
VeriSmall: Verified Smallfoot Shape Analysis

Andrew W. Appel

Princeton University September 18, 2011

Abstract. We have implemented a version of the Smallfoot shape analyzer, call-
ing upon a paramodulation-based heap theorem prover. Our implementation is
done in Coq and is extractable to an efficient ML program. The program is veri-
fied correct in Coq with respect to our Separation Logic for C minor; this in turn
is proved correct in Coq w.r.t. Leroy’s operational semantics for C minor. Thus
when our VeriSmall static analyzer claims some shape property of a program, an
end-to-end machine-checked proof guarantees that the assembly language of the
compiled program will actually have that property.

A static analysis algorithm or type checker takes as input a program, and checks that
the program satisfies a certain assertion—or in some cases calculates an appropriate
assertion. A static analysis algorithm is sound if, whenever it calculates syntactically
that the program satisfies a certain assertion, then the corresponding property really
does hold on executions of the program. One way to prove soundness is to demonstrate
that whenever the static analysis makes a claim, then there is a derivation tree in a given
program logic that the assertion is valid for the program. Some implementations of
static analyses can produce proof witnesses; this is an example of proof-carrying code
(PCC), i.e. the pairing of a program + the witness of some static analysis applied to it.

What is the form of a “proof” for PCC? One might think it must be a derivation
in logic that can be checked by a proof checker. But such derivations are unacceptably
large in practice. It is more practical to factor the static analysis into an untrusted “infer-
ence” part and a proved-correct “checker”. The first infers invariants and annotates the
input program with assertions, as often as once per extended basic block. The checker
recomputes the static analysis applied to the program, but (because of the annotations)
does not need to infer any invariants, so the checker is a much simpler program. The
annotations—assertions—constitute the proof witness.

The checker simply must be correct, or else this scheme could not reasonably be
called proof-carrying code. But such checkers are generally too complex to be trusted
without proof. Therefore, Foundational PCC requires a machine-checked proof that the
checker program is sound.

In 2003 we demonstrated this approach for safety checking of compiled ML pro-
grams [15]. The “inference” part was a type-preserving compiler for Standard ML,
which output a program in Typed Assembly Language. The “checker” was a nonback-
tracking Prolog program written in Twelf, with a soundness proof written in Higher-
Order Logic embedded in Twelf. To absolutely minimize the “trusted computing base,”
we implemented a tiny proof-checker for LF with a tiny interpreter for deterministic
Prolog; this “checker for the checker” was 1100 lines of C, and needed to be trusted, in
the sense that bugs in that component could cause unsoundness of the system.

To appear in CPP 2011: First International Conference on Certified Programs and Proofs,
December 2011. The original publication is available at www.springerlink.com.

In this paper we turn our attention beyond type systems to shape analysis based on
separation logic. The state of the art in logics and proof assistants now makes it fairly
straightforward to take algorithms from the scientific literature and implement them
as programs with machine-checked proofs of correctness. We show that static analysis
programs (not just algorithms), and decision-procedure programs (e.g., for entailments
in separation logic) can be proved correct, and thus need not produce proof derivations.
Our verified algorithm is a functional program with a proof of correctness, much like
a “proof by reflection” in Coq. Because it is not just a witness-generating “program”
specified as a collection of inference rules, we can more easily focus on efficiency,
asymptotic complexity, and constant factors. It appears, from Cachera and Pichardie’s
survey of certified static analysis [6], that no one has done this before.

On the other hand, complex static analyses (that might be impractical to prove cor-
rect) can produce witnesses in the form of annotations that can be checked by our simple
static analysis.

Our implementations are done in Gallina, the pure functional programming lan-
guage embedded in the Coq theorem prover. Our proofs of correctness are done in the
standard Coq tactic system. From the Gallina programs we use Coq’s extraction to ob-
tain ML programs, which we compile with the Ocaml system.

2 Smallfoot

Smallfoot [2, 3] is a shape analyzer based on a decidable fragment of separation logic. It
takes as input a pointer-manipulating program in an imperative language with structured
control flow, annotated with assertions in separation logic. The assertions specify the
relation of program variables to list segments and tree segments, as well as equalities and
inequalities on variables. Smallfoot does not infer loop invariants: the input to Smallfoot
must be explicitly annotated with loop invariants and with assertions at the beginning
and end of function bodies.

Deciding entailments. Smallfoot repeatedly calls upon a decision procedure for en-
tailments in (a decidable fragment of) separation logic. We use our Gallina imple-
mentation of such a decision procedure, and its Coq soundness proof [13].

Isolating conjuncts. When Smallfoot encounters a load, store, or deallocate command
that operates at some address e (where e is an expression of the source language),
it must rearrange the current precondition to isolate a (separating) conjunct of the
form e 7→ e′. This may require unfolding a list segment or introducing a disjunc-
tion. We will describe our Gallina program to isolate conjuncts—the algorithms
that Berdine et al. [2] call rearrangement and exorcism—and its soundness proof.

Symbolic execution. Static analysis proceeds by forward symbolic execution from
each assertion, through straight-line commands and through if-statements until an-
other assertion is reached. We will describe our Gallina implementation of symbolic
execution, and its soundness proof.

Frame inference. Smallfoot infers separation-logic frames for function calls, but our
current protype does not implement this.

2

Tuerk’s Holfoot [14] is a Smallfoot-like tool implemented in the HOL4 proof as-
sistant. It is proof-generating rather than verified. Holfoot moves smoothly from fully
automatic “shape” proofs to semiautomatic functional correctness proofs, generating
lemmas that a human being or an SMT solver must prove. Holfoot is not connected to
the operational semantics of any particular programming language, but to an abstract
local-action semantics. Holfoot is not so much a specific algorithm as the carefully
ordered application of inference rules, along with a consequence conversion system.

Here, in contrast, we focus on an efficient and verifiable static analysis algorithm
for a real programming language connected to a real compiler, but unlike Tuerk we do
not (yet!) go beyond shape analysis into the realm of functional correctness.

3 Syntax of Separation Logic
Definition var := positive.
Inductive expr := Nil: expr | Var: var → expr.
Inductive pure atom := Eqv : expr→ expr→ pure atom | Neqv : expr→ expr→ pure atom.
Inductive space atom :=

Next: expr → expr → space atom | Lseg: expr → expr → space atom.
Inductive assertion := Assertion: ∀ (Π: list pure atom) (Σ: list space atom), assertion.
Inductive entailment : Type := Entailment : assertion → assertion → entailment.

Above is our syntactic separation logic fragment. Variable-names are represented
by positive numbers. An expression is either the literal Nil or a variable. A pure (non-
spatial) atom is of the form e1 = e2 or e1 6= e2; an assertion contains (the conjunction
of) a list Π of pure atoms, and the separating conjunction of a list of space atoms. Each
space atom describes either a list cell or a list segment (Smallfoot’s space atoms also
describe trees, which our current prototype does not handle). The list cell Next e1 e2
represents a cons cell at address e1 whose tail-pointer contains the value e2, or in primi-
tive separation logic, (e1 7→) ∗ (e1 +1 7→ e2). The list segment Lseg e1 e2 represents
either e1 = e2 (meaning an empty segment) or a chain of one or more list cells, starting
at address e1, whose last tail-pointer is e2, and where e1 6= e2.

Smallfoot is a forward symbolic execution algorithm that takes a known precondi-
tition P in this fragment, along with a command c, and derives a postcondition Q such
that {P}c{Q}. In cases where Q is a disjunction, the disjunction is always at top-level.

4 Semantics of Separation Logics

One application of our shape analysis is in our Verified Software Toolchain [1], where
we have a separation logic for C minor, which is a source language for the CompCert
verified C compiler [10]. Our higher-order impredicative Concurrent Separation Logic
is proved sound with respect to the operational semantics of C minor; Leroy et al. have
proved CompCert correct w.r.t. the same operational semantics.

We can also imagine many other uses for efficient, proved-correct decision proce-
dures and shape analyses, so we do not want to tie our soundness result too closely to
a particular model of separation logic. Figure 1 shows our general interface, specified
as a Module Type, to practically any reasonable model of separation logic that could

3

Figure 1. Specification of models for separation logic
Require Import msl.sepalg.
Parameter loc : Type.
Parameter val: Type.
Declare Instance val sa : sepalg val.
Parameter val2loc: val → option loc.
Parameter nil val : val.
Axiom nil not loc: val2loc nil val = None.
Parameter empty val: val.
Axiom emp empty val: ∀ v, identity v ↔ v=empty val.
Definition full (v: val) := ∀ v2, joins v v2 → identity v2.
Axiom val2loc full: ∀ v l, val2loc v = Some l → full v.
Axiom nil full: full nil val.
Axiom empty not full: ∼full empty val.
Axiom val2loc inj: ∀ v1 v2 l, val2loc v1 = Some l → val2loc v2 = Some l → v1=v2.
Axiom loc eq dec: ∀ l1 l2: loc, Decidable.decidable (l1=l2).
Axiom nil dec: ∀ v, Decidable.decidable (v=nil val).

Definition var : Type := positive.
Parameter env : Type.
Parameter env get: env → var → val.
Parameter env set: var → val → env → env.
Axiom gss env : ∀ (x : var) (v : val) (s : env), env get (env set x v s) x = v.
Axiom gso env : ∀ (x y : var) (v : val) (s : env), x<>y →

env get (env set x v s) y = env get s y.
Parameter empty env : env.
Axiom env gempty: ∀ x, env get empty env x = empty val.

Parameter heap : Type.
Declare Instance heap sa : sepalg heap.
Parameter rawnext: ∀ (x: loc) (y : val) (s : heap), Prop.
Parameter emp at: ∀ (l: loc) (h: heap), Prop.
Axiom heap gempty: ∀ h l, identity h → emp at l h.
Definition nil or loc (v: val) := v=nil val ∨ ∃ l, val2loc v = Some l.
Axiom mk heap rawnext: ∀ h x0 x y,

val2loc x0 = Some x → nil or loc y → ∃ h’, rawnext x y h’ ∧ comparable h h’.

Axiom rawnext out: ∀ x x0 x’ y h,
rawnext x y h → val2loc x0 = Some x’ → x’<>x → emp at x’ h.

Definition rawnext’ x y h := ∃ h0, join sub h0 h ∧ rawnext x y h0.
Axiom rawnext at1: ∀ x y h1 h2 h, rawnext’ x y h1 → join h1 h2 h →

emp at x h2 ∧ rawnext’ x y h.
Axiom rawnext at2: ∀ x y h1 h2 h, join h1 h2 h → rawnext’ x y h →

emp at x h2 → rawnext’ x y h1.
Axiom rawnext not emp: ∀ x y h, rawnext’ x y h → ∼emp at x h.
Axiom emp at join: ∀ h1 h2 h, join h1 h2 h → ∀ l, (emp at l h1 ∧ emp at l h2) ↔emp at l h.

4

Figure 2. Denotations
Inductive state := State: ∀ (s: env) (h: heap), state.

Definition expr denote (e : expr) (σ : state) : val :=
match e , σ with Nil , ⇒ nil val | Var x , State s ⇒ env get s (Some x) end.

Definition expr eq (x y : expr) (s : state) := expr denote x s = expr denote y s.

Definition spred := state → Prop.
Definition neg (P : spred) : spred := fun σ : state ⇒ ∼P σ.

Definition pure atom denote (a : pure atom) : spred :=
match a with Eqv e1 e2 ⇒ expr eq e1 e2 | Neqv e1 e2 ⇒ neg (expr eq e1 e2) end.

Inductive lseg : val → val → heap → Prop :=
| lseg nil : ∀ x h, identity h → nil or loc x → lseg x x h
| lseg cons : ∀ x x’ h h0 h1 z, x<>y → val2loc x = Some x’ →

rawnext x’ z h0 → lseg z y h1 → join h0 h1 h → lseg x y h.

Definition space atom denote (a : space atom) : spred := fun σ ⇒
match a, σ with
| Next x y , State h ⇒

fun σ ⇒ match val2loc (expr denote x σ) with
| Some l’ ⇒ rawnext l’ (expr denote y σ) h ∧ nil or loc (expr denote y σ)
| None ⇒ False
end

| Lseg x y, State h ⇒ lseg (expr denote x σ) (expr denote y σ) h
end.

Fixpoint list denote {A T : Type} (f : A → T) (g : T → T → T) (b : T) l : T :=
match l with nil ⇒ b | x :: l’ ⇒ g (f x) (list denote l’) end.

Definition assertion denote (f : assertion) : spred :=
match f with Assertion Π Σ ⇒ list denote pure atom denote (@intersection state) T Π

∧ list denote space atom denote sep con emp Σ
end.

support list segments. Import msl.sepalg refers to the notion of Separation Algebras [9]
from our Mechanized Semantic Library (msl.cs.princeton.edu).

We prove that our C minor separation logic satisfies this specification. Separating
out the interface in this way causes some local pain, compared to a direct nonabstract
model, but the improvement in modularity is well worth it.

Based on this semantic specification of the operators, we can define the denotations
of syntactic expressions and assertions, as shown in Figure 2.

Remark. Berdine et al. assume an abstract addressing model such that if p 6= q
then the fields of p cannot possibly overlap with the fields of q; other presentations of
Separation Logic assume an address-arithmetic model, in which records might overlap;
e.g., 100 7→ x ∗ 101 7→ y ∗ 102 7→ z might contain the pair (x,y) overlapping with

5

Figure 3. Freshness
Definition fresh {A} (f: A → positive) (a: A) (x: positive) : Prop := Zpos (f a) ≤ Zpos x.

Definition agree except (x: var) (σ σ′: state) : Prop :=
match σ, σ′ with State s h , State s’ h’ ⇒

(∀ x’, x’ <> x → env get s (Some x’) = env get s’ (Some x’)) ∧ h=h’ end.

Definition existsv(x: var) (P: spred) : spred := fun σ ⇒ ∃σ′, agree except x σ σ′ ∧ P σ′.

Definition |−− (P Q: spred) := ∀ s, P s → Q s. Infix ”|−−”.

Lemma pure atom denote agree: ∀ a σ σ′ x, fresh freshmax pure atom a x →
agree except x σ σ′ → pure atom denote a σ → pure atom denote a σ′.

Lemma space atom denote agree: ∀ a σ σ′ x, fresh freshmax space atom a x →
agree except x σ σ′ → space atom denote a σ → space atom denote a σ′.

the pair (y,z). We model Next so that it may be instantiated in either the abstract or the
address-arithmetic style. But the Smallfoot inference rules assumed by Berdine et al.
are sound only if such overlap cannot occur. The only way we know how to assure this,
in an address-arithmetic setting, is to make the rather strong assumption that list cells
are aligned on a multiple-of-size boundary.

5 Fresh variables

When symbolic execution rewrites separation-logic assertions, it sometimes uses fresh
variables, i.e. new variables that are not free in the current program or precondition.

We have functions freshmax expr, freshmax pure atom, freshmax space atom,
freshmax assertion, freshmax stmt, that traverse assertions and commands to find the
highest-numbered variable in use (highest-numbered nonfresh variable).

Figure 3 gives some definitions and lemmas regarding freshness of variables. Let
a be an expression (or pure atom, space atom, assertion, statement) and let f be the
freshmax expr function (or respectively, freshmax pure atom, freshmax space atom,
etc.). Then we say that some variable x is fresh for a by writing fresh f a x.

Zpos injects from positive to the integers; for efficiency our program computes on
positives, but for convenience in proofs we use tactics and lemmas on the integers.

We can say that two states σ and σ′ agree except at x, and we define existsv x P to
mean that P almost holds (on a given state)—that is, there exists a value v such that P
would hold on the state if only we would set x := v. Finally, if x is fresh for a, and two
states σ and σ′ agree except at x, then a at σ is equivalent to a at σ′.

6 Paramodulation

Smallfoot makes repeated calls to decide entailments in separation logic. Berdine et al.
[2] sketch an algorithm for deciding entailments in their fragment of separation logic.

6

Navarro and Rybalchenko [11] apply paramodulation, a resolution theorem-proving al-
gorithm, to this decision problem, and get a program that is significantly faster than
the original Smallfoot implementation. Paramodulation [12] permits modular introduc-
tion of theories; a standard such theory to add is the superposition calculus, a theory
of equalities and inequalities. Navarro and Rybalchenko extend paramodulation with
superposition and with the spatial terms of Berdine et al.’s decidable fragment of sepa-
ration logic, yielding a “heap theorem prover.”

Gordon Stewart, Lennart Beringer, and I have built an implementation in Gallina
of this paramodulation-based heap theorem prover. Our proof of soundness is nearly
finished, and we intend to prove termination and perhaps completeness. Preliminary
measurements of the extracted ML code are competitive with Smallfoot’s entailment
decider (also implemented in ML). This is not nearly as good as it might seem, because
in fact Navarro and Rybalchenko’s implementation (in Prolog) is about 100x faster than
Smallfoot in solving large entailments. We expect that we can improve our program
with more efficient data structures for term indexing and priority queues (with attended
proofs of soundness). We will report on paramodulation in a separate paper [13].

7 Isolation

Consider the command a:=b.next, which loads a field of record b. (Similar issues
pertain to storing a field or deallocating a record.) Suppose precondition P has the form
Next b c ∗ F for some frame F . Assuming that the variable a is not free in expressions
b, c or formula F , it’s easy to derive a postcondition (a = c) ∗ Next b c ∗ F .

Suppose instead that P is F1 ∗Next b c ∗F2. and the separation-logic Hoare rule for
assignment has a syntactic form that requires Next b c ∗ F . Clearly by the associative
law, P ` Next b c ∗ (F1 ∗ F2). We can use the rule of consequence to strengthen the
precondition to match the desired form.

A harder case is one where the precondition P is b 6= d ∗ Lseg b d ∗ F . Because the
list segment is not empty (b 6= d), we can unfold it once; we insert a fresh variable x
(not free in a, b, d, F) as follows: P ` Next b x ∗ b 6= d ∗ Lseg x d ∗ F .

In each of the cases above, we rearrange the precondition to isolate one field as
required by a load (or store); in the case of a deallocation command we would have to
isolate all the fields of a particular record together, but the issues would be the same.
An important component of the Smallfoot algorithm is this rearrangement.

In the case where P is Lseg b d ∗ F , such that Lseg b d ∗ F 6` b 6= d, then the list
segment might possibly be empty, so we cannot unfold it; symbolic execution will be
stuck here, unable to prove by shape analysis that the program is safe.

The hardest case (as explained by Berdine et al.) is the “spooky disjunction.” Sup-
pose P is d 6= e ∗Lseg b d ∗Lseg b e ∗F . We know that exactly one of the two segments
is nonempty; if both are empty, then d = e, and if both are nonempty, then the segments
(b, d) and (b, e) would overlap (would not separate). Whichever segment is nonempty,
we should be able to unfold it, but we do not know which. Therefore we can derive

P ` (Next b x∗d 6= e∗Lseg x d∗ b = e∗F)∨ (Next b x∗d 6= e∗ b = d∗Lseg x e∗F).

7

Figure 4. Exorcize and isolate
Fixpoint exorcize (e: expr) (Π: list pure atom) (Σ0 Σ: list space atom) (x: var)

: option(list assertion) :=
match Σ with
| nil ⇒ if incon (Assertion Π (rev Σ0)) then Some nil else None
| Lseg f f’ :: Σ1 ⇒

if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1))
(Assertion (Eqv e f :: nil) (rev Σ0 ++ Lseg f f’ :: Σ1)))

then match exorcize e (Eqv f f’ :: Π) (Lseg f f’ :: Σ0) Σ1 x with
| Some l ⇒ Some (Assertion Π (Next e (Var x) :: Lseg (Var x) f’ :: rev Σ0 ++ Σ1) ::l)
| None ⇒ None
end

else exorcize e Π (Lseg f f’ :: Σ0) Σ1 x
| a :: Σ1 ⇒ exorcize e Π (a :: Σ0) Σ1 x
end.

Fixpoint isolate’ (e: expr) (Π : list pure atom) (Σ0 Σ: list space atom) (x: var) (count: nat)
: option(list assertion) :=

match Σ with
| nil ⇒ if count < 2 then None

else if incon (Assertion (Eqv e Nil :: Π) (rev Σ0))
then exorcize e Π nil (rev Σ0) x

else None
| Next e1 e2 :: Σ1 ⇒

if eq expr e e1
then Some [Assertion Π (Next e e2 :: rev Σ0 ++ Σ1)]
else if oracle (Entailment (Assertion Π (rev Σ0 ++ (Next e1 e2) :: Σ1))

(Assertion (Eqv e e1 :: nil) (rev Σ0 ++ (Next e1 e2) :: Σ1)))
then Some [Assertion Π (Next e e2 :: rev Σ0 ++ Σ1)

else isolate’ e Π (Next e1 e2 :: Σ0) Σ1 x count
| Lseg f f’ :: Σ1 ⇒

if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1))
(Assertion (Eqv e f :: Neqv f f’ :: nil) (rev Σ0 ++ (Lseg f f’) :: Σ1)))

then Some [Assertion Π (Next e (Var x) :: Lseg (Var x) f’ :: rev Σ0 ++ Σ1)]
else if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1))

(Assertion (Eqv e f :: nil) nil (rev Σ0 ++ (Lseg f f’) :: Σ1)))
then isolate’ e Π (Lseg f f’ :: Σ0) Σ1 x (S count)

else isolate’ e Π (Lseg f f’ :: Σ0) Σ1 x count
end.

Definition isolate (e: expr) (P: assertion) (x: var) : option (list assertion) :=
match P with Assertion Π Σ ⇒ isolate’ e Π nil Σ x 0 end.

8

The algorithm for eliminating the “spooky disjunctions” is called exorcism by Berdine
et al., and their entire description of it is thus:

To deal with this in the rearrangement phase we rely on a procedure for ex-
orcising these spooky disjunctions. In essence, exor(Π|Σ, e) is a collection of
assertions obtained by doing enough case analysis (adding equalities and in-
equalities to Π) so that the location of e within a ∗-conjunct is determined.
This makes the rearrangement rules complete. We omit a formal definition of
exor for space reasons.

This function for isolating a field (preparatory to a load or store) we will name iso-
late. It calls upon an auxiliary function exorcize. Our assertion syntax has no disjunc-
tion operator, so we formulate the output of these functions as an option(list(assertion)).
The result None indicates that it was not possible to isolate the given field; the result
Some(l) gives a list l of assertions, the disjunction of which is implied by the input
assertion P .

The isolate’ function walks down a list Σ of space atoms, tossing them into Σ0 as it
passes by, as follows: • In the last else clauses of the Next and Lseg clauses, where e1 or
f can’t be proved equivalent to e, this Next or Lseg is an irrelevant conjunct—the recur-
sive call to isolate’ simply moves it from Σ to Σ0 and continues. • If e is syntactically
identical to e1, or we can prove Π,Σ ` e = e1, then the conjunct Next e1 e2 matches,
and isolate succeeds. • If we can prove from Π,Σ that e=f and f6=f’, then isolate suc-
ceeds by unfolding this list segment. • Finally, if Π,Σ ` e = f but we cannot also
prove f6=f’, then the conjunct is a candidate for a spooky disjunction, so we toss it into
Σ0 and increment the count variable, which counts the number of spooky disjuncts.

If isolate’ reaches the end of Σ with count>1, then there is a spooky disjunction.
exorcize handles it (Figure 4) by performing case-splitting (empty or nonempty) on each
relevant Lseg. The two cases appear as Eqv f f’ and Next e (Var x) :: Lseg (Var x) f’ :: ...,
respectively. In the Eqv case, we must also case-split on all the remaining relevant
Lsegs, but in the non-Eqv case, all the others must be empty.

Discussion. This is just straightforward functional programming: nothing remark-
able about it, except that we can now use Gallina’s proof theory (i.e., CiC) to prove the
soundness. Termination is already proved, because Fixpoint must terminate.

8 Soundness of isolate

Lemma exorcize sound: ∀ e Π Σ x,
fresh freshmax expr e x → fresh freshmax assertion (Assertion Π Σ) x →
∀ cl, (exorcize e Π nil Σ x) = Some cl →

(assertion denote (Assertion Π Σ) |−−
fold right (fun P ⇒ union (existsv x (assertion denote P))) FF cl) ∧

(∀ Q, In Q cl →
match Q with
|Assertion (Next e0 ::) ⇒ e=e0
| ⇒ False
end ∧ fresh freshmax assertion Q (Psucc x)).

9

Lemma isolate sound: ∀ e P x results,
isolate e P x = Some results →
fresh freshmax expr e x → fresh freshmax assertion P x →

assertion denote P |−−
fold right (fun Q ⇒ union (existsv x (assertion denote Q))) FF results ∧

∀Q, In Q results →
match Q with
|Assertion (Next e0 ::) ⇒ e=e0
| ⇒ False
end ∧ fresh freshmax assertion Q (Psucc x).

Given an assertion P and the desire to isolate a conjunct of the form Next e , and
given x fresh for e and P, suppose isolate e P x returns Some results. Then we know:

– The denotation of P entails the union of all the disjuncts Q in results, provided that
we set the variable x to some appropriate value.

– Every disjunct Q is of the form Assertion (Next e ::).
– Every free variable in Q has name ≤ x, i.e., the next variable after x is fresh for Q.

9 Symbolic execution

Symbolic execution proceeds on a C minor syntax annotated with assertions. The shape
analyses will not interpret many of the C minor expressions it sees, but simple expres-
sions such as variables and and the constant 0 (interpreted as Nil) will be relevant to
symbolic execution. Thus we define the function Cexpr2expr that translates simple ex-
pressions from C minor to the language of our syntactic assertions, and ignores others:

Definition Cexpr2expr (e: Cminor.expr) : option expr :=
match e with Evar i ⇒ Some (Var i)

| Eval (Vint z) ⇒ if Int.eq dec z Int.zero then Some Nil else None
| ⇒ None

end.

Definition getSome {A} (x: option A) (f: A → bool):=
match x with Some y ⇒ f y | None ⇒ false end.

Definition Cexpr2assertions(e:Cminor.expr)(a:assertion)(f:assertion→ assertion→ bool):=
match a with Assertion Π Σ ⇒
match e with
| Ebinop (Cminor.Ocmp Ceq) a b ⇒

getSome (Cexpr2expr a) (fun a’ ⇒ getSome (Cexpr2expr b) (fun b’ ⇒
f (Assertion (Eqv a’ b’ ::Π) Σ) (Assertion (Neqv a’ b’ ::p) Σ)))

| Ebinop (Cminor.Ocmp Cne) a b ⇒
getSome (Cexpr2expr a) (fun a’ ⇒ getSome (Cexpr2expr b) (fun b’ ⇒

f (Assertion (Neqv a’ b’ ::Π) Σ) (Assertion (Eqv a’ b’::Π) Σ)))
| ⇒ getSome (Cexpr2expr e) (fun a’ ⇒

f (Assertion (Neqv a’ Nil ::Π) Σ) (Assertion (Eqv a’ Nil ::Π) Σ))
end

end.

10

Figure 5. Symbolic execution
Fixpoint check (P: assertion) (BR: list assertion) (c: stmt) (x’: positive)

(cont: assertion → positive → bool) : bool :=
if incon P then true
else match c with
| Sskip ⇒ cont P x’
| Sassert Q ⇒ oracle (Entailment P Q) && cont Q x’
| Sassign x (Evar i) ⇒

match P with Assertion Π Σ ⇒
let P’:=Assertion(Eqv (Var x) (subst expr x (Var x’) (Var i)) :: subst pures x (Var x’) Π)

(subst spaces x (Var x’) Σ)
in cont P’ (Psucc x’)

end
| Sassign x (Eload Mint32 (Ebinop Cminor.Oadd (Evar i) (Eval (Vint ofs)))) ⇒

Int.eq ofs (Int.repr 4) &&
getSome (isolate (Var i) P x’) (fun l ⇒

forallb(fun P’ ⇒
match P’ with
| Assertion Π ′ (Next f :: Σ′) ⇒

cont (Assertion (Eqv (Var x) (subst expr x (Var (Psucc x’)) f)
:: subst pures x (Var (Psucc x’)) Π ′)

(subst spaces x (Var (Psucc x’)) (Next (Var i) f ::Σ′)))
(Psucc (Psucc x’))

| ⇒ false
end)

l)
| Sstore Mint32 (Ebinop Cminor.Oadd e1 (Eval (Vint ofs))) e2 ⇒

Int.eq ofs (Int.repr 4) &&
getSome (Cexpr2expr e1) (fun e1’ ⇒ getSome (Cexpr2expr e2) (fun e2’ ⇒
getSome (isolate e1’ P x’) (fun l ⇒
forallb(fun P’ ⇒

match P’ with
| Assertion Π ′ (Next f :: Σ′) ⇒

cont (Assertion Π ′ (Next e1’ e2’ :: Σ′)) (Psucc x’)
| ⇒ false
end)

l)))
| Sexit n ⇒ oracle (Entailment P (nth n BR false assertion))
| Sblock (Sloop (Sblock (Sifthenelse e c1 c2))) ⇒ (∗ while loop! ∗)

Cexpr2assertions e P (fun P1 P2 ⇒
check P1 (P::P2::BR) c1 x’ (fun R y’ ⇒ false) &&
check P2 (P::P2::BR) c2 x’ (fun R y’ ⇒ false) &&
cont P2 x’)

| Sifthenelse e c1 c2 ⇒
Cexpr2assertions e P (fun P1 P2 ⇒

check P1 BR c1 x’ cont && check P2 BR c2 x’ cont)
| Sseq c1 c2 ⇒ check P BR c1 x’ (fun P’ y’ ⇒ check P’ BR c2 y’ cont)
| ⇒ false

end.

11

Symbolic execution is flow-sensitive, and when interpreting an if statement, “knows”
in the then clause that the condition was true, and in the else clause that the condition
was false. For this purpose we define a function Cexpr2assertions e a f that takes C-
minor expression e and assertion a, and generates two new assertions equivalent (more
or less) to e ∧ a and ∼e ∧ a, and applies the continuation f to both of these assertions.
We write “more or less” because e ∧ a is actually an illegitimate mixture of two dif-
ferent syntaxes; e must be properly translated into the assertion syntax, which is the
purpose of Cexpr2assertions.

Symbolic execution relies on functions subst expr x e e’, subst pures x e Π, and
subst spaces x e Σ that substitute expression e for the variable x in (respectively) an
expression e’, a pure term Π , or a space term Σ.

Smallfoot symbolic execution uses a restricted form of assertion without disjunc-
tion. Therefore when a disjunction would normally be needed, Smallfoot does multiple
symbolic executions over the same commands. For example, for

(if e then c1 else c2); c3; c4; assert Q

with precondition P, Smallfoot executes the commands c1;c3;c4 with precondition
e ∧ P and then executes c2;c3;c4 with precondition ∼e ∧ P. Because Berdine et al.’s
original Smallfoot used only simple “if and while” control flow, this re-execution was
easy to express.

C minor has a notion of nonlocal loop exit; that is, one can exit from any number
of nested blocks (such as loops, loop bodies, or switch statements). One branch of an
if statement might exit, while the other might continue normally. To handle this notion,
the parameters of the check function include not only a precondition P but a break-
condition list BR that gives exit-postconditions for all possible exit labels.

In order to handle re-execution mixed with multiple-level exit, we write the sym-
bolic execution function in continuation-passing style. The argument cont is the check
function’s continuation. Once check has computed the postcondition Q for a given state-
ment, it calls cont with Q. If it needs to call cont more than once, it may do so. For
example, in the clause for Sifthenelse notice that cont is passed to two different recur-
sive calls to check, each of which will perhaps call cont. Or perhaps not; the symbolic
execution of Sexit n (to break out of n nested blocks) does not call cont at all, but looks
up the nth item in BR.

The miracle of termination. In Coq, a Fixpoint function must have a structurally in-
ductive parameter, such that in every recursive call the actual parameter is a substruc-
ture of the formal parameter. Here the structural parameter is the statement c. Most of
the recursive calls are buried in continuations (lambda-expressions passed to the cont
parameter)—and may not actually occur until much later, inside other calls to check.
The miracle is that Coq still recognizes this function as structurally recursive.

10 Ghost variables

A variable mentioned in an assertion but not in the program is a ghost variable. In a
Hoare logic with ghost variables, one has rules capable of proving such derivations as,

12

{a = x} a← a + 1 {a = x + 1}
{a = x− 1} a← a + 1 {a = x}

That is, taking advantage of the fact that x is not free in the command a := a + 1,
substitute for x in both the pre- and postcondition.

Our underlying Hoare logic does not handle ghost variables directly. We could add
such a rule, as it is provable from the underlying operational model of C minor. But
instead we find that our Concurrent Separation Logic is expressive enough to derive a
new Separation Logic with a ghost-variable rule; its rules are proved sound as derived
lemmas from the underlying rules. In the new logic, we add a separate namespace of
logical variables (or ghost variables) visible to semantic assertions but not to ordinary
commands. (Also, the underlying Separation Logic has variables-as-resources [5], but
the top layer has a conventional (nonresource) treatment of variables; the underlying
layer has fractional ownership shares [9], but the top layer is a conventional all-or-
nothing separation logic.)

The Smallfoot algorithm would like to think that there’s just one namespace of vari-
ables, so our syntactic separation logic (Section 3) has just one namespace. Let the
variable ghost be the first one beyond the highest-numbered variabled used in the pro-
gram. In our interpretation of Hoare triples during symbolic execution, all the variables
beyond ghost in the syntactic Hoare logic will be interpreted as logical variables.

Then we do some predicate translation, as follows. Let P be a predicate on states.
We define the ghostly denotation of P as a predicate on worlds:

[[P]]ghost = λw. P (State (mix envs 1 ghost (w rho w) (w aux w)) (w m w))

where mix envs lo hi ρ a is the environment that consults the “real” local-variable envi-
ronment ρ on variables lo ≤ i < hi, otherwise consults the ghost environment a.

At the start of the symbolic execution, the check0 function computes the ghost
boundary x for the given program by taking the max of all variable names in use:

Definition check0 (P: assertion) (c: stmt) (Q: assertion) : bool :=
let x := Pmax (Pmax (freshmax assertion P) (freshmax stmt c)) (freshmax assertion Q)
in check P nil c x (fun Q’ ⇒ oracle (Entailment Q’ Q)).

11 Soundness of symbolic execution

Theorem check sound: ∀G P c Q,
check0 P c Q = true →
semax G (assertion2wpred P) (erase stmt c) (RET1 (assertion2wpred Q)).

Theorem [check sound]. If the symbolic executor checks a Hoare triple (check0 P c Q)
then that triple is semantically sound, according to our axiomatic semantics semax.
Since check0 takes syntactic assertions and semax takes semantic assertions, in the
statement of this theorem we must do world-to-state translations and take assertion-
denotations, which is what assertion2wpred does.

13

Proof. By induction on the height of commands, using the following induction scheme.

Definition check sound scheme (c: stmt) :=
∀ ghost G P BR x cont
(GHOST: Zpos ghost <= Zpos x)
(H: check P BR c x cont = true)
(FRESHc: fresh freshmax stmt c ghost)
(FRESHP: fresh freshmax assertion P x)
(FRESHBR: fresh (freshmax list freshmax assertion) BR x),
semax G [[assertion denote P]]ghost (erase stmt c)

(RET [[cont assert x cont]]ghost [[map assertion denote BR]]ghost).

Lemma check sound helper: ∀ n c, (height c < n) → check sound scheme c.

We could almost do the induction directly on the structure of commands, except for one
case involving C minor’s block command.

The most difficult and annoying issues in the proof involve the treatment of fresh
variables, especially in the case where some postcondition will hold provided that the
fresh variable has an appropriate value.

The treatment of the continuation argument of the check function is one of the inter-
esting parts of the proof. By the time symbolic execution calls cont with postcondition
Q and a fresh variable x, that means variables <x may be used in Q. The semantic mean-
ing of this cont function is the disjunction of all the arguments Q for which cont could
return true, but the instantiation of fresh variables must also be taken into account, as
follows:

Definition agree except range (lo hi: var) (σ σ′: state) : Prop :=
match σ, σ′ with State s h , State s’ h’ ⇒
(∀ x, lo <= x < hi ∨ env get s (Some x) = env get s (Some x)) ∧ h = h’ end.

Definition existsvs (lo hi: var) (P: spred) : spred :=
fun σ ⇒ ∃σ′, agree except range lo hi σ σ′ ∧ P σ′.

Definition cont assert (lo: positive) (cont: assertion → var → bool) : spred :=
fun σ ⇒ ∃ (Q : assertion) (hi: var),

cont Q hi = true ∧ lo <= hi ∧ fresh freshmax assertion Q hi
∧ existsvs lo hi (assertion denote Q) σ.

12 Conclusion

Yang et al. [16] improve on Smallfoot with a symbolic join operator t† that reduces or
eliminates the need to symbolically re-execute the same statements. The bi-abduction
algorithm infers frames and anti-frames for function calls [7]. Both t† and bi-abduction
should be implementable and provable in Coq; even if not, an unverified static analyzer
using them can generate annotations checkable by Smallfoot (and the extra t†-joined
annotations would avoid symbolic re-execution in Smallfoot).

The SLAyer program analysis [4] infers loop invariants using external theorem
provers; at this scale of software we might skip proving SLAyer correct, and just have
it generate assertions checkable by our proved-correct tool.

14

Our implementation and verification is not much more than just competent engi-
neering. Computer Science has reached the point where one can take a result from the
literature, use conventional functional programming to write a purely functional pro-
gram, and then use Coq or Isabelle (etc.) to prove correctness. The proofs were accom-
plished by the expedient of having a reasonably competent Coq hacker (the author) slog
away in the tactical theorem prover for a few weeks; the paramodulation implementa-
tion and proofs are the work of Gordon Stewart, Lennart Beringer, and the author.

The soundness proofs are complete except for one issue: our C minor Hoare logic
requires for the command M[p]:=q that q be an initialized variable; neither the original
Smallfoot nor our implementation tracks initialized variables, but this would be trivial
to add and prove sound.

Component Program Lines Proof Lines
Paramodulation 1096 ∼4000
Isolate/exorcize 125 798
Symbolic execution 149 3606

We will not report performance benchmarks in this paper, as they depend critically
on the performance of the entailment oracle (paramodulation), and our implementa-
tion of paramodulation is not yet tuned. However, the check function—when extracted
to Caml—is about as clean and efficient as one could imagine an implementation of
Smallfoot to be in any language, and even our preliminary untuned implementation of
paramodulation is competitive with Smallfoot on Navarro’s benchmark suite [11].

Here we proved Smallfoot sound w.r.t. a separation logic; the deeper and more diffi-
cult scientific results are in the soundness of that logic w.r.t. an optimizing compiler [1].
That logic is very highly expressive, with many features (concurrency, impredicativity,
indirection) that are entirely unneeded by the Smallfoot soundness proof. But if static
analyzers such as this one are to be connected to other automatic or semiautomatic pro-
gram analyses and program-proof systems, it would be helpful to have them all proved
sound w.r.t. the same logic—hence the desire for “expressiveness overkill” in the logic.

Furthermore, there are difficult results in the specification of optimizing compil-
ers for thread-concurrent languages (such as C with Pthreads) or for programs that do
shared-memory interaction with an operating system—and in the connection of these
specifications to the Hoare logic [8]. But having all that infrastructure in place means
that our soundness result is not just “if the shape checker says true then there’s a Sep-
aration Logic proof;” it means that and “if there’s a Separation Logic proof then the
assembly code that results from the optimizing compilation in CompCert behaves ac-
cording to the specification checked by the shape checker.” Connecting all the compo-
nents end-to-end gives a much more valuable result.

Acknowledgments. This research was supported in part by the Air Force Office of Scientific
Research (grant FA9550-09-1-0138) and the National Science Foundation (grant CNS-0910448).

References

1. Andrew Appel. Verified software toolchain. In Gilles Barthe, editor, ESOP’11: European
Symposium on Programming, volume 6602 of LNCS, pages 1–17. Springer, 2011.

15

2. Josh Berdine, Cristiano Calcagno, and Peter OHearn. Symbolic execution with separation
logic. In APLAS’05, volume 3780 of LNCS, pages 52–68. Springer, 2005.

3. Josh Berdine, Cristiano Calcagno, and Peter OHearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In F. de Boer et al., editor, Formal Methods for
Components and Objects, volume 4111 of LNCS, pages 115–137. Springer, 2006.

4. Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-level
code. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification,
volume 6806 of LNCS, pages 178–183. Springer, 2011.

5. Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as resource in separation
logic. Electronic Notes in Theoretical Computer Science, 155:247 – 276, 2006. Proc. 21st
Annual Conf. on Mathematical Foundations of Programming Semantics (MFPS XXI).

6. David Cachera and David Pichardie. Comparing techniques for certified static analysis.
In Proc. 1st NASA Formal Methods Symposium (NFM’09), pages 111–115. NASA Ames
Research Center, 2009.

7. Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. In POPL ’09: Proc. 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 289–300. ACM, 2009.

8. Robert Dockins and Andrew W. Appel. Behavioral refinement for unsafe languages. sub-
mitted for publication, 2011.

9. Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras
and share accounting. In 7th Asian Symposium on Programming Languages and Systems
(APLAS 2009), pages 161–177, December 2009.

10. Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

11. Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition
calculus = heap theorem prover. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’11, pages 556–566, New York,
NY, USA, 2011. ACM.

12. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In J. A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7,
pages 371–443. Elsevier, 2001.

13. Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified heap theorem prover by
paramodulation. in preparation, 2011.

14. Thomas Tuerk. A Separation Logic Framework for HOL. PhD thesis, Univ. of Cambridge,
June 2011.

15. Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof checkers with small
witnesses. In 5th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, August 2003.

16. Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Diste-
fano, and Peter OHearn. Scalable shape analysis for systems code. In CAV’08: Computer
Aided Verification, volume 5123 of LNCS, pages 385–398. Springer, 2008.

16

