
An Indexed Model of Impredicative Polymorphism and Mutable References

Amal Ahmed Andrew W. Appel Roberto Virga

Princeton University, January 2003

{amal,appel,rvirga}@cs.princeton.edu

Abstract

We present a semantic model of the polymorphic lambda
calculus augmented with a higher-order store, allowing the
storage of values of any type, including impredicative quan-
tified types, mutable references, recursive types, and func-
tions. Our model provides the first denotational semantics
for a type system with updatable references to values of im-
predicative quantified types. The central idea behind our
semantics is that instead of tracking the exact type of a mu-
table reference in a possible world our model keeps track
of the approximate type. While high-level languages like
ML and Java do not themselves support storage of impred-
icative existential packages in mutable cells, this feature is
essential when representing ML function closures, that is, in
a target language for typed closure conversion of ML pro-
grams.

1 Introduction

Semantics of mutable references are hard [11, 17]. Re-
cent possible-worlds models [1, 13] work well, but do not
permit polymorphism. Semantics of impredicative poly-
morphism are also hard [9] and, as far as we know, there are
no possible-worlds models of impredicative polymorphism.
Combining mutable references with polymorphism can be
extremely tricky. Our LICS’02 paper [2] showed how to
model mutable references, and we claimed that we could
handle impredicative polymorphism. We discovered, how-
ever, that we could mix them in all ways except for one:
values of quantified types could not be stored in a muta-
ble cell. But this mixture of features is necessary for typed
closure conversion (type-preserving compilation of higher-
order functional programming languages) [14], even with-
out intensional type-passing [15]. There may, of course, be
other, as yet undiscovered, ways of representing function
closures, but for now it seems we need mutable references
to impredicative quantified types.

For our Foundational Proof-Carrying Code project [3],
we wish to construct type systems with soundness proofs

that are machine-checkable in the simplest possible logic.
Conventional syntactic type systems have proofs that are
syntactic metatheorems by induction over proofs; to make
such a proof machine-checkable requires a complicated and
sophisticated checker such as the metatheory engine of the
Twelf system [16]. Crary [10] has built a syntactic progress-
and-preservation proof in the style of Harper [12] for a
typed assembly language with mutable fields and impred-
icative polymorphism — the proof is checked by the Twelf
metatheorem prover. In contrast, our semantic approach
has been to define a type as a predicate on data structures,
and a type constructor as a transformer of these predicates
[4, 5, 2]. (In practice, a type can’t be quite as simple as
a predicate on terms; there must be auxiliary parameters
that encode, in effect, a semantic domain construction.)
Then each typing rule can be proved as a derived lemma
in higher-order logic; these proofs are machine-checkable
by a very simple and trustworthy program indeed [6]. The
goal is to prove and use a type-soundness theorem: a given
machine-language program type-checks; type-checking im-
plies safety; so the program is safe.

Our prototype compiler [8] translates Core ML into
Sparc machine language. The type-preserving translation
of higher-order ML functions into function closures uses an
existential quantifier to hide the type of the function envi-
ronment [14]. This environment can contain other function-
closures—that is, the instantiation of the existential can be
by other existential types—so that the quantification must
be impredicative. Of course, ML has mutable references,
and a function-closure can be stored into a mutable refer-
ence, so references must be able to contain existentials and
vice versa. Therefore we needed to construct the semantic
model that we will describe in this paper, with all of these
features as well as other features that we have previously de-
scribed how to model: recursive types [5], heap allocation
of data structures [4], address arithmetic, and so on.

In this paper, to keep the presentation simple, we will
show only a model forλ-calculus. The machine-checked
proof we are constructing (in higher-order logic represented
in LF and type-checked by Twelf) is embedded in our pro-

totype PCC system for von Neumann machines (e.g., the
Sparc); Appel and McAllester [5] show the similaries be-
tween models of types forλ-calculus and for von Neumann
machines.

Our model, and proofs, follow as closely as possible
the Appel and McAllester schema, so we will summarize
it here. In that model, a typeτ is a set of pairs〈k, v〉, where
k is a natural number andv is a (λ-calculus) value. The in-
tuitive idea is that in any computation running for no more
thank steps, the valuev behaves as if it were an element of
the typeτ . A typing judgmente :k τ on a closed expression
e means (by definition) thate can’t get stuck withink steps,
and furthermore ife reduces inj < k steps to a valuev then
〈k − j, v〉 ∈ τ . They callk theapproximation indexin such
judgments.

Then they give a semantic definition of type-checking
open expressions in a context,Γ |=k e : τ , and finally define
Γ |= e : τ to mean∀k ≥ 0.(Γ |=k e : τ). Using these
definitions, they can prove conventional-looking rules such
as

Γ |= e1 : τ1 → τ2 Γ |= e : τ1

Γ |= (e1 e2) : τ2

directly from the definitions. Even the proofs regarding
fold/unfold of contravariant equirecursive types are remark-
ably concise.

When we add mutable references, the small-step oper-
ational semantics is no longer of the forme 7→ e′, but is
(M , e) 7→ (M ′, e′). In our new semantics, an approximate
typing judgment is no longer justv :k τ but v :k,Ψ,M τ .
That is, to judge whether a valuev is well typed, we must
have a memoryM in which to look up any location-labels
that might appear withinv, and we also need amemory typ-
ing Ψ that tells us about the types of those locations. In
our new model, therefore, a typeτ is a set of four-tuples
〈k,Ψ,M , v〉.

A most delicate part of the semantic construction is the
fact that a type is a set of four-tuples, and theΨ component
of one of those four-tuples is itself a mapping from loca-
tions to types. If the construction were attempted naively,
this would lead to a cardinality paradox. We avoid all para-
doxes as follows. First, given〈k,Ψ,M , v〉 and a location
` such thatΨ(`) = τ ′, we make sure that every element
〈k′,Ψ′,M ′, v′〉 ∈ τ ′ hask′ < k. Because of this inherent
wellfoundedness, we can use a version of our previously de-
scribed stratified Gödelization [2] to embed the entire model
into ordinary higher-order logic.

Our previous stratified model of mutable references
equipped each machine state(M , e) with a memory typing
Ψ (calledallocseta in that paper) that mapped each mu-
table location to its type. To avoid circularity, we had to
ensure that all theΨ’s in the semantic definition of a type
τ contained only strictly less complex types thanτ . The
third level in our hierarchy of types contained types such as
ref (ref (int)) but notref (ref (ref (int))). For any (fi-

nite) type expression there was some level of the hierarchy
powerful enough to contain it. Since all the type expres-
sions in a well-typed monomorphic program are finite, we
could find some level of the hierarchy strong enough to type
each program.

However, in the presence of quantified types we en-
countered a problem. Consider, for example, the type
∃α.ref (α × α). We cannot predict how complex will be
the type that instantiatesα, so there is no finite level of the
hierarchy that is guaranteed powerful enough. For example,
if α is instantiated withτ = ref

50(int), then the 43rd level
of the hierarchy won’t containτ—only the 51st level (and
above) will.

The solution, which we describe more rigorously in the
next sections, is to use the approximation power of the in-
dexed model. Suppose in some execution we are about to
instantiate∃α.ref (α × α) with ref

50(int), but we intend
to run the program for only 30 more execution steps. Then
it’s all the same whether we instantiate withref

50(int) or
with ref

30(⊥), since in 30 execution steps the program can-
not dereference more than 30 references. Therefore, if we
intend to run the program for onlyk steps, it suffices to use
thekth level of the hierarchy.

2 Indexed Types for the Lambda Calculus

Syntax. The language we shall consider is the polymor-
phic lambda calculus augmented with mutable references,
existential and recursive types, and the constant0. Carte-
sian products and other standard constructions are easy to
add to the model we will present. The syntax of lambda
terms is given by the following grammar.

Expressions e : : = x | ` | 0 | λx.e | (e1 e2) |
new(e) | ! e | e1 := e2 | Λ.e | e[] |
pack e | open e1 asx in e2

Values v : : = ` | 0 | λx.e | Λ.e | pack v

We use the meta-variablex to range over a countably
infinite set ofvariablesand the meta-variablèto range over
a countably infinite set oflocations. A termv is avalueif
it is a location`, the constant0, a term or type abstraction,
or an existential package, and if it contains no free term
variablesx.

This syntax is slightly unconventional: in most presenta-
tions the polymorphic operatorsΛα.e ande[τ] and the ex-
istential operatorspack andopen mention types syntacti-
cally. We wish to give purely semantic (not syntactic) typ-
ings to untyped lambda calculus, so we omit all types from
our syntax. We let the vestigial operators remain in the un-
typed syntax to simplify the presentation.

Operational Semantics and Safety. A memoryM is a
mapping from locations to closed values. The small-step se-
mantics (see Figure 1) is given by an abstract machine. The

2

(M , e1) 7→ (M ′, e′
1)

(M , e1 e2) 7→ (M ′, e′
1 e2)

(M , e2) 7→ (M ′, e′
2)

(M , (λx.e1) e2) 7→ (M ′, (λx.e1) e′
2) (M , (λx.e) v) 7→ (M , e[v/x])

(M , e) 7→ (M ′, e′)

(M , new(e)) 7→ (M ′, new(e′))

` /∈ dom(M)

(M , new(v)) 7→ (M [` :=v], `)

(M , e) 7→ (M ′, e′)

(M , ! e) 7→ (M ′, ! e′)

` ∈ dom(M)

(M , ! `) 7→ (M , M (`))

(M , e1) 7→ (M ′, e′
1)

(M , e1 := e2) 7→ (M ′, e′
1 := e2)

(M , e2) 7→ (M ′, e′
2)

(M , v1 := e2) 7→ (M ′, v1 := e′
2)

` ∈ dom(M)

(M , ` := v) 7→ (M [` :=v], 0)

(M , e) 7→ (M ′, e′)

(M , e[]) 7→ (M ′, e′[]) (M , (Λ.e)[]) 7→ (M , e)

(M , e) 7→ (M ′, e′)

(M , pack e) 7→ (M ′, pack e′)

(M , e1) 7→ (M ′, e′
1)

(M , open e1 as x in e2) 7→ (M ′, open e′
1 asx in e2) (M , open (pack v) as x in e2) 7→ (M , e2[v/x])

Figure 1. Small-step operational semantics

state of the abstract machine is described by a pair(M , e) of
a memory and an expression. We write(M , e) 7→j (M ′, e′)
to mean that there exists a chain ofj steps of the form
(M , e) 7→ (M1, e1) 7→ . . . 7→ (Mj , ej) whereMj is M ′

andej is e′. We write (M , e) 7→∗ (M ′, e′) if (M , e) 7→j

(M ′, e′) for somej ≥ 0. A state(M , e) is irreducible if it
has no successor in the step relation, that isirred(M , e) if e
is a value or(M , e) is a “stuck” state such as(M ,0(e′)) or
(M , ! `) where` /∈ dom(M).

We say that(M , e) is safe fork steps if for any reduction
(M , e) 7→j (M ′, e′) of j < k steps, eithere′ is a value or
(M ′, e′) 7→ (M ′′, e′′). Note that any state is safe for 0 steps.
A state(M , e) is called safe if it is safe for allk ≥ 0.

Semantics of Types and Typing Rules. We are interested
in constructing methods for proving that a given state is
safe. In particular, we want to prove the rules (lemmas) of
Figure 2 and also that typability implies safety. For simplic-
ity in this presentation, we avoid the use of type variables;
instead of writing∃α.τ with type variablesα in a type ex-
pressionτ , we write∃F whereF is a function from types
to types. In this paper we assumeF is somehow expressible
in the underlying logic, but Appel, Richards, and Swadi [7]
show how best to handle type expressions and variables in
our semantic approach.

The semantic approach taken here is based on types as
sets rather than type expressions. We say that atype is a
setτ of tuples of the form〈k,Ψ,M , v〉 wherek is a non-
negative integer,Ψ is a memory typing, that is, a mapping
from locations to closed types,M is a memory, andv is a
value. Informally,〈k,Ψ,M , v〉 ∈ τ means thatv “looks”
like it belongs to typeτ ; perhapsv is not “really” a member
of typeτ , but any program of typeτ → τ ′ must execute for
at leastk steps onv before getting to a stuck state.

As mentioned in the previous section, a naive construc-
tion of τ as a set of〈k,Ψ,M , v〉, with Ψ as a relation on

Γ |= x : Γ(x)
(var)

Γ |= 0 : unit
(unit)

Γ [x := τ1] |= e : τ2

Γ |= λx.e : τ1 → τ2

(abs)

Γ |= e1 : τ1 → τ2 Γ |= e2 : τ1

Γ |= (e1 e2) : τ2

(app)

Γ |= e : µF

Γ |= e : F (µF)
(unfold)

Γ |= e : F (µF)

Γ |= e : µF
(fold)

Γ |= e : τ

Γ |= new(e) : ref τ
(new)

Γ |= e : ref τ

Γ |= ! e : τ
(deref)

Γ |= e1 : ref τ2 Γ |= e2 : τ2

Γ |= e1 := e2 : unit
(assign)

∀τ. type(τ) ⇒ Γ |= e : F (τ)

Γ |= Λ.e : ∀F
(tabs)

type(τ) Γ |= e : ∀F

Γ |= e[] : F (τ)
(tapp)

type(τ) Γ |= e : F (τ)

Γ |= pack e : ∃F
(pack)

Γ |= e1 : ∃F ∀τ. type(τ) ⇒ Γ [x :=F (τ)] |= e2 : τ2

Γ |= open e1 asx in e2 : τ2

(open)

Figure 2. Type-checking lemmas

` andτ , can lead to paradoxes. That is, there is the ques-
tion of exactly what logic we are using, and what are the
metalogical types ofτ andΨ. We will explain in Section 5
how to represent our proof in the Calculus of Inductive Con-
structions, and in Section 6 how we formulate a solution in
higher-order logic using Gödelization.

A type is not just any set of tuples〈k,Ψ,M , v〉; it must
be well behaved in certain ways. To formally define a type

3

we must first provide some auxiliary definitions.

Definition 1 (Approx)
Thek-approximation of a set is the subset of its elements
whose index is less thank; we also extend this notion point-
wise to memory typings:

bτck ≡ {〈j, Ψ,M , v〉 | j < k ∧ 〈j, Ψ,M , v〉 ∈ τ}
bΨck ≡ {(` 7→ bτck) | Ψ(`) = τ}

Intuitively, if we intend to run the program for no more than
k more steps, then typechecking withbτck is just as safe as
typechecking withτ .

Definition 2 (Well-typed Memory)
A memoryM is well-typed to approximationk with re-
spect to a memory typingΨ iff dom(Ψ) ⊆ dom(M), the
domain ofM is finite, and the contents of each location
` ∈ dom(Ψ) has typeΨ(`) to approximationk:

M :k Ψ ≡ dom(Ψ)⊆dom(M) ∧ finite(dom(M)) ∧
∀j < k.∀` ∈ dom(Ψ). 〈j, bΨcj, M ,M (`)〉 ∈ bΨck(`)

The domain ofM includes all locations already allocated;
elements not indom(M) are available to be allocated by
new in future computation steps. We permit the memory
to have “extra” allocated locations that are not typed byΨ,
but the model would also work if we requireddom(Ψ) =
dom(M). Also note that all the tuples required to be in
Ψ(`) have index strictly less thank; this helps avoid circu-
larity.

Definition 3 (Memory Extension)
A valid memory extensionis defined as follows:

(k,Ψ,M) v (j, Ψ′,M ′) ≡
j ≤ k ∧ (∀` ∈ dom(Ψ). bΨ′cj(`) = bΨcj(`)) ∧ M ′ :j Ψ′

Memory extension models what may happen to the mem-
ory (and memory typing) during zero or more computation
steps. The computation step(s) might allocate a new ref-
erence, in which casedom(Ψ′) will be a strict superset of
dom(Ψ). The step(s) might choose to forget some informa-
tion, in which casej will be strictly less thank andΨ′ may
be more approximate thanΨ—but in this case, the program
will now be able to run for at mostj more steps instead of
k more steps. The computation might store a new value at
some locatioǹ , but in this case the new value must (ap-
proximately) obey the typing given byΨ′(`).

Definition 4 (Type)
A type is a setτ of tuples of the form〈k,Ψ,M , v〉 wherev
is a value,k is a nonnegative integer,Ψ is a memory typing,
andM is a memory such thatM :k Ψ, and where the setτ is
such that if〈k,Ψ,M , v〉 ∈ τ and(k,Ψ,M) v (j,Ψ′,M ′)
then〈j,Ψ′,M ′, v〉 ∈ τ .

⊥ ≡ {}

unit ≡ {〈k,Ψ,M ,0〉 | M :k Ψ}

τ1 → τ2 ≡ {〈k, Ψ,M , λx.e〉 | M :k Ψ ∧
∀j < k. ∀v,Ψ′,M ′.

((k,Ψ,M) v (j, Ψ′,M ′) ∧ 〈j, Ψ′,M ′, v〉 ∈ τ1)
⇒ e[v/x] :j,Ψ′,M ′ τ2}

µF ≡ {〈k,Ψ,M , v〉 | 〈k, Ψ,M , v〉 ∈ F k+1(⊥)}

ref τ ≡ {〈k,Ψ,M , `〉 | M :k Ψ ∧ bΨck(`) = bτck ∧
∀j < k. 〈j, bΨcj ,M ,M (`)〉 ∈ τ}

∀F ≡ {〈k,Ψ,M ,Λ.e〉 | M :k Ψ ∧
∀j,Ψ′, M ′, τ. ((k,Ψ,M) v (j,Ψ′,M ′) ∧ type(bτcj))

⇒ ∀i < j. e :i,bΨ′ci,M ′ F (τ)}

∃F ≡ {〈k,Ψ,M , pack v〉 | M :k Ψ ∧
∃τ. type(bτck) ∧ ∀j < k. 〈j, bΨcj ,M , v〉 ∈ F (τ)}

Figure 3. Type definitions

The essential property of a type is that it is closed under
memory extension. This will allow us to prove that ifM(`)
has typeτ , and(M, e) steps by computation to(M ′, e′),
thenM(`) still has typeτ , even if other locations inM are
stored into.

Definition 5 (Expr : Type)
For any closed expressione and typeτ we writee :k,Ψ,M τ

if whenever(M , e) 7→j (M ′, e′) for j < k and (M ′, e′)
irreducible, then there exists a memory typingΨ′ such that
(k,Ψ,M) v (k − j,Ψ′,M ′) and〈k − j,Ψ′,M ′, e′〉 ∈ τ ;
that is,

e :k,Ψ,M τ ≡ ∀j, M ′, e′. (0 ≤ j < k ∧ (M , e) 7→j (M ′, e′)
∧ irred(M ′, e′))

⇒ ∃Ψ′. (k,Ψ,M) v (k − j,Ψ′,M ′)
∧ 〈k − j,Ψ′,M ′, e′〉 ∈ τ

Intuitively, e :k,Ψ,M τ means that in a state(M , e), e be-
haves like an element ofτ for k steps of computation. Note
that if e :k,Ψ,M τ and0 ≤ j ≤ k thene :j,Ψ′,M τ , for an
appropriateΨ′, by the fact thatτ is closed under memory
extension. Also, for a valuev, andk > 0, the statements
v :k,Ψ,M τ and〈k,Ψ,M , v〉 ∈ τ are equivalent.

We now define the types and type constructors of our lan-
guage as sets and functions from sets to sets. The definitions
appear in Figure 3. The idea (as in the Appel-McAllester in-
dexed model) is that for a valueλx.e in τ1 → τ2 to be safe
for k steps, it must be that if we use up one step by beta-
reduction, the resulting expression must be safe forj < k
steps.

What’s new here is the definition of the quantified types.
For a valueΛ.e to belong (with approximationk) to ∀F ,
we can use only theith level of the memory-typingΨ, for i
strictly less thank. This approximation is justified, because
then we are careful to use only the approximate typing judg-
ment thate is in theith approximation ofF (τ).

4

Other types, such as cartesian products, integers, unions,
intersections, and so on, are straightforward to define in this
manner but we omit them to simplify the presentation.

Open expressions.Up to now we have dealt with closed
expressions, as these are the ones that “step” at “run time.”
Now we turn to expressions with free variables, upon which
the static type-checking rules must operate.

Definition 6 (Semantics of Judgment)
A contextis a mapping from lambda calculus variables to
types. Asubstitutionis a mapping from lambda calculus
variables to values. For any contextΓ and substitutionσ
we writeσ :k,Ψ,M Γ (“σ approximately obeysΓ”) if for all
variablesx ∈ dom(Γ) we haveσ(x) :k,Ψ,M Γ(x).

Finally, we writeΓ |=k e : τ to mean that every free
variable ofe is mapped byΓ and

∀σ,Ψ,M . (M :k Ψ ∧ σ :k,Ψ,M Γ) ⇒ σ(e) :k,Ψ,M τ

whereσ(e) is the result of replacing the free variables ine
with their values underσ.

That is, the meaning of the judgmentΓ |=k e : τ on an open
expressione and typeτ can be obtained from our semantics
of a similar judgment on closed expressions, so long as we
quantify over all (approximately) legitimate substitutions of
values for variables.

Definition 7
We writeΓ |= e : τ if for all k ≥ 0 we haveΓ |=k e : τ . We
write |= e : τ to meanΓ0 |= e : τ for the empty contextΓ0.

Note thatΓ |= e : τ can be viewed as a three place relation
that holds on the contextΓ, the terme, and the typeτ . Each
of the type inference lemmas in Figure 2 states that if certain
instances of the relationΓ |= e : τ hold, then certain other
instances hold. Once we have proved the type inference
lemmas in Figure 2, these lemmas can be used in the same
manner as standard type inference rules to prove statements
of the formΓ |= e : τ . We now observe that the definitions
given above imply the following.

Theorem 8
If |=e : τ , τ is a type, andM is a finite memory then(M , e)
is safe.

Proof: In a conventional syntactic type theory, the safety
theorem (typability implies safety) is difficult (or at least
tedious) to prove. Here it follows directly from the defini-
tions. We need to show that for anyk, it is safe to execute
(M , e) for k steps. From|= e : τ we haveΓ0 |=k e : τ , and
thereforee is closed (sinceΓ0 is empty). Choose the empty
substitionσ0 and the empty memory typingΨ0, and by the
definition of |=k we have

M :k Ψ0 ∧ σ0 :k,Ψ0,M Γ0 ⇒ σ0(e) :k,Ψ0,M τ

The two premises are trivially satisfied; applying the trivial
substitution we obtaine :k,Ψ0,M τ . By definition, this

means that if(M , e) steps in fewer thank steps to(M ′, e′),
then eithere′ is a value or another step is possible.

�

A “program” is a closed expression that does not contain
any location symbols̀. When a program begins executing,
it steps (by means ofnew) to expressions that may contain
location symbols. A conventional subject-reduction proof
requires the static type system to be able to type-check pro-
grams during execution, so there must be a way to type-
check locations̀ . However, our judgmentΓ |= e : τ has
no provision to type-check labels (e.g., there is no label-
environment to the left of the|= symbol). We don’t need to
type-check executing programs (since we’re not doing sub-
ject reduction), and so we don’t need to type-check location
symbols. This is one reason that, in the proof of Theorem 8,
we are able to choose the empty memory-typingΨ0.

3 Proofs of Types

In order to prove that a programe with typeτ is safe to
execute (Theorem 8), it must be the case thatτ is a type.
Next, we prove that each of the type constructors shown in
Figure 3 is a type, or produces a type when applied to valid
arguments. The fact that⊥ andunit are types follows im-
mediately from their definitions. To prove thatτ1 → τ2 is a
type, we need the following lemma which says that memory
extension is transitive. The proof is given in Appendix A.

Lemma 9 (Memory Extension Transitive)
If (k1,Ψ1,M1) v (k2,Ψ2,M2) and (k2,Ψ2,M2) v
(k3,Ψ3,M3) then(k1,Ψ1,M1) v (k3,Ψ3,M3).

Lemma 10 (Typeτ1 → τ2)
If τ1 andτ2 are types thenτ1 → τ2 is also a type.

Proof: First, if 〈k,Ψ,M , v〉 ∈ τ1 → τ2 thenM :k Ψ. This
is immediate from the definition of→.

Next, we must prove thatτ1 → τ2 is closed under
valid memory extension. Suppose that〈k,Ψ,M , v〉 ∈
τ1 → τ2 and (k,Ψ,M) v (j,Ψ′,M ′). Note that
〈k,Ψ,M , v〉 ∈ τ1 → τ2 implies thatv is of the form
λx.e. We must prove that〈j,Ψ′,M ′, λx.e〉 ∈ τ1 → τ2.
We first require thatM ′ :j Ψ′ which immediately
follows from (k,Ψ,M) v (j,Ψ′,M ′). Next, let
(j,Ψ′,M ′) v (i,Ψ′′,M ′′) and 〈i,Ψ′′,M ′′, v′′〉 ∈ τ1

for i < j and some valuev′′ — we have to show
e[v′′/x] :i,Ψ′′,M ′′ τ2. Sincei < j and, by the definition
of v, we havej ≤ k, it follows that i < k; by Lemma 9
we have(k,Ψ,M) v (i,Ψ′′,M ′′); and we already have
〈i,Ψ′′,M ′′, v′′〉 ∈ τ1. These three statements together with
〈k,Ψ,M , λx.e〉 ∈ τ1 → τ2 and the definition of→ allow
us to conclude thate[v′′/x] :i,Ψ′′,M ′′ τ2.

�

5

Next, we prove thatref τ and∀F are types, given appro-
priateτ andF , respectively. The proofs for the remaining
type constructors are given in Appendix A.

Lemma 11 (Typeref)
If τ is a type thenref τ is a type.

Proof: We have to show that if〈k,Ψ,M , v〉 ∈ ref τ then
M :k Ψ. But this is immediate from the definition ofref .

To show thatref τ is closed under memory exten-
sion, suppose that〈k,Ψ,M , v〉 ∈ ref τ and(k,Ψ,M) v
(j,Ψ′,M ′). We must prove that〈j,Ψ′,M ′, v〉 ∈ ref τ .
There are three parts to the proof.

First, we must show thatM ′ :j Ψ′, but this follows di-
rectly from(k,Ψ,M) v (j,Ψ′,M ′).

Second, by the definition ofref , since〈k,Ψ,M , v〉 ∈
ref τ , it follows thatv is some locatioǹ andbΨck(`) =
bτck. The latter implies that̀ ∈ dom(Ψ). Then,
from (k,Ψ,M) v (j,Ψ′,M ′) it follows that bΨ′cj(`) =
bΨcj(`), and hence,̀ ∈ dom(Ψ′). In addition, from
bΨck(`) = bτck andj ≤ k, it follows by definition 1 (Ap-
prox) thatbΨcj(`) = bτcj , and so we may conclude that
bΨ′cj(`) = bτcj by transitivity of set equality.

For the third part of the proof, leti < j; we must show
that 〈i, bΨ′ci,M

′,M ′(`)〉 ∈ τ . We concluded above that
M ′ :j Ψ′ and that̀ ∈ dom(Ψ′). FromM ′ :j Ψ′, using the
fact that` ∈ dom(Ψ′) and thati < j, we may conclude
that 〈i, bΨ′ci,M

′,M ′(`)〉 ∈ bΨ′cj(`). Finally, from
〈i, bΨ′ci,M

′,M ′(`)〉 ∈ bΨ′cj(`) and bΨ′cj(`) = bτcj ,
sincei < j, it follows that〈i, bΨ′ci,M

′,M ′(`)〉 ∈ τ .
�

Lemma 12 (Type∀F)
If F is a function from types to types then∀F is a type.

Proof: First, if 〈k,Ψ,M , v〉 ∈ ∀F thenM :k Ψ. This is
immediate from the definition of∀F .

Next, to prove that ∀F is closed under mem-
ory extension, suppose that〈k,Ψ,M , v〉 ∈ ∀F and
(k,Ψ,M) v (j,Ψ′,M ′). Note that〈k,Ψ,M , v〉 ∈ ∀F
implies thatv is of the form Λ.e. We must show that
〈j,Ψ′,M ′,Λ.e〉 ∈ ∀F . The proof has two parts. First, we
need to prove thatM ′ :j Ψ′ but this is immediate from
(k,Ψ,M) v (j,Ψ′,M ′). For the second part of the proof,
let (j,Ψ′,M ′) v (i,Ψ′′,M ′′) and type(bτci) for some
set τ — we must show thate :i′,bΨ′′ci′ ,M ′′ F (τ) for all
i′ < i. Since memory extension is transitive (Lemma 9),
we have that(k,Ψ,M) v (i,Ψ′′,M ′′). Now, from
〈k,Ψ,M ,Λ.e〉 ∈ ∀F we may conclude that for anyi′ < i,
e :i′,bΨ′′ci′ ,M ′′ F (τ).

�

4 Proofs of the Typing Lemmas

We now prove each of the type inference lemmas in Fig-
ure 2. There is a type inference lemma for each case in the
grammar of lambda terms (except for locations`) plus two
rules for the type constructorµ. The lemma for variables,
stating thatΓ |= x : Γ(x), follows immediately from the
definition of |= . The type inference lemma for0 stating
Γ |= 0 : unit follows directly from the definition ofunit.

In this section we prove the type theorems for type ab-
straction and type application. Proofs for the remaining
type-checking rules in Figure 2 are given in Appendix B
(Theorems 32–42) .

Lemma 13 (Closed Type Application)
If e is a closed term,τ is a type, andF is a function from
types to types such thate :k,Ψ,M ∀F , thene[] :k,Ψ,M F (τ).

Proof: We must provee[] :k,Ψ,M F (τ) under the premises
of the lemma. SinceF is a function from types to types, by
Lemma 12∀F is a type. Sincee :k,Ψ,M ∀F we have that
(M , e) is safe fork steps and if(M , e) reduces to(M ′, v)
(wherev is a value) in fewer thank steps, thenv must be
of the formΛ.e′. Hence, the state(M , e[]) either reduces
for k steps without reaching a state of the form(M ′, v[]) or
there existse′ andM ′ such that(M , e[]) 7→j (M ′, (Λ.e′)[])
with j < k. In the first case we have that(M , e[]) is
safe fork steps and(M , e) does not reduce to a value in
fewer thank steps and hencee[] :k,Ψ,M F (τ). In the
second case, it follows from the operational semantics in
Figure 1 that(M , e) 7→j (M ′,Λ.e′). Sincee :k,Ψ,M ∀F ,
definition 5 (Expr : Type) implies that there exists a mem-
ory typingΨ′ such that(k,Ψ,M) v (k − j,Ψ′,M ′) and
〈k − j,Ψ′,M ′,Λ.e′〉 ∈ ∀F .

Next, pick the memory typingbΨ′ck−j−1. Then, the
following information-forgetting memory extension holds:
(k − j,Ψ′,M ′) v (k − j − 1, bΨ′ck−j−1,M

′). From
type(τ) it follows by definitions 4 and 1 (Type and Ap-
prox) thattype(bτck−j−1). Then fromΛ.e′ :k−j,Ψ′,M ′ ∀F
and the definition of∀F we may conclude that for any
i < (k − j − 1), e′ :i,bbΨ′ck−j−1ci,M ′ F (τ) — that is,
e′ :i,bΨ′ci,M ′ F (τ) (from i < (k − j − 1) and definition 1
(Approx)).

Since τ is a type, F (τ) is a type. Also, the fol-
lowing information-forgetting memory extension holds:
(k − j − 1, bΨ′ck−j−1,M

′) v (i, bΨ′ci,M
′). Then, first,

by Lemma 9 we have(k,Ψ,M) v (i, bΨ′ci,M
′).

Second, since (M ′.(Λ.e′)[]) 7→ (M ′, e′), we
have (M , e[]) 7→j+1 (M ′, e′). Third, we have
e′ :i,bΨ′ci,M ′ F (τ) where type(F (τ)). These three
statements imply (since they hold for anyi < (k− (j +1)))
thate[] :k,Ψ,M F (τ).

�

6

Theorem 14 (Type Application)
Let Γ be a context, letF be a function from types to types,
and letτ be a type. IfΓ |= e : ∀F thenΓ |= e[] : F (τ).

Proof: We must prove that for anyk ≥ 0 we have
Γ |=k e[] : F (τ). More specifically, for anyM , Ψ, and
σ such thatM :k Ψ and σ :k,Ψ,M Γ, we must show
σ(e[]) :k,Ψ,M F (τ). SupposeM :k Ψ andσ :k,Ψ,M Γ. By
the premise of the theorem we haveσ(e) :k,Ψ,M ∀F and
type(τ). The result now follows from Lemma 38.

�

Before we can prove the typing rules for type abstraction,
we must define the notion of a nonexpansive functional.

Definition 15
A nonexpansive functionalis a functionF from types to
types such that for any typeτ andk ≥ 0 we have

bF (τ)ck = bF (bτck)ck

The term “nonexpansive” is explained in more detail by Ap-
pel and McAllester, who show that all the functionals that
can be built by compositions of our type constructors are
nonexpansive.

Theorem 16 (Type Abstraction)
Let Γ be a context and letF be a nonexpansive type func-
tional. If Γ |=e : F (τ) for any type setτ , thenΓ |=Λ.e : ∀F .

Proof: We must show that for anyk ≥ 0 andM , Ψ andσ
such thatM :k Ψ andσ :k,Ψ,M Γ we haveσ(Λ.e) :k,Ψ,M

∀F . SupposeM :k Ψ andσ :k,Ψ,M Γ. Let j,v, Ψ′, M ′, and
τ be such that(k,Ψ,M) v (j,Ψ′,M ′) andtype(bτcj). By
the definition of∀ it suffices to show that for anyi < j we
haveσ(e) :i,bΨ′ci,M ′ F (τ). Sincebτcj is a type, given the
premise of theorem it follows thatΓ |= e : F (bτcj). Hence
σ(e) :k,Ψ,M F (bτcj). Also, sinceF is a function from
types to types,F (bτcj) is a type.

The following information-forgetting memory extension
holds: (j,Ψ′,M ′) v (i, bΨ′ci,M

′). Then by Lemma 9
it follows that (k,Ψ,M) v (i, bΨ′ci,M

′). Hence, from
σ(e) :k,Ψ,M F (bτcj) and type(F (bτcj)) we can con-
clude thatσ(e) :i,bΨ′ci,M ′ F (bτcj). Now sincei < j,
definitions 1, 4, and 5 (Approx, Type, and Expr : Type)
allow us to conclude thatσ(e) :i,bΨ′ci,M ′ bF (bτcj)cj .
Using the premise thatF is nonexpansive we have that
σ(e) :i,bΨ′ci,M ′ bF (τ)cj . But sincei < j, definition 1
(Approx) implies thatσ(e) :i,bΨ′ci,M ′ F (τ).

�

5 Representation in CiC

At the beginning of Section 2, we informally defined
types as collections of tuples〈k,Ψ,M , v〉, where in partic-
ular Ψ is a mapping from location to types. This informal

definition characterizes a proper class rather than a set, since
for example it allows pathological cases like:

〈k, Ψ,M , v〉 ∈ τ and Ψ(`) = τ

Any attempt toward a set-theoretic formalization starting
from this definition is therefore doomed to failure.

What makes such a formalization possible is that all def-
initions given in Section 2 obey the following invariant:
when considering a tuple〈k,Ψ,M , v〉 we do not require
Ψ to be defined beyondbΨck. Hence our types do indeed
form a set, which can be constructed using recursively de-
fined setsTypesk andMemTypesk as follows:

τ ∈ Types0 iff τ = {}
τ ∈ Typesk+1 iff ∀ 〈j,Ψ, M, v〉 ∈ τ. j ≤ k ∧ Ψ ∈ MemTypesj

Ψ ∈ MemTypesk iff ∀` ∈ dom(Ψ). Ψ(`) ∈ Typesk

τ ∈ Types iff ∀k. bτck ∈ Typesk.

The Calculus of Inductive Constructions, upon which the
Coq system is based, can represent the above definitions
quite directly:

Fixpoint itype [k : nat] : Type :=
Cases k
of O => UnitT
| (S k’) =>

(prodT (itype k’)
((location -> (itype k’))
-> memory -> exp -> Prop))

end.

Definition imemtype [k : nat] : Type :=
location -> (itype k).

Definition type: Type := (k: nat) (itype k).

Each set Typesk is modeled using a product type
(itype k) in CiC. More specifically,Types0 is mod-
eled by the unit typeUnitT, while Typesk+1 is given by
the product of the representation ofTypesk and the set of
membership functions for triples〈Ψ,M , v〉, whereΨ has
type(imemtype k).

Given an objecttau of typetype, its k-th approxima-
tion will correspond to the application(tau k). To check
that a 4-tuple〈k,Ψ,M , v〉 is in tau, we will need to apply
tau to k + 1, and take the second component:

(sndT (tau (S k)) Psi M v) : Prop

The definition of the types and type constructors pre-
sented in Figure 3 can be given by recursion on the natural
numbers. At each step, we have to construct an object of
type(itype k). The casek = 0 is trivial, sinceUnitT
is the only object belonging to(itype 0). For the case
k + 1, we only have to provide a formula which decides
which tuples〈k,Ψ,M , v〉 will belong to the type.

Figure 4 illustrates the representation for the type con-
structor for mutable references. The predicate

7

Definition refTy [tau : type] : type :=
(nat_rect itype IT
([k : nat][tauk : (itype k)]
(pairT tauk
([psi: (imemtype k)][m: memory][v: exp]
(Ex [l : location]
(Ex [v’ : exp]

(v = (loc l))
/\ ((m l) = (Some exp v’))
/\ (imemtype_sat k psi m)
/\ (eqT (itype k) (psi l) (tau k))
/\ (All [j : nat]

(h : (lt j k))
((sndT (tau (S j)))
(imemtype_approx k j h psi)
m v’)))))))).

Figure 4. Definition of ref in CiC

imemtype_sat : (k:nat)
(imemtype k) -> memory

-> Prop

models the relationM :k Ψ, while we use the function

imemtype_approx : (k,j:nat)
(lt j k) -> (imemtype k)

-> (imemtype j)

to “lower” an approximation to the correct index. Both of
these are straightforwardly defined in Coq.

6 Representation in H.O.L.

Higher-order logic does not provide as convenient a
mechanism for making stratified metalogical types; we
must construct the stratification ourselves. We do so by con-
structing a Gödelization of type expressions.

A naive Gödelization would proceed as follows. We
want a relationρ between the natural numbers and all the
type expressions that can be constructed from the opera-
tors in Figure 3. Unfortunately, the definitions of some of
those operators would refer toρ, leading to a circularity. We
resolve this circularity by constructing a hierarchy of rela-
tions; the semantics of the types in one level of the hierarchy
can make use of lower levels. We now present the metalog-
ical types, in higher-order logic, of what we will construct:

Exp = the type of lambda-expressions
Loc = Nat

Mem = Loc
fin
→ Exp

Term = Nat

MemType = Loc
fin
→ Term

Type = Nat × MemType × Mem × Exp → o

Rep = Term → Type

Exp e is a lambda-expression;Loc ` is an addressable
memory location;Mem M is a memory;Term t is a Gödel
number;MemType Ψ is a memory typing, but in this model

it maps locations to terms instead of types;Type τ is a set
of 4-tuples, as before;Rep ρ is a representation function
(Gödel numbering).

Definition 17 (Approx)
We definebτck as before. However, since now memory typ-
ing maps locations into terms, we need to parametrize the
approximation of a memory typing with respect to a repre-
sentation function:

bΨcρ,k ≡ {(` 7→ bρ(t)ck)| Ψ(`) = t}

Note that the metalogical type ofbΨcρ,k is Loc → Type,
which is different than the metalogical type ofΨ.

All the definitions given in Section 2 follow through, but
need to be parametrized byρ as well.

Definition 18 (Well-typed Memory)
M :ρ,k Ψ ≡

dom(Ψ)⊆dom(M) ∧ finite(dom(M)) ∧
∀j < k.∀` ∈ dom(Ψ).

∃Ψ′. bΨ′cρ,j = bΨcρ,j ∧ 〈j,Ψ′,M ,M (`)〉 ∈ bΨcρ,j(`)

Definition 19 (Memory Extension)
(k, Ψ,M) vρ (j, Ψ′,M ′) ≡
j ≤ k ∧ (∀` ∈ dom(Ψ). bΨ′cρ,j(`)=bΨcρ,j(`)) ∧ M ′ :ρ,j Ψ′

Definition 20 (Type)
We say typeρ(τ) if whenever 〈k,Ψ,M , v〉 ∈ τ we
have M :ρ,k Ψ and if (k,Ψ,M) vρ (j,Ψ′,M ′) then
〈j,Ψ′,M ′, v〉 ∈ τ .

Definition 21 (Expr : Type)
e :ρ,k,Ψ,M τ ≡ ∀j,M ′, e′. (0 ≤ j < k ∧ (M , e) 7→j (M ′, e′)

∧ irred(M ′, e′))
⇒ ∃Ψ′. (k,Ψ,M) vρ (k − j,Ψ′, M ′)

∧ 〈k − j,Ψ′,M ′, e′〉 ∈ τ

We definepretypeconstructors, from which we will later
define type constructors. Each pretype constructor (written
with anoverbar) needs aρ parameter.

⊥ρ ≡ {}

unitρ ≡ {〈k,Ψ,M ,0〉 | M :ρ,k Ψ}

τ1→ρτ2 ≡ {〈k,Ψ,M , λx.e〉 | M :ρ,k Ψ ∧
∀j < k. ∀v,Ψ′, M ′.

((k,Ψ,M) vρ (j,Ψ′,M ′) ∧ 〈j,Ψ′,M ′, v〉 ∈ τ1)
⇒ e[v/x] :ρ,j,Ψ′,M ′ τ2}

µρF ≡ {〈k,Ψ,M , v〉 | 〈k,Ψ,M , v〉 ∈ F k+1(⊥ρ)}

refρτ ≡ {〈k,Ψ,M , `〉 | M :ρ,k Ψ ∧ bΨcρ,k(`) = bτck ∧
∀j < k. 〈j, Ψ,M ,M (`)〉 ∈ τ}

∀ρF ≡ {〈k,Ψ,M ,Λ.e〉 | M :ρ,k Ψ ∧
∀j,Ψ′,M ′, τ. ((k,Ψ,M) vρ (j, Ψ′,M ′) ∧ typeρ(bτcj))
⇒ ∀i < j. e :ρ,i,Ψ′,M ′ F (τ)}

∃ρF ≡ {〈k,Ψ,M , pack v〉 | M :ρ,k Ψ ∧
∃τ. typeρ(bτck) ∧ ∀j < k. 〈j, Ψ,M , v〉 ∈ F (τ)}

8

Now, having defined the pretype constructors, we are
free to Gödelize them. Level 0 of the hierarchy is a rela-
tion that maps every Gödel number to the bottom type, that
is, rep0(t) = {}. Level i + 1 of the hierarchy is defined as
follows:

repi+1(〈0, 0〉) = ⊥repi

repi+1(〈2, 0〉) = unitrepi

repi+1(〈3, 〈t1, t2〉〉) = repi+1(t1)→repi
repi+1(t2)

. . .

repi+1(〈5, t〉) = ref repi
(repi+1(t))

. . .

We use the notation〈i, j〉 for the injective mapping from
pairs of natural numbers to the natural numbers. We don’t
show here the representation ofµF , ∀F and∃F because
this would require a Gödelization of type-functions as well
as types. The way we handle this in the proof of a full-
scale type system is to Gödelize type expressions (with free
deBruijn variables) instead of types.

Definition 22 (Type constructors)

⊥ = �kb⊥repk
ck unit = �kbunitrepk

ck

τ1 → τ2 = �
k
bτ1→repk

τ2ck

µF = �
k
bµ

repk
F ck ref τ = �

k
bref repk

τck

∀F = �
k
b∀repk

F ck ∃F = �
k
b∃repk

F ck

Definition 23 (Semantics of Judgment)
For any value contextΓ and value substitutionσ we write
σ :ρ,k,Ψ,M Γ (“σ approximately obeysΓ”) if for all vari-
ablesx ∈ dom(Γ) we haveσ(x) :ρ,k,Ψ,M Γ(x).

We writeΓ |=k e : τ to mean that every free variable of
e is mapped byΓ and

∀σ,Ψ,M . (M :repk,k Ψ ∧ σ :repk,k,Ψ,M Γ)
⇒ σ(e) :repk,k,Ψ,M τ

Theorem 24
Using these definitions as the interpretation of the typing
operators, all the rules of Figure 2 hold, as well as the state-
ment of Theorem 8 (typability implies safety).

Proof: The proof corresponds closely the the proof shown
in Section 4. We are implementing a machine-checked
version of this higher-order-logic proof in the Twelf system.
That proof is for von Neumann machines instead of for
lambda-calculus, since our application is in proof-carrying
code for a real machine.

�

To better explain the correspondence between our
higher-order logic proof and the proof shown in Section 4,
we make a few remarks.

All (positive) representation levels are defined on the
same set of terms, which constitutes the set of valid terms.
Intuitively, each valid termt corresponds bijectively with a

type τ freely built using the constructors of Figure 3, and
increasing representation levels offer us increasingly better
approximations of that typeτ . This idea is formalized by
the following key result:

Lemma 25
Let t be a term, andτ its corresponding type. For eachi we
havebτci = brepi(t)ci.

Proof: By a nested induction argument. The primary
induction is oni, the secondary one on the structure oft.
The casei = 0 is trivial, sincebτc0 = {} = brep0(t)c0.
The case for(i+1) is done by case analysis on the structure
of t.

�

7 Eliminating Noncomputational Steps

Our application for this semantics is in a proof-carrying
code system that can provide safety proofs (derived from
type-checking) for an ordinary machine-language program,
where the machine itself has no notion of types. Inλ-
calculus terms, we would like a semantics of types that
can yield safety proofs for an entirely untyped operational
lambda-calculus. For example, we wish to avoid explicit
fold and unfold steps in calculating with recursive types,
and indeed the type system we have demonstrated is equire-
cursive (µF is equalto F (µF)) instead of isorecursive (µF
isomorphic, via fold/unfold, toF (µF)).

However, our operational semantics in Figure 1 has ex-
plicit “run-time” steps for opening an existential and apply-
ing a universal (open(pack v) and(Λ.e)[]). A real machine
has no such instructions.

We would like to eliminatee[] andopen from our oper-
ational calculus and use typing rules like this:

∀τ. type(τ) ⇒ Γ |= e : F (τ)

Γ |= e : ∀F
(tabs’)

Γ |= e : ∀F type(τ)

Γ |= e : F (τ)
(tapp’)

But there’s a minor technical problem. Consider the
statement of Lemma 13: Ife is a closed term andF is a
type functional such thate :k,Ψ,M ∀F then, for any type
setτ , e[] :k,Ψ,M F (τ). If we restate this to conclude that
e :k,Ψ,M F (τ), the lemma will not hold; in fact, all we
can prove ise :k−1,Ψ,M F (τ). If we view the indexk as
counting the number of computation steps that it’s safe to
execute, then applying a universal uses up one computa-
tion step. The reason can be seen in the definition of the
∀F operator (Figure 3); in judgingv :k,Ψ,M ∀F , we judge
whetherv :i,Ψ,M F (τ) wherei is strictly less thank. We
have no information about whetherv :k,Ψ,M F (τ).

9

It is for this reason that we put explicit computation steps
for applying a universal and for unpacking an existential
into our operational calculus: it makes the proof simpler.

But in our prototype proof-carrying code system, these
extra computational steps are ugly: they require the com-
piler to generate a no-op instruction each time it unpacks
an existential. The purpose of this no-op is to use up one
computational step to satisfy the proof.

To eliminate this noncomputational step from our
lambda-calculus model, we can simply change the state-
ment of our lemma to read: If∀k.(e :k,Ψ,M ∀F) then
∀k.(e :k,Ψ,M F (τ)). This weaker lemma will be enough
to prove the typing judgment(tapp’) shown above.

However, the way our model of types for von Neumann
machines is structured, this weaker lemma is not as use-
ful. When we reason about recursive functions, we want to
prove that “if this computation is safe fork steps, then it’s
safe fork+1 steps;” in such a proof, we can’t easily assume
thate is safe for arbitraryk.

We will sketch a solution. We will define a step relation
that allows real steps (from the specification of the real ma-
chine) and artificial steps (type application andopen); we
ensure that at most a bounded number of artificial steps can
be taken between real steps (by decrementing an artificial
counter in the state). For any programe, there is a num-
berN such thate never executes more thanN consecutive
artificial steps. In our model, we will define a typing judge-
mente :N,k,Ψ,M τ that means,e executes no more thanN
consecutive artificial steps before the first real step, and then
executes no more thanN artificial steps between real steps;
and is safe fork real steps.

8 Conclusion

The indexed model of types was derived by consider-
ing the notion of approximations inherent in domain theory.
But the particular advantage of the indexed model is that it
permits simple and direct proofs, without the need to “im-
port” large mathematical theories, such as domain theory or
category theory.

We have successfully adapted the indexed model to the
difficult task of modeling impredicative-polymorphic muta-
ble references. We continue to be guided by the domain-
theoretic idea of approximating everything in sight. The
resulting proofs, though more complicated than those for
a model without references, are still short enough to per-
mit implementation as machine-checked proofs in a simple
higher-order logic, or in the calculus of inductive construc-
tions.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game

semantics for general references. InProceedings Thirteenth Annual
IEEE Symposium on Logic in Computer Science, pages 334–344, Los
Alamitos, California, 1998. IEEE Computer Society Press.

[2] A. Ahmed, A. W. Appel, and R. Virga. A stratified semanticsof
general references embeddable in higher-order logic. In17th Annual
IEEE Symposium on Logic in Computer Science (LICS 2002), pages
75–86. IEEE, July 2002.

[3] A. W. Appel. Foundational proof-carrying code. In16th Annual
IEEE Symposium on Logic in Computer Science (LICS ’01), pages
247–258. IEEE, June 2001.

[4] A. W. Appel and A. P. Felty. A semantic model of types and ma-
chine instructions for proof-carrying code. InPOPL ’00: The 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 243–253. ACM Press, Jan. 2000.

[5] A. W. Appel and D. McAllester. An indexed model of recursive types
for foundational proof-carrying code.ACM Trans. on Programming
Languages and Systems, 23(5):657–683, Sept. 2001.

[6] A. W. Appel, N. Michael, A. Stump, and R. Virga. A trust-
worthy proof checker. In I. Cervesato, editor,Foundations of
Computer Security workshop, pages 37–48. DIKU, July 2002.
diku.dk/publikationer/tekniske.rapporter/2002/02-12.pdf.

[7] A. W. Appel, C. D. Richards, and K. N. Swadi. A
kind system for typed machine language. Available at
http:// www.cs.princeton.edu/∼appel/papers/
kinding.pdf, Oct. 2002.

[8] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL
for back-end optimization.submitted for publication, 2002.

[9] T. Coquand, C. A. Gunter, and G. Winskel. Domain theoretic models
of polymorphism.Information and Computation, 81:123–167, 1989.

[10] K. Crary. Toward a foundational typed assembly language. InPOPL
’03: 30th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, Jan. 2003.

[11] M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini,
and I. Stark. Domains and denotational semantics: History,accom-
plishments and open problems. Technical Report CSR-96-2, School
of Computer Science, The University of Birmingham, 1996. 30pp.,
available fromhttp://www.cs.bham.ac.uk/.

[12] R. Harper. A note on: “A simplified account of polymorphic ref-
erences” [Inform. Process. Lett.51 (1994), no. 4, 201–206; MR
95f:68142]. Information Processing Letters, 57(1):15–16, 1996.

[13] P. B. Levy. Possible world semantics for general storage in call-
by-value. InComputer Science Logic, 16th International Work-
shop, CSL 2002 Proceedings, volume 2471 ofLecture Notes in Com-
puter Science, pages 232–246, Edinburgh, Scotland, UK, Sept. 2002.
Springer.

[14] Y. Minamide, G. Morrisett, and R. Harper. Typed closureconversion.
In POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 271–283. ACM Press,
Jan. 1996.

[15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language.ACM Trans. on Programming Languages
and Systems, 21(3):527–568, May 1999.

[16] C. Schürmann.Automating the Meta-Theory of Deductive Systems.
Ph. D. thesis, Carnegie Mellon University, Pittsburgh, PA,2000.

[17] R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-
Order and Symbolic Computation, 13(1/2):119–129, 2000.

10

A Proofs of Types

Lemma 9 (Memory Extension Transitive)
If (k1,Ψ1,M1) v (k2,Ψ2,M2) and (k2,Ψ2,M2) v
(k3,Ψ3,M3) then(k1,Ψ1,M1) v (k3,Ψ3,M3).

Proof: The proof is in three parts. First, from the
premises of the lemma and the definition ofv we have
k2 ≤ k1 andk3 ≤ k2. It follows thatk3 ≤ k1. Second,
supposè ∈ dom(Ψ1). Then the first premise of the
lemma allows us to conclude thatbΨ2ck2

(`) = bΨ1ck2
(`).

It follows that ` ∈ dom(Ψ2). Then, from the second
premise of the lemma we havebΨ3ck3

(`) = bΨ2ck3
(`).

From bΨ2ck2
(`) = bΨ1ck2

(`) and k3 ≤ k2 it follows
that bΨ2ck3

(`) = bΨ1ck3
(`) (by definition 1 (Approx)).

Hence we may conclude thatbΨ3ck3
(`) = bΨ1ck3

(`) by
transitivity of set equality. For the third part of our proof
we must show thatM3 :k3

Ψ3 but this is immediate from
the second premise of the lemma.

�

Lemma 10 (Typeτ1 → τ2)
If τ1 andτ2 are types thenτ1 → τ2 is also a type.

Proof: Given in Section 3.
�

Before we can prove thatµF is a type, we must define
the notion of a well-founded functional.

Definition 26 (Well Founded)
A well founded functionalis a functionF from types to
types such that for any typeτ andk ≥ 0 we have

bF (τ)ck+1 = bF (bτck)ck+1

Appel and McAllester [5] show that type functionsref
and→ are well founded, and that the composition of well
founded and nonexpansive functionals (in any order) is well
founded. Note that ifF is a function from types to types and
τ is a type thenF k(τ) is a type for anyk ≥ 0.

Lemma 27
For F well founded andj ≤ k, for any τ, τ1, τ2,
(1) bF j(τ1)cj = bF j(τ2)cj

(2) bF j(τ)cj = bF k(τ)cj

Proof: (1) By induction.

bF j(τ1)c0 = ⊥ = bF j(τ2)c0.
bF j+1(τ1)cj+1 =
bF (F j(τ1))cj+1 =
bF (bF j(τ1)cj)cj+1 =
bF (bF j(τ2)cj)cj+1 =
bF (F j(τ2))cj+1 =
bF j+1(τ2)cj+1.

(2) Using (1), takingτ2 = F k−j(τ1).
�

This says thatj applications of a well-founded functional
to anytype yields the same thing, to approximationj.

Lemma 28 (TypeµF)
If F is well founded, thenµF is a type.

Proof: We have to prove that if〈k,Ψ,M , v〉 ∈ µF then
M :k Ψ. By the definition ofµF we have〈k,Ψ,M , v〉 ∈
F k+1(⊥). Since⊥ is a type andF is a function from
types to types, we have thatF k+1(⊥) is a type. Then
〈k,Ψ,M , v〉 ∈ F k+1(⊥) allows us to conclude thatM :k
Ψ.

Next, we must show thatµF is closed under mem-
ory extension. Suppose that〈k,Ψ,M , v〉 ∈ µF and that
(k,Ψ,M) v (j,Ψ′,M ′).

〈k,Ψ,M , v〉 ∈ µF
〈k,Ψ,M , v〉 ∈ F k+1(⊥) by def’n ofµF
〈j,Ψ′,M ′, v〉 ∈ F k+1(⊥) by def’n 4 (Type)
〈j,Ψ′,M ′, v〉 ∈ bF k+1(⊥)cj+1 by def’n 1 (Approx)
〈j,Ψ′,M ′, v〉 ∈ bF j+1(⊥)cj+1 by Lemma 27
〈j,Ψ′,M ′, v〉 ∈ F j+1(⊥) by def’n 1 (Approx)
〈j,Ψ′,M ′, v〉 ∈ µF by def’n ofµF

�

Lemma 11 (Typeref)
If τ is a type thenref τ is a type.

Proof: Given in Section 3.
�

Lemma 12 (Type∀F)
If F is a function from types to types then∀F is a type.

Proof: Given in Section 3.
�

Lemma 29
If type(bτck) andj ≤ k thentype(bτcj).

Proof: Immediate from definitions 4 (Type) and 1 (Ap-
prox).

�

Lemma 30
If (k,Ψ,M) v (j,Ψ′,M ′), i < k, and i < j, then
(i, bΨci,M) v (i, bΨ′ci,M

′).

Proof: Immediate from definitions 3 (Memory Extension)
and 1 (Approx).

�

11

Lemma 31 (Type∃F)
If F is a nonexpansive functional then∃F is a type.

Proof: We must show that if〈k,Ψ,M , v〉 ∈ ∃F thenM :k
Ψ, but this is follows directly from the definition of∃F .

To prove that∃F is closed under memory extension, sup-
pose that〈k,Ψ,M , v〉 ∈ ∃F and(k,Ψ,M) v (j,Ψ′,M ′).
Note that 〈k,Ψ,M , v〉 ∈ ∃F implies that v is of the
form pack v′ where v′ is a value. We must show that
〈j,Ψ′,M ′, pack v′〉 ∈ ∃F . First, we have to showM ′ :j
Ψ′. But this is immediate from(k,Ψ,M) v (j,Ψ′,M ′).
Second, we must prove the existence of some setτ such
thattype(bτcj). From〈k,Ψ,M , packv′〉 ∈ ∃F it follows
by the definition of∃F that there exists someτ such that
type(bτck). Sincej ≤ k it follows by Lemma 29 that
type(bτcj).

Finally, let i < j; we must show〈i, bΨ′ci,M
′, v′〉 ∈

F (τ). Sincei < j andj ≤ k we havei < k, and from
〈k,Ψ,M , packv′〉 ∈ ∃F we have〈i, bΨci,M , v′〉 ∈ F (τ).
SinceF is a function from types to types andbτcj is a type,
F (bτcj) is a type. It follows thatbF (bτcj)cj is a type (by
definition 1 (Approx)). SinceF is nonexpansive, we have
that bF (bτcj)cj = bF (τ)cj . HencebF (τ)cj is a type.
Now, since〈i, bΨci,M , v′〉 ∈ F (τ) andi < j, it follows
that 〈i, bΨci,M , v′〉 ∈ bF (τ)cj . Furthermore, since
(k,Ψ,M) v (j,Ψ′,M ′), i < j, andi < k, by Lemma 30
we may conclude that(i, bΨci,M) v (i, bΨ′ci,M

′).
Since types are closed under memory extension, from
〈i, bΨci,M , v′〉 ∈ bF (τ)cj and type(bF (τ)cj) we may
conclude that〈i, bΨ′ci,M

′, v′〉 ∈ bF (τ)cj . But sincei < j
it follows that〈i, bΨ′ci,M

′, v′〉 ∈ F (τ).
�

B Proofs of Typing Rules

We prove each of the type-checking rules given in Fig-
ure 2 as theorems.

Lemma 32 (Closed Application)
If e1 ande2 are closed terms andτ1 andτ2 are type sets
such thate1 :k,Ψ,M τ1 → τ2 and e2 :k,Ψ,M τ1 then
(e1 e2) :k,Ψ,M τ2.

Proof: Sincee1 :k,Ψ,M τ1 → τ2 ande2 :k,Ψ,M τ1 we im-
mediately have that both(M , e1) and(M , e2) are safe for
k steps and that if(M , e1) reduces to some(M ′, v1), where
v1 is a value, in fewer thank steps, the valuev1 must be
a lambda expression. Hence, the state(M , (e1 e2)) either
reduces fork steps without any top-level beta-reduction,
or there exists a lambda expressionλx.e, a valuev, and
a memoryM ′ such that(M , (e1 e2)) 7→j (M ′, (λx.e) v)
with j < k. In the first case we have that(M , (e1 e2))
is safe fork steps and does not generate a value in less
than k steps and hence(e1 e2) :k,Ψ,M τ2 (for any τ2).

In the second case, sincee1 :k,Ψ,M τ1 → τ2 and
e2 :k,Ψ,M τ1, definition 5 (Expr : Type) implies that
there exists a memory typingΨ′ such that(k,Ψ,M) v
(k − j,Ψ′,M ′), 〈k − j,Ψ′,M ′, λx.e〉 ∈ τ1 → τ2, and
〈k − j,Ψ′,M ′, v〉 ∈ τ1. Pick memory typingbΨ′ck−j−1.
Then the following memory extension (where we sim-
ply forget some information) holds:(k − j,Ψ′,M ′) v
(k − j − 1, bΨ′ck−j−1,M

′). Since〈k − j,Ψ′,M ′, v〉 ∈
τ1 and τ1 is a type — i.e., by definition 4 (Type)τ1 is
closed under memory extension — we may now conclude
that 〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈ τ1. The definition
of → then implies thate[v/x] :k−j−1,bΨ′ck−j−1,M ′ τ2.
But we now have(M , (e1 e2)) 7→j+1 (M ′, e[v/x]) and
(k,Ψ,M) v (k − j − 1, bΨ′ck−j−1,M

′), as well as
e[v/x] :k−j−1,bΨ′ck−j−1,M ′ τ2. These three statements im-
ply (e1 e2) :k,Ψ,M τ2.

�

Theorem 33 (Application)
If Γ is a context,e1 ande2 are (possibly open) terms, andτ1

andτ2 are types such thatΓ |= e1 : τ1 → τ2 andΓ |= e2 : τ1

thenΓ |= (e1e2) : τ2

Proof: We must prove that under the premises of the
theorem and for anyk ≥ 0 we haveΓ |=k (e1 e2) : τ2.
More specifically, for anyM , Ψ, andσ such thatM :k Ψ
andσ :k,Ψ,M Γ we must showσ(e1 e2) :k,Ψ,M τ2. By the
premises of the theorem we haveσ(e1) :k,Ψ,M τ1 → τ2 and
σ(e2) :k,Ψ,M τ1. The result now follows from Lemma 32.

�

Theorem 34 (Abstraction)
Let Γ be a context, letτ1 andτ2 be types, and letΓ[x := τ1]
be the context that is identical toΓ except that it mapsx to
τ1. If Γ[x := τ1] |= e : τ2 thenΓ |= λx.e : τ1 → τ2.

Proof: As in theorem 33 we must show under the premises
of the theorem that for anyk ≥ 0 andM , Ψ andσ such that
M :k Ψ andσ :k,Ψ,M Γ we haveσ(λx.e) :k,Ψ,M τ1 → τ2.
SupposeM :k Ψ and σ :k,Ψ,M Γ. Let j < k and v,
Ψ′, and M ′ be such that(k,Ψ,M) v (j,Ψ′,M ′) and
〈j,Ψ′,M ′, v〉 ∈ τ1. By definition of → it now suffices
to show thatσ(e[v/x]) :j,Ψ′,M ′ τ2. Let σ [x := v] be the
substitution identical toσ except that it mapsx to v. Since
the codomain ofΓ contains types (which are closed under
memory extension), and sincev :j,Ψ′,M ′ τ1, we now have
thatσ [x := v] :j,Ψ′,M ′ Γ [x := τ1]. By the last premise of the
theorem it follows thatσ [x := v](e) :j,Ψ′,M ′ τ2. But this
impliesσ(e[v/x]) :j,Ψ′,M ′ τ2.

�

12

Definition 35 (Extend Memory Typing)

extmemtype(k,Ψ, `, τ) = (` 7→ bτck) ∪ bΨck

Lemma 36
If τ is a type such that〈k,Ψ,M , v〉 ∈ τ whereM :k Ψ,
` /∈ dom(Ψ) and` /∈ dom(M), then

1. (k,Ψ,M) v (k, extmemtype(k,Ψ, `, τ),M [` :=v])

2. M [` :=v] :k extmemtype(k,Ψ, `, τ)

Proof: We prove (1) and (2) simultaneously by induction
onk.
For (1) we must show the following:
(a)k ≤ k. Immediate.
(b) ∀`′ ∈ dom(Ψ).

bΨck(`′) = bextmemtype(k,Ψ, `, τ)ck(`′).
Trivial by observing that sincè′ 6= `, by the defini-
ton of extmemtype, bextmemtype(k,Ψ, `, τ)ck(`′) =
bΨck(`′).

(c) M [` :=v] :k extmemtype(k,Ψ, `, τ). From (2).

For (2) we must show the following:
(a) dom(extmemtype(k,Ψ, `, τ)) ⊆ dom(M [` :=v]).

Follows easily from premises.
(b) finite(dom(M [` := v])).

Follows easily from premises.
(c) ∀j < k. ∀`′ ∈ dom(extmemtype(k,Ψ, `, τ)).

〈j, bextmemtype(k,Ψ, `, τ)cj ,M [` :=v],M [` := v](`′)〉
∈ bextmemtype(k,Ψ, `, τ)ck(`′).

Casè ′ 6= ` :

• 〈j, bΨcj,M ,M (`′)〉 ∈ bΨck(`′) by M :k Ψ.

• By IH (1), sincej < k, (j, bΨcj ,M) v
(j, bextmemtype(j, bΨcj , `, τ)cj ,M [` :=v]).

• Sincetype(Ψ(`′))
〈j, bextmemtype(j, bΨcj , `, τ)cj ,M [` :=v],M (`′)〉 ∈
bΨck(`′). But by definition of
extmemtype we have bΨck(`′) =
bextmemtype(k,Ψ, `, τ)ck(`′).

Casè ′ = ` :

• M [` :=v](`′) = v.

• Since〈k,Ψ,M , v〉 ∈ τ andj < k, we have
〈j, bΨcj,M , v〉 ∈ bτck.

• The rest of the proof is similar to case`′ 6= `; we
note thatbextmemtype(k,Ψ, `, τ)ck(`′) = bτck.

�

Lemma 37 (Closed New)
If e is a closed term andτ is a type set such thate :k,Ψ,M τ
thennew(e) :k,Ψ,M ref τ .

Proof: Sinceτ is a type by Lemma 11 we have thatref τ
is a type. Then it follows frome :k,Ψ,M τ that(M , e) is safe
for k steps. Hence, if the state(M , new(e)) reduces fork
steps without reaching a state of the form(M ′, new(v)) then
it follows thatnew(e) :k,Ψ,M ref τ . So we assume, without
loss of generality, that(M , new(e)) 7→j (M ′, new(v)) for
somej < k, memoryM ′, and valuev. Sincee :k,Ψ,M τ ,
definition 5 (Expr :Type) implies that there exists aΨ′ such
that we have (1) and (2) below.

1. (k,Ψ,M) v (k − j,Ψ′,M ′)
2. 〈k − j,Ψ′,M ′, v〉 ∈ τ
3. From (1) and definitions 3 and 2 (Memory Ex-

tension and Well-typed Memory) we have thatM ′

is finite. It follows that there exists some loca-
tion ` /∈ dom(M ′). Hence, we may assume that
(M ′, new(v)) 7→ (M ′ [` :=v], `).

4. From (2) it follows thatM ′ :k−j Ψ′ (sincetype(τ)).
5. PickΨ′′ = extmemtype(k − j − 1, bΨ′ck−j−1, `, τ).

Note that bΨ′′ck−j−1 = Ψ′′ by the definition of
extmemtype.

6. The following information-forgetting memory ex-
tension holds: (k − j,Ψ′,M ′) v (k − j −
1, bΨ′ck−j−1,M

′).
7. From (2) and (6) and the premise thatτ is a type, we

have〈k − j − 1, bΨ′ck−j−1,M
′, v〉 ∈ τ . From (4) it

follows thatM ′ :k−j−1 bΨ′ck−j−1 and from (3) we
have` /∈ dom(M ′) and ` /∈ dom(bΨ′ck−j−1). Fi-
nally, from (5) we haveΨ′′ = extmemtype(k − j −
1,Ψ′, `, τ). Hence, we may use Lemma 36 to conclude
the following:

(a) (k − j − 1, bΨ′ck−j−1,M
′) v (k − j −

1,Ψ′′,M ′ [` :=v]).

(b) M ′ [` :=v] :k−j−1 Ψ′′.

8. We must show thatbΨ′′ck−j−1(`) = bτck−j−1. But
Ψ′′ = extmemtype(k − j − 1,Ψ′, `, τ) and the def-
inition of extmemtype implies bΨ′′ck−j−1 = Ψ′′.
Hence, we must showΨ′′(`) = bτck−j−1 which is
immediate from the definition ofextmemtype.

9. Let i < (k − j − 1). We must show that
〈i, bΨ′′ci,M

′ [` :=v],M ′ [` :=v](`)〉 ∈ τ . By
definition 35 (extmemtype), ` ∈ dom(Ψ′′).
Then, from (7b) we can conclude that
〈i, bΨ′′ci,M

′ [` :=v],M ′ [` :=v](`)〉 ∈
bΨ′′ck−j−1(`). Then, since bΨ′′ck−j−1(`) =
bτck−j−1 (as we proved in step (8)), and
since i < (k − j − 1), it follows that
〈i, bΨ′′ci,M

′ [` :=v],M ′ [` :=v](`)〉 ∈ τ .
10. From (7), (8), and (9) it follows that

〈k − j − 1,Ψ′′,M ′ [` := v], `〉 ∈ ref τ .

Finally, we have the following:
• (M , new(e)) 7→j+1 (M ′ [` := v], `) (from

(M , new(e)) 7→j (M ′, new(v)) and (3));

13

• (k,Ψ,M) v (k−j−1,Ψ′′,M ′ [` := v]) (from (1), (6),
(7a), and transitivity ofv);

• 〈k − j − 1,Ψ′′,M ′ [` :=v], `〉 ∈ ref τ (from (10)).

These three statements imply thatnew(e) :k,Ψ,M ref τ .
�

The type inference theorem for expressions of the form
new(e) now follows from Lemma 37 in the same manner
that Theorem 33 follows from Lemma 32.

Lemma 38 (Closed Dereferencing)
If e is a closed term andτ is a type set such thate :k,Ψ,M

ref τ then! e :k,Ψ,M τ .

Proof: Since τ is a type by Lemma 11 we have that
ref τ is a type. Then it follows frome :k,Ψ,M ref τ
that (M , e) is safe fork steps. Hence, the state(M , ! e)
either reduces fork steps without reaching a state of the
form (M ′, ! v), in which case! e :k,Ψ,M τ (for any τ), or
(M , ! e) 7→j (M ′, ! `) where` ∈ dom(M ′) andj < k. In
the latter case, sincee :k,Ψ,M ref τ , definition 5 (Expr
: Type) implies that(k,Ψ,M) v (k − j,Ψ′,M ′) and
〈k − j,Ψ′,M ′, `〉 ∈ ref τ . By the definition ofref it fol-
lows that〈k − j − 1, bΨ′ck−j−1,M

′,M ′(`)〉 ∈ τ . Also,
sinceτ is a type,〈k − j − 1, bΨ′ck−j−1,M

′,M ′(`)〉 ∈ τ
implies thatM ′ :k−j−1 bΨ′ck−j−1. Then the follow-
ing memory extension (where we forget some information)
holds:(k − j,Ψ′,M ′) v (k − j − 1, bΨ′ck−j−1,M

′). By
Lemma 9 (v transitive) it follows that(k,Ψ,M) v (k −
j − 1, bΨ′ck−j−1,M

′). But we also have(M , ! e) 7→j+1

(M ′,M ′(`)) (since (M , ! v) 7→ (M ′,M ′(`))), and
〈k − j − 1, bΨ′ck−j−1,M

′,M ′(`)〉 ∈ τ . These three state-
ments imply! e :k,Ψ,M τ .

�

The type inference theorem for expressions of the form
! e now follows from Lemma 38 in the same manner that
Theorem 33 follows from Lemma 32.

Lemma 39
If τ is a type such that〈k,Ψ,M , v〉 ∈ τ whereM :k Ψ,
` ∈ dom(Ψ) and` ∈ dom(M), then

1. (k,Ψ,M) v (k,Ψ,M [` :=v])

2. M [` :=v] :k Ψ

Proof: Simultaneously by induction onk. The proof is
similar to that of Lemma 36.

�

Lemma 40 (Closed Assignment)
If e1 ande2 are closed terms andτ is a type set such that
e1 :k,Ψ,M ref τ ande2 :k,Ψ,M τ thene1 := e2 :k,Ψ,M

unit.

Proof: Sinceτ is a type, by Lemma 11ref τ is a type.
Then, it follows frome1 :k,Ψ,M ref τ ande2 :k,Ψ,M τ
that (M , e1) and (M , e2) are both safe fork steps and
that if (M , e1) reduces to some(M ′, v1) in fewer thank
steps, the valuev1 must be a location. Hence, the state
(M , e1 := e2) either reduces fork steps without reach-
ing a state of the form(M ′, v1 := v2) wherev1 and v2

are values, or there exists a location` and a memoryM ′

such that̀ ∈ dom(M ′), j < k, and(M , e1 := e2) 7→j

(M ′, ` := v) 7→ (M ′ [` :=v],0). In the first case we have
that(M , e1 := e2) is safe fork steps and does not produce a
value in less thank steps and hencee1 := e2 :k,Ψ,M unit.
In the second case,e1 :k,Ψ,M ref τ ande2 :k,Ψ,M τ imply
that(k,Ψ,M) v (k − j,Ψ′,M ′) and〈k − j,Ψ′,M ′, `〉 ∈
ref τ and〈k − j,Ψ′,M ′, v〉 ∈ τ .

We will now show (k − j,Ψ′,M ′) v (k − j −
1, bΨ′ck−j−1,M

′ [` :=v]).
1. The following information-forgetting memory ex-

tension holds: (k − j,Ψ′,M ′) v (k − j −
1, bΨ′ck−j−1,M

′).
2. Sinceτ is a type, from〈k − j,Ψ′,M ′, v〉 ∈ τ and (1)

it follows that〈k − j − 1, bΨ′ck−j−1,M
′, v〉 ∈ τ .

3. From (2) andtype(τ) we haveM ′ :k−j−1 bΨ′ck−j−1.
4. From (2), (3), type(τ), ` ∈ dom(M ′), and ` ∈

dom(bΨ′ck−j−1), by Lemma 39 we may conclude the
following:

(a) (k − j − 1, bΨ′ck−j−1,M
′) v (k − j −

1, bΨ′ck−j−1,M
′ [` :=v]).

(b) M ′ [` :=v] :k−j−1 bΨ′ck−j−1.

Finally we have the following:
• (k,Ψ,M) v (k − j − 1, bΨ′ck−j−1,M

′ [` :=v]) (by
Lemma 9);

• (M , e1 := e2) 7→j+1 (M ′ [` :=v],0);
• 〈k − j − 1, bΨ′ck−j−1,M

′ [` :=v],0〉 ∈ unit.

These three statements implye1 := e2 :k,Ψ,M unit.
�

The type inference theorem for expressions of the form
e1 := e2 now follows from Lemma 40 in the same manner
that Theorem 33 follows from Lemma 32.
Theorem 16 (Type Abstraction)
Let Γ be a context and letF be a nonexpansive type func-
tional. If Γ |=e : F (τ) for any type setτ , thenΓ |=Λ.e : ∀F .

Proof: Given in Section 4.
�

Theorem 14 (Type Application)
Let Γ be a context and letF be a function from types to
types. IfΓ |= e : ∀F then, forallτ such thatτ is a type set,
Γ |= e[] : F (τ).

Proof: Given in Section 4.
�

14

Lemma 41 (Closed Pack)
If e is a closed term,τ is a type set, andF is a function from
types to types such thate :k,Ψ,M F (τ) thenpack e :k,Ψ,M

∃F .

Proof: Sinceτ is a type andF is a function from types to
types it follows thatF (τ) is a type. Then sincee :k,Ψ,M

F (τ) we have that(M , e) is safe for k steps. If the
state(M , pack e) reduces fork steps without reaching a
state of the form(M ′, pack v), then we may conclude that
pack e :k,Ψ,M ∃F . Hence, we may assume without loss
of generality that(M , pack e) 7→j (M ′, pack v) where
j < k andv is a value. Sincee :k,Ψ,M F (τ), by defini-
tion 5 (Expr : Type) there exists a memory typingΨ′ such
that(k,Ψ,M) v (k − j,Ψ′,M ′) and〈k − j,Ψ′,M ′, v〉 ∈
F (τ).

We now show that〈k − j,Ψ′,M ′, pack v〉 ∈ ∃F . The
proof is in three parts. First, from(k,Ψ,M) v (k −
j,Ψ′,M ′) we immediately have thatM ′ :k−j Ψ′. Second,
from type(τ) (which is a premise of the lemma) there exists
a setτ such thattype(bτck−j). Third, supposei < (k − j).
We must show that〈i, bΨ′ci,M

′, v〉 ∈ F (τ). Note that the
following information-forgetting memory extension holds:
(k − j,Ψ′,M ′) v (i, bΨ′ci,M

′). Since we already have
that〈k − j,Ψ′,M ′, v〉 ∈ F (τ) and thatF (τ) is a type, we
can conclude that〈i,Ψ′,M ′, v〉 ∈ F (τ). Hence we have
shown〈k − j,Ψ′,M ′, pack v〉 ∈ ∃F .

Finally, we have (M , pack e) 7→j

(M ′, pack v), (k,Ψ,M) v (k − j,Ψ′,M ′), and
〈k − j,Ψ′,M ′, pack v〉 ∈ ∃F . These three statements
imply thatpack e :k,Ψ,M ∃F .

�

The type inference theorem forpack now follows from
Lemma 41 in the same manner that Theorem 33 follows
from Lemma 32.

Theorem 42 (Open)
Let Γ be a context and letF be a nonexpansive type func-
tional. If e1 and e2 are (possibly open) terms such that
Γ |= e1 : ∃F andΓ [x :=F (τ)] |= e2 : τ2 for any type set
τ , thenΓ |= open e1 asx in e2 : τ2.

Proof: We must prove under the premises of the theorem
for any k ≥ 0 andM , Ψ, andσ such thatM :k Ψ and
σ :k,Ψ,M Γ, that we haveσ(open e1 asx in e2) :k,Ψ,M τ2.

SupposeM :k Ψ and σ :k,Ψ,M Γ. By the
premises of the theorem we haveσ(e1) :k,Ψ,M ∃F .
Now, sinceF is a nonexpansive functional by Lemma 31
we have that∃F is a type. It follows that the state
(M , σ(e1)) is safe for k steps and that if(M , σ(e1))
generates a value in fewer thank steps, that value must
be of the form pack v where v is a value. Hence,
if the state (M , σ(open e1 asx in e2)) does not reduce
to a state of the form(M , σ(open (pack v) asx in e2))
in fewer than k steps, then we immediately have

σ(open e1 asx in e2) :k,Ψ,M τ2. So without loss of gen-
erality, we can assume that(M , σ(open e1 asx in e2)) 7→j

(M ′, σ(open (pack v) asx in e2)) for j < k and memory
M ′. Then the operational semantics in Figure 1 allows us
to conclude that(M , σ(e1)) 7→j (M ′, σ(pack v)) (where
σ(pack v) = pack v since a valuev has no free variables).
Since σ(e1) :k,Ψ,M ∃F , by definition 5 (Expr : Type)
there exists a memory typingΨ′ such that(k,Ψ,M) v
(k−j,Ψ′,M ′) and〈k − j,Ψ′,M ′, pack v〉 ∈ ∃F . Then by
the definition of∃F we have that there exists a setτ such
thatbτck−j is a type and〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈
F (τ).

By the premises of the theorem, sincebτck−j is
a type, we haveΓ [x :=F (bτck−j)] |= e2 : τ2. To
make further use of this statement, we will first
have to show that〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈
F (bτck−j). From 〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈
F (τ) and definition 1 (Approx) we can conclude
that 〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈ bF (τ)ck−j (since
(k − j − 1) < (k − j)). By the premises
of the theorem F is nonexpansive, which implies
that bF (τ)ck−j = bF (bτck−j)ck−j . So we have
〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈ bF (bτck−j)ck−j . But
this implies (since(k − j − 1) < (k − j)) that
〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈ F (bτck−j) as we wanted
to show.

Let σ [x := v] be the substitution that is identical toσ
except that it mapsx to v. Recall that the codomain
of Γ contains types (which are closed under memory ex-
tension). Note that the following information-forgetting
memory extension holds:(k − j,Ψ′,M ′) v (k − j −
1, bΨ′ck−j−1,M

′). Then by Lemma 9 (v transitive) we
have(k,Ψ,M) v (k − j − 1, bΨ′ck−j−1,M

′). This, to-
gether with〈k − j − 1, bΨ′ck−j−1,M

′, v〉 ∈ F (bτck−j)
(which we proved above), allows us to conclude that
σ [x := v] :k−j−1,bΨ′ck−j−1,M ′ Γ [x :=F (bτck−j)]. Hence
from Γ [x :=F (bτck−j)] |= e2 : τ2 it follows that
σ [x := v](e2) :k−j−1,bΨ′ck−j−1,M ′ τ2. But this implies
σ(e2[v/x]) :k−j−1,bΨ′ck−j−1,M ′ τ2.

Finally, we have (M , σ(open e1 asx in e2)) 7→j+1

(M ′, σ(e2[v/x])); (k,Ψ,M) v (k−j−1, bΨ′ck−j−1,M
′);

and σ(e2[v/x]) :k−j−1,bΨ′ck−j−1,M ′ τ2. Hence, we can
conclude thatσ(open e1 asx in e2) :k,Ψ,M τ2.

�

15

