
Semantics of General References
by a Hierarchy of G ödel Numberings

Amal J. Ahmed Andrew W. Appel Roberto Virga

Princeton University
famal,appel,rvirgag@cs.princeton.edu

Abstract
We demonstrate a semantic model of general references — that is,
mutable memory cells that may contain values of any (statically-
checked) closed type, including other references. Our model is in
terms of execution sequences on a von Neumann machine; thus, it
can be used in a Proof-Carrying Code system where the skeptical
consumer checks even the proofs of the typing rules. Our proof is
machine-checked in the Twelf metalogic.

1. Introduction
Proof-carrying code is a framework for proving the safety of

machine-language programs with a machine-checkable proof. In
conventional PCC systems [13, 12], proofs are written in a logic
with a built-in understanding of a particular type system; that is,
each inference rule of the type system is an axiom of the logic.
In foundational PCC, introduced by Appel and Felty [2], the only
axiom besides the axioms of higher-order logic and arithmetic is
the definition of the state-transition relation of the target architec-
ture. The semantics of everything else (safety, types, etc.) must be
modeled in terms of possible state transitions. For very simple type
systems, with immutable references, no data structure creation, and
no recursive types, such models are easy to construct. Appel and
Felty [2] have shown how to extend this to allocation of immutable
values, covariant recursive types, function pointers, and quantified
types. Appel and McAllester [3] further extend this to contravariant
recursive types. With each extension, the semantic model gets more
complicated. Our new result is an extension of all the previous type
systems to mutable references, where reference cells can contain
values of any type, including functions and other references. The
semantic model contains an interesting use of G¨odel numbering as
a way to model denotational semantics. After all, denotational se-
mantics and G¨odel numbering address the same problem, which is
the relation of syntax to semantics.

Almost [8] all practical programming languages use mutable ref-
erences; object-oriented languages (such as Java) and functional
languages (such as ML) permit references to contain values of ar-
bitrary (statically-checked) type. Therefore, general references are
essential in our plans to build PCC systems for practical languages.

Preliminary version, July 2001

The foundational PCC consumer need not know, or trust, the typing
rules in advance. This means that we must provide a machine-
checkable proof of the these rules; for this we need a semantic
model.

In a typical syntactic theory of references we have judgments
of the formΨ;Γ ` x : τ (whereΨ is a mapping from locations to
types). In the Appel-Felty semantics, a type is a predicate on a set
of allocated locationsa, a memorym, and a root-pointerx, where
a is simply a set of addresses. It seems natural to generalizea to
serve the role ofΨ, thus extending Appel-Felty to model general
references. Unfortunately, this leads to a circularity. The main
contribution of this paper is to eliminate this circularity.

2. Foundational Proofs of Safety
We begin by summarizing the foundational PCC approach to

proving the safety of machine-language programs.

2.1 Specifying Safety
The first step is to build a model of a von Neumann machine,

such as the Sparc or the Pentium, and a safety policy. In the model,
a machine state comprises aregister bankand amemory, each of
which is a function from integers (addresses) to integers (contents).

The execution of an instruction is modeled as a single step of the
machine. First, we define each instructioni as a predicate on four
arguments(r;m; r 0;m0) such that, given a machine at state(r;m), af-
ter execution of instructioni the machine will be at state(r 0;m0),
provided that the execution does not violate the safety policy. For
example, if the safety policy requires that “onlyreadableaddresses
will be loaded,” (where the predicatereadable is suitably spec-
ified as part of the safety policy), we can define the instruction
r i m[r j +c] as:

load(i; j ;c) =
λr;m; r 0;m0: readable(r(j)+c) ^ r 0(i) = m(r(j)+c)

^ (8x 6= i: r 0(x) = r(x)) ^ m0 = m

Next, we specify the step relation(r;m) 7! (r 0;m0) which for-
mally describes a single instruction execution. It requires the exis-
tence of an instructioni and a register bankr 00 such that the integer
at locationr(PC) 1 in memorym decodes to instructioni, updating
the register bankr with an incremented program counter produces
r 00, and finally instructioni safely maps(r 00;m) to (r 0;m0):

(r;m) 7! (r 0;m0) =
9r 00; i: decode(m(r(PC)); i)

^ r 00 = r [PC:=r(PC)+1] ^ i(r 00;m; r 0;m0)

1PC denotes the program counter.

1

where f [d :=x] = λi: if i = d then x else f (i)
We model a state in which the real machine would have a next

step that violates the safety policy, as a state with no successor in
the step relation. Then, proving that a state is safe (writtensafe-
state(r;m)) amounts to showing that there is no path from(r;m)
to a state with no successor. To prove a program safe we just have
to show that a state(r;m) where the program is loaded in memory
m and the program counterr(PC) points to the first instruction of
the program, is a safe state.

2.2 Proving Programs Safe
A program is a sequence of machine instructions at a specific

place in memory. At each point in the program there is a precondi-
tion, or invariant, such that if the registers and memory satisfy the
precondition it is safe to execute the program. In foundational PCC
(as in Necula [13]) these preconditions are expressed using types,
e.g.,r(1) :m τ1 ^ r(5) :m τ5. A judgmentx :m τ may be read as “x
has typeτ with respect to memorym.”

We present three examples of program fragments that read from
memory, initialize memory and update memory, respectively, and
show type-inference rules required to prove these fragments safe.
In a foundational system these inference rules cannot be added to
the logic as axioms; we explain how they can be proved as lemmas.

Example 1 (Traversal of Heap-Allocated Data)
Consider the following program fragment which reads a value from
a data structure in memory. The precondition — i.e., the invariant
at address 101, writtenI101(r;m) — says that this data structure
must be a reference cell containing a value of typeτ in memory
m. The postcondition, i.e., the invariantI102(r;m), requires that the
value in the destination register have typeτ with respect to memory
m.

I101(r;m) = r(2) :m ref τ
101 : r3 m(r2)

I102(r;m) = r(3) :m τ

In proving a program safe, for each program pointl we must
proveprogress andpreservation. The property
progress(l) says that if the invariant at addressl holds, and if
there is a valid instruction at addressl , then we can safely execute
this instruction:

progress(l) =

8r;m; i: r(PC) = l ^ Il (r;m) ^ decode(m(l); i)

) 9r 0;m0: (r;m) 7! (r 0;m0)

We will not discuss proofs ofprogress here2 — in this paper
we are mainly concerned with provingpreservation. The prop-
erty preservation(l) says that if the invariant at addressl holds,
then executing the instruction atl leads to a state(r;m) such that
the invariantIr(PC)(r;m) is satisfied. More formally, we can say
that we have to establish statements of the formfPgCfQg where
C is an instruction (or command) andP and Q are the pre- and
postconditions, respectively. If we ignore control-flow instructions

2To prove progress we essentially need to show thatIl (r;m)
satisfies the preconditions specified by instructioni. For ex-
ample, the instructionload(2;1;0) specifies the precondition
readable(r(2)) — this condition must be part of the invariant
Il (r;m). Proofs of progress require that we have the right invari-
ants.

(which, in any case, are irrelevant to the material in this paper)3

preservation(l) can be written asfIlgCfIl+1g whereC is the
instruction stored at locationl :

fIlgCfIl+1g =
8r;m; r 0;m0: r(PC) = l ^ decode(m(l);C)

^ Il (r;m) ^ (r;m) 7! (r 0;m0)
) r 0(PC) = l +1 ^ Il+1(r 0;m0)

Then, for the above program fragment we have to show

fI101gr3 m(r2)fI102g

The step relation increments the program counter, sor 0(PC) = 102
is easily proved. Since we know from the semantics of the load
instruction thatm0 = m, to prover3 :m0 τ, we can use an inference
rule similar to theRef Eliminationrule below. This rule says that if
x is a pointer to a value of typeτ in memory, then we may conclude
that the contents of memory at addressx are of typeτ:
Ref Elimination

x :m ref τ
m(x) :m τ

But where does this inference rule come from? Atype-specialized
PCC system (such as Necula’s [13]) would include the above rule
as an axiom. In foundational PCC, however, we build a seman-
tic model of types that allows us to prove this type inference rule
as a lemma. Consider a model of types as sets of values, where a
value is a pair(m;x) of a memorym and an integerx (usually an
address that can be thought of as the root-pointer to a data structure
in memory). We then define types as predicates on values so that
the judgmentx :m τ is just syntactic sugar forτ(m;x). For example,
we can define integer and reference types as,

int(m;x) = true
ref τ(m;x) = readable(x) ^ τ(m;m(x))

From the definition ofref above, we can immediately prove theRef
Eliminationrule as a lemma.

By defining a variety of types in this way,4 and using them as
building blocks to describe more complicated datatypes, we can
reason about the safety of programs that traverse nontrivial data
structures — as long as these data structures are statically allocated.

Example 2 (Dynamic Heap Allocation)
Programs written in a call-by-value pure functional language allo-
cate new data structures on the heap but never update old values.
Appel and Felty [2] describe a semantic model that allows us to
reason about the safety of such programs. Consider the following
program fragment (which we write directly as a Hoare triple) that
creates a new reference cell in memory by writing to a “new” mem-
ory location — registerr5 points to this new location:

fI111= λr;m: r(1) :m τ1^ r(4) :m τ2g
m(r5) r4
fI112= λr;m: r(1) :m τ1^m(r(5)) :m τ2g

Givenr1 :m τ1 and the fact that the store instruction alters mem-
ory (i.e.,m0 6= m), how can we prover1 :m0 τ1? Consider the sce-
nario illustrated by figure 1 — the store instruction updates the lo-
cation thatr5 points to (thereby modifying the data structure thatr1

3While we have chosen to ignore control-flow instructions to sim-
plify the presentation, our system can handle such instructions (see
Appel and McAllester [3]).
4Appel and Felty [2] provide an extensive catalog of type construc-
tors defined as predicates on values.

2

r 1

r 5

Figure 1: Pointer Aliasing

points to), so that we cannot know ifr1 has typeτ1 with respect to
the modified memorym0. But the situation in figure 1 cannot occur
since we stipulated thatr5 points to a “new” memory location.

If we distinguish between allocated and unallocated memory and
ensure that only unallocated locations can be modified, then we can
prove that type judgments are preserved across memory updates.
For this, we maintain a seta of allocated addresses and say that a
stateis a pair(a;m) of an allocseta 5 and a memorym. Then, a
value is a pair((a;m);x) of a state and a root-pointer and types are,
as before, predicates on values. Onlyreadable and writable
location are added to the allocset. The typesint andref are defined
as,6

int(a;m;x) = true

ref τ(a;m;x) = x2 a ^ τ(a;m;m(x))

In this model, we can prove the followingInitialization Invari-
ancerule as a lemma. This rule says that when we update an unal-
located location, type judgments made with respect to the old mem-
ory continue to be valid with respect to the new memory:
Initialization Invariance

x :a;m τ y =2 a m0 = m[y:=z]
x :a;m0 τ

Now, if we rewrite the invariants of our program fragment so
that type judgments have the formx :a;m τ, using theInitialization
Invariancerule we can prove the following statement:

fI111= λr;m:9a: r(1) :a;m τ1^ r(5) =2 a^ r(4) :a;m τ2g
m(r5) r4
fI112= λr;m:9a: r(1) :a;m τ1^m(r(5)) :a;m τ2g

Example 3 (Mutable Data Structures)
The model described by Appel and Felty [2] cannot be used to rea-
son about the safety of programs written in an imperative language.
That model prohibits updates to allocated memory locations — the
store instruction in the following Hoare triple performs such an up-
date:

fI121= λr;m:9a: r(1) :a;m τ1^ r(6) :a;m ref τ2
^ r(4) :a;m τ2g

m(r6) r4
fI122= λr;m:9a: r(1) :a;m τ1^ r(6) :a;m ref τ2g

To prove the above statement we need theUpdate Invariance
rule. This rule says that when we update anallocated location,
type judgments made with respect to the old memory continue to

5The allocseta is virtual: it is existentially quantified and in a ma-
chine state(r;m), it can be computed by the program. Thealloc
predicate specifies the allocseta: a = alloc(r;m). Note that the
allocset must be computable by the program itself so that it knows
where to find a location for new heap cells.
6For readability, we writeint(a;m;x) rather than the more accurate
int((a;m);x).

be valid with respect to the new memory. This suggests that writing
to an allocated location should be permitted only if the update is
type-preserving.
Update Invariance

x :a;m τ y :a;m ref τ0 z :a;m τ0 m0 = m[y:=z]
x :a;m0 τ

For foundational PCC, we must devise a semantic model of types
that allows us to prove theUpdate Invariancerule as a lemma. Such
a model and a proof of anUpdate Invariancelemma are the main
contributions of this paper.

An update to an allocated location must be type-preserving —
this means that only values of a certain type may be written at that
location. Hence, we require a model that, for each allocated loca-
tion, keeps track of this type. In the next section we describe why
tracking permissible heap updates is tricky.

3. Modeling Permissible Heap Updates
In the semantics of immutable fields described by Appel and

Felty [2] a type is a predicate on a memorym (a function from
integers to integers), a seta of allocated addresses (a predicate on
integers), and a root-pointerx (an integer). In our object logic, we
write the types of these logical objects as,

memory = num ! num
allocset = num ! o
type = allocset�memory�num ! o

whereo represents the type of propositions (true or false).

3.1 1st Flawed Model:
Types and the Extended Allocset

To allow for the update of existing values we enhance the allocset
a to become a finite map from locations to types: for each allocated
addressx, we keep track of the typeτ of updates allowed atx. As
before, a type is a predicate on three arguments(a;m;x):

allocset = num
fin
! type

type = allocset�memory�num ! o

But there is a problem with this specification: notice that the
metalogical type oftypeis recursive, and, furthermore, that it has an
inconsistent cardinality: the set of types must be bigger than itself.
To eliminate the circularity in the definition oftype, we present
a solution that replaces the type (in the allocset) with the G¨odel
number of a type.

3.2 2nd Flawed Model:
Gödel Numbers of Types

To describe the G¨odel number of a type, we specify the relation
rep(n;τ) which says that the G¨odel numbern represents the type
τ. Rather than use integers to represent types, we opted to use finite
trees of integers. A tree constructortreei(c0;t1; : : : ;ti) returns a
tree with integerc0 at the root andi subtreest1; : : : ;ti , for example:

1 � �

n11 n2

tree0(1) tree1(4;tree0(1)) tree2(3;n1;n2)

3

Then, we may specify the G¨odel number of the typeint as,

rep(n; int) = n=treetree0(1) 1

A similar attempt at specifying the G¨odel number of the type
τ1[τ2 fails: the two occurrences ofrep in the body of the follow-
ing definition indicate that therep relation is recursive.

rep(n;τ1[τ2)) =
9n1;n2: rep(n1;τ1) ^ rep(n2;τ2)

^ n=treetree2(2;n1;n2)

2

n1 n2

An inductive specification ofrep seems possible, though — to
fix the above problem we simply require that the typesτ1 andτ2
both be “smaller” than the typeτ1[τ2. Consider the following in-
ductive definition ofrep which specifies the G¨odel numbers of the
typesint , τ1[τ2 andref τ1. (Note that we useρ for rep variables.)

rep(n;τ) =
8ρ: ρ(tree0(1); int)

^ (8n1;n2: ρ(n1;τ1) ^ ρ(n2;τ2)
) ρ(tree2(2;n1;n2);τ1[τ2))

^ (8n1: ρ(n1;τ1)) ρ(tree1(3;n1); ref τ1))
) ρ(n;τ)

Definitions of the typesint , τ1[τ2 and ref τ1 (which would, of
course, precede the above definition ofrep) are given below:

int(a;m;x) = true

τ1[τ2(a;m;x) = τ1(a;m;x) _ τ2(a;m;x)

We sayx :a;m ref τ if locationx is allocated and may only be updated
with values of typeτ, and if the value stored in memory at location
x is of typeτ: 7

ref τ(a;m;x) = 9n: (x;n) 2 a ^ rep(n;τ)
^ τ(a;m;m(x))

Unfortunately, when we consider the definitions ofref andrep
simultaneously, we realize there is a problem: these definitions are
mutually recursive.

3.3 3rd Flawed Model:
The Gödel Number of rep

We can try to eliminate the mutual recursion by parametrizing
the type constructorref by rep. Then our definition ofrep would
have to specify the G¨odel number ofref(rep;τ1). A possible repre-
sentation istree2(3;nρ;n1) wherenρ is the Gödel number ofrep
andn1 is the Gödel number ofτ1. It turns out, however, that if a
Gödel number forrep exists, then (by a diagonalization argument)
we can prove our logic inconsistent (i.e.,9nρ: rep(nρ;rep))
false). Informally, if rep can represent both itself and the nega-
tion predicate (:), then it can represent “this sentence is false.” The
role of negation:τ is played [5] by the continuation constructor,
codeptr(τ), defined in section 5.3.

Thus far it seems that our definition of mutable references is cir-
cular. Let us take a closer look at the judgmentl :a;m ref(int):

ref(rep; int))(a;m; l) �
9n: (l ;n) 2 a ^ rep(n; int) ^ int(a;m;m(l))

7Recall that the allocset is a finite map from locations to G¨odel
numbers. Since a finite map can be modeled as a relation, we write
(x;n) 2 a rather thana(x) = n.

Hererep is used solely to determine the G¨odel number ofint —
this is a “smaller” type thanref(int). In fact, to determine the mem-
bers of the setref τ we only consider only those locations in the
allocset whose permissible update types are “smaller.” Rather than
parametrizeref τ by rep, it would be sufficient to parametrize it
by a version ofrep that only specified the G¨odel numbers of types
“smaller” thanref τ.

3.4 Solution:
A Hierarchy of G ödel Numberings

We use a stratified G¨odel numbering relationrep(i)(n;τ) where
the Gödel numbern represents the typeτ at level i. A property of
this relation is that for alli rep(i)� rep(i +1). Figure 2 illustrates
the first few levels of the hierarchy for the type constructorsint , [,
andref. Level 0 consists of the G¨odel numberings ofint , int[int ,
(int[int)[int , and so on. Letτ0 denote a type that has a G¨odel
number at level 0. Then, level 1 consists of G¨odel numberings of
typesτ0, of typesref τ0, and of all types in the closure (with respect
to[) of all the level 1 types just mentioned.

int

int U int U� int
base

closure

ref (int U� int U� int)

ref (int)

step

ref (int U� int) U ref (int)
closure

int U� int

ref (int U� int)

int U ref (int)

step

ref (ref (int))

ref (int U ref (int))

ref (ref (int U� int))

Figure 2: Hierarchy of Gödel Numberings

Figure 2 also shows how therep relation may be inductively
specified using the relationsbase, closure andstep. Here,base(n;τ),
which is a subset ofrep(0), specifies the G¨odel numbersn of all
primitive typesτ; the relationclosure(ρ)(n;τ) (whereρ is a sub-
set ofrep(i)) specifiesrep(i); the relationstep(i;ρ)(n;τ) (where
ρ is rep(i)) defines a subset ofrep(i + 1); the closure of the
latter, then, gives usrep(i +1)(n;τ). The formal definition ofrep
(for a small set of types) appears in figure 3, along with the relevant
type definitions. We use the variableρ for bothrep andrep(i).

Note that the type constructorref is parametrized byrep(i), as
indicated by the formal parameterρ. By creating a hierarchy of
Gödel numbers, we have, in effect, created a hierarchy of mutable
reference types: to define the setref τ at leveli+1 we need to know
the members of all the setsref τ0 at levels 0 throughi — for this we
userep(i). By stratifying mutable references we have eliminated
the circularity.

4. What is a Type?
Thus far we have described a type as a predicates on a state(a;m)

and an integerx. But a predicate on(a;m;x) must have certain
properties in order to be considered a type in our semantic model.
To specify these properties, we need some definitions.

4.1 Valid States

4

int(a;m;x) = true
τ1[τ2(a;m;x) = τ1(a;m;x) _ τ2(a;m;x)
ref(r)(τ)(a;m;x) = 9n: (x;n) 2 a ^ ρ(n;τ) ^ τ(a;m;m(x))

base(n;τ) = n=treetree0(1) ^ τ =type int
closure(ρ)(n;τ) = 8ρ0: ρ� ρ0

^8n1;τ1;n2;τ2: ρ0(n1;τ1) ^ ρ0(n2;τ2)) ρ0(tree2(2;n1;n2);τ1[τ2)
) ρ0(n;τ)

step(i;ρ)(n;τ) = ρ(n;τ) _ 9n1;τ1: ρ(n1;τ1) ^ n=treetree2(3;tree0(i);n1) ^ τ =type ref(ρ;τ1)
rep(i)(n;τ) = 8ρ: ρ(0) = closure(base)

^8 j < i: ρ(j +1) = closure(step(j ;ρ(j)))
) ρ(i)(n;τ)

Figure 3: Gödel Numbering of Types (int,[, ref)

The judgmentx :a;m τ says thatx has typeτ with respect to the
state(a;m). Implicit in this assertion is the assumption that state
(a;m) is well-formed orvalid. We say that a state(a;m) is valid if
it satisfies three conditions:

� The allocseta is a partial function, that is, each location in
the allocset is mapped to only one G¨odel number.

� The allocseta contains only legitimate G¨odel numbers, which
we define as,

godelρ(n) = 9τ:ρ(n;τ)

The subscriptρ indicates thatgodel takesrep(i) as an argu-
ment (where the leveli is determined by the context, as we
shall describe in section 5.3)).

� The type of the value stored at each allocated location in
memorym matches its permissible update type ina; we say
thatx matches a G¨odel numbern with respect to a state(a;m)
if,

matchρ(n;a;m;x) = 8τ:ρ(n;τ)) τ(a;m;x)

Definition 4 (Valid State)
validstateρ(a;m) =
8x;n;n0: (x;n) 2 a ^ (x;n0) 2 a) n=tree n0

^ 8x;n: (x;n) 2 a) godelρ(n)
^ 8x;n: (x;n) 2 a) matchρ(n;a;m;m(x))

A note on notation: we shall omit the subscriptρ and write
validstate(a;m) (and similarly forgodel andmatch) to indi-
cate that the missing parameterρ should be instantiated with the
default valuēρ, where,

ρ̄(n;τ) = 9i: rep(i)(n;τ)

As a consequence of our definition ofvalidstate we have the
following property. Informally, the type of the memory contents
of an allocated address matches the type that the allocset says it
should have:

Lemma 5 (Contents of ref Well-Typed)

(x;n) 2 a validstate(a;m)

9i;τ: m(x) :a;m τ ^rep(i)(n;τ)

4.2 Valid State Extension
To formally describe the memory and allocset extensions permis-

sible in our model we specify the extend-state relation(a;m) vρ
(a0;m0) which says that state(a0;m0) is a valid extension of state
(a;m) — or, alternatively, that(a;m) approximates(a0;m0). State
extensions must satisfy the following constraints:

� Our model does not permit deallocation of memory, so ifx2
dom(a), then we require thatx2 dom(a0).

� The permissible update type of an allocated location cannot
be altered across state extensions, so if(x;n) 2 a then(x;n) 2
a0.

� The model requires that all memory updates be type-preserving
— the last two conditions ensure that all allocated locations
are “preserved” under state extension, so now we simply re-
quire that state(a0;m0) be a valid state.

Definition 6 (Extend State)
Valid state extension (vρ) is specified as,

(a;m)vρ (a0;m0) =
8x;n: (x;n) 2 a) (x;n) 2 a0

^ validstateρ(a;m) ^ validstateρ(a0;m0)

Again, we omit the subscriptρ to indicateρ = ρ̄.

Lemma 7 (vρ Transitive)
The extend-state relation (vρ) is transitive.

A state extension(a;m)vρ (a0;m0) requires that both(a;m) and
(a0;m0) be valid states. Consider a state(a;m) where all unallocated
memory locations containjunk; that is, there are no “initialized
but not yet allocated” locations. When we extend state(a;m) vρ
(a0;m0), theAllocated Memory Well-Typedproperty of a valid state
forces us to initialize a new memory location (with a value of the
appropriate type)beforewe add it to the allocset:

Lemma 8 (Initialization Before Allocation)

(a;m)vρ (a;m0), (a;m)vρ (a;m0)vρ (a0;m0)

4.3 Desirable Properties of Types
In section 3 we presented theUpdate Invariancerule which says

that type judgments are preserved across memory extension. How
can we use the stratified model of mutable references to prove this

5

rule as a lemma? We start by stating update invariance as a property
of a type-predicate, which says that a type is closed under valid
extension of the memory. (Recall thatx :a;m τ is just syntactic sugar
for τ(a;m;x).)

update-invρ(τ) =
8x;a;m;m0: (a;m)vρ (a;m0) ^ x :a;m τ

) x :a;m0 τ

Notice that since(a;m) vρ (a;m0) allows updates of both allo-
cated and unallocated locations, the above property incorporates
the notion ofInitialization Invariancedescribed in section 2.

We model the allocation of new memory by extending the alloc-
set. To reason about programs that dynamically allocate memory,
we need a rule that says that type judgments are preserved under ex-
tension of the allocset. We call this theAllocation Invariancerule.
In lieu of the rule we specify the allocation invariance property of
a type-predicate:

alloc-invρ(τ) =
8x;m;a;a0: (a;m)vρ (a0;m) ^ x :a;m τ

) x :a0
;m τ

We say that a predicateτ (that takes an allocset, a memory, and
an integer) is atype (written τ type) if it has both theupdate-
invρ andalloc-invρ properties:

Definition 9
type(τ) = 8ρ:update-invρ(τ) ^ alloc-invρ(τ)

From the definitions ofupdate-invρ andalloc-invρ, and the
Initialization Before Allocationproperty of state extension (vρ) we
can show thatτ is a type if and only if it is closed under state
extension:

Lemma 10 (Type)
type(τ) � 8ρ;a;m;a0;m0: (a;m)vρ (a0;m0)

) τ(a;m;x)) τ(a0;m0;x)

If type(τ) holds for each typeτ in our system, then we can easily
prove theUpdate, AllocationandInitialization Invariancerules as
lemmas.

Representability. Suppose that we wish to allocate a new refer-
ence cell that contains a value of typeτ. We first write the value
into unallocated memory, say at addressl . Then, we extend the
allocset with the pair(l ;n) wheren representsτ at some leveli in
the Gödel numbering hierarchy. Clearly this last step requires the
existence of such ann and i; that is, to construct a value of typeτ
we require thatτ be representable:

Definition 11 (Representable)

repable(τ) = 9i;n:rep(i)(n;τ)

5. Modeling a Nontrivial Type System
In this section we present a model of general references. More

precisely, our model permits references to values of any type de-
fined using the primitive types and type contructors shown in fig-
ure 4. We first explain some of the more involved type definitions,
then specify a G¨odel numbering relation for the types in our sys-
tem, and finally present two sets of theorems: we show for each
type in our system that type judgments are preserved under state
extension (i.e.,type(τ)) and that the type is representable at some
level in the Gödel numbering hierarchy (i.e.,repable(τ)).

>(a;m;x) = true

?(a;m;x) = false

int(a;m;x) = true

const(n)(a;m;x) = x= n
char(a;m;x) = 0� x< 256
boxed(a;m;x) = x� 256
offset(i;τ)(a;m;x) = τ(a;m;x+ i)
(τ1[τ2)(a;m;x) = τ1(a;m;x) _ τ2(a;m;x)
(τ1\τ2)(a;m;x) = τ1(a;m;x) ^ τ2(a;m;x)
rec(F)(a;m;x) = 8τ:type(τ)) F(τ)� τ

) τ(a;m;x)
(9F)(a;m;x) = 9τ:type(τ)^ (Fτ)(a;m;x)
(8F)(a;m;x) = 8τ:type(τ)) (Fτ)(a;m;x)
box(τ)(a;m;x) = 9n:(x;n) 2 a

^ base(n;const(m(x)))
^ τ(a;m;m(x))

ref(ρ)(τ)(a;m;x) = 9n:(x;n) 2 a ^ ρ(n;K τ)
^ τ(a;m;m(x))

codeptr(ρ)(i;τ)(a;m;x) = 8r 0;m0;a0;ρ0: r 0(PC) = x
^ ρ� ρ0
^ (a;m)vρ0 (a0;m0)
^ a0 = alloc(r 0;m0)
^ τ(a0;m0; r 0(i))
) safe-state(r 0;m0)

Figure 4: Type Definitions

5.1 Recursive Types (rec)
To define recursive types, we introduce a subtyping relation de-

fined as logical implication:

τ1 � τ2 = 8a;m;x:τ1(a;m;x)) τ2(a;m;x)

A predicaterec(F), where F is a function from types to types, is
atype if the least fixed point of the argument functionF is rec(F).
This property holds if the type functionF preserves the validity of
a type and if it is monotone. We define these properties, as well as
antimonotonicity, as follows:

preserve-type(F) = 8τ:type(τ)) type(F(τ))
monotone(F) = 8τ1;τ2:τ1 � τ2) F(τ1)� F(τ2)
antimonotone(F) = 8τ1;τ2:τ1 � τ2) F(τ2)� F(τ1)

We can prove that the composition of two antimonotone func-
tions is monotone, while the composition of a antimonotone with a
monotone, and vice versa, is antimonotone.

Note that in our current model, we cannot prove
type(rec(F)) whenF is antimonotone, i.e., we cannot handle con-
travariant recursive types; though we have built a more complicated
model that does handle the latter (see section 7.1) we have chosen
to explain our approach in a simpler setting.

5.2 Immutable References (box)
The typebox of immutable references is defined in figure 4. Any

value may be stored in an immutable location, as long as it is nu-
merically equal to the value that’s already there.

5.3 First-Order Continuations (codeptr)
A value of typecodeptr(i;τ) is a first-order continuation, that

is, a machine-code address to which control may be passed, pro-
vided that its preconditions are met. Consider the judgmentx :a;m

6

codeptr(ρ)(i;τ). This says that if we jump to addressx in some
future machine state(r 0;m0) (i.e., if r 0((pc)) = x), then(r 0;m0) is a
safe state if the following conditions hold:

� The argument (i.e, the value stored in registerr i) must be
of the right type; that is,r 0(i) :a0

;m0 τ, wherea0 is computed
as usual from the machine state(r 0;m0) as follows: a0 =
alloc(r 0;m0).

� The programp that is in memory in state(a;m) must still
be in memory in state(a0;m0). To enforce this condition,
we make all allocset locations that contain program instruc-
tions “immutable”; that is, the allocset maps these locations
to Gödel numbers ofbox types. Then, since the program
is preserved under state extension, our precondition is sim-
ply: (a;m) vρ0 (a0;m0), whereρ0 satisfies the condition we
describe next.

� ρ � ρ0. Informally, if ρ = rep(i), whereρ is used to ensure
validstateρ(a;m), and if ρ0 = rep(j), whereρ0 used to
ensurevalidstateρ0(a0;m0) (see previous condition), then
we require thatj � i. In other words, in extending(a;m) to
(a0;m0) we may have created new cells with types that are
higher in the G¨odel numbering hierarchy; in that event, we
need a higher levelrep relation to ensure that state(a0;m0)
is valid.

5.4 Gödel Numbers of Type Functions
Our model requires that we specify the G¨odel number of each of

the types in figure 4. But to specify the G¨odel numbers ofrec(F),
9F , or 8F (where F is function from types to types), we have to
first specify the G¨odel numbers of type functionsF . Rather than
extend therep relation so that it specifies the G¨odel numbers of
type functions as well as types, we observe that if we represent
every type as a type function that simply ignores its argument, then
we would only require G¨odel numbers of type functions. We use
K τ to denote a type function that ignores its argument and returns
the typeτ (i.e., K = λy:λx:y). The Gödel numbering relation for
a representative set of type functions appears in figure 5 — we do
not present the fullrep relation due to space limitations.

Note that the relationbase(n;F) (figure 5) specifies the G¨odel
numbers ofK τ for primitive typesτ, as well as, the G¨odel number
of the identity type functionλτ:τ. All type constructors, with the
exception ofref and codeptr, are used to compute theclosure
of eachrep(i). For example, ifF is representable at leveli, then
λτ: ref(F(τ)) andλτ:codeptr(i;F(τ)) are representable at leveli+
1, as areK rec(λτ: ref(F(τ))) andλτ:(int[codeptr(i;F(τ))).

5.5 Theorems:type and repable

Theorem 12 (τ type)
Each of our types is atype, e.g.:

a-f. type(τ), whereτ ::=>j?jint jconst(n)jcharjboxed

g. type(τ)) type(offset(i;τ)).

h. type(τ1)^type(τ2)) type(τ1[τ2).

i. type(τ1)^type(τ2)) type(τ1\τ2).

j. preserve-type(F)^monotone(F)
) type(rec(F)).

k-l. preserve-type(F)) type(τ), whereτ ::= 9Fj8F

m. type(τ)) type(box(τ))

n. type(τ)) type(ref(ρ)(τ))

o. type(τ)) type(codeptr(ρ)(i;τ)).

Proof: Immediate from the definitions of the type operators.
Appel and Felty [2] show how to define record types using the

typesref, offset and\ as building blocks. To define function clo-
sures — where a function of typeα ! β takes an argument of
type α, a continuation of typeβ and an environment — we re-
quire record types, a codeptr type, and the existential type. Since
we have showntype(τ) for all the types in our system, any type
constructible from the types shown in figure 4 (except arbitrarily
nested recursive and quantified types — see section 7.2) can easily
be shown to be atype.

Theorem 13 (Representable Types are Valid)
rep(n;τ)) type(τ)

Proof: By a nested induction argument. The outer induction pro-
ceeds on the representation level, and it aims to show that validity
of representable types is preserved bystep. The inner induction is
on the structure of the typeτ (or, equivalently, on that of the cor-
responding G¨odel numbern), and aims to show that, if all types
represented by a representation functionρ are valid, so are those
represented byclosure(ρ).

Lemma 14 (rep Upward Closed)
rep(i;n;τ)) rep(i +1;n;τ)

Proof: It follows from the definition ofrep and the following two
basic facts:

8ρ: ρ� closure(ρ)
8ρ; j : ρ� step(j ;ρ)

Theorem 15 (repable(τ))
Each of our types is representable:9i;n:rep(i;n;τ).

Proof: This proof consists of computing, by induction on the
structure ofτ, the minimum leveli at whichτ is representable.

5.6 Invariance Lemmas

Lemma 16 (Initialization Invariance)

x :a;m τ y =2 a m0 = m[y:=z] type(τ)
x :a;m0 τ

Lemma 17 (Allocation Invariance)

x :a;m τ (a;m)v (a0;m) type(τ)
x :a0

;m τ

Lemma 18 (Update Invariance)

x :a;m τ y :a;m ref τ0 z :a;m τ0 m0 = m[y:=z] type(τ)
x :a;m0 τ

Proof: Lemmata 16-18 are proved by a nested induction argument
similar to the one employed in the proof of theorem 13.

7

base(n;F) = n=treetree0(10) ^ F =ty f n Kint
_ n=treetree1(11;tree0(c)) ^ F =ty f n K (const(c))
_ n=treetree0(12) ^ F =ty f n λτ:τ

closure(r;n;F) = 8ρ0:ρ� ρ0
^8n1;F1;n2;F2:ρ0(n1;F1) ^ ρ0(n2;F2)) ρ0(tree2(20;n1;n2);λτ:F1(τ)[F2(τ))
^8n1;F1:monotone(F1) ^ preserve-type(F1) ^ ρ0(n1;F1)

) ρ0(tree1(21;n1);Krec(F1))
) ρ0(n;F)

step(i;ρ;n;F) = ρ(n;F)
_9n1;F1:ρ(n1;F1) ^ n=treetree2(30;tree0(i);n1) ^ F =ty f n λτ: ref(ρ;F1(τ))
_9n1;F1:ρ(n1;F1) ^ n=treetree2(31;tree0(i);tree0(j);n1) ^ F =ty f n λτ:codeptr(ρ; j ;F1(τ))

rep(i)(n;F) = 8ρ:ρ(0) = closure(base)
^8 j < i:ρ(j +1) = closure(step(j ;ρ(j)))
) ρ(i)(n;F)

Figure 5: Gödel Numbering of Type Functions (int, const,[, rec, ref, codeptr)

5.7 Introduction & Elimination Rules
We prove introduction and elimination lemmas for each of the

types shown in figure 4. Due to space limitations, we only show
the lemmas forref here.

Lemma 19 (ref i and ref e)

m(x) :a;m τ x =2 a

9a0:(a;m)v (a0;m) ^ x :a0
;m ref τ

x :a;m ref τ
m(x) :a;m ref τ

6. An Example
We present a program fragment that constructs a reference cell

of typeτ2 in memory (i.e., initializes a location, then adds it to the
allocset) and then updates it. Note thatτ2 may be any type defin-
able in our system. We show how our model of general references
allows us to provepreservation(l) for each program pointl in
the fragment.

r 5

r 6

Allocated

	
ee

���

��

���

���

���

Figure 6: Example

Consider the situation in figure 6 as the starting point of the fol-
lowing program fragment. For this example, assume that registerr6
is a special register that always points to the next address to be al-
located; then, to add a location to the allocated set, we must simply
increment this register.8

8Appel and Felty [2] use a register (sayr6)to point to an allocation
boundary such that all addresses less thanr6 are allocated and all
addresses beyond that point are unallocated. Their single argument
alloc predicate is defined asalloc(r;m) = λx:x< r(6).

fI111= λr;m:9a: r(1) :a;m τ1^ r(4) :a;m τ2
^ r(5) =2 dom(a)^ r(5) = r(6)g

m(r5) r4
fI112= λr;m:9a: r(1) :a;m τ1^m(r(5)) :a;m τ2g
r6 r6+1
fI113= λr;m:9a: r(1) :a;m τ1^ r(5) :a;m ref τ2g
m(r5) r4
fI114= λr;m:9a: r(1) :a;m τ1^ r(5) :a;m ref τ2g

Proof: fI111gm(r5) r4fI112g
By the semantics of the store instruction and the step relation, for
all x 6= PC, r 0(x) = r(x) andm0(r(5)) = r(4).

� We haver 0(1) :a;m0 τ1 using lemma 16. Since a store instruc-
tion does not alter the allocset,a = a0. Thenr 0(1) :a0

;m0 τ1
follows by congruence.

� r 0(4) :a0
;m0 τ2 follows using the same argument as forr 0(1) :a0

;m0

τ1 above. Thenm0(r 0(5)) :a0
;m0 τ2 follows by congruence.

Proof: fI112gr6 r6+1fI113g
Picka0 = λx;n:(x;n) _ (x= 303^9i:rep(i)(n;K τ2)). It is easy to
show thata0 satisfies(a;m)v (a0;m0).

� Since the add instruction does not alter memory,m0 = m.
Then we haver 0(1) :a0

;m0 τ1 using lemma 17 and congruence.

� Since registerr5 is unchanged, we haver 0(5) = 303, so it
would suffice to show that 303 :a0

;m0 ref τ2. (At this point we
can use theref i lemma, but we proceed without it to clarify
the details.) By theorem 15, we have9i:rep(i)(n;τ2); then
we can show that(303;n) 2 a0. To provem(303) :a0

;m0 τ2 we
use the premisem(r(5)) :a;m τ2 along with congruence and
lemma 17.

Proof: fI113gm(r5) r4fI114g
This proof is analogous to the proof for the first instruction of
the program fragment, except that lemma 18 replaces all uses of
lemma 16 in that proof.

7. Extensions
We describe some of the other extensions to the Appel-Felty

model [2] and show that our model is compatible with these.

8

7.1 The Indexed Model
Consider the typerec(λα:α! int). This is a contravariant re-

cursive type. In these types, occurrences of the type being de-
fined appearnegatively, that is, they appear to the left of an odd
number of function arrows in an ML declaration. Using the nota-
tion of section 5.1, a typerec(F) is contravariant wheneverF is
antimonotone.

The indexed model of types described by Appel and McAllester
[3] allows reasoning about contravariant recursive types, but in an
immutable setting. In that model, types are predicates on(k;a;m;x)
wherek is an approximation index, and(a;m) and x are a state
and a root-pointer, respectively. The judgmentx :k;a;m τ means,
“x approximately has typeτ, and any program that runs for fewer
thank instructions can’t tell the difference.” Then, a program that
executesj instructions wherej � k alsobelievesthatx has typeτ;
that is,x :k;a;m τ) 8 j � k: x : j;a;m τ.
The indicesk allow the construction of a well-founded recursion,
even when modeling contravariant recursive types.

It turns out that the approximation indices used in the indexed
model can coexist quite naturally with the hierarchy of G¨odel num-
berings that we have described. Informally, this is due to the nature
of ref: suppose we havex :k;a;m (ref τ)i — we have used the su-
perscripti to denote that the G¨odel number ofref τ is defined at
rep level i. Sincex is a pointer to a valuem(x) of type τ, and
since it takes one execution step (i.e., one instruction) to derefer-
ence a pointer, we may conclude that any program that runs for
fewer thank�1 instructions believes thatm(x) has typeτ — this
follows from the definition ofref in the indexed model. Then, we
havem(x) :k�1;a;m τi�1, i.e, both the approximation index and the
rep level are decremented by the definition ofref.

It is important to note that thek andi are different:k deals with
the number of times a recursive type is unrolled, whilei simply
counts the number of nested occurrences ofref in a type expression

We have built a semantic model with both approximation indices
k and a hierarchy of G¨odel numberings, with the theorems of sec-
tion 5 suitably modified for the indexed setting; for each of these
theorems, we have machine-checked proofs in this model. Hence,
we have a semantic model of general references that can handle
both covariant and contravariant recursive types.

7.2 Typed Machine Language
A limitation of the semantics we described in section 5 is that

it does not allow us to represent arbitrarily nested recursive and
quantified types. (This limitation also applies to the model in sec-
tion 7.1 for which we have a machine-checked proof.) For instance,
we cannot represent the following type in our model:

rec(λα: ref(rec(λβ:(ref β)[α)))

Typed Machine Language, described by Swadi and Appel, [23]
accommodates arbitrarily nested recursive and quantified types and
it does so using DeBruijn indices. Our approach is compatible with
the latter: we simply need to define a G¨odel numbering relation
that represents type expressions with free DeBruijn variables rather
than type functions as we have shown. Though this requires a con-
siderable proof-implementation effort, conceptually the task is not
too complicated.

8. Machine-Checked Proof
All of our proofs are machine-checked, and furthermore, these

proofs have an actual use: they form part of the proof of safety of a
machine-language program in a PCC system.

To do machine-checked proofs, one must first choose a logic
and a logical framework in which to manipulate the logic. The
logic that we use is Church’s higher-order logic with a few ax-
ioms of arithmetic; we represent our logic, and check proofs, in
the LF metalogic [7] implemented in the Twelf logical framework
[18]. Our proof “implementation” consists of about 16,500 lines of
Twelf code, using the encoding of higher-order logic described by
Appel and Felty [2]. The implementation of the Appel-McAllester
model consisted of 8,200 lines of proof, while that of the Appel-
Felty model consisted of 5,400 lines.

9. Related Work
A common feature of a number of models of mutable state (also

calledmutable storein the literature) is the following: they specify
howthe state is allowed to vary over time. Models forIdealized Al-
gol developed by Reynolds and Oles [20, 15, 16, 17] make use of
functor categories; functors are important because they capture the
fact that the size of the store, as well as its contents, may change
over time. To specify how the state is allowed to change at any
point in the program, they use functor categories indexed bypos-
sible worldsor store shapes. We note, however, that these models
do not handle general references. Stark [22] (building on work
done with Pitts on possible world models of the nu-calculus [19])
describes a denotational semantics forReduced MLthat includes
integer references.

Recently, Levy [10] has described a possible-world model for
general references. There are interesting correspondences between
his model and ours. Hisworld-store(w;s), wherew is a world and
s is aw-store, (i.e., each location ins is well-typed with respect to
w) corresponds to a valid state(a;m) in our model. His worldsw,
like our allocseta, can only increase (writtenw�w0 wherew is the
earlier world andw0 is the later world). His model has the property:
“if w� w0 then everywτ-value is aw0

τ-value (wherewτ-value de-
notes a value of typeτ in world w); this corresponds totype in our
model. Moreover, the definition (denotation to be more precise)
of the typeref τ in his model is different:[[ref τ]]w= $wτ (where
$wτ denotes “the set of cells of typeτ in w”). Notice that[[ref τ]]
is defined in terms of the syntaxτ rather than the semantics[[τ]] ;
that is, this semantics is not compositional. Levy is faced with the
same kind of circularity that we described in section 3. He solves
it by observing that recursive equations on domains have solutions.
We solve it by showing that our hierarchy ofrep relations has a
limit. This hints that G¨odel numbering might be a way to model
denotational semantics.

Besides Levy’s, the only other model of general references that
we know of is a game semantics described by Abramsky, Honda
and McCusker [1]. The model of references is provided by certain
categories of games: a strategy for an arena is a rule telling Player
what move to make in a given position —thread-independentstrate-
gies specify how the state is allowed to vary over time. In this
model, reference types are viewed as a product of a “read method”
and a “write method” in the style of Reynolds [20]. This represen-
tation of references is quite different from that in location-based
models such as ours.

We have shown how our semantic model provides us with rules
(lemmas) that allow us to prove properties of programs with muta-
ble references — as long as these properties are expressed as types.
There has been a great deal of work on program-proving for point-
ers; here, we discuss only the formalism described by Ishtiaq and
O’Hearn [9] (which is closely related to the work of Burstall and
Reynolds [4, 21]). When proving properties of programs that mu-
tate the heap, a great deal of effort is spent reasoning about what
doesnot change. Ishtiaq and O’Hearn use the BI logic [14] which

9

provides a spatial form of conjunction� such that the statement
P�Q is true just when the current heap can be split into two com-
ponents, one of which makesP true and the other of which makesQ
true. This operator allows them to introduce frame axioms (which
describe invariants of the heap) using the following rule:

fPgCfQg

fP�RgCfQ�Rg
ModifiesOnly(C) [free(R) = /0

whereModifiesOnly(C) is the set of (free) variables that are up-
dated by the commandC. This resembles the following rule in our
system, though in our model,R is restricted to type judgments, for
example,x :a;m τ1 ^ y :a;m τ2 and ModifiesOnly(C) is the set of
registers that are updated by the commandC:

fPgCfQg

fP^RgCfQ^Rg
ModifiesOnly(C) [free(R) = /0

The use of̂ instead of� has important consequences. Consider
the situation in figure 1. Now suppose we execute the following
program fragment which updates the cell pointed at by registerr5.
The following statement can be proved in our framework, but not
in the theirs; there the heap cannot be split into two parts, such that
one part satisfiesr(1) :a;m τ1 and the other satisfiesr(5) :a;m ref τ.

fI111= λr;m:9a: r(1) :a;m τ1^ r(5) :a;m ref τ2
^ r(4) :a;m τ2g

m(r5) r4
fI112= λr;m:9a: r(1) :a;m τ1^ r(5) :a;m ref τ2g

Their framework is useful where aliasing is not expected to occur
because their predicatesRare stronger than just typing judgments.

Melham [11] automated the definition and proof of recursive
datatypes (without function types) in higher-order logic; Gunter
[6] extended this to covariant function types in the recursion. Our
Gödel numbering can be seen as an extension of this work to all
functions representable by expressions. However, their systems
generate therep relation and proofs automatically; we have done
it by hand but intend to automate the process in future work.

10. Future Work
Appel and McAllester’s indexed model [3] has both a simple,

non-extensional version and an extensional version using PERs. It
is not trivial to make an extensional semantics for general refer-
ences because the equivalence of two values depends on the set of
their free locations. We intend to investigate this.

11. References
[1] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully

abstract game semantics for general references. InProceedings
Thirteenth Annual IEEE Symposium on Logic in Computer Science,
pages 334–344, Los Alamitos, California, 1998. IEEE Computer
Society Press.

[2] Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. InPOPL ’00: The 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 243–253. ACM Press, January 2000.

[3] Andrew W. Appel and David McAllester. An indexed model of
recursive types for foundational proof-carrying code. Technical
Report TR-629-00, Princeton University, October 2000.

[4] Rodney M. Burstall. Some techniques for proving correctness of
programs which alter data structures. In Bernard Meltzer and Donald
Michie, editors,Machine Intelligence 7, pages 23–50. Edinburgh
University Press, Edinburgh, Scotland, 1972.

[5] Timothy G. Griffin. A formulae-as-types notion of control. In
Conference Record of the Seventeenth Annual ACM Symposium on

Principles of Programming Languages, pages 47–58, New York,
1990. ACM Press.

[6] Elsa L. Gunter. A broader class of trees for recursive type definitions
for HOL. In Jeffery Joyce and Carl Seger, editors,Higher Order
Logic Theorem Proving and Its Applications, volume 780 ofLecture
Notes in Computer Science, pages 141–154. Springer-Verlag,
February 1994.

[7] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics.Journal of the ACM, 40(1):143–184, January 1993.

[8] Paul Hudak, Simon Peyton Jones, and Philip Wadler. Report on the
programming language Haskell, a non-strict, purely functional
language, version 1.2.SIGPLAN Notices, 27(5), May 1992.

[9] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. InConference Record of POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 14–26, New York, 2001. ACM.

[10] Paul Blain Levy.Call-by-Push-Value. Ph. D. dissertation, Queen
Mary, University of London, London, UK, March 2001.

[11] T. F. Melham. Automating recursive type definitions in higher order
logic. In G. Birtwistle and P. A. Subrahmanyam, editors,Current
Trends in Hardware Verification and Automated Theorem Proving,
pages 341–386, New York, 1989. Springer.

[12] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly language.ACM Trans. on Programming
Languages and Systems, 21(3):527–568, May 1999.

[13] George Necula. Proof-carrying code. In24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, New York, January 1997. ACM Press.

[14] Peter W. O’Hearn and David J. Pym. The logic of bunched
implications.Bulletin of Symbolic Logic, 5(2):215–244, June 1999.

[15] Frank Joseph Oles.A Category-Theoretic Approach to the Semantics
of Programming Languages. Ph. D. dissertation, Syracuse University,
Syracuse, New York, August 1982.

[16] Frank Joseph Oles. Type algebras, functor categories, and block
structure. In Maurice Nivat and John C. Reynolds, editors,Algebraic
Methods in Semantics, pages 543–573. Cambridge University Press,
Cambridge, England, 1985.

[17] Frank Joseph Oles. Functor categories and store shapes. In Peter W.
O’Hearn and Robert D. Tennent, editors,ALGOL-like Languages,
Volume 2, pages 3–12. Birkh¨auser, Boston, Massachusetts, 1997.

[18] Frank Pfenning and Carsten Sch¨urmann. System description: Twelf
— a meta-logical framework for deductive systems. InThe 16th
International Conference on Automated Deduction. Springer-Verlag,
July 1999.

[19] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or: What’snew?
In Andrzej M. Borzyszkowski and Stefan Sokołowski, editors,
Mathematical Foundations of Computer Science 1993, volume 711
of Lecture Notes in Computer Science, pages 122–141, Berlin, 1993.
Springer-Verlag.

[20] John C. Reynolds. The essence of Algol. In Jaco W. de Bakker and
J. C. van Vliet, editors,Algorithmic Languages, pages 345–372,
Amsterdam, 1981. North-Holland.

[21] John C. Reynolds. Intuitionistic reasoning about shared mutable data
structure. In Jim Davies, Bill Roscoe, and Jim Woodcock, editors,
Millennial Perspectives in Computer Science, pages 303–321,
Houndsmill, Hampshire, 2000. Palgrave.

[22] Ian D. B. Stark.Names and Higher-Order Functions. Ph. D.
dissertation, University of Cambridge, Cambridge, England,
December 1994.

[23] Kedar N. Swadi and Andrew W. Appel. Typed machine language and
its semantics. submitted for publication, 2001.

10

