
J. Functional Programming 1 (1): 1–000, January 1993 c© 1993 Cambridge University Press 1

An Empirical and Analytic Study of
Stack vs. Heap Cost

for Languages with Closures

ANDREW W. APPEL
Dept. of Computer Science, Princeton University, Princeton NJ 08544-2087, U.S.A. 1

ZHONG SHAO
Dept. of Computer Science, Yale University, New Haven CT 06520-8285, U.S.A. 2

Abstract

We present a comprehensive analysis of all the components of creation, access, and disposal
of heap-allocated and stack-allocated activation records. Among our results are:

• Although stack frames are known to have a better cache read-miss rate than heap
frames, our simple analytical model (backed up by simulation results) shows that the
difference is too trivial to matter.

• The cache write-miss rate of heap frames is very high; we show that a variety of
miss-handling strategies (exemplified by specific modern machines) can give good per-
formance, but not all can.

• Stacks restrict the flexibility of closure representations (for higher-order functions) in
important (and costly) ways.

• The extra load placed on the garbage collector by heap-allocated frames is small.
• The demands of modern programming languages make stacks complicated to imple-

ment efficiently and correctly.

Overall, the execution cost of stack-allocated and heap-allocated frames is similar; but
heap frames are simpler to implement and allow very efficient first-class continuations.

1 Garbage-collected frames

In a programming language implementation that uses garbage collection, all pro-

cedure activation records (frames) can be allocated on the heap. This is convenient

for higher-order languages (Scheme, ML, etc.) whose “closures” can have indefinite

extent, and it is even more convenient for languages with first-class continuations.

One might think that it would be expensive to allocate, at every procedure call,

heap storage that becomes garbage on return. But not necessarily (Appel, 1987):
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2 E-mail: shao@cs.yale.edu. This work was done while the author was at Princeton

University, supported in part by NSF Grant CCR-9200790.
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Stack Quasi-
Component Heap Stack Chunks Stack see:

(see §9) (see §9)

Creation 3.1 1.0 3.0 3.0 §2
Frame pointers 2.0 0.0 0.0 2.0 §3
Copying and sharing 0.0 3.4 3.4 3.4 §4
Cache write misses 0.0 or 5.3 0.0 0.0 0.0 §6.1
Cache read misses 1.0 0.0 0.0 0.0 §6.2
Disposal (pop) 1.4 1.0 1.0 4.0 §7
Total Cost 7.5 or 12.8 5.4 7.4 12.4

Call/cc O(1) O(N) O(X) O(1) §9

Implementation easy hard hard hard §10

The cost for each component of frame creation, access, and disposal for heap-
allocated and stack-allocated frames is shown, measured in instructions per frame
(tail recursions and leaf procedures do not make frames). The accompanying text
explains why we count instructions instead of cycles. The numbers for cache write
misses depend critically on the design of the machine’s primary cache; we show
the cost of two alternatives. The last column has references to the section number
(in this paper) of the explanation of each component. In the last row, N is the
stack depth; X is the size of one stack chunk.

Fig. 1. Cost breakdown of different frame allocation strategies

modern generational garbage-collection algorithms (Ungar, 1986) can reclaim dead

frames efficiently, as cheap as the one-instruction cost to pop the stack.

But there are other costs involved in creating, accessing, and destroying activation

records—whether on a heap or a stack. These costs are summarized in Figure 1,

and explained and analyzed in the remainder of the paper.

These numbers depend on many assumptions. The most critical assumptions are

these:

• The runtime system in question has static scope, higher order functions, and

garbage collection. The only question being investigated is whether there is an

activation-record stack in addition to the garbage collection of other objects.

• The compiler and garbage collector are required to be “safe for space com-

plexity;” that is, statically dead pointers (in the dataflow sense) do not keep

objects live. (See Section 5.)

• There are few side effects in compiled programs, so that generational garbage

collection will be efficient.

These assumptions, and others, will be explained in the rest of the paper.

Figure 1 clearly shows that there are three important criteria in the choice be-

tween a stack or heap representation:

1. The write-miss policy of the machine’s primary cache (discussed in Sec-
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Program Lines Description

Boyer 919 Theorem-prover benchmark.
Knuth-B 655 Knuth-Bendix completion.
Lexgen 1185 Lexical-analyzer generator.
Life 148 Game of Life, using lists.
YACC 7432 LALR parser generator.
Simple 990 Spherical fluid-dynamics.

VLIW 3658 VLIW instruction scheduler.

Fig. 2. General Information about the Benchmark Programs

tion 6.1). On machines with fetch-on-write or write-around write-miss policies,

heap-allocated frames are significantly more expensive.

2. Stacks are harder to implement without space leaks, as explained in Sec-

tion 10.

3. If the programming language supports call-with-current-continuation (call/cc)—

a primitive often used to support tasking, coroutines, exceptions, and so on—

stacks have a much higher cost (see Section 9).

The (perhaps) startling result is that heap-allocated frames have almost the same

cost as stack frames.

Finally, we point out that the absolute differences are small: two instructions per

frame is less than 2% of total execution cost, as can be calculated from Figure 4.

We count instructions rather than cycles. In general, load and store instructions

for frame management can usually be scheduled to avoid stalls (they are rarely in

the critical path of a loop, for example). The branch instructions for heap-limit

testing will be at least 99% predictable—because hundreds frames are allocated

(heap limit not exceeded) between garbage collections (heap limit exceeded); so

branches for heap-limit tests will cause almost no stalls. Thus, instruction counts,

plus a separate accounting of the cache misses, form a suitable cost model.

2 Creation

To allocate a stack frame, the program must add a constant to the stack pointer.

This takes one instruction. It is also necessary to check for stack overflow; but since

overflow is so rare, this can usually be done at no cost using an inaccessible virtual

memory page.

Allocating a heap frame is more complicated:

1. Heap overflow must be checked. As explained by Appel and Li (1991), and

contrary to the silly ideas of Appel (1989), this should not be done by a virtual

memory fault: (1) operating-system fault handling is too expensive, (2) heap

overflow is unrelated to locality of reference, and (3) the technique is almost

impossible on machines without precise interrupts.

Thus, a comparison and a conditional branch are required; by keeping the

free-space pointer and the limit pointer in registers, this takes about two in-

structions. However, many of the frame allocations occur in the same extended
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Program Limit Checks
per Frame

Boyer .717
Knuth-B .783
Lexgen .864
Life .456
YACC .631
Simple .665
VLIW .695

Average .687

Many frame allocations are in the same (extended) basic block as other non-frame
allocations. In these cases the heap limit check would have to be done anyway, and
should not be charged to the frame allocation. This table shows the proportion of
frame allocations that are not in the same block as a non-frame allocation. The
results shown are from measurements of ML benchmark programs (see Figure 2)
as compiled by the Standard ML of New Jersey (Appel and MacQueen, 1991)
compiler.

Fig. 3. Shared limit checks

basic block1 as other (non-frame) allocations, which would require limit checks

anyhow (see Figure 3). The actual cost is therefore 2 · 0.687 = 1.374.

2. The free-space pointer must be incremented. This costs one instruction. But

when the frame allocation is in the same basic block as another allocation,

the increment can be shared. So the cost is 0.687 instructions per frame, on

the average.

3. A descriptor word must be written to the frame, so the garbage collector

can understand it. However, the frame usually contains a return address; the

garbage collector can have a mapping of return addresses to descriptors, so

frame need not explicitly contain the descriptor.2

4. The free-space pointer must be copied to the frame pointer; this takes one

move instruction.

The total cost is about 3.1 instructions, on the average.

3 Frame pointers

When a stack frame is popped, the frame pointer must be set back to the caller’s

frame. Some implementations of stack frames have put a copy of the (previous)

frame pointer in each frame, and this is fetched back upon function return. But for

contiguous stack frames of known size, this is clearly unnecessary; the stack pointer

itself can be used as the frame pointer, and the pop can just be a subtraction from

the stack pointer. This is the common modern practice.

1 An extended basic block has one entry point, followed by a tree of control flow with
several exits.

2 Actually, SML/NJ does write an explicit descriptor to each frame, for simplicity.
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But when frames are not contiguous (e.g., when they are heap-allocated), then

each frame must contain a pointer to the caller’s frame. One instruction will be

necessary to store the (previous) frame pointer into a new frame; and one instruction

will be necessary to fetch it back.

Thus, heap-allocated frames have a 2-instruction cost, per frame, for frame pointer

manipulation; stack-allocated frames incur no such cost.

Other registers

Efficient heap allocation uses a free-space pointer and a free-space limit which should

be kept in registers.3 However, the cost of reserving these registers should not be

charged to heap allocation of frames, because we are assuming that the imple-

mentation in question already has garbage collection (presumably with efficient

allocation) for other purposes (lists and closures, for example).

4 Copying and sharing

A language (such as Scheme, ML, Smalltalk) with higher-order functions needs

closures to hold the free variables of functions that have been created but not yet

called. If one function’s free variables overlap with another’s, then one closure might

point to another (which saves the expense of copying the contents).

So there are two kinds of objects: activation records, whose lifetimes have last-in

first-out behavior; and higher-order function closures, which have indefinite extent.

The former can be stack allocated (or heap allocated), but the latter must be

allocated on a garbage-collected heap. Furthermore, stack frames may point at heap

closures, but heap closures may never point at stack frames, otherwise there will be

dangling pointers.

This means that if the compiler wants to build a closure containing free variables

(x, y, z) which are available in a stack frame, all three variables must be copied into

the closure; the closure cannot just point to the stack frame.

But if all activation records are heap-allocated, then closures may point at them.

This flexibility allows the closure analysis phase of a good compiler to choose much

better (smaller, shallower) representations for closures, with more sharing and less

copying (Shao and Appel, 1994).

The restriction that heaps cannot point to stacks must be counted as a “cost” of

using stack-allocated frames. To quantify this cost, we measured two versions of the

Standard ML of New Jersey compiler (Appel and MacQueen, 1991; Appel, 1992)

outfitted with our recently improved closure-representation analysis phase (Shao

and Appel, 1994).

The version shown as Ordinary Heap in Figure 4, allocates all frames and closures

3 Some implementations use a BIBOP (BIg Bag Of Pages (Hanson, 1980)) scheme that
allocates each kind of object in a different contiguous space, so that only one g.c.-
descriptor is required per space, instead of per object. This requires a free-space pointer
and a limit pointer per space.
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Ordi- “Stack- Extra
nary like” Stack Instrs Instrs

Program Heap Heap Frames per per
i/103 i/103 f/103 Frame Frame

Boyer 61966 65770 662 94 5.75
Knuth-B 212702 222376 3465 61 2.79
Lexgen 310522 316813 1873 166 3.36
Life 48016 48437 201 239 2.09
YACC 114687 119065 1187 97 3.69
Simple 469543 492126 5516 85 4.09
VLIW 285370 292474 3274 87 2.17

Average 119 3.42

The “Stacklike Heap” allocates all frames on the heap, but is careful to divide
into two kinds: “stack” frames, which can point only to other “stack” frames;
and “heap” frames, which can point to either kind. This lack of flexibility has a
significant cost, as shown in the table. The first two columns show thousands of
instructions executed; the third column shows thousands of frames created.
We count frames rather than calls because tail calls and leaf procedures do not
make frames (stack or heap).

Fig. 4. Copying/sharing cost

Heap Avg.
Stack Frame Other Frame

Program Frames Alloc. Alloc. F
F+O

Size
f/103 words/106 words/106 words

Boyer 662 3.17 2.61 0.55 4.8
Knuth-B 3465 12.92 11.55 0.53 3.7
Lexgen 1873 6.90 1.87 0.79 3.7
Life 201 0.63 0.99 0.39 3.1
YACC 1187 5.92 4.16 0.59 5.0
Simple 5516 25.23 13.09 0.66 4.6
VLIW 3274 15.72 15.90 0.50 4.8

Average 0.57 4.2

This table shows the amount of frame allocation, the amount of non-frame allocation,
and the proportion of allocation due to heap frames for the heap-based compiler. The
last column shows the average frame size, calculated from the previous columns.
Even though the number of frames used by the heap-based compiler is slightly less than
the number used by the stack-based compiler (because of improved copying/sharing)
we use the stack-frame count for calculation, to make comparison between the two
compilers more meaningful.

Fig. 5. Heap allocation data.
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on the heap. The “Stacklike Heap” obeys the restriction that closures cannot point

to frames (though frames can point to closures). “Frames” are those objects with

LIFO lifetimes. But “Stacklike heap” proceeds to allocate frames and closures on

the heap; it does not use a stack, and does not gain any advantages of using a stack.

The difference in execution time between the two versions is attributable only to

the slightly more cumbersome representations that are imposed by the “closures

cannot point to frames” restriction. The frames themselves are not much bigger,

but the closures are: since they can’t point to the frames, data from frames must

be copied into the closures.

Some programs suffer more from this than others, but on the average the differ-

ence is quite significant: about 3.4 extra instructions are executed per every frame

creation because of this restriction. Perhaps our lambda-lifting (closure analysis)

algorithm is better tuned for heaps than it is for stacks, and this “copying vs.

sharing” cost is overstated; it is difficult to tell.

5 Space safety

In any language, it is common for the programmer to have variables in scope that

are “dead;” that is, their current values will never again be needed. In a garbage-

collected language, the garbage collector need not use such variables as “roots” of

live data. Several implementors have independently discovered that this is really

important: if the collector traverses too many dead variables, the memory use of

the program can increase by a large factor (Baker, 1976; Chase, 1988; Runciman

and Wakeling, 1993; Appel, 1992; Jones, 1992).

In fact, a collector that starts from only the (statically determinable) live variables

can often keep asymptotically less data live than a less-careful collector; that is, one

system might use O(N) space where another uses O(N2) space, where N is the

size of the input. This theorem, examples, and a description of compiler techniques

that are “safe for space complexity” are described by Appel (1992).

An illustrative example is shown in Figure 6. Closures are created function defi-

nitions (at the fun keyword). The function f returns as its result a nested function

g, which returns a nested function h, which returns a nested function i and a value

u computed by selecting the head of the list v. The function big(n) makes a list of

length n, and loop makes a list of n closures over the function h.

With flat closures,4 each evaluation of f(. . .)() yields a closure s for h that con-

tains just a few integers u, w, x, y, and z; the final result (i.e., result) contains N

copies of the closure s for h, thus it uses at most O(N) space.

With a common implementation of closures, using static links that point to ac-

tivation records of outer functions, each closure s for h contains a pointer to the

closure for g, which contains a list v of size N . Since the final result keeps N clo-

sures for different instantiations of h simultaneously—each with a different (large)

value for the variable v—it requires O(N2) space consumption instead of O(N).

4 A flat closure (Cardelli, 1984) is a record that holds only the free variables needed by
the function.
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fun f(v,w,x,y,z) =

let fun g() =

let val u = hd(v)

fun h() =

let fun i() = w+x+y+z+3

in (i,u)

end

in h

end

in g

end

fun big(n) = if n<1 then [0] else n :: big(n-1)

fun loop (n,res) =

if n<1 then res

else (let val s = f(big(N),0,0,0,0)()

in loop(n-1,s::res)

end)

val result = loop(N,[])

Fig. 6. An illustration of space-complexity traps

This space leak is caused by inappropriately retaining some “dead” objects (v)

that should be garbage collected earlier.

Such space leaks are unacceptable. Closure (and frame) representations must

not cause space leaks. Standard ML of New Jersey, for example, avoids any clo-

sure representation or compiler “optimization” that could cause such a space leak

(Appel, 1992; Shao and Appel, 1994).

Assumption: The results of Figure 4 are based on the assumption that the

compiler must be “safe for space complexity,” which does put some restrictions on

both the heap-allocated and stack-allocated frames.

Complicated descriptors

It is possible to allow dead variables in frames and closures, if the garbage collector

knows they are dead. This can be accomplished using special descriptors, which

would reduce the “copying and sharing” penalty for stack frames.

For example, in the Chalmers Lazy ML compiler (Augustsson, 1989) or the Gal-

lium compiler (Leroy, 1992), associated with each return address is a descriptor

telling which variables in the caller’s frame are live after the return5. But this is not

sufficient; heap closures still cannot point to stack frames. A fully flexible system

must be able to let the stack frame point to a heap closure that contains several

5 The bibliographic citations are merely pro forma; the author of neither paper has ac-
tually described this technique in print.
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variables, some of which may die before the frame itself. The return-address de-

scriptor would need to indicate not only which variables in the frame are dead, but

which live variables point to records in which some of the fields are dead. This is

complicated to implement, and we do not know of anyone who has done it.

6 Locality of reference

Stacks have excellent locality of reference: they are (almost) always moving up and

down in a small region of memory, so access to the stack should (almost) always

hit the cache, no matter how small that cache is.

But heap-allocated frames are scattered throughout memory, so creating and

accessing them should cause more cache misses.

Since some machines these days have primary caches as small as 8k bytes, and

secondary caches with miss penalties as long as 100 cycles, this is a serious concern.

The analysis of cache behavior of garbage collected systems differs qualitatively

depending on the size of the cache.

Large Caches For large (e.g., secondary) caches, a generational garbage collection

algorithm (Ungar, 1986) can keep its youngest generation entirely within the cache

(Wilson, Lam, and Moher, 1992; Zorn, 1991). Only the (rare) objects that survive a

collection (or two) will be promoted into an older generation where they can cause

cache misses. The collector itself helps to improve the locality of reference of the

mutator. Thus, locality of reference in a large cache is basically a solved problem.

Furthermore, activation records die especially young. It will be extremely rare

for an activation record to be promoted to a higher generation (Stefanovic and

Moss, 1994). Since only the higher generations can cause cache misses6, heap-

allocated frames will (almost) never cause cache misses. Thus, while there may

be secondary cache misses in a garbage-collected system, these will be on the non-

frame objects (closures, records, etc.); the difference between stack-allocated and

heap-allocated frames will be insignificant.

John Reppy has recently made empirical measurements of a multigeneration col-

lector on a machine with a large (1MB) secondary cache. “The total CPU time

reaches a minimum [significantly less than with the collector described in the cur-

rent paper] when the allocation arena is the same size as the secondary cache.

This provides empirical evidence for the claim that sizing the allocation space to

fit into cache can improve performance.” (Reppy, 1994) Unfortunately, the mea-

surements in our current paper were made using the older two-generation collector

(Appel, 1989).

Small Caches For small (e.g., primary) caches whose size is less than 100 kbytes, it

is impractical to keep the youngest generation in the cache; doing so would cause

garbage collections to be too frequent, and this would be expensive.

6 This is a slight oversimplification.
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Let us consider locality in a small, primary cache. We assume that any cache

of only 8 kbytes will have only a 10-cycle miss penalty—because there are many

programs that cannot achieve a better than 90% hit rate in such a small cache,

and machine designers will be forced to make a small miss penalty for “balanced”

performance.

The essence of the locality argument against heap allocation is that stacks can

exploit a small primary cache, and heap-allocated frames cannot. Stacks should

have good locality even in a small cache. In a typical sequence of N procedure

calls, the stack pointer is expected to go up and down over the same log(N) frames,

re-using them over and over again. These frames should easily fit even in the smallest

cache. Heap-allocated frames can have good locality in a large cache, but no one

has analyzed locality in a small cache.

We will now demonstrate that heap-allocated frames have adequate locality of

reference in a small cache, if the read miss penalty is not too large and the write

miss penalty is zero.

6.1 Write misses

The Standard ML of New Jersey compiler (Appel and MacQueen, 1991) uses no

stack; all frames are allocated on the garbage-collected heap. If any system should

have poor cache locality, this is the one.

Diwan, Tarditi, and Moss (1994) simulated the memory-hierarchy performance

of SML/NJ on a DECstation 5000, and found two things:

• SML/NJ program executions have an astoundingly high write-miss ratio.

• SML/NJ programs are not much delayed by cache misses.

The reason these two statements are not inconsistent, they discovered, is that the

write-miss penalty on this machine is approximately zero—the write buffer can eas-

ily keep up with an enormous write miss rate.7 Read misses stall the processor—

which cannot continue computing until the data shows up—but write misses can

be handled by the write buffer while the CPU continues its work. Many mod-

ern machines have a zero write-miss penalty, especially for their primary caches

(Jouppi, 1993). Simulating machines with a high write-miss penalty, Diwan et al.

found that SML/NJ performs badly, as might be expected.

Thus: on machines with a zero write-miss penalty, the average cost per frame of

write misses is zero.

On machines with a nonzero write-miss penalty, the cost per frame is high. The

average number of cache write misses caused by the creation of a frame is the ratio

of frame size to cache line size (there is no fragmentation, because heap allocation

is sequential and contiguous). Assuming a cache line size of 8 words (for example),

and a frame size of 4.2 words (as in Figure 5), the number of write misses per frame

is about 0.53.

7 Reinhold (1994) makes similar observations about the interaction of garbage collection
and caches, though not for a compiler with heap-allocated frames.
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Thus, the cost of write misses shown in Figure 1 is either 0 (for zero write penalty)

or 5.3 (for 10-cycle write penalty). But see also Section 6.2.

They also found that write-allocate is important: on a write miss, the written data

should be put in the cache. But a cache line is usually larger than a single word;

on a write miss, “traditional” (fetch-on-write) caches read the rest of the line from

memory; this can cause write misses to be slow, and also causes unnecessary traffic

on the memory bus in the common case of sequential writes that will overwrite the

just-read data. The simulations of Diwan et al., and our analysis in Section 6.3,

both show that this policy is costly.

Heap allocation (in a system with copying garbage collection) consists of sequen-

tial writes to a large contiguous free region. Under such a discipline, there are

some equally good cache implementation strategies that will permit (or simulate)

write-allocate with zero write-miss penalty.

Sub-block placement: With sub-block placement (also called write-validate), a

write miss on one word will be written to the cache, and the rest of that

cache line will be marked as allocated but invalid. Thus, a write miss does

not require reading the rest of the written cache line from memory. Subsequent

(sequential) writes will fill the rest of the line.

One-word cache line: The DECstation 5000 has a cache-line size of one word,

but four lines are read on a miss (Diwan, Tarditi, and Moss, 1994). For some

applications this is better than sub-block placement, but for sequential writes

it is equally good. It is more expensive to implement, since it requires a full

tag (not just a valid bit) for each word. Diwan et al. found excellent memory-

subsystem performance for SML/NJ on this machine.

Cache-line zero instruction: On some machines (e.g., IBM R/S 6000 (Hardell

et al., 1990) and PowerPC (Allen and Becker, 1993)) a cache line (64 bytes)

can be allocated and zeroed with a special instruction. This avoids the write

miss, with a 0.687-instruction cost per frame.8

Cache-control hint: On the HP PA7100, a store instruction can have a cache-

control hint specifying that the block will be overwritten before being read;

this avoids the read if the write misses (Asprey et al., 1993). But these ma-

chines have very large primary caches anyway, so locality can be handled by

generational collection.

Smart write buffer: Instead of sub-block placement (which complicates the cache),

one might add a feature to the write buffer: write misses normally bypass the

cache, but if the write buffer accumulates a full cache line, this line is put

in the cache. For sequential writes this is as good as sub-block placement.

On a multiprocessor with cache coherence, this technique might be easier to

8 In detail: the allocation pointer is made always to point exactly 64 bytes ahead of
the next allocatable word. On each heap-limit check, a cache-line clear is performed.
This does not clear the line currently being stored into (which might overwrite a frame
recently allocated) but the line soon to be entered. Because the heap-limit check is often
shared with a non-frame allocation (see Figure 3), the average net cost per frame is only
0.687 instructions.
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implement than sub-block placement, because no cache line would ever be

dirty (but partially full) in two different caches.

Garbage-prefetch: On a machine with a no-write-allocate (write-around) cache,

write-allocate can be simulated (as long as read misses are nonblocking) by

fetching the cache line (with an ordinary read instruction) in advance of the

write (Appel, 1994). This technique works (providing a modest performance

enhancement) on the DEC Alpha 21064 (Digital Equipment Corp., 1992), for

example.

On any of these machines, heap-allocated data should not incur a write-miss penalty.

Assumption: Any small cache will have write-allocate and no write-miss latency

(or write-allocate can be emulated).

Indeed, this is not true of all machines: the VAX 11/780 and VAX 8800 do

write-around, bypassing the primary cache on write misses (causing subsequent

read misses); and most pre-1993 designs do fetch-on-write, stalling the processor

on a write miss (Jouppi, 1993). In fact, the bad performance of garbage-collected

systems on machines with a write-miss penalty is a good reason not to build such

machines.

Finally, note that a write-miss penalty on large caches is not particularly prob-

lematic; as explained above, generational garbage collection solves that problem.

The analysis in the rest of this section applies only to small caches.

6.2 Read misses: simulations

To see the effect of small caches on heap-allocated frames, we simulated several

“standard” SML benchmarks in two versions of the SML/NJ compiler: a Heap

version with heap-allocated frames, and a Stack version with stack-allocated frames.

The simulations counted read misses, write misses, and total instruction count of

SML programs compiled to the MIPS instruction set. Our simulations include the

instructions and cache misses of garbage collection.

Diwan et al. (1994) measured a heap-only ML system; Reinhold and Moss (1994)

measured a stack-frame Scheme system. In order to make a more direct comparison,

we measured stack frames vs. heap frames in the same ML system.

We simulated only the primary data cache. We simulated direct-mapped caches

of sizes ranging from 2 kbytes to 2 Mbytes, with a 32-byte line size. Most modern

machines have direct-mapped caches especially at the first level of the memory

hierarchy, so that tag comparison can be overlapped with further computations on

the value fetched (Hill, 1988).

Instead of a detailed cycle-level simulation, we use the approximation that each

cache miss stalls the instruction-execution pipeline for p cycles, where p = 10 is

the “miss penalty.” Many modern machines do not stall non-memory instructions

on a cache miss; for these machines our simulation will provide an upper bound on

cache delays, which is sufficient for our analysis.

We did not simulate a conventional, contiguous stack. Instead, we implemented

a free list of 8-word re-usable frames (a quasi-stack). Frames are popped by putting
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Simulations of benchmark programs(Appel, 1992) running in direct-mapped D-cache of
various sizes, with 10-cycle read miss penalty, no write miss penalty, and “infinite” I-
cache. Left-hand-side shows write-allocate cache with partial fill; right-hand-side shows
write-around cache. Vertical axis shows execution cycles in millions. Cycle count for stack
programs is reduced by 6× number of frames, to discount the 7-instruction quasi-stack
allocation/deallocation sequence. The heap version of the Yacc benchmark runs slower
than the stack version; this is because our (stupid) two-generation collector does one extra
major collection. A multi-generation collector would not fall into this trap. The VLIW
benchmark (stack version) suffers terribly from the “stack can’t point to heap” restriction.

Fig. 7. Write-allocate vs. write-around cache
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Fig. 8. Execution of T(7) in a 16-line cache. Every uptick (procedure call) is a write
miss; only the bold downticks (procedure returns) are read misses.

Fig. 9. Execution of T ′(6) in a 16-line cache. Only the bold downticks (procedure
returns) are read misses.

them back on a free list. This takes more instructions than conventional pushing

and popping, but should not cause more cache misses: programs will still go “up

and down” over the same tiny set of (noncontiguous) frames, and even a small cache

should be able to hold these frames along with other frequently used data.

Measurements of SML/NJ show that most frames are smaller than eight words

(see also Figure 5); we don’t load frames down with lots of useless overhead. When

larger frames are needed, our “stack” simulation simply links together enough 8-

word (32-byte) frames. Aggregate objects (arrays, records) are never kept in frames.

Free-list handling costs six instructions more than stack-pointer incrementing, so

we subtract this cost when presenting results of the simulation (Figure 7).

Our garbage collector “marks” any frame that survives a collection; marked

frames are not put back on the freelist upon procedure return. This enables our

stacks to work well with generational garbage collection and with first-class on-

tinuations. At a youngest-generation collection, the freelist is set to nil; after the

collection, new frames will be obtained from the heap (and, when freed, put back

on the freelist).

Using a free list of frames, there is a considerable cost to allocate and deallocate

a frame:

1. Test the freelist register.9

2. Set freelist register to the next free frame.

To deallocate,

3 Fetch the mark field.

4 Wait for fetch to finish.

9 If the freelist is empty, one must heap-allocate instead of taking from the freelist (the
heap-allocated frame will be deallocated back onto the freelist). But this case is so rare
that we won’t count it in the average cost.
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5 If marked, stop here (don’t put back on free list).

6 Store free list register into newly freed frame.

7 Set the free list register to point to this frame.

Thus, there is an overhead of seven “instructions” for stack allocation. But “or-

dinary, contiguous” stacks don’t have this seven-instruction penalty—there’s just

a single “pop” instruction. Therefore, we adjust the execution time of the Stack

version of the program by subtracting six cycles per frame.

Figure 7 shows the run times (after adjustment) of several benchmarks using Heap

and Stack frames, running in simulated caches of different sizes. We simulated a

write-allocate cache with partial fill, and also a write-around cache.

Jouppi (1993) simulated both kinds of cache for C programs without garbage

collection; Diwan et al. (1994) simulated both caches for (almost) purely heap-

allocating ML programs. By simulating both caches on stack and heap allocation

for the same programs, we can compare more straightforwardly.

The results are not too surprising: write-allocate is better on all programs than

write-around; and heap allocation is more sensitive to the cache policy than is stack

allocation.

Though there are many differences between the Heap and Stack implementations

that affect the run time, it is clear from the shapes of the curves that the cache

locality behavior of heap and stack in a write-allocate cache is almost identical.

(That is, if the two curves were translated vertically so that the large-cache points

coincide, then the rest of the curves would be extremely close.)

The simulation measurements (Figure 7) show a cache-read-miss cost (for 16k

write-allocate cache) of 1.0 cycles per frame. We calculate this by averaging

((D16k,heap −D2M,heap) − (D16k,stack −D2M,stack)) ∗ P/F

over all the benchmarks, where Dc,x is the number of read misses in data cache size

c with frame strategy x, P = 10 is the miss penalty, and F is the number of frames

created (taken from Figure 4).

A nonzero write miss penalty is usually found only on processors that fetch on

write. Such processors will then allocate the line in the cache, so the average read

miss cost will be low (as described in the previous paragraph). For a 10-cycle miss

penalty, the write-miss cost per frame (as explained in Section 6.1) should be about

5.3 cycles. When the cost of read misses for a write-allocate cache is included, the

total cost of read+write misses is 6.3 cycles per frame.

Write-around caches do not need to stall the processor on a write miss, at least

for the well behaved sequential writes performed by a heap allocator. Thus, the

write miss cost will be zero; but since (almost) every newly written cache line will

soon be fetched (Stefanovic and Moss, 1994; Reinhold, 1994), we should expect the

read-miss cost per frame for write-around caches to be similar to the cost per frame

for fetch-on-write caches. For a 16k write-around cache, the cost of read misses

(calculated from the simulations) is 5.1 cycles per frame—somewhat smaller than

the 6.3-cycle read+write miss cost for fetch-on-write caches. We have not shown
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write-around caches in Figure 1, but their total cost will be similar (though slightly

smaller, for heap frames) to that of fetch-on-write caches.

Clearly, the small size of frames in SML/NJ is important in achieving good

performance, especially for fetch-on-write or write-around caches.

6.3 Read misses: analytically

Stacks continually re-use recently-used frames for new purposes; heap-allocated

frames “thrash” through the cache in sequential order. How could it possibly be

the case that—in a write-validate cache—they both have equally good locality of

reference?

Since the simulations give us no analytical understanding of what is really hap-

pening, we will focus on three “typical” patterns of procedure call and return:

1. Tail recursion: each call re-uses the same frame, no allocation is performed.

2. Deep single recursion (as for the recursive factorial function): a deep sequence

of calls followed by the returns from all of them.

3. “Towers of Hanoi:” lots of short up-and-down motion, but every Nth call

briefly returns to depth log(N). This is shown graphically in figures 8 and 9.

We claim that these patterns represent “both extremes and the middle” of all

procedure-call patterns. Furthermore, the Towers of Hanoi should be a worst case

for heaps (as compared to stacks)—because the stack implementation has excellent

locality—so its analysis will be instructive.

We assume that the cache is direct-mapped10 and can hold C frames, with a line

size equal to the size of a frame (different line sizes would affect our results by a

constant factor). We assume that heap-allocated frames are allocated at sequential

addresses. We assume that no heap allocations or memory accesses are performed,

other than for activation records.

Then tail recursion is easy to analyze: No new frames are allocated by either the

stack or heap methods. The miss rate for both is zero.

Deep single recursion is bad for both stacks and heaps: If the recursion is depth

N , then there will be no read misses on any of the calls; the first C returns will hit,

and the rest of the returns will have read misses. The miss ratio approaches 1 as N

becomes much larger than C.

Towers of Hanoi should be ideal to demonstrate the better locality of reference

of stacks in a small cache. Let us analyze its cache behavior carefully.

procedure T(d) = if d>1 then { T(d-1); T(d-1) }

Executing T (d) requires 2d − 1 procedure calls. If d ≤ C, all the stack frames fit

in the cache, so the read-miss rate is zero (we will ignore write misses). If d > C,

then there will be a miss on every return from a call to T (e), where e > C. The

number of such returns is 2d−C − 1. The miss rate is the number of misses divided

10 The results for these three simple programs would be the same for set-associative caches
with LRU replacement in each set.
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by the number of calls, or approximately 2−C. For an 8-kbyte cache, C = 256, so

the miss rate for stacks is indeed negligible.

Now consider executing T (d) with heap-allocated frames. The frames are allo-

cated sequentially. If a clock counts one tick for each procedure call, then at time

t the frame created at time t − C will be removed from the cache by a newly al-

located frame. Therefore, exactly those procedures that return more than C time

units after they are entered will cause a cache miss upon return to their callers.

Executing T (d) requires 2d − 1 calls, of which only 2d−log2 C take more than

C time units to execute. Thus, the amortized number of misses per call is about

2− log2 C , that is, one miss every C calls.

Figure 8 illustrates T (7) running in a tiny cache (C = 16). The cache misses are

clustered at intervals of 2C returns, but there are an average of 2 misses in each

cluster.

Figure 9 shows a more traditional Towers of Hanoi, that calls print("move disk

d") at each step.

In a 16k cache—which can hold 512 thirty-two-byte frames—the stack version

will have one miss every 2512 calls, but the heap version will have one miss every

512 calls. Assuming that the primary cache miss (with secondary cache hit) costs

10 cycles, this is a cost of one cycle every 50 calls.

The analytical prediction (0.02 cycles/call) does not completely agree with the

simulation (1.0). We believe this is because the simulation cannot directly measure

the cache miss cost, because the “stack” and “heap” programs do not execute the

same instructions, or even the same number of instructions. Instead, we measure the

total cost of two different implementations (with different frame creation sequences

and frame disposal sequences, different garbage collection times, garbage collectors

trashing the cache at different frame layout, etc.) and attempt to subtract out the

components not related to cache behavior. Small errors in the estimation of any of

these components will be additive.

On the other hand, the simulation can capture the effect of “real” programs

that cannot be analyzed in closed form like our three paradigmatic examples. Such

programs will have interference effects from old objects and nonframe objects. How-

ever, Reinhold and Moss (1994) find that such interference does not much affect

the cache behavior of recently allocated objects (such as, in our case, frames).

Therefore, we cannot say with confidence whether the simulation or the analytical

prediction more accurately characterizes the cache behavior. To be conservative, we

use the “worse” number (1.0) for Cache read misses in Figure 1.

But now consider what happens in a write-no-allocate (e.g., write-around) cache.

The vast majority of reads in the Towers of Hanoi example are to blocks that

recently caused write misses. Even if the write misses themselves do not stall the

processor, the read misses will. This will cost perhaps 5 cycles per frame (assuming

the frame size is roughly half the cache line size, and a 10-cycle miss penalty).
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Future cache designs

What cache write-miss policies can we expect in the future? We must assume that

hardware designs of “commodity” microprocessors will be driven by the spec bench-

mark suite, not by arguments about what’s best for functional programs or garbage

collection.

Jouppi’s measurements of C and fortran programs (1993) may perhaps be

influential. He concludes that write-validate (that is, write-allocate, no-fetch-on-

write) is the policy with best performance. This is exactly the policy that we and

others (Diwan, Tarditi, and Moss, 1994; Reinhold, 1994; Stefanovic and Moss, 1994)

find best for garbage-collected strict functional programs.

On the other hand, as Jouppi points out, write-validate is difficult—though not

impossible—to implement on a shared-memory multiprocessor with cache coher-

ence. Such machines require each writable cache line to have a single owner. Since

manufacturers will wish to make multiprocessor-compatible CPU chips, and won’t

wish to have two different primary-cache designs, this could mean that write-

validate will not be common on multiprocessors or uniprocessors.

However, perhaps a software-configurable write-miss policy will enable the same

processor design to perform well in a variety of systems.

7 Disposal

To de-allocate a stack frame, one instruction is required to subtract a constant from

the stack pointer.

No explicit pop instruction is necessary to deallocate a heap frame. The (previous)

frame pointer must be fetched, but we have counted this already under the heading

“Frame pointers.”

What is the garbage collection cost of heap-allocated frames? There are three

components:

1. Live heap frames must be copied to an older generation and then scanned,

whereas live stack frames need only be scanned.

2. Allocating frames causes more frequent garbage collection, leading to the

premature promotion of non-frame objects that might have died if given just

a little more time.
3. More frequent collections means more frequent executions of the garbage col-

lector’s entry-exit sequence.

We will analyze these costs separately.

Copying frames

We will analyze the cost, in instructions, of garbage collection for the three typical

call-return patterns discussed in the previous section. We assume a generational

collector with a youngest generation that holds G frames (for generation size of 128

kbytes, frame size of 32 bytes, G = 4096). On a youngest generation collection, all

live frames are promoted to the next generation.
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1. Tail recursion does not allocate, so the amortized cost per call is zero.

2. Towers of Hanoi will garbage-collect every G calls. At this collection, there

will be at most log(d) live frames; but only log(G) of them will be “new” (not

already promoted). The cost of collecting them will be c log(G), where c is

the cost of copying one frame (perhaps 20 instructions).11 The amortized cost

per call is c log(G)/G, or about 0.06 instruction per call.

3. A very deep recursion (deeper than 2000 calls) will promote almost every

frame, at a cost of cG instructions per G calls, or c instructions per call. This

is costly; but recursions this deep also begin to miss in the secondary cache!

This is particularly so, since the size of the youngest generation should be less

than the size of the secondary cache (Zorn, 1991; Reppy, 1994). The secondary

cache misses (which will occur for stacks or heaps) will probably be just as

important as the garbage-collection overhead.

Summary: 0.06 instructions per frame.

More frequent collections

With stack-allocated frames, N garbage collections of average cost E+L will occur,

where E is the entry-exit overhead of the collector and L is the cost of copying non-

frame live data.

With heap-allocated frames, N ′ collections of average cost E+L′ +F will occur,

where F is the the cost of copying frames. We have accounted for N ′ · F in the

previous subsection. We will account for N ′L′ −NL in the the next subsection.

Here we calculate E(N ′ − N). N ′ − N is simply the number of frames created

divided by G, the number of frames the youngest generation can hold. Thus the

cost per frame is just E/G; with G = 4096 and assuming E = 800 instructions, this

is 0.2 instructions per frame.

Premature promotion of non-frames

In principle, the heap allocation of frames should cause more frequent collection

(and undesirable promotion) of the non-frame data. We use lifetime statistics as

reported by Stefanovic and Moss (1994) to find those objects that survive G calls

but not p · G. (The proportion p = 0.57 is the proportion of frames to total heap

allocation (see Figure 5).) Because of the shape of the object-survival curve, such

objects are rare (1 object in 1000 allocations).

Consider a program that allocates one “ordinary” (non-frame, “random” life-

time) object per procedure call. One in 1000 of these objects will be promoted

“to excess” (in the heap-frame version) because the frame allocations cause more

frequent collection. The cost of each such promotion (forwarding and scanning) is

about 100 instructions. Thus the average cost per frame is about 0.1 instructions.

11 We do not include the cost of scanning the frame for pointers, because this has to be
done for either the stack or the heap case.
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Heap Q-Heap Stack MIPS G.C.Instrs/Frame
μh γh μq γq μs γs ρ Zh Zq

Boyer 1.11 0.86 1.18 0.87 1.17 0.88 31 -0.95 -0.40
Knuth-B 5.96 0.86 6.31 0.93 6.56 0.88 31 -0.20 0.19
Lexgen 9.45 0.60 9.56 0.72 9.77 0.59 31 0.03 0.99
Life 1.24 0.04 1.29 0.06 1.28 0.03 38 2.62 2.20
Yacc 3.02 0.92 3.28 1.18 3.21 0.60 29 7.86 8.85
Simple 15.30 0.54 14.42 0.65 15.29 0.55 30 -0.03 0.33
VLIW 11.29 0.54 15.39 0.57 15.05 0.51 24 0.22 0.25

Average 1.36 1.77
Mutator time μ and garbage-collection time γ are shown (in seconds) for each

benchmark. MIPS (ρ) and garbage-collection overhead per frame (Zh and Zq) are
calculated as shown in the accompanying text.

Fig. 10. Garbage collection cost

Sum of the collection costs

The three components (0.06, 0.2, 0.1) sum to 0.36 instructions per frame at-

tributable to garbage collection.

Direct measurement of garbage collection

To support our analytical calculations of garbage-collection overhead, we mea-

sured the garbage collection time for stack vs. heap frames on benchmark programs.

Figure 10 shows garbage collection costs for the execution of the benchmark pro-

grams on a DEC 5000/240 computer.

For each benchmark, three versions of the program were run: Heap (heap-allocated

frames); Stack (“stack-allocated” frames, implemented as a free-list of re-usable

frames, which have a different frame layout and choice of closures); and Q-Heap

(heap-allocated frames that have exactly the same frame layout (and padding to 8

words) as the Stack frames).

The mutator time μ and garbage-collection time γ are shown for each benchmark.

Times were calculated by executing each benchmark command five times consecu-

tively (from within the same Unix execution) and dividing by five. Ten runs of each

such test were made, and the fastest taken (as recommended, for example, by the

spec benchmark consortium (System Performance Evaluation Corp., 1989)).

Time spent in the operating system is not shown, but was small in all cases (and

did not much differ among the three versions of each program).

We calculated ρ, the effective MIPS (millions of instructions per seconds) for the

DEC 5000/240 on each program, by dividing the instructions executed for the heap

version of each program (taken from Figure 4) by μh + γh. The peak performance

of this machine is 40 MIPS.

To calculate the extra garbage-collection cost attributable to heap-allocated frames,

we compared stack g.c. time from heap g.c. time, converted from seconds to instruc-
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tions, and divided by the number of frames F taken from Figure 5:

Zh = (γh − γs)ρ/F

In many cases this is negative! This indicates that any garbage-collection overhead

of heap-allocated frames is less important than improved closure layouts.

We then tried an alternate method of calculation. Since Q-Heap and Stack use

exactly the same frame layout, the only difference is the failure of Q-Heap to free

its frames. Thus, the garbage-collection overhead can be more consistently isolated.

However, Q-Heap frames are all artificially padded to 8 words. This will overestimate

the load on the collector; we expect any added load to be (roughly) proportional to

the total size of all heap-allocated frames. Therefore, in our estimate of the overhead

Z we will multiply by the proportion of the frames that are not just padding:

Zq = (U/8)(γq − γs)ρ/F

where U is the average frame size of each benchmark, taken from Figure 5.

The Yacc benchmark is anomalous in showing a very high cost, in extra garbage

collection, for heap-allocated frames. Closer examination of the Yacc execution

showed that there were three major-generation collections with heap frames, but

only two with stack frames.

Excluding Yacc, the average Zh is 0.28 instructions/frame, close to the analyti-

cally predicted value of 0.36. Yacc must do something not foreseen by our analytical

methods.

In Figure 1 we show the measured value of Zh = 1.4 instructions for disposal of

heap-allocated frames.

8 Finding roots

In any garbage-collected system, local variables in activation records (e.g., stack

frames) may point to the heap. At the beginning of each garbage collection, the

collector must scan the frames to locate “roots” of the live data.

In a system with generational garbage collection, there is often very little live data

in the youngest generation. Scanning a large stack would take more time than the

rest of the collection! Therefore, the collector should scan only those stack frames

created since the last collection and not yet popped.

It is trivial to treat heap-allocated frames this way. They are promoted (along

with other live data) to older generations; older-generation data need not be scanned

at a youngest-generation collection. Only the newly allocated (and not yet dead)

frames will be scanned at a typical collection.

With stacks, a special trick is required. After a collection, the collector must

mark the top stack frame. All frames underneath this are known to be “old.” At

the next collection, the stack must be scanned only from the top of the stack down

to the “high-water mark;” for only these frames can contain pointers to the youngest

generation.

But there is a complication. Between collections, if the “high-water” frame is

popped, the mark must be moved down to the next-lower frame (Wilson, 1991).
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The simplest way to do this would be to test for the mark on every return, but this

would be expensive. Instead, the mark consists of a “special” return address, which

replaces the real return address of a frame. When control returns to this point, the

program at this special location executes, placing the mark (that is, the special

return address) in the next-lower frame, and jumping to the real return address.12

The cost of this technique is quite low. The cost of placing and removing the

high-water mark is between 10 and 100 instructions. Every frame that survives its

first garbage collection will eventually hold the high-water mark. The cost of moving

the high-water mark (in a stack-based system) is similar to the cost of promoting a

live stack frame to the older generation (in a heap-based system); and it is exactly

the same frames (new frames live at a collection) that need this service in either

case.

The proportion of new stack frames live at a collection is usually extremely low,

so the cost is negligible for both stacks and heaps. In rare cases (very deep one-way

recursions) the cost will be higher, but the stack-based systems and heap-based

systems will pay approximately the same price.

Doligez and Gonthier (1994) have suggested that the collector put a one-bit mark

in every live stack frame that it scans; this mark will be ignored by the collector but

will be cleared in new frames. This is fine, if there is already some word in every

frame that has a free bit.

Keeping track of the high-water mark in heap-based system has no implemen-

tation complexity: it is a natural consequence of garbage-collecting live frames. In

contrast, in a stack-based system similar results can be achieved but it requires

extra work.

8.1 Updating activation records

In order to guarantee that only “new” heap frames can be roots for garbage col-

lection, it is necessary to prohibit any writes to frames after they have been allo-

cated. Compilers using continuation-passing style (such as Rabbit (Steele, 1978),

Orbit (Kranz et al., 1986), and SML/NJ (Appel and Jim, 1989)) naturally initialize

frames as soon as they are allocated, and then never write to them again. In effect,

they save up any “changes” in registers, then dump everything out all at once.

With good use of callee-save registers (Appel and Shao, 1992; Appel, 1992; Shao

and Appel, 1994) it is even easier to accumulate any changes in registers and write

immutable frames in big chunks.

A stack-based compiler could update the topmost frame at any time, and the

collector could always scan this frame for roots. But a heap-based compiler that

wants to support efficient call/cc (see Section 9) should never update a frame after

its initialization, because if a continuation is invoked more than once the two invo-

cations will stomp on each others’ data. In such a compiler, it is best to keep the

top frame in callee-save registers and not in memory at all.

12 This complicates the compiler and runtime system, particularly the implementation of
exception handlers that must pop the stack.
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9 First-class continuations

The notion of “first class continuations” using the call-with-current-continuation

(call/cc) primitive originated in the Scheme language (Rees and Clinger, 1986)

and has since been adopted in other systems as well (Duba, Harper, and Mac-

Queen, 1991). First class continuations are useful for implementing coroutines

(Wand, 1980), concurrency libraries (Reppy, 1991) and multitasking.

But call/cc is much harder to implement efficiently if there is a stack; with an

ordinary contiguous stack implementation, the entire stack must be copied on each

creation or invocation of a first-class continuation. This is unacceptably slow if (for

example) call/cc is the primitive used in implementing a concurrency library or

exception-handling system.

With purely heap-allocated frames (that are not updated after their initializa-

tion), call/cc is no more expensive than an ordinary procedure call: the live registers

must be written to a closure record, and that is all.

There have been mixed stack/heap implementations intended to support call/cc

efficiently in the presence of stacks (Clinger, Hartheimer, and Ost, 1988; Hieb,

Dybvig, and Bruggeman, 1990). The basic idea is to make a “stack chunk” that

holds several stack frames; if this fills, it is linked to another chunk allocated from

the heap. This turns out to be complicated to implement.

Stack chunks require a stack-overflow test on every frame13, so creation costs

three instructions (add to SP, compare, branch).

Danvy (1987) made a free list of re-usable frames (we call this a “quasi-stack”);

these reduce the load on the garbage collector and have good locality; but they

are expensive to create and destroy, and require a frame pointer. The “stack” im-

plementation that we have implemented and measured is actually a simplification

of Danvy’s method. For applications using first-class continuations (call/cc) our

simplification would need an extra mechanism to copy part of the continuation,

whereas Danvy’s method does not.

Both methods suffer from the same “copying and sharing” penalty as ordinary

stacks. Their performance is summarized in Figure 1, and does not appear compet-

itive (especially given the implementation complexity).

The simplicity and efficiency of call/cc in a pure heap discipline is a strong

motivation for avoiding stacks.

10 Implementation

One reason to avoid stacks is that they are complicated to implement, especially

with all the tricks that are necessary to achieve good performance. Let us com-

pare the implementation complexities of heaps vs. stacks, in a garbage-collected

environment:

13 “Unfortunately, it has been our experience that memory exceptions are not a tenable
means for detecting stack overflow....” (Hieb, Dybvig, and Bruggeman, 1990)
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Implementation of Heap Frames

1. To achieve good performance with heap frames, it is necessary to have an so-

phisticated algorithm to choose closure representations. This algorithm must

preserve space complexity, promote closure sharing, and use callee-save regis-

ters to minimize the number of distinct frames written. Shao and Appel (1994)

describe an implementation of such an algorithm, which is not particularly

hairy.

2. To avoid having a descriptor in each frame, the runtime system can maintain

a mapping of return addresses to frame layout descriptors. Kranz’s orbit

compiler used this technique (Kranz, 1987). Standard ML of New Jersey does

not bother, so it does indeed pay the price of a descriptor in each frame.

Implementation of Stacks

1. A good closure analysis algorithm must be used to preserve space complexity

while still trying to avoid too much copying. It is not clear that such an

algorithm will be much simpler than the one for pure heaps. In particular,

most conventional stack implementations are not safe for space complexity.

2. To preserve space complexity and correctly implement tail recursion, certain

activation records require a complicated scheme to determine when they must

be popped (Hanson, 1990). (Or these frames could be heap allocated, even in

a stack discipline; but they must be identified by static analysis.)

3. A high-water mark must be maintained to achieve efficiency in the genera-

tional collector.

4. If call/cc is to be supported, then stack copying or some more complicated

technique must be implemented (Hieb, Dybvig, and Bruggeman, 1990).

5. To avoid having a descriptor in each frame, the runtime system must maintain

a mapping of return addresses to frame layout descriptors.

6. In a system with multiple threads, each thread must have its own stack. A

large contiguous region of virtual memory must be reserved.14

7. Stack-overflow detection must be implemented. In most cases this is handled

automatically by the operating system using virtual-memory page faults.15

No stack implementation that we know of handles all of these necessary com-

plexities. As a result, some are not safe for space complexity; some don’t imple-

ment call/cc; some scan too many frames on each collection. It is an open question

whether all of these tricks can fit together in a real system.

14 In contrast, one heap-allocation region is necessary per processor, not per thread.
15 Heap overflow detection must also be implemented, but this is true whether or not there

is a stack.
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11 Conclusion

Heap allocation of activation records is simple and competitively efficient. The fact

that heap allocation is about as cheap as stack allocation, when all effects including

cache locality are counted, certainly contravenes the conventional wisdom.

Heap frames are much easier to implement correctly: it is tricky to make stacks

“safe for space complexity,” or to support generation garbage collection efficiently,

or first-class continuations (call/cc). In Standard ML of New Jersey compiler, which

supports all of these features, heap allocation of activation records has proved to

be a great success.

When call-with-current-continuation is needed, heap frames are much better than

stack frames. Various hybrid systems (stack chunks, quasi-stacks) designed to sup-

port call/cc efficiently with a stack are less efficient than heaps for both normal

call/return and call/cc.

On machines with a write-miss penalty, or where writes entirely bypass the cache,

the results are different: heap-frame handling is about twice as expensive as stack-

frame handling (about 7% penalty in overall performance), except for first-class

continuations.

Finally, for languages without closures (nested first-class functions with static

scope), there is no “copying and sharing” cost. In this case stacks have a 6% overall

performance advantage. (Without closures, call/cc is not an issue, of course.)
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