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Abstract The foundational PCC consumer need not know, or trust, the typing

We demonstrate a semantic model of general references — that is,rUIes in advance. This means that we must provide a machine-

mutable memory cells that may contain values of any (statically- che(;:klable proof of the these rules; for this we need a semantic
checked) closed type, including other references. Our model is in MO9€!- _ .

terms of execution sequences on a von Neumann machine; thus, it In a typical syntactic theory O.f referenc_es we have Jl_Jdgments
can be used in a Proof-Carrying Code system where the skeptical©' the form&,T" = x : T (whereW is a mapping from locations to
consumer checks even the proofs of the typing rules. Our proof is types). In the Appel-Felty semantics, a type is a predicate on a set
machine-checked in the Twelf metalogic of allocated locations, a memorym, and a root-pointex, where

ais simply a set of addresses. It seems natural to genegatiae
. serve the role of¥, thus extending Appel-Felty to model general
1. Introduction references. Unfortunately, this leads to a circularity. The main
Proof-carrying code is a framework for proving the safety of contribution of this paper is to eliminate this circularity.

machine-language programs with a machine-checkable proof. In
conventional PCC systems [13, 12], proofs are written in a logic 2.  Foundational Proofs of Safety
with a built-in understanding of a particular type system; that is, i . )
each inference rule of the type system is an axiom of the logic. W& Pegin by summarizing the foundational PCC approach to
In foundational PCC, introduced by Appel and Felty [2], the only Proving the safety of machine-language programs.
axiom besides the axioms of higher-order logic and arithmetic is v
the definition of the state-transition relation of the target architec- 2-1 SpPecifying Safety
ture. The semantics of everything else (safety, types, etc.) must be The first step is to build a model of a von Neumann machine,
modeled in terms of possible state transitions. For very simple type such as the Sparc or the Pentium, and a safety policy. In the model,
systems, with immutable references, no data structure creation, anda machine state compriseseamister bankand amemory each of
no recursive types, such models are easy to construct. Appel andwhich is a function from integers (addresses) to integers (contents).
Felty [2] have shown how to extend this to allocation of immutable = The execution of an instruction is modeled as a single step of the
values, covariant recursive types, function pointers, and quantified machine. First, we define each instructioms a predicate on four
types. Appel and McAllester [3] further extend this to contravariant argumentgr,m,r’,m') such that, given a machine at stétem), af-
recursive types. With each extension, the semantic model gets moreter execution of instruction the machine will be at statg’,n),
complicated. Our new result is an extension of all the previous type provided that the execution does not violate the safety policy. For
systems to mutable references, where reference cells can contairexample, if the safety policy requires that “omgadableaddresses
values of any type, including functions and other references. The will be loaded,” (where the predicaigadable is suitably spec-
semantic model contains an interesting use ofl@& humbering as ified as part of the safety policy), we can define the instruction
a way to model denotational semantics. After all, denotational se- r; < m[r; +c] as:
mantics and @del numbering address the same problem, which is

the relation of syntax to semantics. load(i, j,c) =
Almost [8] all practical programming languages use mutable ref- ~ Ar,m,r’,m’. readable(r(j)+c) A r'(i) = m(r(j)+c)
erences; object-oriented languages (such as Java) and functional A(WXZir(X)=r(x)) Am=m

languages (such as ML) permit references to contain values of ar-
bitrary (statically-checked) type. Therefore, general references are Next, we specify the step relatigim,m) — (r’,n’) which for-
essential in our plans to build PCC systems for practical languages.mally describes a single instruction execution. It requires the exis-
tence of an instructionand a register banK’ such that the integer
at locationr (Pc) 1 in memorym decodes to instruction updating
the register bank with an incremented program counter produces
r”, and finally instruction safely mapgr”,m) to (r',m'):

(rm) = (r',m) =
3r"i. decodém(r(pc)),i)
Ar" =t [PCZZF(PC) + ]_] A i(r”7 m’r/’n,{)

Preliminary version, July 2001 'pc denotes the program counter.



where f[d:=x] = Ai.if i=d thenx else f(i) (which, in any case, are irrelevant to the material in this paper)
We model a state in which the real machine would have a next preservation(l) can be written aql;}C{l|;1} whereC is the

step that violates the safety policy, as a state with no successor ininstruction stored at locatidn

the step relation. Then, proving that a state is safe (writefe-

state(r,m)) amounts to showing that there is no path frmm) {h }C{llﬁl} -

to a state with no successor. To prove a program safe we just have 7HM,m. r(PC)=1 A de°°de(m(|)79)

to show that a stat@, m) where the program is loaded in memory A li(r,m) A (r,m) — (r’ )

m and the program counte(Pc) points to the first instruction of = r'(PO)=T+1 Al (r',nT)

the program, is a safe state. Then, for the above program fragment we have to show

2.2 Proving Programs Safe {l101}r3 <= m(r2){l102}

A program is a sequence of machine instructions at a specific The step relation increments the program counter; () = 102
place in memory. At each point in the program there is a precondi- 1S €asily proved. Since we know from the semantics of the load
tion, or invariant, such that if the registers and memory satisfy the instruction thatf = m, to provers :yy T, we can use an inference
precondition it is safe to execute the program. In foundational PCC rule similar to theRef Eliminatiorrule below. This rule says that if
(as in Necula [13]) these preconditions are expressed using typesXiS a pointer to a value of typein memory, then we may conclude

e.9.r(1) :mT1 A r(5) imTs. A judgmentx :m T may be read asx' that the contents of memory at addresae of typer:
has typer with respect to memorgn.” Ref Elimination

We present three examples of program fragments that read from X:mreft
memory, initialize memory and update memory, respectively, and M(X) im T

show type-inference rules required to prove these fragments safe. o o
In a foundational system these inference rules cannot be added to Butwhere does this inference rule come fromf/pe-specialized

the logic as axioms: we explain how they can be proved as lemmas.PCC system (such as Necula's [13]) would include the above rule
as an axiom. In foundational PCC, however, we build a seman-

tic model of types that allows us to prove this type inference rule
Example 1 (Traversal of Heap-Allocated Data) as a lemma. Consider a model of types as sets of values, where a
Consider the following program fragment which reads a value from value is a pair(m,x) of a memorym and an integex (usually an
a data structure in memory. The precondition — i.e., the invariant address that can be thought of as the root-pointer to a data structure
at address 101, writteRos(r,m) — says that this data structure  in memory). We then define types as predicates on values so that
must be a reference cell containing a value of tyga memory the judgmenk :, T is just syntactic sugar far(m, x). For example,
m. The postcondition, i.e., the invarialab(r, m), requires that the we can define integer and reference types as,
value in the destination register have typs&ith respect to memory
m.

int(mx) = true
ref t(mXx) = readable(x) A T(mm(X))
101 : |r10<1£r,r:1)r— r(2) mref T From the definition ofef above, we can immediately prove tRef
-8 (r2) ] Eliminationrule as a lemma.
l102(r,m) =1(3) :m T By defining a variety of types in this wa§,and using them as
In proving a program safe, for each program pdinte must building blocks to describe more complicated datatypes, we can
proveprogress andpreservation. The property reason about the safety of programs that traverse nontrivial data
progress(l) says that if the invariant at addreksolds, and if structures — as long as these data structures are statically allocated.
there is a valid instruction at addrdsghen we can safely execute
this instruction: Example 2 (Dynamic Heap Allocation)

Programs written in a call-by-value pure functional language allo-
cate new data structures on the heap but never update old values.
progress(l) = Appel and Felty [2] describe a semantic model that allows us to
vr,mi. r(PC) =1 A I(r,m) A decode(m(l),i) reason about the safety of such programs. Consider the following
, , program fragment (which we write directly as a Hoare triple) that
= 3. (rm) = (r',m) creates a new reference cell in memory by writing to a “new” mem-

We will not discuss proofs ofrogress here? — in this paper O location —registers points to this new location:

we are mainly concerned with provipgeservation. The prop-

erty preservation(l) says that if the invariant at addressolds, {lia=Ar,mr(1) imTaAr(4) im T2}

then executing the instruction hteads to a statér,m) such that m(rs) < rq

the invariantl, (pc)(r,m) is satisfied. More formally, we can say {liz=Ar,mr(1) imTa AM(r(5)) im T2}

that we have to establish statements of the fRHC{Q} where Givenry :m T1 and the fact that the store instruction alters mem-

C is an instruction (or command) arfland Q are the pre- and  ory (j.e.,m’ # m), how can we prove; :y 11? Consider the sce-
postconditions, respectively. If we ignore control-flow instructions nario illustrated by figure 1 — the store instruction updates the lo-
cation that s points to (thereby modifying the data structure that

2To prove progress we essentially need to show thatm) W . ) ) )
satisfies the preconditions specified by instruction For ex- While we have chosen to ignore control-flow instructions to sim-
ample, the instructionload(2,1,0) specifies the precondition  plify the presentation, our system can handle such instructions (see
readable(r(2)) — this condition must be part of the invariant ~Appel and McAllester [3]).

I, (r,m). Proofs of progress require that we have the right invari- *Appel and Felty [2] provide an extensive catalog of type construc-
ants. tors defined as predicates on values.
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Figure 1: Pointer Aliasing

points to), so that we cannot knowrif has typet; with respect to
the modified memory. But the situation in figure 1 cannot occur
since we stipulated thag points to a “new” memory location.

If we distinguish between allocated and unallocated memory and

be valid with respect to the new memory. This suggests that writing
to an allocated location should be permitted only if the update is
type-preserving.

Update Invariance

ZaamT

Xam T

XiamT yiamref T

For foundational PCC, we must devise a semantic model of types
that allows us to prove thHdpdate Invarianceule as alemma. Such
a model and a proof of adpdate Invariancdemma are the main
contributions of this paper.

An update to an allocated location must be type-preserving —
this means that only values of a certain type may be written at that
location. Hence, we require a model that, for each allocated loca-

ensure that only unallocated locations can be modified, then we cantion, keeps track of this type. In the next section we describe why
prove that type judgments are preserved across memory updatesiracking permissible heap updates is tricky.

For this, we maintain a setof allocated addresses and say that a
stateis a pair(a,m) of an allocsei ®> and a memonym. Then, a
value is a paif (a,m), x) of a state and a root-pointer and types are,
as before, predicates on values. Ombadable andwritable
Iocgtion are added to the allocset. The typesandref are defined
as,

int(a,m,x)
ref t(a,m,x)

true
X € a At(a,m,m(x))

In this model, we can prove the followirlgitialization Invari-
ancerule as a lemma. This rule says that when we update an unal-
located location, type judgments made with respect to the old mem-
ory continue to be valid with respect to the new memory:
Initialization Invariance

XiamT m =mly:=7

y¢a
Xiagm T

Now, if we rewrite the invariants of our program fragment so
that type judgments have the fomna m T, using thelnitialization
Invariancerule we can prove the following statement:

{lirr=Ar,m3a. r(1) :am T Ar(5) ¢ anr(4) :am T2}
m(rs) < ry
{lizz=Ar,m.3a r(1) :amT1 AM(r(5)) :amT2}

Example 3 (Mutable Data Structures)

The model described by Appel and Felty [2] cannot be used to rea-
son about the safety of programs written in an imperative language.
That model prohibits updates to allocated memory locations — the
store instruction in the following Hoare triple performs such an up-
date:

{lizz=Ar,m.3a. r(1) :amT1Ar(6) :amref 12
AT (4) 'amT2}
m(re) < T4
{lizz=Ar,m.3a. r(1) :am T1 Ar(6) :amref 12}
To prove the above statement we need Wpate Invariance

rule. This rule says that when we update alocated location,
type judgments made with respect to the old memory continue to

5The allocset is virtual: it is existentially quantified and in a ma-
chine stater,m), it can be computed by the program. TdiEloc
predicate specifies the allocseta = alloc(r,m). Note that the
allocset must be computable by the program itself so that it knows
where to find a location for new heap cells.

6For readability, we writént (a, m, x) rather than the more accurate
int((a,m),Xx).

3. Modeling Permissible Heap Updates

In the semantics of immutable fields described by Appel and
Felty [2] a type is a predicate on a memary(a function from
integers to integers), a sabf allocated addresses (a predicate on
integers), and a root-point&r(an integer). In our object logic, we
write the types of these logical objects as,

memory = num — num
allocset = num — o
type = allocsetx memoryx num — o

whereo represents the type of propositions (true or false).

3.1 1st Flawed Model:
Types and the Extended Allocset

To allow for the update of existing values we enhance the allocset
ato become a finite map from locations to types: for each allocated
address, we keep track of the typeof updates allowed at As
before, a type is a predicate on three argumémts, x):

fin
allocset = num-— type
type = allocsetx memoryx num — o

But there is a problem with this specification: notice that the
metalogical type ofypeis recursive, and, furthermore, that it has an
inconsistent cardinality: the set of types must be bigger than itself.
To eliminate the circularity in the definition dfpe we present
a solution that replaces the type (in the allocset) with thoeleb”
number of a type.

3.2 2nd Flawed Model:
Godel Numbers of Types

To describe the @del number of a type, we specify the relation
rep(n,T) which says that the @&lel numbem represents the type
T. Rather than use integers to represent types, we opted to use finite
trees of integers. A tree constructeree(Cp,t1,...,t) returns a
tree with integercy at the root and subtreesy, ... ,t;, for example:

1
' /\
1 n.
°
treep(l) trees(4,treep(l)) treea(3,n1,N2)



Then, we may specify thedglél number of the typmt as,
rep(n,int) = N=treetreeg(l) 1

A similar attempt at specifying the @aél number of the type
T1UTo fails: the two occurrences afep in the body of the follow-
ing definition indicate that theep relation is recursive.

rep(nTuUTy)) = 2

ang,np. rep(ng,T1) A rep(nz,T2) /\
A N =tree treeg(2,ng,Ny) n n

An inductive specification ofep seems possible, though — to
fix the above problem we simply require that the typgand T,
both be “smaller” than the typg Ut,. Consider the following in-
ductive definition ofrep which specifies the &del numbers of the
typesint, 11U, andref 11. (Note that we use for rep variables.)

rep(n,T)
Vp. p(treeg(l),int)
A(Vng,mp. p(ng,T1) A p(n,T2)
= p(treey(2,ng,N2), T1UT2))
A(Vng. p(ng,T1) = p(trees(3,n),ref 11))
= p(n,T)

Definitions of the typesnt, t1;UT, andref 11 (which would, of
course, precede the above definitiorrep) are given below:

true
rl(av m, X) \ TZ(a7 m, X)

int(a, m,x)
T1UT2(a,m,x)

We sayx :amref Tif locationxis allocated and may only be updated
with values of typer, and if the value stored in memory at location
xis of typet: 7

ref t(a,m,x) an. (x,n) €a A rep(n,T)

A t(a,m,m(x))
Unfortunately, when we consider the definitionsref andrep

Hererep is used solely to determine theo@l number ofnt —

this is a “smaller” type tharef(int). In fact, to determine the mem-
bers of the setef T we only consider only those locations in the
allocset whose permissible update types are “smaller.” Rather than
parametrizeref T by rep, it would be sufficient to parametrize it

by a version ofrep that only specified the @lel numbers of types
“smaller” thanref t.

3.4 Solution:
A Hierarchy of G 6del Numberings

We use a stratified @lel numbering relatiosep(i)(n, 1) where
the Godel numben represents the typeat leveli. A property of
this relation is that for all rep(i) C rep(i +1). Figure 2 illustrates
the first few levels of the hierarchy for the type constructotsu,
andref. Level O consists of the @lel numberings oit, intUint,
(intuint)uint, and so on. Let® denote a type that has a6l
number at level 0. Then, level 1 consists aidel numberings of
typest?, of typesref 19, and of all types in the closure (with respect
to U) of all the level 1 types just mentioned.

T~ stey
~ P

N\ int U ref (int)
\

int Uint U int
~—~base

int ) int Uint
"/

Figure 2: Hierarchy of G ddel Numberings

simultaneously, we realize there is a problem: these definitions are  Figure 2 also shows how theep relation may be inductively

mutually recursive.

3.3 3rd Flawed Model:
The Godel Number of rep

We can try to eliminate the mutual recursion by parametrizing
the type constructaref by rep. Then our definition otep would
have to specify the @lel number ofef(rep,11). A possible repre-
sentation isreez(3,np, N1) whereny is the Godel number otep
andn; is the Gdel number oft1. It turns out, however, that if a
Go6del number fotep exists, then (by a diagonalization argument)
we can prove our logic inconsistent (i.&lny. rep(np,rep) =
false). Informally, if rep can represent both itself and the nega-
tion predicate{), then it can represent “this sentence is false.” The
role of negation—T is played [5] by the continuation constructor,
codeptr(t), defined in section 5.3.

Thus far it seems that our definition of mutable references is cir-
cular. Let us take a closer look at the judgmentm ref(int):

ref(zrep,int))(a,m,l) =
dn. (I,n) € a A rep(n,int) A int(a,mm(l))

"Recall that the allocset is a finite map from locations td€l”

numbers. Since a finite map can be modeled as a relation, we write

(x,n) € arather thara(x) = n.

specified using the relatiobase, closure andstep. Here base(n,T),
which is a subset afep(0), specifies the @del numbersh of all
primitive typest; the relationclosure(p)(n,t) (wherep is a sub-

set ofrep(i)) specifiesrep(i); the relationstep(i,p)(n,T) (Where

p is rep(i)) defines a subset afep(i + 1); the closure of the
latter, then, gives usep(i + 1)(n,T). The formal definition ofrep

(for a small set of types) appears in figure 3, along with the relevant
type definitions. We use the varialpidor bothrep andrep(i).

Note that the type constructeef is parametrized byep(i), as
indicated by the formal parametpr By creating a hierarchy of
Godel numbers, we have, in effect, created a hierarchy of mutable
reference types: to define the seftT at leveli + 1 we need to know
the members of all the setsf 1’ at levels 0 through— for this we
userep(i). By stratifying mutable references we have eliminated
the circularity.

4. Whatis a Type?

Thus far we have described a type as a predicates on datate
and an integex. But a predicate orfa,m,x) must have certain
properties in order to be considered a type in our semantic model.
To specify these properties, we need some definitions.

4.1 Valid States



int(a, m,x) = true
T1UT2(8,m,X) = Ti(a,mXx) V 12(a,mX)
ref(r)(t)(amx) = 3n. (x,n) €a A p(n,T) A t(a,mm(x))

base(Nn,T) = N=treetreeg(l) A T =typeint

closure(p)(n,t) = Vp. pcCp
AYN,T1,M2, T2, P'(N1,T1) A p'(N2,T2) = p'(trees(2,n1,Ny), T1UTY)
=p'(n,1)

p(n,T) vV 3ng,T1. p(N1,T1) A N=greetrees(3,treep(i),n1) A T =typeref(p,t1)
Vp. p(0) = closure(base)

AV <i. p(j+1) = closure(step(j,p(j)))

= p(i)(n,T)

step(i,p)(n,T)
rep(i)(n,T)

Figure 3: Godel Numbering of Types (int,U, ref)

The judgment :am T Says thak has typer with respect tothe 4.2 Valid State Extension

state(a,m). Implicit in this assertion is the assumption that state o formally describe the memory and allocset extensions permis-
(a,m) is well-formed orvalid. We say that a stat@, m) is valid if sible in our model we specify the extend-state relatiaym) C,,
it satisfies three conditions: (a,m) which says that statg/,n) is a valid extension of state
(a,m) — or, alternatively, thata,m) approximatega’,n). State
e The allocsetais a partial function, that is, each location in extensions must Satisfy the fo”owing constraints:

the allocset is mapped to only one@&:| number.
e Our model does not permit deallocation of memory, sodf

e The allocset contains only legitimate @del numbers, which dom(a), then we require that € dom(a).
we define as, o .
e The permissible update type of an allocated location cannot
godelp(n) = 3t.p(n,T) b’e altered across state extensions, $r if) € athen(x,n) €
a.
The subscripp indicates thagodel takesrep(i) as an argu-
ment (where the levlis determined by the context, as we e The model requires that all memory updates be type-preserving
shall describe in section 5.3)). — the last two conditions ensure that all allocated locations
are “preserved” under state extension, so now we simply re-
« The type of the value stored at each allocated location in quire that stat¢a’,n7) be a valid state.
memorym matches its permissible update typeairwe say
thatx matches a Gdel numben with respect to a staig, m) Definition 6 (Extend State)
if, Valid state extensiori{p) is specified as,
matchp(n,a,mx) = V1.p(n,T) = 1(a,mX) (a,m) Cp (a,m) =
vx,n. (x,n) €a = (x,n) ea
Definition 4 (Valid State) A validstatep(a,m) A validstatep(a’,n)
validstatep(a,m) = ) . . o _
wonn. (xn)can (xn)€a = n=yeel Again, we omit the subscrigi to indicatep = p.

A VXN (XN) €a = godely(n)

A ¥X,n. (x,N) €a = matchp(n,amm(x)) Lemma 7 (Cp Transitive)

The extend-state relatiolL() is transitive.

A note on notation: we shall omit the subscriptand write
validstate(a,m) (and similarly forgodel andmatch) to indi-
cate that the missing paramefeshould be instantiated with the
default valuep, where,

A state extensiofia,m) C,, (&',m') requires that botfia, m) and
(a',m’) be valid states. Consider a stégem) where all unallocated
memory locations contaijunk; that is, there are no “initialized
but not yet allocated” locations. When we extend staten) Cp
(a,m'), theAllocated Memory Well-Typegkoperty of a valid state
p(n,T) = 3i. rep(i)(n,1) forces us to initialize a new memory location (with a value of the

L appropriate typebeforewe add it to the allocset:
As a consequence of our definition edlidstate we have the

following property. Informally, the type of the memory contents | emma 8 (Initialization Before Allocation)
of an allocated address matches the type that the allocset says it
should have:
(a7 m) EP (a,n~() < (a7 m) EP (a,n*() EP (a’,n*()

Lemma 5 (Contents of ref Well-Typed) . .
4.3 Desirable Properties of Types

In section 3 we presented thipdate Invarianceule which says
. - that type judgments are preserved across memory extension. How
i, 1. m(X) lam T Arep(i)(n,T) can we use the stratified model of mutable references to prove this

(x,n)ca  validstate(a,m)




rule as alemma? We start by stating update invariance as a property

of a type-predicate, which says that a type is closed under valid
extension of the memory. (Recall thet, m T is just syntactic sugar
for 1(a,m,x).)

update-invp(T) =
vx,a,mm. (a,m) Cp (a,m) A XiamT
= Xiam T

Notice that sincga, m) C (a,nT) allows updates of both allo-

cated and unallocated locations, the above property incorporates

the notion ofinitialization Invariancedescribed in section 2.
We model the allocation of new memory by extending the alloc-

set. To reason about programs that dynamically allocate memory,
we need a rule that says that type judgments are preserved under ex-

tension of the allocset. We call this tidlocation Invariancerule.
In lieu of the rule we specify the allocation invariance property of
a type-predicate:

alloc-invp(T) =
vx,ma,a. (a,m)Cp(a,m) A XiamT
= XiamT

We say that a predicate(that takes an allocset, a memory, and
an integer) is aype (written T type) if it has both theupdate-
invp andalloc-invp properties:

Definition 9
type(T) = Vp.update-invp(T) A alloc-invp(T)

From the definitions ofipdate-invp andalloc-invp, and the
Initialization Before Allocatiorproperty of state extensionf) we
can show that is atype if and only if it is closed under state
extension:

Lemma 10 (Type)
type(T) = Vp,a,ma,m. (a,m) Cp (a,n)
= 1(a,m,x) = 1(a,m,x)

If type(T) holds for each typein our system, then we can easily
prove theUpdate Allocationandlnitialization Invariancerules as
lemmas.

Representability. Suppose that we wish to allocate a new refer-
ence cell that contains a value of type We first write the value
into unallocated memory, say at addréssThen, we extend the
allocset with the paifl,n) wheren represents at some level in

the Gddel numbering hierarchy. Clearly this last step requires the
existence of such amandij; that is, to construct a value of typge

we require that be representable:

Definition 11 (Representable)

repable(T) = Ji,n.rep(i)(n,T)

5. Modeling a Nontrivial Type System

In this section we present a model of general references. More
precisely, our model permits references to values of any type de-
fined using the primitive types and type contructors shown in fig-
ure 4. We first explain some of the more involved type definitions,
then specify a @del numbering relation for the types in our sys-
tem, and finally present two sets of theorems: we show for each

T(a,m,x) = true
1(a,m,x) = false
int(a,m,x) = true
const(n)(a,m,x) = X=n
char(a, m,x) = 0<x<256
boxeda, m,x) = Xx>256
offset(i,7)(a,m,x) = T(a,mXx+i)

(T1UT2)(a,m,x)
(1NT2)(a,mx)
rec(F)(a,m,x)

rl(av m, X) A TZ(av m, X)
VT.type(T) = F(T) CT

= 1(a,m,x)
(3F)(a,m,x) = 3Jt.type(T) A(FT)(a,mx)
(VF)(a,m,x) V1. type(T) = (FT)(a,m,x)
box(1)(a,m,x) = 3n.(x,n)€a

A base(n,constm(x)))
A T(a,mm(x))
an.(x,n) €a A p(n,KT)
A T(a,m,m(x))
vr,m,a,p'.r'(PC) = x
Apcp
A (a,m) Cy (a,n)
A & =alloc(r',m)
A (@, ml, (i)
= safe-state(r’,m)

ref(p) (1)(a,mx)

codeptr(p)(i,T)(a,m,x)

Figure 4: Type Definitions

5.1 Recursive Types (rec

To define recursive types, we introduce a subtyping relation de-
fined as logical implication:

11 C T2 = Va,mx.T1(a,m,X) = t2(a,m,X)

A predicaterec(F ), where F is a function from types to types, is
atype if the least fixed point of the argument functibris rec(F).
This property holds if the type functidf preserves the validity of
a type and if it is monotone. We define these properties, as well as
antimonotonicity, as follows:

preserve-type(F)
monotone(F)
antimonotone(F)

V1. type(T) = type(F (1))
V11,T2.T1 C T2 = F(11) CF(12)
V11,T2.T1 C T2 = F(12) C F(T11)

We can prove that the composition of two antimonotone func-
tions is monotone, while the composition of a antimonotone with a
monotone, and vice versa, is antimonotone.

Note that in our current model, we cannot prove
type(rec(F)) whenF is antimonotone, i.e., we cannot handle con-
travariant recursive types; though we have built a more complicated
model that does handle the latter (see section 7.1) we have chosen
to explain our approach in a simpler setting.

5.2 Immutable References (bok

The typebox of immutable references is defined in figure 4. Any
value may be stored in an immutable location, as long as it is nu-
merically equal to the value that's already there.

5.3 First-Order Continuations (codeptr)

type in our system that type judgments are preserved under state A value of typecodeptr(i,T) is a first-order continuation, that

extension (i.e.type(T)) and that the type is representable at some
level in the @del numbering hierarchy (i.ecepable(T)).

is, a machine-code address to which control may be passed, pro-
vided that its preconditions are met. Consider the judgmwegt,



codeptr(p)(i,T). This says that if we jump to addrezsn some m. type(T) = type(box(T))
future machine statg’,n) (i.e., if r'((pc)) = x), then(r’,n) is a
safe state if the following conditions hold: n. type(T) = type(ref(p)(t))

¢ The argument (i.e, the value stored in regist@rmust be 0. type(T) = type(codeptr(p)(i, ).
of the right type; that ist’(i) :am T, Whered' is computed
as usual from the machine stafe,n') as follows: & =
alloc(r’,n).

Proof: Immediate from the definitions of the type operatord.]

Appel and Felty [2] show how to define record types using the
typesref, offsetandn as building blocks. To define function clo-
sures — where a function of type — (3 takes an argument of
type a, a continuation of typgd and an environment — we re-
quire record types, a codeptr type, and the existential type. Since
we have showrtype(T) for all the types in our system, any type
constructible from the types shown in figure 4 (except arbitrarily
nested recursive and quantified types — see section 7.2) can easily
be shown to be aype.

e The programp that is in memory in stat¢éa,m) must still
be in memory in statéa’,m’). To enforce this condition,
we make all allocset locations that contain program instruc-
tions “immutable”; that is, the allocset maps these locations
to Gddel numbers obox types. Then, since the program
is preserved under state extension, our precondition is sim-
ply: (a,m) Cy (a,nT), wherep' satisfies the condition we

describe next. Theorem 13 (Representable Types are Valid)

e pC . Informally, if p = rep(i), wherep is used to ensure ~ rep(n,T) = type(T)
validstatep(a,m), and if p’ = rep(j), wherep’ used to
ensurevalidstatey (&',nT) (see previous condition), then
we require thaf > i. In other words, in extendingg, m) to
(a,m) we may have created new cells with types that are
higher in the @del numbering hierarchy; in that event, we
need a higher levetep relation to ensure that state’, n')
is valid.

Proof: By a nested induction argument. The outer induction pro-
ceeds on the representation level, and it aims to show that validity
of representable types is preservedshygp. The inner induction is

on the structure of the type(or, equivalently, on that of the cor-
responding @del numbem), and aims to show that, if all types
represented by a representation functpare valid, so are those
represented bylosure(p). O

5.4 Godel Numbers of Type Functions

Our model requires that we specify thed&l number of each of
the types in figure 4. But to specify theo@€| numbers ofec(F),
3F, or VF (where F is function from types to types), we have to Proof: It follows from the definition ofrep and the following two
first specify the ®@del numbers of type functioris. Rather than basic facts:
extend therep relation so that it specifies theo@él numbers of
type functions as well as types, we observe that if we represent Vp. p C closure(p)
every type as a type function that simply ignores its argument, then Vp, j. p C step(j,p)
we would only require Gdel numbers of type functions. We use
K 1 to denote a type function that ignores its argument and returns
the typet (i.e., K = Ay.Ax.y). The Gidel numbering relation for  Thegrem 15 frepable(T))

a representative set of type functions appears in figure 5 — we do £ach of our types is representabié;n. rep(i, n, ).
not present the fultep relation due to space limitations.

Note that the relatiomase(n,F) (figure 5) specifies the Gilel Proof: This proof consists of computing, by induction on the
numbers oK 1 for primitive typest, as well as, the Gdel number structure oft, the minimum level at whicht is representable. ]
of the identity type functiol\t.t. All type constructors, with the .
exception ofref and codeptr, are used to compute thelosure 5.6 Invariance Lemmas
of eachrep(i). For example, ifF is representable at levelthen
At.ref(F (1)) andAt. codeptr(i, F (1)) are representable at leve} Lemma 16 (Initialization Invariance)

1, as areK rec(At.ref(F(1))) andAt. (intU codeptr(i, F(T1))).

Lemma 14 cep Upward Closed)
rep(i,n,T) = rep(i+1,n,1)

‘am n = = e
5.5 Theorems:type andrepable Xiam? y¢a my=d _type(v)

Xiam T
Theorem 12 ( type) Lemma 17 (Allocation Invariance)
Each of our types is &ype, €.9.:
a-f. type(1), wheret ::= T|L|int|constn)|char|boxed XiamT (a,m) C (&, m) type(T)
g. type(T) = type(offset(i,1)). Xaml
h. type(t1) Atype(T2) = type(T1UTz). Lemma 18 (Update Invariance)
(

I. type(T1) Atype(T2) = type(T1MT2).

ype(T1) A type(t2) ype(tiN2) XiamT Yiamref U ziamtU m=m[y:=Z type(T)
J. preserve-type(F)Amonotone(F) Xiam T

= type(rec(F)).

Proof: Lemmata 16-18 are proved by a nested induction argument
k-l. preserve-type(F) = type(T), wheret ::= 3F|VF similar to the one employed in the proof of theorem 13. O



base(n,F) = N=treetreep(10) A F =tysn Kint
V N=treetrees (11 treeo(c)) A F =ysn K (consic))
V N=treetreeg(12) A F =ty AT.T
closure(r,n,F) = Vp'.pcp
AN, F1,no, Fo.p'(ng,Fr) A p'(ng,F2) = p'(treea(20,ng,n2),AT. F1(T)UF(T))
AVng,F1.monotone(F;) A preserve-type(F1) A p'(ny,F1)
= p'(trees(21,m),Krec(Fy))
=p'(n,F)
step(i,p,n,F) = p(nF)
v ang, Fr.p(ng,F1) A N=treetreea(30,treeg(i),n) A F =tyn AT.ref(p,Fy(T))
vang,Fi.p(ng,F1) A N=treetreea(31,treeo(i), treeg(]),n1) A F =tyfnAT.codeptr(p, j,Fi(T))

rep(i)(n,F) = Vp.p(0) = closure(base)
AV] < i.p(j+1) = closure(step(j,p(j)))
= p()(n,F)

Figure 5: Godel Numbering of Type Functions (int, const|J, rec, ref, codeptr)

5.7 Introduction & Elimination Rules

We prove introduction and elimination lemmas for each of the {lzgr=Ar,m.3a.r(1) :amT1 Ar(4) lamT2
types shown in figure 4. Due to space limitations, we only show A1 (5) ¢ dom(a) Ar(5) =r(6)}
the lemmas foref here. m(rs) <4
{lirz=Ar,m.3a. r(1) :am T2 AM(r(5)) :am T2}
; rg<rg+1
Lemma 19 (reti and ref_e) {lizz=Ar,m.3a. r(1) :amT1 Ar(5) :amref 12}
m(rs) <4
M(X) tam T X¢a {l11a=Ar,m.3a. r(1) :amT1 Ar(5) :amref 12}
3. (a7 I’T'I) C (alvm) A Xiam reft Proof: {|111}m(r5) — r4{I112}

By the semantics of the store instruction and the step relation, for
all x £ pc, r'(x) = r(x) andm(r(5)) =r(4).
. #PC.1'(x) = () andnl (r(5)) = r(4)
m(xX) amref T o We haver’(1) :am T1 using lemma 16. Since a store instruc-
tion does not alter the allocset,= &. Thenr'(1) ;g T1

follows by congruence.

6. An Example

e 1'(4) :q m T2 follows using the same argument asiffl) :y

We present a program fragment that constructs a reference cell 1, above. Themr (r'(5)) :a nv T2 follows by congruence.
of type T2 in memory (i.e., initializes a location, then adds it to the
allocset) and then updates it. Note thatmay be any type defin- O
able in our system. We show how our model of general references Proof: {l112}rg + rg+1{l113}
allows us to provepreservation(l) for each program poiritin Picka' = Ax,n.(x,n) V (x=303Adi.rep(i)(n,K12)). Itis easyto
the fragment. show thai' satisfiesa,m) C (a/,n7).

e Since the add instruction does not alter memaony,= m.

Alocoted Then we have'(1) ;3 m T1 Using lemma 17 and congruence.

Fo——sf—71----- e Since registers is unchanged, we havé(5) = 303, so it

e ee would suffice to show that 303 ;y ref 1. (At this point we

can use theef_i lemma, but we proceed without it to clarify

the details.) By theorem 15, we ha¥érep(i)(n,12); then

we can show thaf303 n) € &. To provem(303) :y oy T2 We

Figure 6: Example use the premisen(r(5)) :am T2 along with congruence and
lemma 17.

Consider the situation in figure 6 as the starting point of the fol- n
lowing program fragment. For this example, assume that register  proof:  {I;13}m(rs) < ra{l114}
is a special register that always points to the next address to be al-This proof is analogous to the proof for the first instruction of
|Ocated; then, to add a location to the allocated set, we must S|mp|y’[he program fragmen’[’ excep’[ that lemma 18 rep|aces all uses of
increment this registé. lemma 16 in that proof. 0

8 . . . -
Appel and Felty [2] use a register (seg)to point to an allocation
boundary such that all addresses less thaare allocated and all 7. Extensions

addresses beyond that point are unallocated. Their single argument We describe some of the other extensions to the Appel-Felty
alloc predicate is defined adloc(r,m) = Ax.x < r(6). model [2] and show that our model is compatible with these.



7.1 The Indexed Model To do machine-checked proofs, one must first choose a logic
Consider the typeec(Aa.a — int). This is a contravariant re- ~ and a logical framework in which to manipulate the logic. The
cursive type. In these types, occurrences of the type being de-logic that we use is Church’s higher-order logic with a few ax-
fined appeanegatively that is, they appear to the left of an odd ioms of arithmetic; we represent our logic, and check proofs, in
number of function arrows in an ML declaration. Using the nota- the LF metalogic [7] implemented in the Twelf logical framework
tion of section 5.1, a typeec(F) is contravariant wheneve¥ is [18]. Our proof_“lmplementat_lon” consists of about 16,500 I|_nes of
antimonotone. Twelf code, using the encoding of higher-order logic described by
The indexed model of types described by Appel and McAllester Appel and Felty [2]. The implementation of the Appel-McAllester
[3] allows reasoning about contravariant recursive types, but in an model consisted of 8,200 lines of proof, while that of the Appel-
immutable setting. In that model, types are predicategm m, x) Felty model consisted of 5,400 lines.
wherek is an approximation index, an@, m) and x are a state
and a root-pointer, respectively. The judgment o, T means, 9. Related Work

“x approximately has type, and any program that runs for fewer A common feature of a number of models of mutable state (also
thank instructions can't tell the difference.” Then, a program that cajledmutable storén the literature) is the following: they specify
executeg instructions wherg < k alsobelieveghatx has typet; howthe state is allowed to vary over time. Models fdealized Al-
that isyx_:k,a,mT = Vj<k X:jamT. ) gol developed by Reynolds and Oles [20, 15, 16, 17] make use of
The indicesk allow the construction of a well-founded recursion,  fynctor categories; functors are important because they capture the
even when modeling contravariant recursive types. fact that the size of the store, as well as its contents, may change
It turns out that the approximation indices used in the indexed gyer time. To specify how the state is allowed to change at any
model can coexist quite naturally with the hierarchy aidél'num- point in the program, they use functor categories indexegdsy

berings that we have described. Informally, this is due to the nature sjpje worldsor store shapesWe note, however, that these models

of ref: suppose we have:y am (ref 1)' — we have used the SU- o not handle general references. Stark [22] (building on work
perscripti to denote that the @lel number ofef T is defined at  gone with Pitts on possible world models of the nu-calculus [19])
rep leveli. Sincex is a pointer to a valuen(x) of type 1, and describes a denotational semantics Reduced Mithat includes

since it takes one execution step (i.e., one instruction) to derefer-jyteger references.

ence a pointer, we may conclude that any program that runs for  Recently, Levy [10] has described a possible-world model for
fewer thank — 1 instructions believes tha(x) has typet — this general references. There are interesting correspondences between
follows from the definition ofref in the indexed model. Then, we  his model and ours. Hiworld-store(w, s), wherew is a world and
havem(x) :-1,am T, i.e, both the approximation index and the  sis aw-store, (i.e., each location mis well-typed with respect to

rep level are decremented by the definitiorref. _ w) corresponds to a valid state,m) in our model. His worldsw,
Itis important to note that thieandi are different:k deals with like our allocset, can only increase (written < w wherew is the

the number of times a recursive type is unrolled, whikmply earlier world andv is the later world). His model has the property:

counts the number of nested occurrenceebin a type expression  «if \y < w' then everyw;-value is aw,-value (wheren;-value de-

We have built a semantic model with both approximation indices notes a value of typein world w); this corresponds teype in our
k:and a hierarchy of Gdel numberings, with the theorems of sec-  model. Moreover, the definition (denotation to be more precise)
tion 5 suitably modified for the indexed setting; for each of these of the typeref 1 in his model is different{[ref Tjw = $w; (where
theorems, we have machine-checked proofs in this model. Hence,gy, denotes “the set of cells of typein w”). Notice that[ref 1]
we have a semantic model of general references that can handlgs defined in terms of the syntaxrather than the semantids]) ;

both covariant and contravariant recursive types. that is, this semantics is not compositional. Levy is faced with the
. same kind of circularity that we described in section 3. He solves
7.2 Typed Machine Language it by observing that recursive equations on domains have solutions.

A limitation of the semantics we described in section 5 is that We solve it by showing that our hierarchy sép relations has a
it does not allow us to represent arbitrarily nested recursive and limit. This hints that @del numbering might be a way to model
quantified types. (This limitation also applies to the model in sec- denotational semantics.
tion 7.1 for which we have a machine-checked proof.) Forinstance, ~Besides Levy’s, the only other model of general references that
we cannot represent the following type in our model: we know of is a game semantics described by Abramsky, Honda
and McCusker [1]. The model of references is provided by certain
categories of games: a strategy for an arena is a rule telling Player
rec(Aa.ref(rec(A. (ref B)ua))) what move to make in a given position taread-independerstrate-

Typed Machine Language, described by Swadi and Appel, [23] gies specify how the state i; allowed to vary over time. In this
accommodates arbitrarily nested recursive and quantified types andM0del, reference types are viewed as a product of a “read method”
it does so using DeBruijn indices. Our approach is compatible with @nd a “write method” in the style of Reynolds [20]. This represen-
the latter: we simply need to define a@s! numbering relation tation of references is quite different from that in location-based
that represents type expressions with free DeBruijn variables ratherModels such as ours. i _ _
than type functions as we have shown. Though this requires a con- e have shown how our semantic model provides us with rules

siderable proof-implementation effort, conceptually the task is not (IEmmas) that allow us to prove properties of programs with muta-
too complicated. ble references — as long as these properties are expressed as types.

There has been a great deal of work on program-proving for point-
. ers; here, we discuss only the formalism described by Ishtiaq and
8. Machine-Checked Proof O’Hearn [9] (which is closely related to the work of Burstall and
All of our proofs are machine-checked, and furthermore, these Reynolds [4, 21]). When proving properties of programs that mu-
proofs have an actual use: they form part of the proof of safety of a tate the heap, a great deal of effort is spent reasoning about what
machine-language program in a PCC system. doesnot change. Ishtiag and O’Hearn use the Bl logic [14] which
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