’s soundness proof, to be general enough to be
widely applicable.

4.1 The Assertion Language
Atomic assertions in VeriStar (Figure 3) denote equalities and
inequalities of program variables, singleton heaps and acyclic list
segments. The assertion emp denotes the empty heap. The assertion
a 7→ b (Next a b in VeriStar syntax) denotes the heap containing
just the value of variable b at the location given by a (and is empty
everywhere else), while Lseg a b denotes the heap containing the
acyclic list segment with head pointer a and tail pointer b. Equalities
and inequalities of variables are pure assertions because they make
no reference to the heap, whereas a 7→ b and Lseg are spatial
assertions.

A complex assertion Π ∧ Σ is the conjunction of the pure atoms
Π with the separating conjunction of the spatial atoms Σ. The
separating conjunction σ1 ∗ σ2 (also called star) of two assertions—
a notion from separation logic—is satisfied by any heap splittable
into two disjoint subheaps satisfying σ1 and σ2, respectively. The
assertion Π ∧ Σ is satisfied by any environment e and heap h such

1 and the Coq program-extractor, and the OCaml compiler that compiles both
veristar.ml and driver.ml, and the C compiler that compiles OCaml’s runtime
system... For a discussion of these issues, see [3, Section 11].

Expressions a , b
Nil null pointer
Var x Program variable

Pure Atoms π (pn atom)
Equ a b Expression a equals b.
Nequ a b Expression a does not equal b.

Spatial Atoms σ (space atom)
emp Empty heap
Next a b Singleton heap with a 7→ b
Lseg a b Acyclic list segment from a to b

Assertions F , G
Assertion Π Σ Pairs of pure atoms Π and spatial

atoms Σ
Entailments ent

Entailment F G Assertion F implies G .

Figure 3: VeriStar syntax

that e satisfies all the assertions in Π and the pair (e, h) satisfies the
separating conjunction of the assertions in Σ. Entailments F ` G
are valid whenever all the models satisfying F also satisfy G , i.e.:
∀(e, h). F (e, h)→ G(e, h).

4.2 The Interface
We present a selection of the components of the Separation Logic In-
terface in Listing 1. The interface axiomatizes the types of locations
loc and values val; the special values nil val, corresponding to the
null pointer, and empty val, corresponding to undefined (i.e., not
in the domain of a given heap); an injection val2loc from values to
locations; the types of variable environments env and heaps (heap)
and a points-to operator on heaps (rawnext).

We assume a separation algebra [19] on values (Sep alg val),
meaning that in addition to the operators on values specified in the
interface (e.g., val2loc) we may use the join operator, written ⊕, to
describe the union of two disjoint values. In simple separation logics,
v1 ⊕ v2 is defined only when either v1 or v2 is the empty val (that
is, two nonunit values are never disjoint). However, a more refined
separation algebra on values, say with shares denoting read and
write permissions, is often useful in concurrent separation logic. Our
interface and the soundness proof are indifferent to the separation
algebra actually used.

The parameter heap gives the type of program memories. As
with val, we require a separation algebra on heaps. We also require
two operators on heaps, rawnext, a low-level version of the 7→
predicate of separation logic, and emp at (l :loc) (h:heap), which
defines when a heap h is empty at a location l . The behavior of these
operators is defined by a series of axioms. For example, the axiom
rawnext out asserts that the heap rawnext l v is empty everywhere
except at location l (i.e., it is a singleton heap). The constructor
mk heap rawnext allows one to construct new singleton heaps. In
the definition of mk heap rawnext, comparable h h ′ means that
h and h ′ share the same unit in our multi-unit separation algebras
(thus they are comparable).2 The assertion rawnext′ l v extends
rawnext l v to any heap that contains l 7→ v as a subheap. The
behavior of rawnext′ is given by a series of axioms not shown in
Listing 1 but given in the code.

4.3 The Abstract Model
We defined our abstract separation logic model with respect to the
opaque interface of Listing 1. In our Coq implementation, this model
is literally a functor over modules satisfying the interface: we make

2 Dockins et al. [19] describes why multi-unit separation algebras are
preferable to standard, single-unit ones.



Module Type VERISTAR LOGIC.
(∗Locations and values∗)
Parameters loc val : Type.
Declare Instance Sep val : Sep alg val.
Parameter val2loc : val → option loc.
Parameter nil val : val.
Parameter empty val : val.

(∗Environments∗)
Parameter env : Type.
Parameter env get : env → var → val.
Parameter env set : var → val → env → env.
Axiom gss env : ∀(x : var) (v :val) (e:env),
env get (env set x v e) x = v .

Axiom gso env : ∀(x y : var) (v :val) (e:env),
x 6= y → env get (env set x v e) y = env get e y .

Parameter empty env : env.

(∗Heaps∗)
Parameter heap : Type.
Declare Instance Sep heap: Sep alg heap.
Parameter rawnext : ∀(x :loc) (y :val) (e:heap), Prop.
Parameter emp at : ∀(l :loc) (h:heap), Prop.
Definition nil or loc (v :val) :=

v=nil val ∨ ∃l :loc, val2loc v = Some l .
Axiom mk heap rawnext : ∀h x0 x y ,
val2loc x0 = Some x → nil or loc y →
∃h ′, rawnext x y h ′ ∧ comparable h h ′.

Axiom rawnext out : ∀x x0 x ′ y h,
rawnext x y h → val2loc x0 = Some x ′ →
x ′ 6= x → emp at x ′ h.

Definition rawnext’ x y h :=
∃h0, join sub h0 h ∧ rawnext x y h0.

(∗Further parameters and axioms are elided.∗)
End VERISTAR LOGIC.

Listing 1: Selected values, operators and their properties from the
Separation Logic Interface. The abstract types val, loc, var, env and
heap are interface parameters.

no assumptions in the proof about the underlying module beyond
those defined in the interface, thus increasing portability.

States are pairs of environments e and heaps h .

Inductive state := State: ∀(e:env) (h:heap), state.

The Coq keyword Inductive declares a new inductively defined
datatype with, in this case, a single constructor named State. State
takes as parameters an environment e and a heap h . In more
conventional ML-like notation, this type is equivalent to the product
type State of (env ∗ heap). Predicates on states, called spreds, are
functions from states to Prop.

Notation spred := (state → Prop).

One can think of Prop as the type of truth values True and False,
analogous to bool, except that predicates in Prop need not be
decidable and are erased during program extraction. Thus, we
use Prop in our proofs, but bool in the verified code. A Coq
Notation simply defines syntactic sugar. The interpretations of
expressions (expr denote), expression equality (expr eq) and pure
atoms (pn atom denote) are standard.

List segments lseg are defined by an inductive type with two
constructors.

Inductive lseg : val → val → heap → Prop :=
| lseg nil : ∀x h, emp h → nil or loc x → lseg x x h
| lseg cons : ∀x y z l h0 h1 h,

x 6= y → val2loc x = Some l → rawnext l z h0 →
lseg z y h1 → join h0 h1 h → lseg x y h.

The lseg nil constructor forms the trivial list segment whose head
and tail pointers are equal and whose heap is emp. The lseg cons
constructor builds a list segment inductively when x does not equal
y , x is injected to a location l such that l 7→ z , and there is a sub-list
segment from z to y .

The function space atom denote maps syntactic spatial as-
sertions such as Lseg x y to their semantic counterparts (i.e.,
lseg x y).

Definition space atom denote (a: space atom) : spred :=
match a with Next x y ⇒ fun s ⇒

match val2loc (expr denote x s) with
| None ⇒ False
| Some l ⇒

rawnext l (expr denote y s) (hp s) ∧
nil or loc (expr denote y s)

end
| Lseg x y ⇒ fun s ⇒

lseg (expr denote x s) (expr denote y s) (hp s)
end.

For Next x y assertions, it injects the value of the variable x to a
location l and requires that the heap contain just the location l with
value v (that is, the heap must be the singleton l 7→ v ), where v
is the interpretation of variable y . Coq’s match syntax does case
analysis on an inductively defined value (here the space atom a),
defining a distinct result value for each constructor.

An Assertion Π Σ is the conjunction of the pure atoms π ∈ Π
with the separating conjunction of the spatial atoms σ ∈ Σ.

Definition assertion denote (f :assertion) : spred :=
match f with Assertion Π Σ ⇒

fold pn atom denote andp (space denote Σ) Π
end.

The function space denote interprets the list of spatial atoms Σ as
the fold of space atom denote over the list, with unit emp. Thus
(space denote Σ) is equivalent to(

∗
⊙

σ∈Σspace atom denote(σ)
)
∗ emp

(where ∗
⊙

is iterated separating conjunction) and the denotation of
Assertion Π Σ is∧
π∈Π

pn atom denote(π) ∧
(
∗
⊙

σ∈Σspace atom denote(σ)
)

if one simplifies P ∗ emp to P (recognizing that emp is the unit
for ∗). Here space denote Σ is the unit of the fold. Entailments
from F to G are interpreted as the semantic entailment of the two
assertions.

5. The VeriStar Algorithm
A key strength of the Navarro Pérez and Rybalchenko algorithm
is that it splits the theorem prover into two modular components:
the equational theorem prover for pure clauses (Superpose) and the
spatial reasoning system HeapResolve, which calls Superpose as
a subroutine in between rounds of spatial inference. This modular
structure means well-studied techniques from equational theorem
proving can be applied to the equational prover in isolation, while
improving the performance of the heap theorem prover as a whole.



1 Function main loop
2 (n: positive ) (Σ: list space atom) (ncl : clause) (S : M.t)
3 {measure nat of P n} :=
4 if Coqlib. peq n 1 then Aborted (M.elements S) else
5 match Superpose.check pures S with
6 | (Superpose.Valid, units, , ) ⇒ Valid
7 | (Superpose.C example R sel , units, S∗, ) ⇒
8 let Σ′ := simplify atoms units Σ in
9 let ncl ′ := simplify units ncl in

10 let c := norm sel (PosSpaceClause nil nil Σ′) R in
11 let S1 := incorp (do wellformed c) S∗ in
12 if isEq (M.compare S1 S∗)
13 then if is model of Π (List.rev R) ncl ′

14 then let c′ := norm sel ncl ′ in
15 let us := pures (unfolding c c′) in
16 let S2 := incorp us S1 in
17 if isEq (M.compare S1 S2) then C example R
18 else main loop (Ppred n) Σ′ ncl ′ S2 c
19 else C example R
20 else main loop (Ppred n) Σ′ ncl ′ S1 c
21 | (Superpose.Aborted l , units, , ) ⇒ Aborted l
22 end.
23 Proof.
24 (∗Termination proof here, that n decreases∗)
25 Defined.
26
27 Definition check entailment (ent : entailment) :=
28 let S := pure clauses (map order eqv clause (cnf ent)) in
29 match ent with
30 | Entailment (Assertion Π Σ) (Assertion Π′ Σ′) ⇒
31 match mk pureR Π, mk pureR Π′ with
32 | (Π+, Π−), (Π

′
+, Π′−) ⇒

33 main loop m Σ (NegSpaceClause Π′+ Σ′ Π′−)
34 (clause list2set S)
35 end
36 end.

Listing 2: The main VeriStar procedures

In this section, we describe our verified implementation of the
algorithm of Navarro Pérez and Rybalchenko and give an outline of
its soundness proof in Coq.

5.1 Overview of the Algorithm
Listing 2 defines the main procedures of the VeriStar system, in
slightly simplified form (we have commented out the termination
proof for main loop, line 24). The first step is to encode the
entailment, ent , as a set of clauses (its clausal normal form,
line 28). The algorithm then enters its main loop, first calling
Superpose.check pures (line 5) on the current set of pure clauses
S , a subset of the clauses that encode ent , and checking whether
the equational prover was able to derive the empty clause from
this set. If it was, the algorithm terminates with Valid (line 6).
Otherwise, Superpose returns with a model R of the set of pure
clauses (line 7) and a list of unit clauses units derived during
superposition inference (also line 7). VeriStar first rewrites the
spatial atoms Σ and spatial clause ncl by units (lines 8-9), then
normalizes the rewritten positive spatial atom Σ′ using the model R
(line 10). It then adds any new pure clauses implied by the spatial
wellformedness rules to the pure set (line 11). This process repeats
until it converges on a fixed point (or the prover aborts abnormally;
see Section 7 for details). Once a fixed point is reached, more

normalization of spatial atoms is performed (line 14), and unfolding
of lsegs is attempted (line 15), possibly generating new pure clauses
to feed back into the loop. If no new pure clauses are generated
during this process, the algorithm terminates with a counterexample.

5.2 HeapResolve for Spatial Reasoning
VeriStar divides spatial reasoning (lines 10-15 in Figure 2) into
four major stages: normalization of spatial atoms, wellformedness
inference, unfolding of list predicates and spatial resolution.

Normalization rules perform substitutions into spatial atoms
based on pure facts inferred by the superposition system, as well as
eliminate obviously redundant list segments of the form lseg(x , x ).

Wellformedness rules generate new pure clauses from malformed
spatial atoms. Consider, for example, the clause

Γ→ ∆, lseg(x , y) ∗ lseg(x , z )

which asserts that Γ implies the disjunction of ∆ and the spatial
formula lseg(x , y) ∗ lseg(x , z ). Since the separating conjunction
in the spatial part requires that the two list segments be located in
disjoint subheaps, we know that the list segments cannot both start at
location x unless one of the list segments is empty. However, we do
not know which one is empty.3 To formalize this line of reasoning,
VeriStar generates the clause

Γ→ x = y , x = z ,∆

whenever it sees a clause with two list segments of the form given
above. This new clause states that Γ implies either ∆ (the positive
pure atoms from the original clause) or x = y ∨ x = z . The other
wellformedness rules allow VeriStar to learn entirely pure facts from
spatial facts in much the same way.

The spatial unfolding rules formalize the notion that nonempty
list segments can be unfolded into their constituent parts: a points-to
fact and a sub-list segment, or in some cases, two sub-list segments.
List segments should not be unfolded ad infinitum, however—it
would be sound to do so, but our algorithm would infinite-loop.
Instead, VeriStar performs unfolding only when certain other spatial
facts are present in the clause database. These hints or triggers for
rule application are key to making the proof procedure tractable.

As an example, consider Navarro Pérez and Rybalchenko’s
inference rule U3

Γ→ ∆, lseg(x , y) ∗ Σ Γ′, lseg(x , nil) ∗ Σ′ → ∆′

Γ′, lseg(x , y) ∗ lseg(y , nil) ∗ Σ′ → ∆′

which states that list segments lseg(x , nil) in negative positions
should be unfolded to lseg(x , y) ∗ lseg(y , nil), but only when
there is a positive spatial clause somewhere in the clause database
that mentions lseg(x , y). In this rule, the left-hand side clause
Γ→ ∆, lseg(x , y) ∗ Σ is unnecessary for soundness but necessary
operationally for limiting when the rule is applied.

Our Coq implementation of this rule follows the declarative
version rather closely.

Definition unfolding3 (sc1 sc2:clause) :=
match sc1, sc2 with
| PosSpaceClause Γ ∆ Σ, NegSpaceClause Γ′ Σ′ ∆′ ⇒

let l0 := unfolding3’ nil Σ Σ′ in
let build clause Σ0 := NegSpaceClause Γ′ Σ0 ∆′ in
map build clause l0

| , ⇒ nil
end.

Here unfolding3’ is an auxiliary function that searches for and
unfolds list segments from variable x to Nil in Σ′ with counterpart
lists of the appropriate form in Σ.

3 The spooky disjunction of Berdine et al. [8].



Finally, VeriStar performs spatial resolution of spatial atoms that
appear both negatively and positively in two different clauses.

Γ,Σ→ ∆ Γ′ → ∆′,Σ

Γ,Γ′ → ∆,∆′

Like the wellformedness rules, spatial resolution makes it possible
to infer new pure facts from clauses with spatial atoms, in the
special case in which Σ occurs both positively and negatively in two
different clauses.

5.3 Superposition of Pure Clauses
In this section, we briefly describe our implementation of Bachmair
and Ganzinger’s System S [6], the superposition calculus with
selection. We chose System S because it is a well-studied equational
calculus that appears to perform well in practice but there are others
(see, for instance, Nieuwenhuis and Rubio’s System I [31]). System
S operates by repeatedly applying inference rules of the form

Γ→ x = y ,∆ Γ′ → x = z ,∆′

Γ,Γ′ → y = z ,∆,∆′
PS

to sets of clauses. The rule PS (positive superposition) implements
the clausal form of replacement of equals with equals (i.e., substitu-
tion) in positive positions. System S includes rules for substitution
in negative positions and equality factoring as well.

The main superposition procedure, check pures, operates inter-
nally on two sets of clauses, the given set and the unselected set. The
given set contains those clauses that were chosen to participate in
superposition inference at least once in the past. The unselected set
contains whichever clauses are left. At the beginning of the search,
all clauses are in the unselected set and the given set is empty. At
each step of the superposition procedure, a new clause is chosen
from the unselected set (the given clause). This clause may be cho-
sen uniformly, but we instead apply a simple heuristic that greatly
improves the search: choosing the smallest clause first. Intuitively,
this optimization is profitable because it favors the generation of
small clauses over large ones, and the ultimate goal of the search
is to produce the empty clause. Once the given clause has been
chosen, we simplify it with respect to the current clauses in the
given set, then perform all superposition inferences possible for c,
the resulting simplified clause, and the given set extended with c.
Simplification essentially rewrites the given clause by all the unit
equalities in the given set. Any new clauses inferred in this process
are added back to the unselected set and the process is repeated until
either the empty clause is derived or a fixed point is reached.

6. Soundness End-to-end
One would hope that the modular structure of the prover lends itself
to a modular soundness proof: that is, each component of the prover
is shown sound in isolation and these verified modules are stitched
together to prove the soundness of the entire system end-to-end. Of
course, for this strategy to work the functionality and correctness of
each component must be guarded by a narrow interface via a module
type. Otherwise, maintenance to the prover and its soundness proof
becomes overwhelming.

We employed exactly this strategy while proving the soundness
of VeriStar and found that it greatly simplified the initial construc-
tion of the soundness proof and the rounds of optimizations we
performed thereafter, each of which required changes both to the
prover and to its soundness proof. To facilitate a modular structure,
we divided the prover into the following major components:

• Clausal normal form encoding of entailments;
• Superposition;
• Spatial normalization;

• Spatial wellformedness inference rules;
• Spatial unfolding rules; and
• Model generation and selection of clauses for normalization.

Each of these components was then proved sound with respect to a
minimal interface.

As an example of one such interface, the main soundness theorem
for the clausal normal form encoding states that the negation of the
clausal normal form of an entailment is equivalent to the original
entailment before it was encoded as a clauseset.

Theorem cnf correct: ∀(e:entailment),
entailment denote e ↔
∀(s:state), ¬(fold clause denote andp TT (cnf e) s).

Here the notation fold f andp TT l s means
∧

x∈l(f x s). TT is
the always true predicate. The function clause denote defines our
interpretation of clauses, i.e., disjunctions of pure and spatial atoms.
Theorem cnf correct is the only theorem about the clausal normal
form encoding that we expose to the rest of the soundness proof,
thus limiting the exposure of the rest of the proof to isolated updates
to the cnf component.

Likewise, the main soundness theorem for the superposition
system states that if Superpose.check pures was able to derive the
empty clause from a set of clauses init , then the conjunction of the
clauses in init entails the empty clause.

Theorem check pures Valid sound: ∀init units g u,
check pures init = (Valid, units, g , u) →
fold clause denote andp TT (M.elements init)
` clause denote empty clause.

We need an additional theorem for Superpose, however, since the
pure prover may return C example for some clausesets, in addition
to those for which it returns Valid. In the counterexample case,
VeriStar constructs a model for the pure clauses, then uses this
model to normalize spatial ones. Any clauses inferred by the pure
prover while it was searching for the empty clause must therefore
be entailed by the initial set of clauses.

Theorem check pures Cexample sound:
∀init units final empty R sel ,
check pures init =(C exampleR sel , units,final , empty) →
fold clause denote andp TT (M.elements init)
` fold clause denote andp TT (M.elements sel) &&

fold clause denote andp TT (M.elements final) &&
fold clause denote andp TT units.

To prove the soundness of VeriStar.check entailment, the main
function exported by the prover (Listing 2), we made each of the
components described above a functor over our abstract sepa-
ration logic model, VERISTAR MODEL. As we described in
Section 4.3, our abstract model is itself a functor over mod-
ules satisfying the VERISTAR LOGIC interface of Listing 1.
VERISTAR MODEL—and by extension, our soundness proof—is
therefore entirely parametric in the low-level details of the target
separation logic implementation (e.g., the definition of the maps-to
operator).

In the main soundness proof for VeriStar.check entailment,
we imported the soundness proof for each component, instantiated
each of the functors by Vsm:VERISTAR MODEL, then composed
the soundness theorems exported by each component to prove the
main correctness theorem, check entailment sound.

Module VeriStarSound (Vsm:VERISTAR MODEL).
Module SPS := SP Sound Vsm. (∗Superposition∗)
Module NS := Norm Sound Vsm. (∗Normalization∗)
...



Module WFS := WF Sound Vsm. (∗Wellformedness∗)
Module UFS := UF Sound Vsm. (∗Unfolding∗)

Theorem check entailment sound: ∀(ent :entailment),
VeriStar . check entailment ent = Valid →
entailment denote ent .

End VeriStarSound.

check entailment sound states that if the prover returns Valid,
the original entailment is semantically valid in the Vsm model.
Because of VeriStar’s modular design, the proof of this theorem
goes by a straightforward application of the soundness lemmas for
each of the subcomponents.

6.1 Specialization to C minor
To target the soundness proof to C minor, we built an implementation
of the VERISTAR LOGIC interface for C minor addresses, values,
local variable environments and heaps (CminLog). We instantiated
our abstract separation logic by this module

ModuleCmm:VERISTAR MODEL:=VeriStarModel CminLog.

then applied VeriStarSound to Cmm,

Module Vss : VERISTAR SOUND := VeriStarSound Cmm.

yielding an end-to-end proof. Here the module CminLog defines
the operators and predicates on environments and heaps (env get,
env set, rawnext, etc.) required by our soundness proof, and proves
all of the required properties for these operators and predicates.

The main soundness theorem for the VeriSmall static analyzer,
check sound,

Theorem check sound : ∀Γ P c Q ,
check0 P c Q = true →
semax Γ (assertion2wpred P) (erase stmt c)

(RET1 (assertion2wpred Q)).

relies on Vss to prove that calls made to VeriStar during symbolic
execution are valid. The theorem states that when VeriSmall suc-
cessfully checks a Hoare triple (check0 P c Q = true), the triple
is sound in our axiomatic semantics for C minor (semax).4 The
axiomatic semantics, in turn, has a machine-verified correctness
proof with respect to the operational semantics of CompCert C mi-
nor. Thus we achieve an end-to-end correctness guarantee: C minor
programs deemed safe by the static analyzer will be compiled by
CompCert to observationally equivalent assembly programs.

7. Why bother with machine-checked proofs?
It takes some effort to encode an algorithm in a proof assistant like
Coq and then prove it correct with a machine-checked proof. One
might wonder whether all this effort is really worth it. That is, do we
gain anything—over LATEXproofs and unverified implementations—
by formally proving an implementation of an algorithm correct?

Soundness. In this case study, we can concretely say “yes”. For-
mal verification of VeriStar uncovered two related soundness bugs
in Navarro Pérez and Rybalchenko’s spatial unfolding rules (specifi-
cally, rules U4 and U5 in [25, Section 4, Fig. 1]).

It appears likely that because of the interaction of rules U4 and
U5 with the spatial resolution rule, these bugs did not result in
unsoundness of Navarro’s implemented system. However, we have
been unable to verify that this is the case since we lack access to
the source code (and, of course, the absence of such bugs cannot be

4 Since VeriSmall and VeriStar operate on syntax, we must lift the syntactic
assertions P and Q to semantic assertions operating on worlds of the
program logic (assertion2wpred).

confirmed even by extensive testing). We have verified the soundness
of corrected forms of U4 and U5, discovered independently by us
and Navarro Pérez and Rybalchenko. We present the corrected rules
here.

U4′

Γ→ ∆, lseg(x , y) ∗ next(z ,w) ∗ Σ
Γ′, lseg(x , z ) ∗ Σ′ → ∆′

Γ,Γ′, lseg(x , y) ∗ lseg(y , z ) ∗ Σ′ → ∆,∆′
y 6≡ z

U5′

Γ→ ∆, lseg(x , y) ∗ lseg(z ,w) ∗ Σ
Γ′, lseg(x , z ) ∗ Σ′ → ∆′

Γ,Γ′, lseg(x , y) ∗ lseg(y , z ) ∗ Σ′ → z = w ,∆,∆′
y 6≡ z

The new U4 and U5 rules required adding Γ and ∆ to the conclu-
sion of each rule so that the succedent of the first hypothetical clause
(∆, lseg(x , y) ∗ next(z ,w) ∗Σ and ∆, lseg(x , y) ∗ lseg(z ,w) ∗Σ
resp. in U4 and U5) could be made to hold in the model. By ensuring
that next(z ,w) (resp. lseg(z ,w)) be disjoint from lseg(x , y), we
avoid the counterexample we found for the original system (without
Γ,∆) in which lseg(x , z ) does not hold because z points back into
lseg(x , y) (lists must be acyclic). Appendix A presents this coun-
terexample, which has been confirmed by the authors of [25] in an
email exchange, in more detail.

This modification to rules U4 and U5 was not obvious to us
initially, before we attempted to verify the rules, since in the other
unfolding rules in Navarro Pérez and Rybalchenko’s system, the first
hypothetical clause acts only as an operational trigger for unfolding
and is never necessary for soundness.

Termination. All Coq functions are total, so a computable func-
tion implemented in Coq must terminate. One convinces the Coq
system that a function terminates either by presenting a structurally
recursive function (using Coq’s Fixpoint notation) in which all
recursive calls are clearly on substructures of the corresponding
formal parameter; or by presenting a general function (using Coq’s
Function notation) along with a proof that one of the arguments
decreases in some well-founded order.

Navarro Pérez and Rybalchenko state their termination proof
as follows: “[T]he algorithm terminates since the growing set S is
bounded by ... the finite number of distinct pure clauses which can
be written with the constant symbols occurring in E .” Unfortunately
this proof has some weaknesses. In real implementations, including
Navarro’s and including our own, the set S does not grow mono-
tonically, because optimizations are implemented to rewrite by unit
equalities and remove redundant clauses. What does seem to grow
is the closure of S under the addition of certain kinds of redundant
clauses, but the proof of this is not at all straightforward.

We have implemented a machine-checked termination proof
of the superpose loop. Termination of check entailment is much
trickier and we have not yet implemented that proof. Instead we
resort to a common hack: we provide VeriStar’s main loop with an
additional numeric argument, and after a set number of iterations
it times out. As usual when this hack is applied, it does not
compromise the soundness proof: time-out does not return a result
that demands soundness. Then we pass a time-out parameter that is
sufficiently large for all conceivable applications. Still, even though
we have not implemented a proof, we believe the algorithm does
terminate, i.e. on any input, given a large enough n , it will not time
out.

Completeness. Navarro Pérez and Rybalchenko [25] also proved
completeness: when the algorithm returns counterexample, the orig-
inal entailment is invalid. We have not yet done so for our Coq
implementation of their algorithm. For many applications of verified
software, completeness is not quite as important as soundness—an
attacker could exploit a soundness bug in the verification toolset,
but not a completeness bug. Nevertheless, to formally prove com-



optimization speedup program proof ratio
clausesets 1.21x 305 4,213 13.8x
priority heuristic 3.43 35 50 1.43
priority caching 1.26 66 113 1.71
int31 1.39 180 471 2.62
set ops 1.04 183 326 1.78
redundancy elim. 1.40 47 45 0.96
model-based saturation 2.09 338 732 2.17
total: 22.1 1,154 5,950 5.16

Figure 4: Geomean speedups across a suite of 9,000 random separation logic entailments for the last six optimizations we performed. Columns
program and proof show how many lines of code were modified to implement the improvement; ratio is proof/program.

pleteness of our implementation would confirm that we have imple-
mented the right algorithm.

8. Performance Tuning Verified Software
There is no secret to writing efficient programs [7]: (1) Take a
baseline; (2) optimize; (3) evaluate the results; and (4) repeat. It
is perhaps no surprise that the same methodology can be applied
to verified software in much the same way, except now we are
working with machine-verified software and must update soundness
and termination proofs as we perform each optimization.

In this section, we report on some optimizations we performed
while building VeriStar and measure (1) the speedup achieved by
each optimization (second column of the table in Figure 4), and (2)
the number of lines of code we modified—in both the program and
the proof—to implement each optimization (last three columns of
Figure 4). The total speedup for all optimizations was 22.1x .

We report on these optimizations to show that verified software
written in Coq is real software: when extracted and compiled with
the OCaml system, it runs on real hardware, subject to the same
performance constraints as all software. The corollary is that verified
functional programs can be performance-tuned in predictable ways.

Clausesets. We replaced Coq’s standard-library AVL-tree imple-
mentation of the MSets interface for efficient finite sets, with a new
red-black tree implementation. (We use MSets to store the clause
database.) This new implementation included optimized routines
for set insertion, lookup, and union; and we expanded the MSets
interface with optimized versions of composite operations such as
with minimum-element deletion and insertion-with-membership-
query. This resulted in a relative speedup over our baseline VeriStar
implementation of 1.21x.

Priority Heuristic. The superpose one inference step picks a
clause from the clauseset; any new clause will do (for soundness
and completeness). An optimization is to pick the smallest new
clause (see Section 5.3). This priority heuristic greatly winnows the
size of the search space. We use the MSets not only to implement
clause sets, but to simultaneously implement an efficient priority
queue: the total ordering we supply for the red-black searchtree is
a lexicographic ordering of clause priority and then clause content.
We then use our efficient delete-min operation to pluck the smallest
clause from the set in log N time. This heuristic gives speedup of
3.43x , compared to selecting an arbitrary new clause.

Priority Caching. Caching the priorities, as integers with the
clauses, yields speedup of 1.26x .

OCaml Native Integers. Our initial implementation used Coq
standard-library positive integers to represent variables and priorities.
It is a data structure representing arbitrary precision binary numbers,
so 101001 is xI(xO(xO(xI(xO(xI xH))))) in the datatype,

Inductive positive :=
| xI : positive → positive
| xO : positive → positive | xH : positive.

To make things faster, we now use OCaml native 31-bit integers for
variables and priorities, yielding speedup of 1.39x.

When extracting to 31-bit OCaml integers, we had to be very
careful about overflow. Coq positives are potentially unbounded
(thus no overflow), whereas OCaml integers have mod-231 addition.
However, VeriStar never performs addition or multiplication of
variables, and never generates new variables.5 VeriStar does some
arithmetic on priorities, but the soundness and completeness proofs
are oblivious to the specific priority function used, so our algorithm
is still correct even if priorities happen to overflow. To ensure that
our machine-checked soundness proof cannot rely on properties of
int31 arithmetic, we do not even axiomatize arithmetic on variables
and priorities—we define + and × as unaxiomatized operators.

Set Operations. Our paramodulation loop (Fig. 2) had used lists
of clauses. We switched to set operations (MSets) primarily to make
the code more elegant, but it also gives speedup of 1.04.

Redundancy Elimination. We remove redundant pure clauses
before passing clausesets to Superpose. This yields a relatively
large speedup of 1.40x since it often reduces the number of clauses
passed to Superpose between rounds of spatial inference.

Model-based Saturation. Our main implementation of the super-
position calculus uses the given-clause algorithm to saturate claus-
esets. As a last optimization, we rewrote the superposition engine to
employ a more intelligent saturation procedure: instead of finding
the smallest clause at each saturation step, we attempt to construct
a model of the current clauseset (whether saturated or not). Com-
pleteness of the superposition calculus implies that this model exists
whenever the clauseset is saturated (and does not contain the empty
clause). Moreover, for unsaturated sets the completeness proof tells
us exactly which clause to select for inference, and for which type
of inference (superposition right, superposition left, etc.) in order
to bring the set closer to saturation. In this optimization pass, we
also improved the global propagation of unit equalities. These two
optimizations together resulted in speedup of about 9x over our
original saturation procedure (the “clausesets” version, which did
not use the priority heuristic or priority caching). In the table, 2.09x
gives the pairwise speedup of model-based saturation over the next
most recent version of the prover (“redundancy elimination”).

On optimization effort. Most optimizations required minimal
updates to the proofs relative to the size of each change to the

5 This is not true for VeriSmall since the static analysis must generate fresh
variables during symbolic execution. But since VeriSmall—as opposed to
VeriStar—is not complete in general, it can simply return “don’t know”
whenever generating fresh variables results in an overflow.



source file program proof
compare.v - 253
variables.v 77 59
datatypes.v 60 -
superpose.v 342 -
superpose termination - 1,904
superpose modelsat.v 335 -
heapresolve.v 448 -
veristar.v 150 -
model type.v - 89
model.v - 310
clause lemmas.v - 183
cclosure.v 169 -
superpose sound.v - 584
superpose modelsat sound.v - 732
spred lemmas.v - 542
clausify sound.v - 474
wellformed sound.v - 399
unfold sound.v - 1,809
norm sound.v - 233
veristar sound.v - 354
clauses.v 308 594
list denote.v - 946
driver.ml 127 -
subtotals (excl. redblack.v): 2,016 9,465
ratio: 4.69
redblack.v 281 4,110
totals: 2,297 13,575
ratio: 5.91

Figure 5: Sizes of system components in lines-of-code. Ratio is
proof/program.

prover Smallfoot VeriStar SLP jStar
runtime (seconds) 0.013 0.019 0.049 0.180

Figure 6: Average runtimes over 100 trials of Smallfoot, VeriStar,
SLP and jStar on 209 entailments generated by Smallfoot.

program (often under 2x , see Figure 4). Figure 5 gives the total
sizes, in lines-of-code, of each of the VeriStar source files.

To prove the int31 optimization sound, we had to abstract all
properties of variables on which the proof depended, resulting in
more global changes. The clausesets optimization was somewhat of
an outlier: to meet the existing Coq MSets interface, we had to prove
many lemmas not even used by our soundness proof. On the other
hand, the red-black tree implementation of Coq MSets is reusable
even independently of VeriStar.

9. Measurements
We evaluated VeriStar’s performance against that of jStar [18],
Smallfoot and SLP on two suites of separation logic entailments. All
evaluation was done on a SunFire X4100 server with two dual-core
2.2GHz Opteron 275 processors and 16GB of RAM running CentOS
Linux. The first suite contains 209 separation logic entailments
generated by Smallfoot during verification of 18 different list-
manipulating programs found in the Smallfoot distribution. The
second includes 22,000 synthetic entailments tuned from moderate
to difficult. The synthetic entailments are the full suites used by
Navarro Pérez and Rybalchenko to evaluate their Prolog-based

theorem prover SLP against jStar and Smallfoot [25]. The Smallfoot
entailments are Navarro Pérez and Rybalchenko’s first clone set,
slightly modified since our prover does not yet deal with arbitrary
spatial predicates.

On the “real-world” entailments derived from programs in
Smallfoot’s test suite, VeriStar’s performance was comparable to
that of Smallfoot and SLP (on the order of hundredths of a second for
the 209 entailments). jStar solved 101 of the 170 valid entailments
in the suite in 0.180 seconds. We report the average runtime of each
prover on these 209 entailments over 100 trials in Figure 6.

To test the provers at a finer granularity on more difficult
entailments, we ran each prover on the 22,000 synthetic entailments
in Navarro Pérez and Rybalchenko’s Bolognesa and Spaguetti
suites. The Spaguetti benchmarks consist of 11,000 entailments
of the form Π ∧ Σ ` ⊥, simulating the inconsistency checks
that are often required during symbolic execution. The Bolognesa
benchmarks consist of 11,000 general entailments of the form
Π ∧ Σ ` Π′ ∧ Σ′. For each prover, we measured the number of
independent entailments solved within 0.01 to 5 seconds. Figure 7
shows the results of these measurements. Within 5 seconds, jStar
checked 8,757 of the 22,000 entailments in the combined suites,
VeriStar checked 18,610 entailments and Smallfoot checked 21,483.
SLP checked 21,981 entailments within 5 seconds.

Assessment. On real-world entailments generated by Smallfoot
during symbolic execution (Figure 6), VeriStar’s performance is
more than adequate—it solved all 209 entailments in slightly less
than two hundredths of a second, three hundredths of a second
faster than SLP and only slightly slower than Smallfoot. VeriStar
is also the only one of the four systems with a machine-checked
soundness proof. On Navarro Pérez and Rybalchenko’s synthetic
entailments (Figure 7), VeriStar is, in a majority of cases, faster than
Smallfoot when deciding heap inconsistency entailments (those of
the form Π ∧ Σ ` ⊥, the Spaguetti suite) and is almost as fast SLP.
On general entailments (the Bolognesa suite), VeriStar is not quite
as fast as Smallfoot, and not nearly as fast as SLP. Though it is
certainly fast enough for Smallfoot-like applications, there is room
for improvement. We believe the main issues are:

• VeriStar is a pure functional program. Functional programs have
a clean proof theory that makes verification a breeze (or at most,
a stiff wind). But it means that we pay a log N penalty in some
places, where we use red-black trees instead of arrays or hash
tables. Using imperative techniques might speed things up, and
yet still fit within the Coq framework [4].
• The paramodulation framework for resolution theorem-proving

in its modern form is more than two decades old, and a prover
such as SLP uses a large combination of time-tested heuristics.
By comparison, VeriStar is still immature, and the incorporation
of more of these standard techniques would likely improve
performance significantly.

10. Related Work
Proof-carrying code (PCC) [26] demonstrated the effectiveness of
proof witnesses—derivation trees in a core logic—as a means of
incorporating large untrusted components into safe systems. But
the problems with PCC were twofold: (1) the proof witnesses were
unacceptably large in practice; and (2) the proof checkers, often
running to tens of thousands of lines of code, had to be trusted.

Necula [27, 28] showed how to reduce the size of the proof by
compressing common subterms and extending the proof checker
to reconstruct these terms from the context. Foundational PCC [1]
addressed (2) by proving the soundness of the proof checker from
basic axioms but still required large proofs. In this project, we go
further: the VeriStar system—when connected to VeriSmall and the
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Figure 7: Number of independent entailments checked within 0.01 to 5 seconds by SLP, Smallfoot, VeriStar and jStar. (Higher is better.)
The Spaguetti benchmark suite contains 11,000 entailments of the form, Π ∧ Σ ` ⊥, simulating heap inconsistency checks. The Bolognesa
benchmark suite contains 11,000 general separation logic entailments of the form Π ∧ Σ ` Π′ ∧ Σ′.

rest of the Verified Software Toolchain—combines strong, founda-
tional correctness guarantees (all the way down to the compiled
assembly program) with minimal “proofs”: just the program text
itself, possibly annotated with light assertions such as loop invari-
ants. These assertions guide the proved-sound static analyzer to an
appropriate safety proof.

More recent work on integrating decision procedures into trusted
systems has focused on efficiently translating and checking low-level
certificates. Armand et al. [4] connect SAT (ZChaff, MiniSat) and
SMT solvers (VeriT) to Coq and Isabelle/HOL by translating unsat
cores and boolean models to efficient certificates. These certificates
are then verified through a combination of small machine-verified
proof checkers for resolution chains, linear arithmetic, congruence
closure and other theories. Besson et al. describe a related system
[10] that permits Nelson-Oppen-style theory combination and sup-
ports additional theories besides those supported by Armand et al.
In Besson’s system, a significant portion of total proof time is con-
sumed by certificate generation and checking. Although VeriStar is
significantly simpler than a state-of-the-art SMT solver, it demon-
strates that for certain application domains, it is possible to verify
the prover, not just the checker, and thus bypass low-level certificate
generation and checking completely.

Chlipala’s Bedrock system [16], an impressive toolkit for proving
the correctness of low-level code, includes an ad hoc simplification
procedure and entailment checker for separation logic that together
appear to work well in practice. One advantage of Bedrock’s
checker is that it works on the unencoded implications generated
by verification. Errors are therefore easier to communicate to the
user in a transparent way. VeriStar entailments, by contrast, are
encoded and checked at the clause level, both for efficiency and for
interoperability with the Superposition system, and therefore are
slightly less human-friendly.

Nguyen and Chin equip a Smallfoot-style entailment checker
with a mechanism to integrate user-provided lemmas, complement-
ing the folding/unfolding lemmas that are automatically generated
from inductive definitions [29].

Brotherson et al. [12] present a heap theorem prover imple-
mented in HOL that employs a notion of cyclic proof. Their work
opens an avenue for the integration of user-defined inductive types

and auxiliary lemmas that relate such definitions, but is apparently
not yet integrated with a prover for the pure part, and is not pre-
sented in clausal form. We expect that our modular architecture will
allow us to explore the integration of this and other spatial theorem
provers into paramodulation-based reasoning tools comparatively
easily, as any such prover can be substituted for (or complement)
the present unfolding rules for singly-linked lists.

THOR [24] infers invariants by combining symbolic execution
with abstraction. An alternative to reimplementing invariant infer-
ence in Coq is to use THOR, or some other tool like SLAyer, to
annotate loops with invariants that are then confirmed by Veri-
Small+VeriStar. The HIP/SLEEK project [30] employs an inter-
esting “shallow embedding” technique for resource use verification
that might also be adapted to our setting.

11. Lessons Learned
Extraction for Execution and Profiling. Coq’s code extraction
facilities make it easy to write a Gallina program, extract it to
OCaml (or Haskell or Scheme) and get decent performance by
compiling using an optimizing compiler like ocamlopt. When the
Gallina program is written in a straightforward functional style—
forgoing extensive use of more advanced features of Coq such
as dependent types6—code extraction followed by compilation is
predictable enough even to support profiling in a traditional style,
using a conventional tool like gprof [20]. One first extracts a
verified Gallina program to OCaml, compiles the OCaml program
with ocamlopt -p, then does a profiling run using gprof. Because
the extracted OCaml code is very similar in structure to the Gallina
source, the gprof profiling data can be used to optimize the Gallina
program quite effectively. Figure 8 presents an excerpt of one such
profiling run we performed using gprof, which showed us that
demodulation (unit equality propagation) was a bottleneck for the
prover on entailments in Navarro’s Spaguetti suite.

6 Such features are of course fair game when proving a Gallina program
correct; Coq’s type system ensures that only the program is ever extracted,
never the proof.



time seconds seconds calls name
20.81 7.63 7.63 943778606 demodulate_3526
10.42 11.45 3.82 1247887428 apply2
9.27 14.85 3.40 343207163 pcompare_176
5.40 16.83 1.98 297862037 pplus_111
5.02 18.67 1.84 412584893 zplus_200
4.12 20.18 1.51 2338512 fold_left_299
4.09 21.68 1.50 943778606 fun_9033
2.70 22.67 0.99 114722856 zlength_aux_322

Figure 8: Excerpt from the gprof trace of a single run of the
extracted prover on 1000 entailments in the Spaguetti suite.

On the Proof Theory of Functional Languages. Because Gallina
programs are purely functional (one must even prove termination),
Gallina has an elegant proof theory that is more tractable than that
of ML or Haskell, and much nicer than that of C. This attractive
proof theory made the difference, in our estimation, between a
couple man-months to complete VeriStar’s soundness proof and a
couple man-years for a comparable machine-checked proof of a C
implementation of the same algorithm.

The Importance of Modular Proofs. The importance of module
systems for the construction of large software projects is well-known.
We were surprised at just how effective conventional, ML-style
module and functor systems (as implemented in Coq) were for
building and evolving modular proofs of programs as well. By
protecting the soundness proof of each component of the prover
with an opaque Module Type in Coq (Section 6), we saved a great
deal of time and energy, especially as we evolved the prover through
successive rounds of optimization (Section 8).

12. Conclusion
VeriStar is the first machine-verified theorem prover for separation
logic that connects to a real-world operational semantics (CompCert
C minor). Together with VeriSmall, VeriStar enables automatic foun-
dational checking of shape properties with respect to the compiled
x86 or PowerPC assembly. VeriStar implements an efficient decision
procedure for separation logic [25] using highly tuned functional
data structures. VeriStar’s implementation and soundness proof can
be retargeted to new domains through an opaque axiomatization of
separation logic. Finally, VeriStar’s design, and its integration with
VeriSmall and our C minor separation logic through well-defined
interfaces, provides a blueprint for the design of certified end-to-end
systems more generally.
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A. U4 Countermodel
Inference rule U4, as presented in [25, Sec. 4, Figure 1] is:

U4

Γ→ ∆, lseg(x , y) ∗ next(z ,w) ∗ Σ
Γ′, lseg(x , z ) ∗ Σ′ → ∆′

Γ′, lseg(x , y) ∗ lseg(y , z ) ∗ Σ′ → ∆′
y 6≡ z

To construct a countermodel, let ¬Γ hold, satisfying the first
hypothetical clause (remember that the interpretation of a clause
Γ→ ∆ is ¬Γ ∨∆). We must prove ∆′ assuming

Γ′ ∧ lseg(x , y) ∗ lseg(y , z ) ∗ Σ′

But
lseg(x , y) ∗ lseg(y , z )⇒ lseg(x , z )

holds only when z is not a pointer into the heap denoted by
lseg(x , y) (list segments are required to be acyclic).

Note that the axiom schema U4 of [25, Figure 2] (not the
rule presented in [25, Figure 1]) is sound since there, lseg(x , y) ∗
lseg(y , z ) is starred with next(z ,w), implying that z does not equal
any location in the domain of lseg(x , y). In Navarro’s rule U4, we
know only that lseg(x , y) ∗ next(z ,w) holds hypothetically under
Γ, and Γ may be false. A similar argument applies to Navarro’s U5
(again, the rule in [25, Figure 1], not the axiom schema).

B. Bare-bones Model of VERISTAR LOGIC
This appendix presents definitions from a bare-bones implementa-
tion of the Separation Logic Interface of Section 4.2. Coq’s module
system ensures that we prove the properties required by the interface.

Module Barebones : VERISTAR LOGIC.
Definition loc := nat.
Instance Join loc : Join loc := @Join equiv .
Instance Perm loc : Perm alg loc := .
Instance Sep loc : Sep alg loc := .
Instance Canc loc : Canc alg loc := .
Instance Join nat : Join nat := @Join discrete .
Instance Pos nat : @Pos alg nat (@Join discrete ) :=
@psa discrete .

Instance Canc nat : @Canc alg nat Join nat.
Definition val := option nat.
Instance Join val : Join val := Join lower Join nat.
Instance Perm val : Perm alg val := .
Instance Sep val : Sep alg val := .
Instance Canc val : Canc alg val :=
@Canc lower Canc nat.

Definition val2loc (v : val) : option loc :=
match v with Some (S n) ⇒ Some (S n)
| ⇒ None end.

Definition nil val : val := Some O.
Definition empty val : val := None.
Definition full (v : val) := ∀v2, joins v v2 → identity v2.
Definition var : Type := Var.t.
Definition env : Type := var → val.
Definition env get (ρ: env) : var → val := ρ.
Definition env set (x : var) (v : val) (ρ: env) : env :=

fun y ⇒ if Var.eq dec x y then v else ρ y .
Definition empty env : env := fun x ⇒ None.
Definition heap : Type := loc → val.

Instance Join heap : Join heap := Join fun loc val .
Instance Perm heap : Perm alg heap := .
Instance Sep heap : Sep alg heap := .
Instance Canc heap : Canc alg heap :=
@Canc fun loc val .

Definition rawnext (x : loc) (y : val) (h : heap) :=
y 6= None ∧ x 6= O ∧ h x = y ∧
∀x ′, x ′ 6= x → h x ′ = None.

Definition emp at (l : loc) (h: heap) := h l = None.
Definition nil or loc (v : val) :=

v=nil val ∨ ∃l , val2loc v = Some l .
Definition rawnext’ x y h :=
∃h0, join sub h0 h ∧ rawnext x y h0.

(∗Proofs about the definitions and operators above are elided.∗)
End Barebones.

C. C minor Model of VERISTAR LOGIC
This appendix presents definitions from our C minor implementation
of the Separation Logic Interface of Section 4.2. Coq’s module
system ensures that we prove the properties required by the interface.

Module CminLog : VERISTAR LOGIC.
Definition loc := address.
Definition val := option Values.val.
Instance Join val: Join val := Join val.
Instance Perm val: Perm alg val := .
Instance Sep val: Sep alg val := .
Instance Canc val: Canc alg val := .
Definition val2loc (v : val) : option loc :=

match v with
| None ⇒ None
| Some (Vptr b ofs) ⇒

if Zdivide dec (2∗align chunk Mint32) (Int.signed ofs)
cell size pos

then Some (b, Int.signed ofs)
else None

| ⇒ None
end.

Definition nil val : val := Some (Vint Int.zero).
Definition empty val: val := None.
Definition full (v : val) := ∀ v2, joins v v2 → identity v2.
Definition var := Var.t.
Definition env: Type := env’.
Definition env get (ρ: env) (x : var) : val := env’ get ρ (var2pos x ).
Definition env set (x : var) (v : val) (ρ: env) : env :=

env’ set (var2pos x ) v ρ.
Definition empty env : env := empty env’.
Definition heap : Type := rmap.
Instance Join heap: Join heap := Join rmap.
Instance Perm heap: Perm alg heap := .
Instance Sep heap: Sep alg heap := .
Instance Canc heap: Canc alg heap := .
Definition rawnextp (x : loc) (y : val) : pred rmap :=
(prop and (2∗align chunk Mint32 | snd x )
(Ex h: Values.val, res predicates.address mapsto Mint32

h Share.top x )
∗ (Ex y ′: Values.val,

prop and (y = Some y ′)
(res predicates.address mapsto Mint32

y ′ Share.top (adr add x 4)))).
Definition rawnext x y := app pred (rawnextp x y).
Program Definition emp atp (l : loc) : pred rmap :=

fun h ⇒ ∀ l ′, adr range l 8 l ′ → identity (h @ l ′).
Next Obligation. (∗Proof elided∗) Qed.



Definition emp at (l : loc) := app pred (emp atp l).
Definition nil or loc (v : val) :=

v=nil val ∨ ∃l , val2loc v = Some l .
Definition rawnext’ x y h :=
∃h0, join sub h0 h ∧ rawnext x y h0.

(∗Proofs about the definitions and operators above are elided.∗)
End CminLog.
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