
Safe Java Native Interface ∗

Gang Tan†‡§ Andrew W. Appel‡ Srimat Chakradhar§

Anand Raghunathan§ Srivaths Ravi§ Daniel Wang‡

† Department of Computer Science, Boston College
‡ Department of Computer Science, Princeton University

§ NEC Laboratories America

Abstract

Type safety is a promising approach to enhancing soft-
ware security. Programs written in type-safe programming
languages such as Java are type-safe by construction. How-
ever, in practice, many complex applications are heteroge-
neous, i.e., they contain components written in different lan-
guages. The Java Native Interface (JNI) allows type-safe
Java code to interact with unsafe C code. When a type-safe
language interacts with an unsafe language in the same ad-
dress space, in general, the overall application becomes un-
safe.

In this work, we propose a framework called Safe Java
Native Interface (SafeJNI) that ensures type safety of het-
erogeneous programs that contain Java and C components.
We identify the loopholes of using JNI that would permit
C code to bypass the type safety of Java. The proposed
SafeJNI system fixes these loopholes and guarantees type
safety when native C methods are called. The overall ap-
proach consists of (i) retro-fitting the native C methods to
make them safe, and (ii) developing an enhanced system
that captures additional invariants that must be satisfied to
guarantee safe interoperation. The SafeJNI framework is
implemented through a combination of static and dynamic
checks on the C code.

We have measured our system’s effectiveness and per-
formance on a set of benchmarks. During our experiments
on the Zlib open source compression library, our system
identified one vulnerability in the glue code between Zlib
and Java. This vulnerability could be exploited to crash a
large number of commercially deployed Java Virtual Ma-
chines (JVMs). The performance impact of SafeJNI on Zlib,
while considerable, is less than reimplementing the C code

∗To appear in IEEE International Symposium on Secure Software Engi-
neering, March 2006. This research was supported in part by ARDA award
NBCHC030106. This information does not necessarily reflect the opinion
or policy of the federal government and no official endorsement should be
inferred.

‡ Daniel Wang is currently at Microsoft Corporation.

in Java.

1 Introduction

Large software systems often contain components devel-
oped using different programming languages. This may oc-
cur due to a variety of factors, including ease of develop-
ment and maintenance, reuse of legacy code, and efficiency.
For example, a browser for an embedded device such as
a cell phone may have a user interface written in Java, and
modules written in C that implement plugins, media codecs,
and so on.

For software components in different languages to inter-
operate, there must be a standard interface between them.
One way to achieve this is through a foreign function inter-
face (FFI). Most modern programming languages provide a
foreign function interface [14, 3, 13, 6, 7]. For example, the
Java Native Interface (JNI) [14] enables Java code running
inside a Java Virtual Machine (JVM) to interoperate with
components that are written in C.
Unsafe and insecure interoperation. An FFI usually ad-
dresses discrepancies between the two languages on issues
such as the representation of data, memory management,
calling conventions. However, what most interfaces fail to
address is the discrepancy between the safety guarantees
of different languages. When a component written in a
safe language directly interacts with a component written
in an unsafe language, the whole application becomes un-
safe. This is certainly the case when Java code interoperates
with C code through the JNI interface. Even rich systems
like Microsoft’s .NET CLR [10] have this problem. The
.NET CLR distinguishes between “managed” and “unman-
aged” code. Linking unmanaged code with managed code
nullifies the safety guarantees of the managed code.
Approaches to safe interoperation. Systems like COM
[16], SOAP [19], and CORBA [9] are based on Remote
Procedure Calls (RPC); they achieve safe interoperation by

placing components in different address spaces, thus isolat-
ing the unsafe components from the safe components. How-
ever, they still do not guarantee the safety of the individual
components. Moreover, these approaches come with a sig-
nificant overhead, in the form of context switches and inter-
component communication. These costs limit the practical
applicability of these approaches in many scenarios. We
are interested in FFI-based approaches since they are more
lightweight.

Another approach is to manually reimplement every
component in safe languages. For instance, the JCraft web-
site [1] provides reimplementations in pure Java of many
programs originally written in C, including the X Window
server, Zlib compression libraries, etc. This approach re-
quires substantial programming effort, and also negatively
impacts execution speed.
Towards safe interoperation through FFIs. Our goal is to
have an FFI-based approach that achieves safe interopera-
tion between different languages. In particular, we target the
JNI interface, since Java and C are two popular languages.
Ideally, we would like the calling of C code in Java to be
as safe as the calling of Java code in Java. To achieve this,
we have examined how C code, through JNI, may exploit
loopholes to violate Java’s type safety.

The most obvious problem is that C code is inherently
unsafe and may read/write any memory address. Fortu-
nately, there are systems such as CCured [15] and Cy-
clone [12] that provide safety guarantees for legacy C code
through a combination of static and dynamic checks.

However, just providing internal safety for the C code is
not sufficient to guarantee safe interoperation between Java
and C. The JNI interface, if not used properly, has many
loopholes. A simple example is that C code can pass ob-
jects of the wrong classes to Java and thus violate Java’s
type safety. In summary, ensuring the safety of the individ-
ual components separately is not sufficient to guarantee the
safety of the entire program.

The contribution of this paper is the SafeJNI system,
which can ensure type safety when Java programs interact
with C programs through JNI. We decompose the overall
problem into two parts: ensuring that the C code is safe in
itself, and ensuring that the C code does not violate the safe
interoperation rules of JNI. Our current implementation of
SafeJNI leverages CCured [15] to provide internal safety
for the C code. In addition, SafeJNI has the following com-
ponents: we extend the type system of CCured to enforce
invariants associated with JNI-specific pointers; we wrap
dynamic checks around JNI API calls and insert checks into
the C code; and finally, we implement a scheme to achieve
safe memory management in JNI. We have also formalized
a subset of our system and proved that our system is suffi-
cient to guarantee safety.

Compared to RPC-based systems, our system is more

lightweight, thanks to the lack of context switches. It is also
more flexible since Java and C code are placed in the same
address space. Compared to manual reimplementation of
C components, our system provides a way to reuse legacy
C libraries conveniently. Native libraries such as the Zlib
compression/decompression library and image processing
libraries can be safely invoked by Java with reasonable per-
formance.

Furthermore, SafeJNI provides a way to improve the
safety of the Java platform itself. Any implementation of a
Java platform contains a significant amount of native C code
in addition to Java code, for functionality and convenience.
The Java code and C code interact through the JNI inter-
face. For example, Sun’s JDK 1.4.2 contains over 600,000
lines of native C code. Any error in the native code (e.g., a
buffer overflow) could lead to a violation of type-safety or
security. Our system can render the C native code safe, and
guarantee that it won’t bypass Java’s type system.

The rest of this paper is organized as follows. We offer
a brief introduction to JNI in Section 2 and then enumerate
the type-safety loopholes that we have identified in it. We
describe our system, SafeJNI, in Section 3. In Section 4, we
describe the experimental evaluation of the SafeJNI frame-
work and discuss a vulnerability that we have discovered
in JDK during our experiments. We conclude with related
work and future work.

2 JNI and its loopholes

JNI is Java’s mechanism for interfacing with native code.
It enables native code to have essentially the same function-
ality as Java code. Through JNI, native code can inspect,
modify, and create Java objects, invoke methods, catch and
throw exceptions, and so on. Figure 1 shows a simple ex-
ample of using JNI: Java code passes an array of integers
to C code, which computes and returns the sum of the ar-
ray. The Java code declares the method, sumArray, to be
a native method using the keyword “native”. Then, Java
code calls the native method just as it would call other Java
methods.

The C code accepts a reference to the Java array as an ar-
gument. Then, C manipulates the array object through JNI
API functions, e.g., by calling GetArrayLength to get
the length of the array and GetIntArrayElements to
get a pointer to the array elements. So the common idiom of
using JNI is that Java code passes Java-object references to
C code; C code then calls JNI API functions to manipulate
Java objects.

When a JVM passes control to a native method, the JVM
will also pass an interface pointer to the native method (ar-
gument env in the example). This interface pointer points
to a location that contains a pointer to a function table. Ev-
ery JNI API function (such as GetArrayLength) is at a

class IntArray {
/* declare a native method */
private native int sumArray(int arr[]);
public static void main(String args[]) {

IntArray p = new IntArray();
int arr[] = new int [10];
for (int i = 0; i < 10; i++) arr[i] = i;
/* call the native method */
int sum = p.sumArray(arr);
System.out.println("sum = " + sum);

}
static {

/* load the DLL library that implements
the native method */
System.loadLibrary("IntArray");

}
}

#include <jni.h>
#include "IntArray.h"
JNIEXPORT jint JNICALL
Java_IntArray_sumArray
(JNIEnv *env, _jobject *self, _jobject *arr)
/* env is an interface pointer through which a JNI API

function can be called.
self is the reference to the object on which the method is invoked.
arr is the reference to the array. */

{
jsize len = (*env)->GetArrayLength(env, arr);
int i, sum = 0;
jint *body =

(*env)->GetIntArrayElements(env, arr, 0);
for (i=0; i<len; i++) {

sum += body[i];
}
(*env)->ReleaseIntArrayElements(env,arr,body,0);
return sum;

}

Figure 1. A JNI example. Java code passes C code an array of integers and C code returns the sum of the array. On
the left is the Java code; on the right is the C code.

predefined offset in the table. Through the interface pointer,
the native method can invoke JNI API functions.
Mapping of types. There are two kinds of types in Java:
primitive types such as int, float, and char, and ref-
erence types such as objects and classes. JNI treats primi-
tive types and reference types differently. The mapping of
primitive types is direct. For example, the Java type int
is mapped to the C type jint (defined as 32-bit integers
in jni.h). On the other hand, objects of reference types are
passed to native methods as opaque references, which are
C pointers to internal data structures in the JVM. The ex-
act layout of the internal data structures, however, is hid-
den from the programmer. All opaque references have type
“ jobject *” in C, such as the type of argument arr in
Figure 1. C code treats all Java objects as being members
of one type.

2.1 Loopholes in JNI

The JNI interface exposes loopholes that may cause un-
safe interoperation between Java and C. We enumerate them
in this section. We have tested all these loopholes using real
code, and most of them frequently cause a JVM crash. In
some cases, these loopholes may be exploited to achieve
malicious effects such as leakage of private data and execu-
tion of malicious code.
Direct access through Java references. Opaque references
in C code are supposed to be manipulated only by JNI API
functions. However, C code can perform direct reads/writes
via these references, and potentially retrieve or corrupt the
internal state of a JVM.
Interface pointers. An interface pointer points to a func-

tion table of JNI API functions. We must prevent C code
from overwriting entries in the function table in the inter-
face pointer. Otherwise, C code could replace a JNI API
function with its own version and bypass any check in the
function.
Out-of-bounds array access. Java often needs to pass
an array of data to a native method. For the sake of effi-
ciency, JNI functions such as GetIntArrayElements
and GetStringUTFChars return pointers to the Java
Heap and thus allow the native method to directly read/write
the Java heap. It is easy for a native method to accidentally
read or write past the bounds of the array.
Violating access control rules. JNI does not enforce ac-
cess control on classes, fields, and methods that is expressed
in the Java language through the use of modifiers such as
private. Therefore, C code can read a private field of a
Java object. As stated in the JNI manual [14, sect. 10.9],
this was a conscious design decision, since native methods
can access and modify any memory location in the heap
anyway.
Manual memory management. JNI’s scheme of manag-
ing memory is similar to malloc/free in C. For exam-
ple, when the native method is done with the integer array
buffer returned by GetIntArrayElements, it is sup-
posed to call ReleaseIntArrayElements to inform
the JVM that the buffer is no longer needed. This kind
of manual memory management has well known problems
such as dangling pointers, multiple releases, and memory
leaks.
Arguments of wrong classes. Since native code treats
all references to Java objects as having one single type
(jobject *), an object of class A may be wrongly

passed to a JNI API function that actually requires an ob-
ject of class B. The JNI manual states that the behavior of
the JVM is unspecified in this case. This usually results in
a JVM crash in practice, but could be exploited to achieve
more serious consequences.
Calling wrong methods. JNI provides different meth-
ods for accessing arrays of different types. For an inte-
ger array, C code should call GetIntArrayElements.
For an array of long type, C code should call
GetLongArrayElements. This is the case for many
other operations, including accessing fields and invoking
Java methods. C code may use a method that is for a wrong
type, resulting in improper memory accesses.
Exception handling. A native method can call an ordi-
nary Java method. When the Java method returns, the native
method should call certain JNI functions to check, handle,
and clear pending exceptions. With a pending exception,
calling arbitrary JNI functions may lead to unexpected re-
sults.
Bypassing the security manager. Java’s security model
confines the capabilities of untrusted Java code. The JVM
will consult a security manager before it performs poten-
tially dangerous operations such as writing to a file. Once
a native method is called, however, the JVM can no longer
prevent the program from violating the security of the envi-
ronment where the JVM is running.

3 Achieving safety in JNI

In this section, we describe our system, SafeJNI, which
achieves type-safe interoperation between Java and C
through JNI. Our system catches unsafe loopholes, and con-
sists of three components. The first component is a static
type system to ensure opaqueness of Java pointers, and to
ensure that interface pointers are read-only. Second, Safe-
JNI inserts various runtime checks to ensure properties such
as that objects to Java are of the right classes. Finally, Safe-
JNI implements a scheme to achieve safe memory manage-
ment. Next, we describe each of these components in detail.
Note that our current system addresses only type safety; we
leave other security concerns in JNI as a subject for future
work.

3.1 A static, JNI-specific pointer type sys-
tem

We propose a type system to model JNI-specific point-
ers in native C code, such as JNI opaque references and
read-only interface pointers. We use the new type system
to statically enforce JNI-related invariants, to avoid direct
accesses to opaque references, and to prevent C code from
overwriting function entries in an interface pointer.

Our pointer type system is an augmentation of CCured’s
type system. CCured [15] is a system that ensures memory
safety in C. It analyzes C programs to identify places where
memory safety might be violated and performs a source-to-
source translation to insert runtime checks to ensure safety.

During the analysis phase, CCured classifies pointers
into several categories according to their usage. Pointers
in C programs that are used without pointer arithmetic and
type casts are classified as SAFE pointers, and they are ei-
ther null or valid references. Pointers that are used with
pointer arithmetic but not type casts are classified as SEQ
(“sequence”) pointers. CCured enhances sequence pointers
to carry bounds information for the array that they point to,
so that all dereferences can be dynamically checked to be
within bounds. Pointers that involve type casts that can-
not be understood statically (e.g., casts from integers to
pointers) are classified as WILD pointers. CCured enhances
WILD pointers to carry information to distinguish a pointer
from an integer, and dynamically prevents the dereferencing
of arbitrary integers.

Some of the pointer kinds in CCured are also used
in SafeJNI to fix loopholes. For example, functions
such as GetIntArrayElements return a pointer to
an array. We model the array pointer as a CCured
SEQ pointer, since C needs to perform arithmetic on this
pointer to walk through the array. The only complex-
ity is that a SEQ pointer needs to carry bounds infor-
mation to verify that any use of the pointer is within
bounds. Therefore, SafeJNI sets up the bounds when the
GetIntArrayElements function is called; this is done
by calling the GetArrayLength function.

The pointer kinds in CCured are not sufficient to ensure
complete safety in JNI. For example, CCured cannot en-
force the property of pointer opaqueness. Therefore, we
extend CCured by adding two new pointer kinds to model
pointers passed from Java to C.
Java handle pointers. As we have stated, references to
Java objects from C code should not be directly accessed;
they are opaque to C code. To enforce this abstraction,
we classify such pointers as HNDL (“handle”) pointers—
pointers that can be neither read nor written. Handle point-
ers are passed around as arguments to JNI API functions.

CCured allows casts between certain kinds of pointers.
One case is to cast a SEQ pointer to a SAFE pointer, since
SEQ pointers carry more privileges than SAFE pointers.
However, SafeJNI does not allow casts to HNDL pointers
since otherwise C could forge a Java reference through other
kinds of pointers. We maintain the invariant that the only
way to get a handle pointer is by calling a JNI API function.
Read-only pointers. We can read from the memory lo-
cation through a read-only pointer but cannot write to the
location. We model a Java interface pointer as a read-only
pointer to prevent C code from replacing a function entry in

Pointer
Kind

Description Capability

t *HNDL Java handle
pointers

arguments to JNI
APIs; equality testing

t *RO read-only
pointers

read

t *SAFE safe pointers read/write
t *SEQ sequence

pointers
pointer arithmetic;
read/write

t *WILD wild pointers type casts; pointer
arithmetic; read/write

Table 1. Pointer kinds and their capabilities.
Kinds in bold face are new in SafeJNI.

the table pointed to by the interface pointer. Our read-only
pointers are related to the C const qualifier. For example,
the C type “const int *” is the same as our “int *RO”. We
do not use the const qualifier since CCured’s convention
for a pointer kind is to associate attributes with pointers, not
with the type that the pointer points to.

In Table 1, we list all pointer kinds used in SafeJNI, in-
cluding the ones in CCured. The SafeJNI system imple-
ments a type checker, which statically enforces usage of
pointers according to their capability.

3.2 Insertion of dynamic checks

In addition to the static pointer type system, SafeJNI also
inserts dynamic checks to address other loopholes in JNI.
Some of these checks are performed immediately before
and after a JNI API function is invoked, and therefore are
placed into a wrapper for the API function. Other checks
such as array bounds checking happen at the place where
pointers are dereferenced. When these checks fail, the sys-
tem will stop the program from running and print out a
warning message. We next describe the kinds of dynamic
checks the system inserts.
Runtime type checking. SafeJNI checks that objects
passed to Java from C are of the right classes. For ex-
ample, when GetIntArrayElements is invoked, the
second argument is checked to be an integer array object.
Similarly, when a Java method is invoked by C, the system
checks that the number of arguments and the types of the
arguments match the prescribed types of the method. This
kind of checking is possible since Java keeps all class infor-
mation at runtime.
Access control. SafeJNI inserts runtime checks to enforce
access-control rules of Java fields/methods, such as check-
ing that a native method is not accessing a private field.
This is possible to check dynamically since all Java ob-
jects keep a runtime representation of permissions. Note

that the access-control checks are not expensive since JNI
uses a two-step process to access a field (or call a method):
first get the field ID; then use the ID to access the value of
the field. Access-control checks are necessary only in the
first step; only one “get field ID” is necessary for arbitrarily
many field accesses.

Since a native method is conceptually part of the class
that declares the method, SafeJNI allows writing to private
fields that belong to the self object (passed in as an argument
to the native method).
Bounds checking. SafeJNI inserts bounds checks before
each dereference of pointers to Java arrays.
Exception checking. The JNI manual [14, sect. 11.8.2]
specifies a list of JNI API functions that can be called safely
when there is a pending exception. For other functions,
SafeJNI inserts checks to make sure there is no pending ex-
ceptions.

3.3 Safe memory management

We first show how JNI manages memory using an exam-
ple. Suppose that C initiates a GetIntArrayElements
and ReleaseIntArrayElements sequence. We list
the steps of what happens:

1. C calls GetIntArrayElements and gets a pointer
to the buffer used by the array; see “pointer 1” in Fig-
ure 2.

2. In GetIntArrayElements, the JVM also pins the
buffer so that Java’s Garbage Collector (GC) will not
garbage-collect it.1 The ownership of the buffer has
been transferred to C.

3. When the buffer is no longer needed, C calls
ReleaseIntArrayElements on “pointer 1”.

4. JVM un-pins the buffer and now the buffer is back to
Java.

The above scheme is unsafe when C code continues to
use “pointer 1”. After step 4, “pointer 1” becomes dangling
when Java’s GC decides to garbage collect the buffer. To
make matters more complicated, if C code makes a copy of
“pointer 1” to get “pointer 2” in Figure 2, we have to restrict
the use of “pointer 2” as well to be safe.

Next, we present two schemes to achieve safe mem-
ory management in JNI. The first scheme is simpler and is
adopted in our current implementation, but it has an over-
head for each pointer dereference. The scheme is depicted
in Figure 3. It creates a validity tag in C for the buffer,
and changes the representation of pointers to be a structure

1Instead of pinning the buffer, JVM may decide to make a copy of the
buffer and return the pointer to the copy. In either case, the function returns
a direct pointer into the JVM heap.

pointer 2

GC

Java Heap

objects

 C Heap

pointer 1

Java

Figure 2. Memory management in JNI

validity tagGC
0/1

Java Heap

objects

 C Heap

pointer 1

pointer 2

Java

Figure 3. Safe memory management:
Scheme I

that also has metadata pointing to the validity tag. When
GetIntArrayElements is called, the validity tag is set
to one. When ReleaseIntArrayElements is called,
we first check that the tag is one to prevent multiple re-
leases, and then set the tag to be zero. Furthermore, be-
fore each dereference of pointers that point to the buffer,
we insert checks to ensure the tag is one, and thus guar-
antee the pointer will not be dereferenced after the release.
This scheme safely manages memory, but each dereference
comes with a cost.

Next, we present a scheme that avoids the per-
dereference cost. The scheme is depicted in Figure 4. It
assumes there is a C garbage collector in place; CCured al-
ready uses the Boehm conservative garbage collector [4] to
reclaim storage. The scheme also uses a validity tag, but
the tag itself is also a pointer pointing to the buffer. Same
as the first scheme, it also changes the representation of
pointers to be a structure that has metadata pointing to the
validity tag. With these changes, there are pointers point-
ing to the buffer if and only if there are pointers pointing
to the validity tag. Furthermore, we make a user’s call to
ReleaseIntArrayElements be a nop, and register a
finalizer for the validity tag in the Boehm garbage collector.
The finalizer will call ReleaseIntArrayElements to

Java
GC

register a finalizer

Java Heap

objects C GC

 C Heap

pointer 1

pointer 2

tag

Figure 4. Safe memory management:
Scheme II

release the buffer, when the C program has no live pointers
to the tag. In this scheme, pointer dereferences have no ex-
tra cost, because the tag is not checked. On the other hand,
this approach has the disadvantage of delaying collection of
Java objects.

4 Experimental Results

To measure the effectiveness and overhead of our sys-
tem, we have performed preliminary experiments. These
experiments are conducted on programs that range from a
set of small benchmarks to a real-world application. In gen-
eral, these experiments show that our system is able to catch
many loopholes, with reasonable slowdown. During our ex-
periments, our system allowed us to identify a vulnerability
in the implementation of Sun’s JDK 1.4.2.

4.1 Microbenchmarks

We selected a set of microbenchmark programs from
the JNI manual [14] to evaluate SafeJNI’s effectiveness in
catching loopholes in JNI, and to measure the overhead as-
sociated with common JNI operations.

To evaluate the effectiveness of SafeJNI, we deliberately
injected unsafe code into otherwise safe programs to test if
our system could catch the safety violations. The experi-
ments showed that our system can catch all the loopholes2

mentioned in Section 2.1. We describe some examples be-
low.

The first example is the Java IntArray sumArray
procedure shown in Figure 1. We inserted the following
statement after the ReleaseIntArrayElements state-
ment: “sum+=*body;”. The inserted statement is unsafe

2Except that it is still possible to bypass Java’s security manager.

because it dereferences a pointer after the pointer has been
released. The pointer may be a dangling pointer if Java’s
GC has garbage-collected the array buffer. Since our sys-
tem dynamically checks if every dereference of pointers like
body is valid (or, has not been released), we got the follow-
ing error message for the illegal dereference:

Failure JSEQ at IntArray.c:30:
Java_IntArray_sumArray():
The Java pointer has been released!

The message warns us that the pointer has been released,
and the program is stopped at the point where the derefer-
ence occurred.

Next, we discuss an example in which the SafeJNI sys-
tem statically catches safety violations. As we have dis-
cussed, all Java object pointers are opaque references. How-
ever, C code could try to perform direct read/write via these
references. Our system statically prevents this direct access
from happening. In the example in Figure 1, we inserted
code to cast the handle pointer arr to a pointer through
which the code performed direct access. Then our system
complained

IntArray.c:29: Error: typecheck:
unfamiliar HNDL -> WILD cast

The message complained that, during type checking, it en-
countered a cast from a handle pointer to a wild pointer,
through which direct access may happen.

These experiments demonstrate that SafeJNI is effective
in catching loopholes in JNI, but it is at the expense of some
overhead; in many cases, SafeJNI inserts runtime checks to
ensure safety. To quantify the overhead, we have compiled
a set of programs from the JNI manual. We have made
changes so that each program will iterate for many times.
The program we used are listed below:

• fieldaccess: Repeatedly reads fields from a Java object.

• callbacks: Repeatedly calls back a Java method.

• array: Repeatedly computes the sum of an integer ar-
ray.

• string: Repeatedly accesses characters in a string.

• comp: Computes the sum of an integer array and then
repeatedly adds random numbers to the sum; this is to
simulate computation-intensive programs.

Table 2 presents the results of using SafeJNI on this set
of microbenchmarks. Each result reported is the average of
five runs. As the table shows, our system adds between 14%
to 119% to the execution time of these programs. In gen-
eral, programs with heavy pointer dereferences, including

the array and the string programs, have the greatest slow-
down. The reason is that, for each pointer dereference, our
system performs bounds checking and also pointer valid-
ity checking (i.e., makes sure that the pointer has not been
released). On the other side of the spectrum, computation-
intensive programs have the smallest slowdown, since most
of the running time is spent on computation on the C side.

Table 2 also presents the kinds of runtime checks in-
volved in each test. For example, the fieldaccess test in-
volves runtime type checking (check that the C type of the
field matches the actual Java type and check that the right
Get<Type>Field is called), access control (check that
the field is not private), and exception checking (check that
there is no pending exceptions).

4.2 The Zlib library

To fully evaluate our system’s impact on perfor-
mance, we have carried out an experiment on a real-word
application—the Zlib compression library distributed with
JDK 1.4.2. Zlib is a general-purpose data compression li-
brary, with nearly 9000 lines of C code. On top of Zlib,
JDK provides an extra 262 lines of glue code that calls
JNI API functions to link Zlib with Java. These glue
code corresponds to the native methods in the JDK classes
in java.util.zip. The classes in java.util.zip
are then used by Java programmers to perform compres-
sion/decompression.

The following table presents the result of the perfor-
mance test on Zlib. In the experiment, Java passes a buffer
of data through JNI to the Zlib library to perform compres-
sion. We set the buffer size to be 16KB. The experiment
compresses a 13MB file on a Linux server (DELL Pow-
erEdge 2650; 2.2 GHz; 4 CPUs; 1GB memory). The result
reported is the average of five runs.

SafeJNI
Ratio

CCured
Ratio

Pure Java
Ratio

Zlib 1.63 1.46 1.74

The result in the table shows that our SafeJNI system
adds 63% to the running time of Zlib during our tests.
We believe that the majority of the cost is incurred by the
pointer bounds checking, and pointer validity checking. On
the other hand, the slowdown of Zlib is not as great as the
array and string tests, because Zlib also spends a lot of time
on pure computation.

We also measured the performance cost if only CCured
is used. CCured alone incurs 46% slowdown. Of course,
CCured only guarantees the internal safety of C code, not
the safe interoperation between Java and C. Finally, we also
tested the performance of a pure Java implementation of the
Zlib library (jzlib-1.0.5) [1]. The performance slowdown is

Name Ratio
Lines of
C/Java Code

Runtime checks
T A B V E

fieldaccess 1.49 28/20
√ √ √

callback 1.29 21/16
√ √ √

array 2.19 29/16
√ √ √ √

string 2.09 30/13
√ √ √ √

comp 1.14 32/16
√ √ √ √

Table 2. SafeJNI performance on a set of small programs. The results are presented as ratios, where 1.50
means that the program takes 50% longer to run when instrumented through SafeJNI. The “Runtime checks” column
shows the kinds of runtime checks each program involves. The letter “T” stands for runtime Type checking, “A” for
Access control, “B” for Bounds checking, “V” for pointer Validity checking, and “E” for exception checking.

74%. Our system is faster than the pure Java implementa-
tion in the Zlib example, not to mention the time and effort
incurred in porting everything into Java.

One inconvenience of our system is that programmers
occasionally need to modify the source code to have good
performance. Our system could cure unmodified C pro-
grams, but this would usually incur a large overhead on ex-
ecution time. The main reason is that, without help from
the programmers, CCured is typically unable to prove the
safety of many bad casts in a large program; CCured will
make all pointers involved in such casts as WILD pointers.
WILD pointers in CCured come with space and time over-
head. Therefore, getting a good performance requires some
annotation and modification to the original program so that
CCured is able to eliminate those WILD pointers. We re-
port the number of lines changed during the curing process
of Zlib as follows:

total lines lines changed
Zlib library 8933 155

JNI glue code 262 84

We changed 155 lines out of 8933 lines to let CCured to
cure Zlib; this is a small portion. For the glue code between
Java and Zlib, we changed 84 lines out of 262 lines. The
reason for this rather big change is that we identified a vul-
nerability in the glue code and had to fix it; we describe the
vulnerability and our fix next.

4.3 Uncovering a vulnerability in JDK

In the java.util.zip of JDK 1.4.2, the class
Deflater has native methods which serve as wrappers
to invoke functions in the underlying Zlib C library. The
Zlib C library maintains a structure (z stream) to store
information related to a compression data stream. A Java
object of class Deflater needs to store a pointer to the
z stream structure, so that when the object calls Zlib the

second time, all the state information is still available. How-
ever, the problem is that z stream is a C structure, and it
is difficult for Java to define a pointer to a C structure.

JDK avoids this problem by storing the pointer in a pri-
vate field as a Java long. Other native methods cast this Java
long field back into the z stream pointer and use it to call
functions in Zlib.

If we assume that the native methods are only called by
the JVM, the definition of Deflater never changes the
long field, and Java’s data-privacy guarantees are respected,
we would conclude that the cast is in fact safe. Our system,
on the other hand, thinks it is a bad cast (a cast from an
integer to a pointer) and rejects the C code. Initially we as-
sumed our system was being too conservative because, un-
der reasonable assumptions, it seemed like the code should
be safe. However, it turns out that one of the “reasonable
assumptions” is wrong. The code is actually unsafe with
Java reflection APIs.
Java reflection considered harmful. Java provides reflec-
tion APIs to aid in the debugging and dynamic loading of
unknown Java code at runtime. With reflection APIs, a
Java program can at runtime arbitrarily change the private
long field that stores the pointer to the z stream struc-
ture. Figure 5 demonstrates this exploit as well as the min-
imum set of security permissions needed when the Java se-
curity manager is active. The code sets the private long
field in Deflater to an arbitrary illegal value. If this
were a normal Java class, doing so would perhaps break the
Deflater class but not violate type safety of the JVM.
However, since this private long happens to be a C pointer
that is passed to a native method, the results are devastating.
This is a pervasive problem for many JVM implementa-
tions. In fact, the relatively simple Java program in Figure 5
crashes the latest versions of Sun’s Java VM on three plat-
forms, as well as the latest JVM for MacOS X and IBM’s
VM. This same problem also appears in the Kaffe JVM.

Fortunately, the default security policy when running un-
trusted Java code does not allow Java reflections and thus

/* Bug.java */
import java.lang.reflect.*;
import java.util.zip.Deflater;
public class Bug {

public static void main(String args[]) {
Deflater deflate = new Deflater();

byte[] buf = new byte[0];
Class deflate_class = deflate.getClass();
try {

Field strm =
deflate_class.getDeclaredField("strm");

strm.setAccessible(true);
strm.setLong(deflate,1L);

} catch (Throwable e) {
e.printStackTrace();

}
deflate.deflate(buf);

}
}
/* Policy file needed to execute Bug.java in a secure environment */
grant {

permission java.lang.RuntimePermission
"accessDeclaredMembers";

permission java.lang.reflect.ReflectPermission
"suppressAccessChecks";

};

Figure 5. An exploitable vulnerability in the
JVM.

not allow our exploit to work. However, when given the
right security privileges, we believe that our exploit can en-
able us to gain access to all privileges. The ability for un-
trusted code to escalate the set of security privileges given
to it is clearly a violation of the intended security policy
provided by the Java security model.
Our fix. We changed the glue code to introduce an in-
direction table of z stream pointers, very similar to an
OS file descriptor table. We store table IDs, not pointers,
into objects of class Deflater. Native methods using
z stream pointers perform a table lookup by a table ID; if
the table ID is not in the table, the code will warn and stop.

5 Formal Proof of Safety

We have described our system for safe interoperation
through JNI. It is natural to wonder how we can be sure that
the techniques presented are sufficient to ensure type safety.
As a first step towards a formal proof, we have formalized a
subset of our SafeJNI system, which includes many pointer
kinds, a representative subset of JNI API functions, and the
runtime checks that the system inserts. The formalization
is described in a technical report [17]. Based on this for-
malization, we have proved the following safety theorem:
C programs that pass SafeJNI’s type system and do not vi-
olate any of the inserted dynamic checks will not violate
memory safety or access Java’s memory arbitrarily.

6 Related Work

A recent concurrent work by Furr and Foster [8] has a
similar goal as ours: to prevent foreign function calls from
introducing loopholes into otherwise safe languages. Their
system targets OCaml’s foreign function interface instead
of JNI. Their work tracks OCaml types in C to statically
prevent C code from misusing OCaml types. Since OCaml
does not carry type information during runtime as Java does,
statically tracking types is a reasonable way to proceed.
Since all type information is available in Java at runtime, in
some cases we choose to insert dynamic checks. However,
it is conceivable to use the techniques of Furr and Foster
to eliminate some of the dynamic checks. Another point is
that the work by Furr and Foster does not guarantee the in-
ternal safety of C. Consequently C code can read/write any
memory location, by casting an integer to a pointer, and thus
render the whole system unsafe.

NestedVM [2] is another approach for JVMs to link with
unsafe native code. It translates MIPS machine code (com-
piled from source native code) into Java code that imple-
ments a virtual machine on top of JVM. NestedVM achieves
safety and security by putting native code into a separate
virtual machine and allowing only controlled interaction
with JVMs. This approach is similar to COM and CORBA
model in the sense that they all achieve safety by separation.
However, they all suffer the efficiency problem. NestedVM
incurs 200% to 900% overhead, which is much higher than
our system.

Janet [5] is a Java language extension. It provides a
clearer interface than JNI for programmers to write a com-
bination of Java and C code in the same file. Janet’s trans-
lator translates the source file into separate Java and C files
that conform to the JNI interface. By having an easy-to-use
interface for programmers to access Java features from C,
Janet makes JNI programming less error-prone, but it does
not guarantee safe interoperation. For example, C code can
still perform out-of-bounds array access.

The Java 2 SDK supports a “-Xcheck:jni” option that
optionally turns on additional checks for JNI API func-
tions. IBM’s JVM [11] performs a more extensive check-
ing. Some of these checks are similar to what we do. The
problem is that each JVM implementation performs its own
set of checks, which are usually not documented. Also, we
have shown that checking across the interface is not enough
to achieve safety of JNI.

Our work addresses the interoperation problem between
a type-safe language (Java) and an unsafe language (C); Tri-
fonov and Shao [18] address the problem of interoperation
between two safe languages when they have different sys-
tems of computation effects such as exceptions.

7 Future work

There are several aspects where the SafeJNI system
could be improved. The first feasible improvement is to re-
duce the number of dynamic checks by static analysis. Our
system enables Java to use C code safely without porting all
the C code to Java, but it comes with a performance slow-
down. We believe that simple static analysis techniques can
reduce a large number of dynamic checks. For example,
many pointer validity checks for pointer dereferences can
be eliminated if static analysis can guarantee that the deref-
erences happen within a pair of get and release methods.
Another possibility is to track the Java types in C using the
techniques of Furr and Foster [8], so that some of the run-
time type checks are unnecessary.

Our system cannot prevent C code from bypassing
JVM’s security manager, because C code can invoke sys-
tem calls directly to perform insecure operations, such as
writing to files. A solution to this would be to replace C
code’s system calls with calls to secure versions that con-
sult JVM’s security manager first.

Finally, while our system targets the JNI interface, some
of the proposed techniques should be applicable to other
scenarios as well. One interesting future work is to investi-
gate the interaction between managed and unmanaged code
in .NET CLR.

Acknowledgment

We would like to thank Matthew Harren and George
Necula for helping us set up the Zlib experiment.

References

[1] JCraft. http://www.jcraft.com/.
[2] B. Alliet and A. Megacz. Complete translation of unsafe

native code to safe bytecode. In ACM 2004 Workshop on
Interpreters, Virtual Machines and Emulators (IVME’04),
2004.

[3] M. Blume. No-longer-foreign: Teaching an ML compiler to
speak C ”natively”. Electr. Notes Theor. Comput. Sci., 59(1),
2001.

[4] H.-J. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software—Practice and Experience,
18(9):807–820, 1988.

[5] M. Bubak, D. Kurzyniec, and P. Luszczek. Creating Java to
native code interfaces with Janet extension. In Proceedings
of the First Worldwide SGI Users’ Conference, pages 283–
294, 2000.

[6] S. Finne, D. Leijen, E. Meijer, and S. P. Jones. Calling hell
from heaven and heaven from hell. In Proceedings of the
fourth ACM SIGPLAN International Conference on Func-
tional programming, pages 114–125, 1999.

[7] K. Fisher, R. Pucella, and J. H. Reppy. A framework for
interoperability. Electr. Notes Theor. Comput. Sci., 59(1),
2001.

[8] M. Furr and J. S. Foster. Checking type safety of foreign
function calls. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI ’05), pages 62–72, 2005.

[9] O. M. Group(OMG). Common Object Request Broker
Architecture: Core Specification, Version 3.0.3. http:
//www.omg.org/docs/formal/04-03-01.pdf,
2004.

[10] J. Hamilton. Language integration in the Common Lan-
guage Runtime. SIGPLAN Notices, 38(2):19–28, 2003.

[11] IBM. IBM developer kit and runtime environment, Java 2
technology edition, version 1.4.2, diagnostic guide., 2004.

[12] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Ch-
eney, and Y. Wang. Cyclone: A safe dialect of C. In
Proceedings of the General Track: 2002 USENIX Annual
Technical Conference, pages 275–288. USENIX Associa-
tion, 2002.

[13] X. Leroy. The Objective Caml system, release
3.08. http://caml.inria.fr/pub/docs/
manual-ocaml/index.html, Aug. 2004.

[14] S. Liang. Java Native Interface: Programmer’s Guide and
Reference. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[15] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-
safe retrofitting of legacy code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 128–139, 2002.

[16] D. Rogerson. Inside COM: Microsoft’s Component Object
Model. Microsoft Press, 1997.

[17] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan,
S. Ravi, and D. Wang. Safe Java Native Interface. http://
www.cs.bc.edu/∼gtan/paper/jni tr.pdf, Sept.
2005.

[18] V. Trifonov and Z. Shao. Safe and principled language inter-
operation. In Proceedings of the 8th European Symposium
on Programming Languages and Systems, pages 128–146,
1999.

[19] W3C. SOAP version 1.2 sepcification. http://www.w3.
org/TR/soap12-part1/, 2003.

