An Indexed Model of Impredicative Polymorphism and Mutable Reference

Amal Ahmed Andrew W. Appel Roberto Virga

Princeton University, January 2003
{amal , appel , rvirga}@s. pri nceton. edu

Abstract that are machine-checkable in the simplest possible logic.
Conventional syntactic type systems have proofs that are
We present a semantic model of the polymorphic lambdasyntactic metatheorems by induction over proofs; to make
calculus augmented with a higher-order store, allowing the such a proof machine-checkable requires a complicated and
storage of values of any type, including impredicative quan- sophisticated checker such as the metatheory engine of the
tified types, mutable references, recursive types, and func-Twelf system [16]. Crary [10] has built a syntactic progress-
tions. Our model provides the first denotational semantics and-preservation proof in the style of Harper [12] for a
for a type system with updatable references to values of im-typed assembly language with mutable fields and impred-
predicative quantified types. The central idea behind our icative polymorphism — the proof is checked by the Twelf
semantics is that instead of tracking the exact type of a mu-metatheorem prover. In contrast, our semantic approach
table reference in a possible world our model keeps track has been to define a type as a predicate on data structures,
of the approximate type. While high-level languages like and a type constructor as a transformer of these predicates
ML and Java do not themselves support storage of impred-[4, 5, 2]. (In practice, a type can’t be quite as simple as
icative existential packages in mutable cells, this feature is a predicate on terms; there must be auxiliary parameters
essential when representing ML function closures, thatis, inthat encode, in effect, a semantic domain construction.)
a target language for typed closure conversion of ML pro- Then each typing rule can be proved as a derived lemma
grams. in higher-order logic; these proofs are machine-checkable
by a very simple and trustworthy program indeed [6]. The
goal is to prove and use a type-soundness theorem: a given
machine-language program type-checks; type-checking im-
Re_plies safety; so the program is safe.

1 Introduction

Semantics of mutable references are hard [11, 17].))
cent possible-worlds models [1, 13] work well, but do not _ Our prototype compiler [8] translates Core ML into
permit polymorphism. Semantics of impredicative poly- SParc machine language. The type-preserving translation
morphism are also hard [9] and, as far as we know, there are?f higher-order ML functions into function closures uses an
no possible-worlds models of impredicative polymorphism. €xistential quantifier to hide the type of the function envi-
Combining mutable references with polymorphism can be fonment[14]. This environment can contain other function-
extremely tricky. Our LICS'02 paper [2] showed how to Closures—that s, the instantiation of the existential can be

ever, that we could mix them in all ways except for one: and a function-closure can be stored into a mutable refer-

values of quantified types could not be stored in a muta- €NCe, so references must be able to contain existentials and
ble cell. But this mixture of features is necessary for typed Vice versa. Therefore we needed to construct the semantic

closure conversion (type-preserving compilation of higher- model that we will describe in this paper, with all of these
order functional programming languages) [14], even with- features as well as other features that we have previously de-
out intensional type-passing [15]. There may, of course, pescribed how to model: recursive.types_[S], heap allocation
other, as yet undiscovered, ways of representing functionOf data structures [4], address arithmetic, and so on.
closures, but for now it seems we need mutable references In this paper, to keep the presentation simple, we will
to impredicative quantified types. show only a model fon-calculus. The machine-checked
For our Foundational Proof-Carrying Code project [3], proofwe are constructing (in higher-order logic represented
we wish to construct type systems with soundness proofsin LF and type-checked by Twelf) is embedded in our pro-

totype PCC system for von Neumann machines (e.g., thenite) type expression there was some level of the hierarchy
Sparc); Appel and McAllester [5] show the similaries be- powerful enough to contain it. Since all the type expres-
tween models of types for-calculus and for von Neumann sions in a well-typed monomorphic program are finite, we
machines. could find some level of the hierarchy strong enough to type
Our model, and proofs, follow as closely as possible each program.
the Appel and McAllester schema, so we will summarize However, in the presence of quantified types we en-
it here. In that model, a typeis a set of pairgk, v), where countered a problem. Consider, for example, the type
k is a natural number andis a (\-calculus) value. Thein- Jo.ref (a x «). We cannot predict how complex will be
tuitive idea is that in any computation running for no more the type that instantiates, so there is no finite level of the
thank steps, the value behaves as if it were an element of hierarchy that is guaranteed powerful enough. For example,
the typer. A typing judgment :;, ~ on a closed expression if « is instantiated withr = ref”’(int), then the 43rd level
e means (by definition) thatcan't get stuck withirk steps, of the hierarchy won't contaim—only the 51st level (and
and furthermore ie reduces iry < k steps to a value then above) will.
(k — j,v) € 7. They callk theapproximation indein such The solution, which we describe more rigorously in the
judgments. next sections, is to use the approximation power of the in-
Then they give a semantic definition of type-checking dexed model. Suppose in some execution we are about to
open expressions in a contekti=;, e : 7, and finally define instantiateda.ref (a x «) with ref®(int), but we intend
['=e: 7tomeanvk > 0.(I' =4 e : 7). Using these g run the program for only 30 more execution steps. Then
definitions, they can prove conventional-looking rules such jv5 411 the same whether we instantiate witsf ™ (int) or
as Feei:m —m TEe:n with ref30(J_), since in 30 execution steps the program can-
Tk (e1e2): 7o not dereference more than 30 references. Therefore, if we

intend t th f t , it suffi t
directly from the definitions. Even the proofs regarding It?uael?th éngnof tigrr?ig;g?c]h;r onlysteps, it suffices to use

fold/unfold of contravariant equirecursive types are remark-
ably concise.

When we add mutable references, the small-step oper-2 Indexed Types for the Lambda Calculus
ational semantics is no longer of the foem— ¢/, but is
(M,e) — (M’,¢'). In our new semantics, an approximate Syntax. The language we shall consider is the polymor-
typing judgment is no longer just :; 7 butv .y 7. phic lambda calculus augmented with mutable references,
That is, to judge whether a valueis well typed, we must ~ €Xistential and recursive types, and the constanCarte-
have a memony/ in which to look up any location-labels sian products and other_ standard constructions are easy to
that might appear withie, and we also needemory typ- add to the model we will present. The syntax of lambda

) / terms is given by the following grammar.
ing ¥ that tells us about the types of those locations. In)
our new model, therefore, a typeis a set of four-tuples Expressions e ::= x[£|0|Aze](erez)
(k, W, M,v). new(e) |le|ei:=e2 | Ae | €[] |
A most delicate part of the semantic construction is the packe | opene; as v ine;
) Values v ::= £]0]|Az.e|A.e]|packv
fact that a type is a set of four-tuples, and theomponent

of one of those four-tuples is itself a mapping from loca- e use the meta-variable to range over a countably
tions to types. If the construction were attempted naively, infinite set ofvariablesand the meta-variableto range over
this would lead to a cardinality paradox. We avoid all para- 3 countably infinite set dbcations A termuv is avalueif
doxes as follows. First, give(k, ¥, M,v) and a location it s a locationt, the constan®, a term or type abstraction,

¢ such that¥(¢) = 7', we make sure that every element or an existential package, and if it contains no free term
(K", ', M' vy € 7" hask’ < k. Because of this inherent yariablesz.

wellfoundedness, we can use a version of our previously de- This syntax is slightly unconventional: in most presenta-
scribed stratified Godelization [2] to embed the entire model tions the po'ymorphic Operatom'e ande[T] and the ex-
into ordinary higher-order logic. istential operatorpack andopen mention types syntacti-
Our preViOUS stratified model of mutable references Ca”y' We wish to give pure|y semantic (not Syntactic) typ_
equipped each machine staf, e) with a memory typing ings to untyped lambda calculus, so we omit all types from
¥ (calledallocseta in that paper) that mapped each mu- oyr syntax. We let the vestigial operators remain in the un-

table location to its type. To avoid circularity, we had to typed syntax to simplify the presentation.
ensure that all th@’s in the semantic definition of a type

7 contained only strictly less complex types than The Operational Semantics and Safety. A memoryM is a
third level in our hierarchy of types contained types such as mapping from locations to closed values. The small-step se-
ref (ref (int)) but notref (ref (ref (int))). For any (fi- mantics (see Figure 1) is given by an abstract machine. The

(M, e1) — (M, e1) (M, e2) — (M, e5)
(M, e1e2) — (M’ €] e2) (M, (\z.e1)e2) — (M', (Az.e1) eb) (M, (A\x.e)v) — (M, e[v/x])
(M, e)— (M’ e) £ ¢ dom(M) (M, e)— (M’ €) £ e dom(M)
(M, neu(e)) — (M’', new(e’)) (M, new(v)) — (M [£:=v], £) (M, 'e)— (M', 1) (M, 18) — (M, M(0))
(M, e1) — (M, e1) (M, e2) — (M', €5) ¢ e dom(M)
(M, e1:=e2) — (M, e} :=e2) (M, v1 :=e2) = (M, v1 := e5) (M, £:=v)— (M [£:=v], 0)

(M, e)— (M, €)

(M, e)— (M’ ¢€)

(M, e[]) = (M, €'[])
(M, e1) — (M', €})

(M, (Ae)[]) — (M, e)

(M, packe) — (M', packe’)

(M, openejasxines) — (M’, opene) aszines)

(M, open (packv)aszines) — (M, e2[v/z])

Figure 1. Small-step operational semantics

state of the abstract machine is described by a(ddire) of
amemory and an expression. We wiite , e) —7 (M, ¢’)
to mean that there exists a chain pfteps of the form
(M,e) — (M,e1) — ... — (Mj,e;) whereM; is M’
ande; is /. We write (M, e) —* (M’ ¢') if (M,e) I
(M',e") for somej > 0. A state(M, e) isirreducibleif it
has no successor in the step relation, thatésl (M, e) if e
is a value oM, e) is a “stuck” state such gd/, 0(e’)) or
(M,!¢) wherel ¢ dom(M).

We say that M, e) is safe fork steps if for any reduction
(M,e) —7 (M',e") of j < k steps, eithee’ is a value or
(M',e") — (M",e"”). Note that any state is safe for 0 steps.
A state(M, e) is called safe if it is safe for alt > 0.

Semantics of Types and Typing Rules. We are interested

in constructing methods for proving that a given state is
safe. In particular, we want to prove the rules (lemmas) of
Figure 2 and also that typability implies safety. For simplic-
ity in this presentation, we avoid the use of type variables;
instead of writingda.7 with type variablesy in a type ex-
pressionr, we write 3F whereF’ is a function from types

to types. In this paper we assurthids somehow expressible
in the underlying logic, but Appel, Richards, and Swadi [7]

(var) e (unit)

ez:T'(x) I'=0: uni

Fz=n]ke:m

b
I'eElre:T1 — 7 (abs)

I'Ees:

L T2

TF'eer:m — 1

T1
T = (e1 e2) (app)

I'Ee:pF
I'=e: F(uF)

I'Ee: F(uF)

(unfold) _
I'ee:uF

(fold)
I'ee:T

I'ke:refr
I' Enew(e) : ref 7

new
(new) T'ele: Tt

(deref)

TEer: I'Eex:m
I'Ee; :=es : unit

ref 7

(assign)
Vr1.type(r) = T'Ee: F(1)
I'eAe:VF

type(T) I'ee:VF
IEe[]: F(r)

(tabs)

(tapp)

type(T) T'ke: F(r)
I' =packe: 3F

(pack)

I'key: IF Vr.type(r) = T'z:=F(1)|Fez:

I'=openeiaszines : T

T2

(open)

show how best to handle type expressions and variables in

our semantic approach.

The semantic approach taken here is based on types as

sets rather than type expressions. We say thgpais a
setr of tuples of the form(k, ¥, M, v) wherek is a non-
negative integeny is amemory typingthat is, a mapping
from locations to closed typed/ is a memory, and is a
value. Informally,(k, ¥, M,v) € T means that “looks”

like it belongs to typer; perhaps is not “really” a member

of typer, but any program of type — 7' must execute for

at leastk steps orv before getting to a stuck state.

As mentioned in the previous section, a naive construc-

tion of as a set ofk, ¥, M, v), with ¥ as a relation on

Figure 2. Type-checking lemmas

¢ and T, can lead to paradoxes. That is, there is the ques-
tion of exactly what logic we are using, and what are the
metalogical types of andW¥. We will explain in Section 5
how to represent our proof in the Calculus of Inductive Con-
structions, and in Section 6 how we formulate a solution in
higher-order logic using Godelization.

A type is not just any set of tuple&, ¥, M, v); it must
be well behaved in certain ways. To formally define a type

we must first provide some auxiliary definitions. n =0

unit {(k, U, M,0) | M :, ¥}
ni—1 = {(k,¥, M, x.e) | M, U A
Vi < k.o, W', M.
((k, W, M) E (5, %', M") A (G, %', M, v) € 1)
= elv/z] 9 ,m0 T2}

Definition 1 (Approx)

The k-approximation of a set is the subset of its elements
whose index is less thdn we also extend this notion point-
wise to memory typings:

I7le = {GY,M,v) [j <k A (¥, Muv)eT} pE = {(k, ¥, M,v) | (k,¥,M,v) € F*(1)}

Ve = {(t[7]e)| V() =1} ref 7 = {(k, U, M, 0) | M :x % A |¥]|p(0) = ||k A

N) _ Vi <k. (4, |¥];,M,M()) €T}
Intuitively, if we intend to run the program for nomore than .~ _ ((k, W, M,Ae) | M 3 U A
k more steps, then typechecking with| is just as safe as Vi, M7 (R, W, M) C (G, %', M') A type(|7];))
typechecking withr. = Vi<j. ey w,m F(T)}

e IF = {{(k,¥,M,packv) | M ;1 ¥ A
Definition 2 (Well-typed Memory) Ir.type(|T]r) A Vi <k. (4, |¥];, M,v) € F(r)}

A memory M is well-typed to approximatiok with re-
spect to a memory typing iff dom(¥) C dom (M), the
domain of M is finite, and the contents of each location
¢ € dom(T) has type¥ (¢) to approximatiork:

MW = dom(¥)Cdom(M) A finite(dom(M)) A The essential property of a type is that it is closed under

Vj < ke € dom(V). (j, | ¥];, M, M(¢)) € | ¥],(¢) memory extension. This will allow us to prove thatlif (¢)

has typer, and (M, e¢) steps by computation toM’, ¢'),

The domain ofM includes all locations already allocated; thenM (¢) still has typer, even if other locations i/ are
elements not indlom (M) are available to be allocated by stored into.
new in future computation steps. We permit the memory
to have “extra” allocated locations that are not typedihy
but the model would also work if we requiretdm (¥) =
dom(M). Also note that all the tuples required to be in
U (¢) have index strictly less thai this helps avoid circu-
larity.

Figure 3. Type definitions

Definition 5 (Expr : Type)

For any closed expressierand typer we writee :j w y T
if whenever(M ,e) —J (M',¢') for j < k and(M’,¢’)
irreducible, then there exists a memory typibgsuch that
(k, O, M) C (k— 34,9 M)and{k—j ¥ M) er;

that is,
Definition 3 (Memory Extension) eum T = Vi, M (0<j<k A (Me) fﬂ (M€
A valid memory extensiois defined as follows: A irred (M, €”))
= 3V (k, U, M) C (k— j, ¥, M)
(k, o, M) C (5,9, M) = AN (k=350 M e)yer

J<k A (Ve dom(P). |¥'];(0) = |¥];(£)) AN M :; ¥

Intuitively, e :; w.ps 7 Means that in a statg/, e), e be-
Memory extension models what may happen to the mem-haves like an element offor £ steps of computation. Note
ory (and memory typing) during zero or more computation that ife :; v p 7 @and0 < j < k thene :; 4/ » 7, for an
steps. The computation step(s) might allocate a new ref-appropriatel’, by the fact that- is closed under memory
erence, in which caséom (') will be a strict superset of ~ extension. Also, for a value, andk > 0, the statements
dom (). The step(s) might choose to forget some informa- v :x,w, s 7 and(k, ¥, M,v) € T are equivalent.
tion, in which casg will be strictly less thark and¥’ may We now define the types and type constructors of our lan-
be more approximate thal—Dbut in this case, the program guage as sets and functions from sets to sets. The definitions
will now be able to run for at most more steps instead of appear in Figure 3. The idea (as in the Appel-McAllester in-
k more steps. The computation might store a new value atdexed model) is that for a valuer.e in ; — 7 to be safe
some locatior?, but in this case the new value must (ap- for & steps, it must be that if we use up one step by beta-

proximately) obey the typing given by’ (¢). reduction, the resulting expression must be safejfer &
steps.
Definition 4 (Type) What's new here is the definition of the quantified types.

A typeis a setr of tuples of the form{k, U, M ,v) wherev For a valueA.e to belong (with approximatiotk) to VF,

is a valuef; is a nonnegative integey, is a memory typing, we can use only théh level of the memory-typing, for i
andM is amemory such that :; U, and where the setis strictly less thark. This approximation is justified, because
such that ifk, ¥, M,v) € 7 and(k, ¥, M) C (5,9, M’) then we are careful to use only the approximate typing judg-
then(j, ¥, M',v) € 7. ment thate is in theith approximation off'(7).

Other types, such as cartesian products, integers, unionaneans that if M, e) steps in fewer thah steps toq M’ ¢’),
intersections, and so on, are straightforward to define in thisthen either’ is a value or another step is possible. 0O
manner but we omit them to simplify the presentation.

Open expressionsUp to now we have dealt with closed A “program”is a closed expression that does not contain
expressions, as these are the ones that “step” at “run time. @Y location symbolgé. When a program begins executing,

Now we turn to expressions with free variables, upon which It Steps (by means afew) to expressions that may contain
the static type-checking rules must operate. Iocat_|on symbol;. A conventional subject-reduction proof
requires the static type system to be able to type-check pro-
Definition 6 (Semantics of Judgment) grams during execution, so there must be a way to type-
A contextis a mapping from lambda calculus variables to check locationg. However, our judgment e : 7 has
types. Asubstitutionis a mapping from lambda calculus no provision to type-check labels (e.g., there is no label-

variables to values. For any contéxtand substitutiornr environment to the left of the= symbol). We don’t need to
we writeo v, ' (“o approximately obeyg”) if for all type-check executing programs (since we’re not doing sub-
variablesc € dom(I") we haver(x) o, I'(x). ject reduction), and so we don'’t need to type-check location

Finally, we writeI' & e : 7 to mean that every free symbols. This is one reason that, in the proof of Theorem 8,
variable ofe is mapped by’ and we are able to choose the empty memory-typing

Yo, U, M.(M :x ¥ A o :pouD) = ole) womT

wherec (e) is the result of replacing the free variablesin 3 ~Proofs of Types
with their values under.

. . . In order to prove that a prograenwith type r is safe to
Thatis, the meaning of the judgment=; ¢ : TOnanopen oy 0q 40 (Theorem 8), it must be the case thit a type.

expressiom gnd typer can be obtained fr(_)m our semantics Next, we prove that each of the type constructors shown in
ofa S|_m|lar judgment on closed EXpressions, so_lon_g as WeFigure 3is atype, or produces a type when applied to valid
guantify over gll (approximately) legitimate substitutions of arguments. The fact that andunit are types follows im-
values for variables. mediately from their definitions. To prove that — > is a
Definition 7 type, we need the following lemma which says that memory
We writeT =e : T ifforall k > 0 we havel £ e : 7. We extension is transitive. The proof is given in Appendix A.

write =e : 7 to mearly = e : T for the empty context,,.] N
Lemma 9 (Memory Extension Transitive)

Note thatl’ = e : 7 can be viewed as a three place relation If (k;, V1, My) T (ko, Uo, M) and (kq, ¥o, Mo) C
that holds on the contekt, the terme, and the type-. Each (ks, U3, Ms) then(kq, V1, My) C (ks, U3, M3).

of the type inference lemmas in Figure 2 states that if certain

instances of the relatiohi = e : 7 hold, then certain other

instances hold. Once we have proved the type inference-6Mma 10 (Typer; —) _

lemmas in Figure 2, these lemmas can be used in the sam# 71 andr are types them, — , is also a type.
manner as standard type inference rules to prove statemen . Eiret . :
of the formT" = e : 7. We now observe that the definitions Proof First, it (k, W, M, v) € 71 — 7 thend ;. W. This

. . . is immediate from the definition of.
given above imply the following.

Next, we must prove that; — 75 is closed under

Theorem 8 valid memory extension. Suppose th@t U, M, v) €
If ke : 7,7 isatype, and/ is a finite memory thefiM , e) mn — 7 and (k,¥,M) C (j,¥,M'). Note that
is safe. (k,2 9, M,v) € 11 — 7 implies thatv is of the form

Az.e. We must prove thatj, O/, M’ , Az.e) € 11 — To.
Proof: In a conventional syntactic type theory, the safety \we first require thatM’ :; ¥ which immediately
theorem (typability implies safety) is difficult (or at least fq10ws from (k,U,M) T (¥, ,M'). Next, let
tedious) to prove. Here it follows directly from the defini- G, W', M) T (; \I;// M”)_and ’<Z- \i/// MW" € 7
tions. We need to show that for anyit is safe to execute .~ < i and 'some value” — we have to show
(M, e) for k steps. From=e : 7 we havel'y =4 e : 7, and " J L) L
thereforee is closed (sinc&), is empty). Choose the empty e[v" /2] wiwrm 2. Sincei < j and, by the definition

substitiono, and the empty memory typingo, and by the Of =, we havej < k, it follows thati < &; by Lemma 9
definition of |-, we have we have(k, ¥, M) C (i, V", M"); and we already have

(1, 0", M" v") € 7. These three statements together with
(k, ¥, M, \x.e) € 1 — 72 and the definition of- allow
The two premises are trivially satisfied; applying the trivial us to conclude that[v” /x] :; w p Ta. O
substitution we obtairt :; v, s 7. By definition, this

M . Wy A oo kW, M Ty = 0'0(6) oM T

Next, we prove thatef = andVv F are types, given appro-
priater and F', respectively. The proofs for the remaining
type constructors are given in Appendix A.

Lemma 11 (Typeref)
If T is a type themef T is a type.

Proof: We have to show that ifk, ¥, M, v) € ref 7 then
M :;, ¥, But this is immediate from the definition oéf.

To show thatref 7 is closed under memory exten-
sion, suppose thdk, ¥, M,v) € ref 7 and(k, ¥, M) C
(4,9', M’). We must prove tha{j, ¥', M’,v) € ref 7.
There are three parts to the proof.

First, we must show that/’ :; ¥, but this follows di-
rectly from(k, ¥, M) C (4, 0', M").

Second, by the definition afef, since(k, ¥, M, v) €
ref 7, it follows thatv is some locatiorf and | ¥ |, (¢) =
|7]x. The latter implies tha¥ € dom(¥). Then,
from (k, ¥, M) C (5,0, M’) it follows that | ¥'];(¢) =
|¥];(¢), and hencef € dom(¥’). In addition, from
|9 |k(¢) = |7]r andj < k, it follows by definition 1 (Ap-
prox) that| ¥ |,(¢) = [7];, and so we may conclude that
|¥'];(£) = | 7]; by transitivity of set equality.

For the third part of the proof, let< j; we must show
that (7, |9’ |;, M’, M'(¢)) € 7. We concluded above that
M’ :; V" and that € dom(¥’). FromM’ :; V', using the
fact that! € dom(¥’) and thati < j, we may conclude
that (i, |[9'];, M',M'(¢)) € |¥[;(¢). Finally, from
(i, [W)e, M7, MY(0) € [W'];(0) and [W'];(0) = |7];,
sincei < j, it follows that (i, | ¥’ |;, M', M'(¢)y e 7. O

Lemma 12 (TypeVvF)
If F'is a function from types to types th&ii is a type.

Proof: First, if (k, ¥, M,v) € VF thenM :; ¥. Thisis
immediate from the definition of F.

Next, to prove thatVF is closed under mem-
ory extension, suppose thgk,¥,M,v) € VF and
(k, o, M) C (4,9, M’). Note that(k, ¥, M ,v) € VF
implies thatv is of the formA.e. We must show that
(7,9, M' A.e) € VF. The proof has two parts. First, we
need to prove thafl{’ :; ¥’ but this is immediate from
(k, ¥, M) C (5,9, M"). For the second part of the proof,
let (4,9, M) C (i, 9", M") and type(|7];) for some
setT — we must show that :y g, p» F(7) for all
i < 4. Since memory extension is transitive (Lemma 9),
we have that(k, U, M) C (;, 9", M"). Now, from
(k, U, M, A.e) € VF we may conclude that for any < i,

e fwr), mr F(7). o

4 Proofs of the Typing Lemmas

We now prove each of the type inference lemmas in Fig-
ure 2. There is a type inference lemma for each case in the
grammar of lambda terms (except for locatighplus two
rules for the type constructer. The lemma for variables,
stating thatl' = z : I'(z), follows immediately from the
definition of = . The type inference lemma far stating
I' = 0 : unit follows directly from the definition ofinit.

In this section we prove the type theorems for type ab-
straction and type application. Proofs for the remaining
type-checking rules in Figure 2 are given in Appendix B
(Theorems 32-42) .

Lemma 13 (Closed Type Application)
If e is a closed termy is a type, and’ is a function from
types to types such thaty, v VF', thene[] .o m F (7).

Proof: We must prove[] :; v, » F(7) under the premises
of the lemma. Sincé’ is a function from types to types, by
Lemma 12VF is a type. Since :; v, v VF we have that
(M, e) is safe fork steps and i{ M, e) reduces tq M’, v)
(wherev is a value) in fewer thak steps, then must be
of the formA.e’. Hence, the statéM, e[]) either reduces
for k steps without reaching a state of the fofid’, v[]) or
there existe’ andM’ such that M, e[]) —7 (M’, (A.€')[])
with j < k. In the first case we have thad/,e[]) is
safe fork steps and M, e) does not reduce to a value in
fewer thank steps and hence[] :xw.m F(7). In the
second case, it follows from the operational semantics in
Figure 1 that(M,e) —J (M',A.¢'). Sincee v, m VF,
definition 5 (Expr : Type) implies that there exists a mem-
ory typing ¥’ such that(k, ¥, M) C (k — j,9', M’) and
(k—j§, ' M' Ae)eVF.

Next, pick the memory typing¥’|,_;_1. Then, the
following information-forgetting memory extension holds:
(k=439 M)C (k—j—1,|¥]k—j—1,M). From
type(7) it follows by definitions 4 and 1 (Type and Ap-
prox) thattype(|7]x—;—1). Then fromA.e’ ;v p VF
and the definition of /" we may conclude that for any
1 < (k} -7 - 1), e IR AT P ¥ (F(T) — that is,

e v, F(r) (fromi < (k — j — 1) and definition 1
(Approx)).

Since 7 is a type, F(r) is a type. Also, the fol-
lowing information-forgetting memory extension holds:
(k—7—1,|Vk_j1,M") C (g, [¥'];, M'). Then, first,

by Lemma 9 we havelk,¥, M) C (i |V'];, M).
Second, since (M’'.(A.€)[]) +— (M')e), we
have (M,e[]) +~J*1 (M’,¢/). Third, we have

e e ,,m F(r) where type(F(7)). These three
statements imply (since they hold for any. (k— (j+1)))
thate[] kUM F(T) O

Theorem 14 (Type Application)
LetT" be a context, lef" be a function from types to types,
and letr be atype. IT" = e : VF thenI = e[] : F (7).

Proof: We must prove that for any > 0 we have
T & e[] : F(r). More specifically, for anyM, ¥, and
o such thatM : ¥ ando : 9 am I', we must show
o(e[]) :kw,m F(7). SupposéV :, ¥ ando :; w,m I. By
the premise of the theorem we havé) v VF and
type(7). The result now follows from Lemma 38. O

Before we can prove the typing rules for type abstraction,

we must define the notion of a nonexpansive functional.

Definition 15
A nonexpansive functionab a functionF from types to
types such that for any typeandk > 0 we have

LE(T)]k = LE(L]R) e

The term “nonexpansive” is explained in more detail by Ap-
pel and McAllester, who show that all the functionals that

can be built by compositions of our type constructors are Fi xpoi nt itype [k :

nonexpansive.

Theorem 16 (Type Abstraction)
LetT" be a context and lef be a nonexpansive type func-
tional. If T'=e : F(7) forany type set, thenl'=A.e : VF.

Proof: We must show that for any > 0 and M, ¥ ando
such thatM :;, ¥ ando :; 9, I’ we haves(A.e) ik w m
VF. SupposéV :; ¥ ando v, . Letj,u, ¥/, M’, and
7 be such thatk, ¥, M) C (4, ¥’, M') andtype(|7];). By
the definition ofV it suffices to show that for any< j we
haveo(e) =, v |,,mv F(7). Since|7]; is a type, given the
premise of theorem it follows thdt = e : F(|7];). Hence
o(e) wwm F(|7];). Also, sinceF is a function from
types to typesF(|7];) is a type.

The following information-forgetting memory extension
holds: (j,9', M) C (i, |¥'|;,M'). Then by Lemma 9
it follows that (k, ¥, M) C (i, |9’];, M’). Hence, from
o(e) wwm F(|7];) andtype(F(|7];)) we can con-
clude thato(e) :; 9|, mr F([7];). Now sincei < j,
definitions 1, 4, and 5 (Approx, Type, and Expr : Type)
allow us to conclude thatr(e) :; 9/, a0 LF(L7]5)];-
Using the premise thaf’ is nonexpansive we have that
o(e) 4w, m |F(7)];. Butsincei < j, definition 1
(Approx) implies thaw (e) = | v), m7 F(7). O

5 Representation in CiC

At the beginning of Section 2, we informally defined
types as collections of tuplés, U, M, v), where in partic-
ular ¥ is a mapping from location to types. This informal

definition characterizes a proper class rather than a set, since
for example it allows pathological cases like:

(k, ¥, M,v) e Tand ¥({) =7

Any attempt toward a set-theoretic formalization starting
from this definition is therefore doomed to failure.

What makes such a formalization possible is that all def-
initions given in Section 2 obey the following invariant:
when considering a tuplék, ¥, M, v) we do not require
¥ to be defined beyont | .. Hence our types do indeed
form a set, which can be constructed using recursively de-
fined setsI'ypes;, andMemTypes,, as follows:

T € Types, iff 7= {}

T € Types;, (. iff V(j, ¥, M,v) €. j < kAT € MemTypes;

¥ € MemTypes,, iff V¢ € dom (V). ¥(¢) € Types,,

T € Types iff Vk. |7 |, € Types,.

The Calculus of Inductive Constructions, upon which the

Coq system is based, can represent the above definitions
quite directly:

nat] Type : =
Cases k
of O=> UnitT
| (Sk') =

(prodT (itype k')
((location -> (itype k'))
-> penory -> exp -> Prop))

end.

Definition imentype [k : nat] Type : =
location -> (itype k).

Definition type: Type := (k: nat) (itype k).

Each setTypes, is modeled using a product type
(itype k) in CiC. More specifically, Types, is mod-
eled by the unit typdni t T, while Types, , is given by
the product of the representation 8fpes; and the set of
membership functions for tripleSl, M, v), where® has
type(i mentype k).

Given an object au of typet ype, its k-th approxima-
tion will correspond to the applicatiqit au k) . To check
that a 4-tuplek, ¥, M, v) is int au, we will need to apply
tau tok + 1, and take the second component:

(sndT (tau (S k)) Psi Mv)

The definition of the types and type constructors pre-
sented in Figure 3 can be given by recursion on the natural
numbers. At each step, we have to construct an object of
type(itype k). The casé = 0 is trivial, sinceUni t T
is the only object belonging tbi t ype 0). For the case
k + 1, we only have to provide a formula which decides
which tuples(k, ¥, M, v) will belong to the type.

Figure 4 illustrates the representation for the type con-
structor for mutable references. The predicate

Pr op

Definition refTy [tau :
(nat _rect itype IT
([k : nat][tauk :
(pai rT tauk
([psi: (imentype k)][m menory][v:
(Ex [| ocati on]
(Ex [v' : exp]
(v = (loc 1))
((ml) = (Some exp v'))
(imentype_sat k psi m
(eqT (itype k) (psi I) (tau k))
(Al T[] nat]
(h o (It] k))
((sndT (tau (Sj)))
(i menmtype_approx k j
mv')))))))).

type] type :

(itype k)]

exp]

I\
I\
I\
I\

h psi)

Figure 4. Definition of ref in CiC

i ment ype_sat (k:nat)

(inmentype k) -> nenory
-> Prop

models the relatiod/ :;, ¥, while we use the function
(k,j:nat)
(It j k)

i ment ype_appr ox :
-> (imentype k)
-> (inentype j)

to “lower” an approximation to the correct index. Both of
these are straightforwardly defined in Coq.

6 Representation in H.O.L.

Higher-order logic does not provide as convenient a
mechanism for making stratified metalogical types; we
must construct the stratification ourselves. We do so by con-
structing a Godelization of type expressions.

A naive Godelization would proceed as follows. We
want a relatiorp between the natural numbers and all the
type expressions that can be constructed from the opera
tors in Figure 3. Unfortunately, the definitions of some of
those operators would refer poleading to a circularity. We
resolve this circularity by constructing a hierarchy of rela-
tions; the semantics of the types in one level of the hierarchy

can make use of lower levels. We now present the metalog-

ical types, in higher-order logic, of what we will construct:

Ezxp = the type of lambda-expressions

Loc = Nat

Mem = Loc 33 Exp

Term = Nat

MemType = Loc 5 Term

Type = Nat x MemType X Mem x Exp — o
Rep = Term — Type

Exp e is a lambda-expressionoc ¢ is an addressable
memory locationMem M is a memoryTerm t is a Godel
number;Mem Type W is a memory typing, butin this model

it maps locations to terms instead of typ&%jpe 7 is a set
of 4-tuples, as beforeRep p is a representation function
(Godel numbering).

Definition 17 (Approx)

We defind 7 |, as before. However, since now memory typ-
ing maps locations into terms, we need to parametrize the
approximation of a memory typing with respect to a repre-
sentation function:

W = {(= [p@)]x)| (€) =t}

Note that the metalogical type ¢f |, ; is Loc — Type,
which is different than the metalogical type bf

All the definitions given in Section 2 follow through, but
need to be parametrized byas well.

Definition 18 (Well-typed Memory)

M p,k v =
dom (W) C dom(M)
Vi < kNl e dom (¥
|, =P

A finite(dom(M)) A
).
Jog NGV M, M(8)) € [W],,5(0)

Definition 19 (Memory Extension)

(b, O, M)C, (, ¥, M'") =
J<k A (VEE dom(). [W']p5(0)=[T]p5(0) N Mz 5 9

Definition 20 (Type)

We say type, () if whenever (
have M :,, W and if (k, ¥, M
(3,9 M v) €.

,0) € T we
7,9, M") then

ke, U, M
) Cp (

p

Definition 21 (Expr : Type)
eprumT = Vi, M. (0<j<k A (M,e)—I (M)
A irred(M’,e"))
= 3V (k, ¥, M) C, (k- j, 0, M')
AN (k=53 M eyer

_ We definepretypeconstructors, from which we will later
define type constructors. Each pretype constructor (written
with anoverbar) needs @ parameter.

p

unit, = {(k,U,M,0) | M :p, U}

={

=12 = {(k, U, M, x.e) | M :p ¥ A
Vi < k.Y, ', M.
((k, O, M), (, ', M) A (5,9 M v) €m)
= e[v/x] :p w M T2}
B F = {(k,¥,M,v) | (k,¥,M,v) e F"*(Lp)}
ref,7 = {(k, U, M,0) | M ;3. U A | U], %) = 7] A
Vi <k (j,¥, M, M) €T}
Y, F = {{k,U,M,Ae) | M, ¥ A
V5, M 7 ((k, U, M), (5,9, M') A type,(I7]5))
= Vi<je:;wu F(T)}
3,F = {{k, ¥, M,packv) | M :, U A

Ir.type,([T]k) A Vi <k (j,¥,M,v) € F(r)}

type 7 freely built using the constructors of Figure 3, and
Now, having defined the pretype constructors, we are increasing representation levels offer us increasingly better
free to Godelize them. Level O of the hierarchy is a rela- approximations of that type. This idea is formalized by
tion that maps every Godel number to the bottom type, thatihe following key result:
is, repy(t) = {}. Leveli + 1 of the hierarchy is defined as
follows:

_ Lemma 25
rep; 1 ((0,0)) = Lre?i Lett be a term, and its corresponding type. For eachve
rep; 1 ((2,0)) = unitep, . haveLTJi = Lrepi (t)Jz
rePi+1(<3: (t1,12))) = reP¢+1(t1)Hrepi rePi+1(t2)

_ Proof: By a nested induction argument. The primary
rep; 1 ({5,1)) = refrep, (rep; 4 (1)) induction is oni, the secondary one on the structuret of
The case = 0 is trivial, since|7]o = {} = [repy(?)]o-

. L . The case fofi+ 1) is done by case analysis on the structure
We use the notatiofi, j) for the injective mapping from of t ti+1) y y 0

pairs of natural numbers to the natural numbers. We don’t

show here the representationff’, VF and3F because

this would require a Godelization of type-functions as well

as types. The way we handle this in the proof of a full- 7 Eliminating Noncomputational Steps

scale type system is to Gddelize type expressions (with free

deBruijn variables) instead of types. Our application for this semantics is in a proof-carrying

code system that can provide safety proofs (derived from

type-checking) for an ordinary machine-language program,
T T e where the machine itself has no notion of types. An

TLl o _ Hii;"’ﬂp’zmk unit = U, [unitee, Ji calculus terms, we would like a semantics of types that

uF = Uy T, F ref 7 = U, [TeFren, 7 |1 can yield safety proofs for an entirely untyped operational

g F lambda-calculus. For example, we wish to avoid explicit

Definition 22 (Type constructors)

v = Ul e 38 = UBe Fl fold and unfold steps in calculating with recursive types,
and indeed the type system we have demonstrated is equire-
Definition 23 (Semantics of Judgment) cursive (.F is equalto F(u.F)) instead of isorecursive:
For any value context and value substituﬁon we Wri.te isomorphic, via fold/unfold, taF (1.F)).
o :prwm I (“o approximately obeys”) if for all vari- However, our operational semantics in Figure 1 has ex-
ablesr € dom(I') we haver (x) :p.k,w,m T'(). plicit “run-time” steps for opening an existential and apply-

We writel’ &, e : 7 to mean that every free variable of ing a universal¢pen(pack v) and(A.¢)[]). A real machine

e Is mapped by and has no such instructions.
Vo, U, M. (M tepy .k ¥ A 0 trepy kv,) We would like to eliminate:[] andopen from our oper-
= 0(€) trepy k¥, M T ational calculus and use typing rules like this:

Theorem 24 VT.type(r) = I'k=e: F(7) (tabs))

Using these definitions as the interpretation of the typing Iee:vF
operators, all the rules of Figure 2 hold, as well as the state-
I'ee:VF type(T)

ment of Theorem 8 (typability implies safety). (tapp’)
I'ke: F(r)

Proof: The proof corresponds closely the the proof shown ,]) .

in Section 4. We are implementing a machine-checked But there’s a minor technical problem. Consider the
version of this higher-order-logic proof in the Twelf system. Statement of Lemma 13: K is a closed term and’ is a
That proof is for von Neumann machines instead of for tyPe functional such that :; v » VI then, for any type

lambda-calculus, since our application is in proof-carrying S€t7, €[] :r.w.» F(7). If we restate this to conclude that
code for a real machine. 0 e kw,m F(7), the lemma will not hold; in fact, all we

can prove i :;_1,w,m F(7). If we view the indexk as
To better explain the correspondence between ourcounting the number of computation steps that it's safe to
higher-order logic proof and the proof shown in Section 4, execute, then applying a universal uses up one computa-
we make a few remarks. tion step. The reason can be seen in the definition of the
All (positive) representation levels are defined on the VF operator (Figure 3); in judging :; v »s VF, we judge
same set of terms, which constitutes the set of valid terms.whetherv :; v »s F(7) wherei is strictly less thark. We
Intuitively, each valid ternt corresponds bijectively with a have no information about whethet v s F(7).

Itis for this reason that we put explicit computation steps semantics for general references.Piroceedings Thirteenth Annual
for applying a universal and for unpacking an existential 'ElEE_SVmPO?]'tumPn Logic in Computer Scigrpzges 334-344, Los
into our operational calculus: it makes the proof simpler. Alamitos, California, 1998. IEEE Computer Society Press.

But in our prototype proof-carrying code system, these [2] A. Ahmed, A. W. Appel, and R..Vlr_ga. A stratlﬂed semantick
extra computational steps are ugly' they require the com general references embeddable in higher-order logit7th Annual

’ . g : - IEEE Symposium on Logic in Computer Science (LICS 2@Gz®)es
pller to generate a no-op Instruction each time it unpacks 75-86. IEEE, July 2002.

an existential. The purpose of this no-op is to use up one 3] A w. Appel. Foundational proof-carrying code. I6th Annual

computational step to satisfy the proof. IEEE Symposium on Logic in Computer Science (LICS, 'pajes
To eliminate this noncomputational step from our 247-258. |EEE, June 2001.

lambda-calculus model, we can simply change the state- [4] A. W. Appel and A. P. Felty. A semantic model of types and-ma

ment of our lemma to read: l‘f’k.(e e M VF) then chine instructions for proof-carrying code. ROPL '00: The 27th

Vi) F Thi ’ Ker | 7 il b h ACM SIGPLAN-SIGACT Symposium on Principles of Programming
(e hw,m F(7)). IS weaker lemma will beé enoug Languagespages 243-253. ACM Press, Jan. 2000.

to prove the typing Judgmemtbpp) shown above. [5] A.W. Appel and D. McAllester. An indexed model of recwsitypes
Howeve_ra the way our m_Odel of types for von Neumann for foundational proof-carrying codeACM Trans. on Programming

machines is structured, this weaker lemma is not as use- Languages and Systen®8(5):657—683, Sept. 2001.

ful. When we reason about recursive functions, we want to [s] A. W. Appel, N. Michael, A. Stump, and R. Virga. A trust-

prove that “if this computation is safe férsteps, then it's worthy proof checker. In I. Cervesato, editdfoundations of

safe fork+1 steps;” in such a proof, we can’t easily assume Computer Security workshpppages 37-48. DIKU, July 2002.

. + P . P y diku.dk/publikationer/tekniske.rapporter/2002/02¢d.
thate is safe for arbitrary:.

We will sketch a solution. We will define a step relation [71 A W Appel, C. D. Richards, and K. N. Swadi. =~ A

e L. kind system for typed machine language. Available at
tha_lt allows rea] steps (fromthe speC|_f|cqt|on of the real ma- http:// wwmv cs. princeton. edu/ ~appel / paper s/
chine) and artificial steps (type application asgkn); we ki ndi ng. pdf , Oct. 2002.

ensure that at most a bounded number of artificial steps can(g) J. chen, D. Wu, A. W. Appel, and H. Fang. A provably sound.TA
be taken between real steps (by decrementing an artificial ~ for back-end optimizationsubmitted for publication2002.

counter in the state). For any programthere is a num- [9] T.Coquand, C. A. Gunter, and G. Winskel. Domain thearatbdels
ber N such that never executes more tha¥ consecutive of polymorphism.Information and Computatiqr81:123-167, 1989.
artificial steps. In our model, we will define a typing judge- [10] K. Crary. Toward a foundational typed assembly langudg POPL
mente :x 1w T that meanse executes no more tha¥ '03: 30th Annual ACM SIGPLAN-SIGACT Symposium on Prinsiple

consecutive artificial steps before the first real step, and then °f Programming LanguagesiCM Press, Jan. 2003.

executes no more thak artificial steps between real steps; [111 M. P.Fiore, A. Jung, E. Moggi, P. O'Hearn, J. Riecke, ®s8lini,
and is safe fof: real steps and I. Stark. Domains and denotational semantics: Hissagom-

plishments and open problems. Technical Report CSR-9&t&
of Computer Science, The University of Birmingham, 1996p&0
available fromht t p: / / ww. ¢cs. bham ac. uk/ .

8 Conclusion
[12] R. Harper. A note on: “A simplified account of polymorphief-

. . . erences” [Inform. Process. Le®l1 (1994), no. 4, 201-206; MR
The indexed model of types was derived by consider- 951:68142]. Information Processing Letter§7(1):15-16, 1996.

ing the nOtiQn of apprOXimationS inh.erem in domain_theory_' [13] P. B. Levy. Possible world semantics for general steragcall-
But the particular advantage of the indexed model is that it by-value. InComputer Science Logic, 16th International Work-

permits simple and direct proofs, without the need to “im- shop, CSL 2002 Proceedingsmlume 2471 ot ecture Notes in Com-
port” large mathematical theories, such as domain theory or ~ PUter Sciencepages 232-246, Edinburgh, Scotland, UK, Sept. 2002.
category theory Seringer.
) . 14] Y. Minamide, G. Morrisett, and R. Harper. Typed closooaversion.
_ We have successfully adapted the indexed model to the In POPL '96: The 23rd ACM SIGPLAN-SIGACT Symposium on
difficult task of modeling impredicative-polymorphic muta- Principles of Programming Languaggsages 271-283. ACM Press,
ble references. We continue to be guided by the domain- Jan. 1996.

theoretic idea of approximating everything in sight. The [15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sgsst F to
resulting proofs, though more complicated than those for typed assembly languagACM Trans. on Programming Languages
a model without references, are still short enough to per- ~ 2d System21(3):527-568, May 1999.

mit implementation as machine-checked pI’OOfS ina simple[16] C. SchirmannAutomating the Meta-Theory of Deductive Systems

. Ph. D. thesis, C ie Mellon Uni ity, Pittsburgh, 0.
higher-order logic, or in the calculus of inductive construc- esis, Camegie Mellon University, Pittsburgh, 260
tions [17] R.D. Tennent and D. R. Ghica. Abstract models of stor&tigher-

’ Order and Symbolic Computatiph3(1/2):119-129, 2000.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstraatrge

10

A Proofs of Types

Lemma 9 (Memory Extension Transitive)
If (kl,\I/l,Ml) C (kQ,\IJQ,MQ) and (kg,\I/Q,MQ)
(k3, W3, M3) then(ky, W1, M) C (k3, U3, M3).

C

Proof: The proof is in three parts. First, from the
premises of the lemma and the definition ©fwe have
ko < k1 andks < ko. It follows thatks < k. Second,
suppose/ € dom(¥1). Then the first premise of the
lemma allows us to conclude thg¥s |, (¢) = | ¥ |k, (£).

It follows that ¢ € dom(¥3). Then, from the second
premise of the lemma we hav&s |y, (¢) = |Pa]r,(£).
From |¥s |k, (6) = |¥q]k,(¢) andks < ko it follows
that | Us]r, (€) = |¥1]k, (¢) (by definition 1 (Approx)).
Hence we may conclude thaW; |, (¢) = [T1]x,(£) by
transitivity of set equality. For the third part of our proof
we must show thab/s :,, V3 but this is immediate from

the second premise of the lemma. d
Lemma 10 (Typer; — 72)

If 71 andr, are types them, — 7 is also a type.

Proof: Given in Section 3. O

Before we can prove thatF is a type, we must define
the notion of a well-founded functional.

Definition 26 (Well Founded)
A well founded functionals a functionF from types to
types such that for any typeandk > 0 we have

LF(T) k1 = [F(I7]r)] k1

Appel and McAllester [5] show that type functionef
and— are well founded, and that the composition of well

founded and nonexpansive functionals (in any order) is well

founded. Note that it is a function from types to types and

T is a type therF* (1) is a type for any: > 0.

Lemma 27

For F well founded and; < k, for any r,7m, 7o,
(1) [F'(r)]; = [F(2)];
@) [F/(r)]; = [F¥T));

Proof: (1) By induction.

[F7(11)]o =L = [F?(72)]o
| FIH (1) | j1 =

| F(F7 (1))] j+1 =
[F(LF (1)))] j41 =
LE(LE (m2)]5)) j+1 =
LE(F9(12))]j+1 =

11

(2) Using (1), taking, = F*=7(7y). O
This says thaj applications of a well-founded functional

to anytype yields the same thing, to approximatjpn

Lemma 28 (TypeuF)
If Fis well founded, themF is a type.

Proof: We have to prove that ifk, ¥, M,v) € uF then
M :;, 0. By the definition ofuF we have(k, ¥, M, v) €
FF1(1). Since L is a type andF is a function from
types to types, we have th@"+!(L1) is a type. Then
(k, W, M,v) € F¥*1(1) allows us to conclude that/ :,
v,

Next, we must show thatF' is closed under mem-
ory extension. Suppose thét, ¥, M,v) € pF and that

(k, ¥, M) E (j, ¥, M").
(k, ¥, M,v) € uF
(k, ¥, M,v) € FEFL(1) by def'n of uF°
{1, \IJ’ M’ v) € FFHL(L) by def'n 4 (Type)
(7, W', M',v) € |[F**1(1)];41 bydefn1(Approx)
(oW M, v) € [Fi1(1)]50 by Lemma27
(7,9, M’ v) € FIT1(1) by def'n 1 (Approx)
(7,9 M' v) € uF by def'n of uF’
O
Lemma 11 (Typeref)
If T is a type themref T is a type.
Proof: Given in Section 3. O
Lemma 12 (TypeVvF)
If F is a function from types to types th&i is a type.
Proof: Given in Section 3. O

Lemma 29
If type(|7]x) andj < k thentype(|T];).

Proof: Immediate from definitions 4 (Type) and 1 (Ap-
prox). O
Lemma 30

If (k, 9, M) T (j,9,M'), i < k, andi < j, then
(i, L\I]Jla M) C (i, L‘I]IJia MI)-

Proof: Immediate from definitions 3 (Memory Extension)
and 1 (Approx). O

Lemma 31 (TypedF)
If F' is a nonexpansive functional théi is a type.

Proof: We must show thatifk, ¥, M, v) € 3F thenM
WU, but this is follows directly from the definition afF'.

To prove thaBF is closed under memory extension, sup-
pose thatk, ¥, M,v) € IF and(k, ¥, M) C (4,9, M’).
Note that(k, ¥, M,v) € 3IF implies thatv is of the
form packv’ wherev’ is a value. We must show that
(4,9, M’ , packv’) € IF. First, we have to show/’ :;
U’. But this is immediate frontk, ¥, M) C (4, %', M’).
Second, we must prove the existence of somersaich
thattype(|7];). From(k, ¥, M, packv’) € 3F it follows
by the definition ofdF’ that there exists some such that
type(|7]x). Sincej < k it follows by Lemma 29 that
type([7];).

Finally, leti < j; we must show(i, |0’ |;, M’ ,v") €
F(r). Sincei < jandj < k we havei < k, and from
(k, ¥, M,packv’) € IF we have(i, |V],;, M,v') € F(r).
SinceF is a function from types to types and| ; is a type,
F(|7],) is atype. It follows that F'(|7|,)]; is a type (by
definition 1 (Approx)). Sincé" is honexpansive, we have
that |[F'(|7];)]; = |F(r)];. Hence|F(r)]|; is a type.
Now, since(s, | ¥ |;, M,v") € F(r) andi < j, it follows
that (¢, (V|;, M,v') € |F(r)],. Furthermore, since
(k, O, M) C (5,9',M’),i < j, andi < k, by Lemma 30
we may conclude thati, |V],, M) T (i, |¥'];, M').

In the second case, sineg§ :wpm ™ — T2 and
ez :kw,m T1, definition 5 (Expr : Type) implies that
there exists a memory typing’ such that(k, ¥, M) C
(k — 3,9 M), (k—3j,9 M Ire) € m — 72, and
(k—7,9' M v) € 7. Pick memory typing ¥'|;_;_1.
Then the following memory extension (where we sim-
ply forget some information) holds(k — j, ', M') C
(k—j—1,|9|k_j_1,M"). Since(k—j, ¥ M v) €
71 and 7, is a type — i.e., by definition 4 (Typey, is
closed under memory extension — we may now conclude
that (k —j — 1, |V |—j—1, M',v) € 7i. The definition
of — then implies thate[v/x] :x_j 1 ||, ,_,, M/ T2
But we now have(M, (ej e2)) —7T1 (M’ e[v/x]) and
(b, O, M) C (k—j — 1,|V|k—j_1,M’'), as well as
elv/x] sk—j_1,|w),_,_,,mv T2- These three statements im-
ply (e1 e2) kv, T2

O

Theorem 33 (Application)

If T is a contexte, andesy are (possibly open) terms, and
andr, are types such thlit=e; : 1 — mandl' Eeq 1 1y
thenT = (e1e2) : T2

Proof: We must prove that under the premises of the
theorem and for any > 0 we havel i (e1ez) : 2.
More specifically, for anyM/, ¥, ando such thatM :;, ¥

Since types are closed under memory extension, fromando : w » I' we must showr(e; e2) v, m 2. By the

(i, [W]i, M,v') € [F(r)]; and type(| F(7)];) we may
conclude thati, | ¥’ |;, M’,v") € | F(7)]|;. Butsincei < j
it follows that (i, | 9’ |;, M’,v") € F(7). O

B Proofs of Typing Rules

We prove each of the type-checking rules given in Fig-
ure 2 as theorems.

Lemma 32 (Closed Application)

If ey andesy are closed terms and andt, are type sets
such thate; :pom ™ — T2 andey w71 then
(e1€2) tgw, M To.

Proof: Sincee; :;,w. 1 71 — T2 andeg v, p T1 WE iM-
mediately have that bottl/, e;) and (M, e5) are safe for

k steps and that ifM, e;) reduces to som@\l’, vy), where

vy is a value, in fewer that steps, the value; must be

a lambda expression. Hence, the stat€, (e e2)) either
reduces fork steps without any top-level beta-reduction,
or there exists a lambda expressidn.e, a valuev, and

a memoryM’ such that(M, (e e2)) —7 (M’,(\z.e)v)
with j < k. In the first case we have thad/, (e; e2))

is safe fork steps and does not generate a value in less

than k& steps and hencéey ez) :w.m 72 (for any 7).

12

premises of the theorem we haw@:1) 1 w,p 71 — 72 and
o(ez2) :x,w,m T1. The result now follows from Lemma 32.
O

Theorem 34 (Abstraction)

LetT" be a context, let; andr, be types, and ldi[x := 11|
be the context that is identical Toexcept that it maps to
7. IfT[z =7 Ee: p thenl EAx.e: 7y — To.

Proof: Asintheorem 33 we must show under the premises
of the theorem that for anly > 0 and M, ¥ ando such that
M :, Uando i w v T we haves(Az.e) kom0 71 — T2.
SupposeM : ¥ ando :9m I. Letj < k andu,

¥’ and M’ be such thatk, ¥, M) C (j,¥',M’) and
(3,9, M',v) € 7. By definition of — it now suffices
to show thato(e[v/z]) :jw M 2. Leto[z:=v] be the
substitution identical te except that it maps to v. Since
the codomain of" contains types (which are closed under
memory extension), and sinee:; g/ s/ 71, We Now have
thato [z :=v] :j o m I [z:=71]. By the last premise of the
theorem it follows that [z :=v](e) :j v/ M+ T2. But this
implieSa(e[v/x]) 5 M T2 O

Definition 35 (Extend Memory Typing)
extmemtype(k, U, 0, 7) = (0 |7]r) U |¥]%

Lemma 36
If T is a type such thatk, ¥, M,v) € T whereM :, U,
¢ dom (V) andl ¢ dom (M), then

1. (k, ¥, M) C (k,extmemtype(k, ¥, £, 1), M [¢ :=v))
2. M [£:=v] :j, extmemtype(k, U, ¢, T)

Proof: We prove (1) and (2) simultaneously by induction
onk.
For (1) we must show the following:
(@) k < k. Immediate.
(b) V¢ € dom(%).
| ¥, (¢') = |extmemtype(k, U, ¢, 7) |, ().
Trivial by observing that sincé€ # ¢, by the defini-
ton of extmemtype, |extmemtype(k, U, ¢, 7) |, (¢') =
LWk (€).
() M [¢:=v] :, extmemtype(k, U, ¢, 7). From (2).

For (2) we must show the following:

(@) dom(extmemtype(k, ¥, ¢,7)) C dom(M [¢:=v]).
Follows easily from premises.

(b) finite(dom (M [¢:=v])).
Follows easily from premises.

(C)Vj < k.¥¢' € dom(extmemtype(k, U, ¢, T)).

(4, |extmemtype(k, ¥, ¢, 7)|;, M [¢:=v], M [(:=v](¢'))
€ |extmemtype(k, ¥, £, 7)|x(¢').

Casel’ £ /(:
o (4, |¥];, M, M) € |¥]|x(¢)by M : U.

e ByIH (1), sincej < k, (4, [¥];, M) C
(ja LeXtmemtype(jv L\I/Jjaga T)Jja M [é

e Sincetype(¥(¢))
(4, |extmemtype(j, |¥];, 4, 7)];, M [€:=v], M({")) €

=v

D-

[P (€). But by definiton of
extmemtype we have |U].(¢) =
|extmemtype(k, U, ¢, 7)]| ().

Casel’ =¢:

o M[(:=v](¢) =w.

e Since(k, ¥, M,v) € T andj < k, we have
<j7 L\I/ij M, U> € LTJk

e The rest of the proof is similar to cage# ¢; we
note that extmemtype(k, ¥, ¢, 7) | (¢') = |7]k.

O

Lemma 37 (Closed New)
If e is a closed term antdl is a type set such that:, w v T
themmew(e) : w,a ref 7.

13

Proof: Sincer is a type by Lemma 11 we have thaif

is atype. Thenitfollows from :;, v a 7 that(M, e) is safe

for k steps. Hence, if the stafd/, new(e)) reduces fork

steps without reaching a state of the fofid’, new(v)) then

it follows thatnew(e) :1 v, 1 ref 7. SO we assume, without

loss of generality, that} ,new(e)) —7 (M’ new(v)) for

somej < k, memoryM’, and valuev. Sincee : v, T,

definition 5 (Expr : Type) implies that there exist¥asuch

that we have (1) and (2) below.
1 (k,O,M)C (k—j,9 M)
2. (k—5V M v)er
3. From (1) and definitions 3 and 2 (Memory Ex-
tension and Well-typed Memory) we have that’
is finite. It follows that there exists some loca-
tion £ ¢ dom(M'). Hence, we may assume that
(M, new(v)) — (M’ [¢:=v],2).

. From (2) it follows thatM’ :,_; ¥’ (sincetype(7)).

. Pick®” = extmemtype(k —j — 1, |V’ |k—j_1,4,7).
Note that|¥”|,_;,—1 = ¥” by the definition of
extmemtype.

. The following information-forgetting memory ex-
tension holds: (k — 5,9/ M) C (k — j —

L9 | p—jor, M.

. From (2) and (6) and the premise thais a type, we
have(k —j — 1, |V |—;—1, M’ ,v) € 7. From (4) it
follows that M’ :;_;_1 |¥’|k—;—1 and from (3) we
havel ¢ dom(M') and?¢ ¢ dom(|¥'|k—;—1). Fi-
nally, from (5) we havel’” = extmemtype(k — j —
1,9’ ¢, 7). Hence, we may use Lemma 36 to conclude
the following:

@ (k —j — L [V]p—j1, M)
1,9 M’ [¢:=v]).

(b) M’ [E::U] k—j—1 o,
. We must show that®” |,_;_1(¢) = |7]k—;—1. But
U = extmemtype(k — j — 1,9’ ¢, 7) and the def-
inition of extmemtype implies [¥ |;_;—1 = T”.
Hence, we must show” (¢) = |7|k—;—1 which is
immediate from the definition afxtmemtype.
Leti < (k- j — 1). We must show that
(i, [|;, M [0:=v], M [£:=0]()) € . By
definition 35 €éxtmemtype), ¢ € dom(¥").
Then, from (7b) we can conclude that
(i, [9" |;, M [£:=v], M' [£:=v](£)) €
|9 |k—j—1(¢). Then, since |V"|,_;_1(¢) =
|T]k—j—1 (as we proved in step (8)), and
since i < (k — j — 1), it follows that
(i, |9 |4, M [€:=0], M' [£:=0](0)) € T.
From (7), (8), and (9) it
(k—7—1,9" M'[:=v],f) € ref T.

N

C (k-Jj-

10. follows that

Finally, we have the following:
o (M,new(e)) It (M'[0:=v],0)
(M, neu(e)) —? (M’ neu(v)) and (3));

(from

o (K, U, M)LC (k—j—1,9" M’'[¢:=v]) (from (1), (6), Proof: Sincer is a type, by Lemma 1tef 7 is a type.

(7a), and transitivity of;), Then, it follows frome; :; o a ref 7 andes o 7
o (k—j—1,9" M [(:=v],0) € ref T (from (10)). that (M,e;) and (M,e2) are both safe fok steps and
_ that if (M, e;) reduces to soméM’,v;) in fewer thank
These three statements imply thatw(e) :x v ref 7. steps, the value; must be a location. Hence, the state
O (M,e; := es) either reduces fok steps without reach-

ing a state of the form{M’,v; := v2) wherewv; and v,

The type inference theorem for expressions of the form gre values, or there exists a locatiband a memory\/’
new(e) now follows from Lemma 37 in the same manner gych that e dom(M'), j < k, and(M,e; = e3) 7

that Theorem 33 follows from Lemma 32. (M', 0 = v) — (M'[¢:=1],0). In the first case we have

that(M, e; := es) is safe fork steps and does not produce a
value in less thai steps and heneg := ey :; v, \ unit.

In the second case; :; v » ref 7 andes o, a7 iMply
that (k, U, M) C (k — j, V', M) and(k — j, W', M, £) €
Proof: Sincer is a type by Lemma 11 we have that ref 7and(k —j, V', M’ ,v) € 7

ref 7 is a type. Then it follows frome :; ¢ ref 7 We will now show (k — j, ¥, M') C (k —j —
that (M, e) is safe fork steps. Hence, the staf@/,!e) LW fk—jo1, M' [£:=1]).

either reduces fok steps without reaching a state of the 1. The following information-forgetting memory ex-

Lemma 38 (Closed Dereferencing)
If e is a closed term and is a type set such that:;, v
ref 7 thenle :j s 7.

form (M’,!v), in which cas€ e :;.y » 7 (for any7), or tension holds: (k — j, ¥, M) T (k — j —
(M,'e) —J (M’',!¢) wherel € dom(M') andj < k. In LW Jp—j1, M).
the latter case, since :; .y) ref 7, definition 5 (Expr 2. Sincer is a type, from(k — j, ¥/, M’, v) € 7 and (1)
. Type) implies that(k, U, M) C (k — j, ¥, M’) and it follows that(k — j — 1, [’ |x—j—1, M',v) € 7.
(k—j, W' M’ () € ref 7. By the definition ofref it fol- 3. From (2) andype(r) we haveM’ :;— ;1 [¥']k—j-1.
lows that(k —j — 1, [V |,_;_1, M’, M'(¢)) € 7. Also, 4. From (2), (3).type(r), £ € dom(M’), and ! €
sincer is atype,(k —j — 1, [¥ |,_; 1, M, M'(¢)) € 7 dom(L\IJ’Jk,j,l), by Lemma 39 we may conclude the
implies thatM’ :x_;_1 |¥'|r—;—1. Then the follow- following:

ing memory extension (where we forget some information) @ (k —j — 1, L\ka LMY © (k—j—
Lemma 5 wansie) folows 1t 4 31 (s L ¥]oyon M [620])

emma ransitive) it follows that(k, ¥, C (k- /
j—1,[¥|p_j_1,M'). But we also havéM,!e) r—sJt! (0) MU= 0] g [y

(M, M’() (smce (M,'v) — (M',M'(¢))), and Finally we have the following:
(k—j—1,|9|x_j_1, M, M'(£)) € 7. These three state- o (b, U.M)C (k—j—1, |V |k j 1, M [L:=0]) (by
ments imply! e .o ar 7. Lemma 9);
m o (M,e1:= eg) =7t (M [0:=0],0);
o (k—j—1,|V|k_j_1,M [€:=v],0) € unit.

The type inference theorem for expressions of the form
I'e now follows from Lemma 38 in the same manner that
Theorem 33 follows from Lemma 32.

These three statements imply := e :;, v, 3 unit. O

The type inference theorem for expressions of the form

Lemma 39 e1 := ey now follows from Lemma 40 in the same manner
If 7 is a type such thatk, U, M,v) € T whereM :, U, that Theorem 33 follows from Lemma 32.
¢ € dom(¥) andl € dom(M), then Theorem 16 (Type Abstraction)
LetT" be a context and lef be a nonexpansive type func-
1. (k,9,M)C (k, U, M [l:=0]) tional. If T'=e : F(7) for any type set, thenl'=A.e : VF.
2. M[l:=v]: ¥ Proof: Given in Section 4. |

Proof: Simultaneously by induction oh. The proof is o
similar to that of Lemma 36. O Theorem 14 (Type Application)
LetT be a context and leF be a function from types to

types. Ifl" = e : VF then, forallr such that- is a type set,

Lemma 40 (Closed Assignment) TEel]: F(r).

If e; andes are closed terms andis a type set such that

e1 pw,m ref T andey o v T thene; = ex ko M Proof: Given in Section 4. O
unit.

14

Lemma 41 (Closed Pack) o(openeyasxines) xw,m T2. SO without loss of gen-
If e is a closed term; is a type set, and is a function from erality, we can assume th@t/, o (open e1 as z ines)) —J
types to types such that:, v,x F(7) thenpacke :xw,m (M’',o(open (packwv)asziney)) for j < k and memory
JF. M’. Then the operational semantics in Figure 1 allows us
to conclude thatM,o(ey)) —7 (M', o(packv)) (where
o(packwv) = packw since a value has no free variables).
Sinceo(e1) :xw,m 3IF, by definition 5 (Expr : Type)
there exists a memory typing’ such that(k, ¥, M) C
(k—j,9' M")and(k — j, ¥’ M’ packv) € 3F. Then by
the definition of3F" we have that there exists a sesuch
that|7|,—;isatypeandk —j — 1, | ¥/ |x—;—1, M',v) €

Proof: Sincer is a type andF’ is a function from types to
types it follows thatF'(7) is a type. Then since :x v m
F(r) we have that(M,e) is safe fork steps. If the
state (M, packe) reduces fork steps without reaching a
state of the forn{M’, packv), then we may conclude that
packe :; v n JF. Hence, we may assume without loss
of generality that(M,packe) +—J (M’ packv) where

j < kandv is a value. Since :; v F(7), by defini- 7).) . .
tion 5 (Expr : Type) there exists a memory typidg such By the premises of the theorem, sinde|;.—; is
that(k, ¥, M) C (k — j, %', M’) and(k — j, ¥/, M',v) € a type, we havel'[z:=F(|7]z—;)] F e2 : T TO

F(r) make further use of this statement, we will first
’ . 1 /

We now show thatk — j, W', M’, packv) € 3F. The ~ Nave to show that(k —j—1, L\I’,Jk—j—lﬂ M, v) €
proof is in three parts. First, fronghk, W, M) C (k — L (7le=g).From (k—j -1 [¥]p_jy, M',v) €

4,9, M) we immediately have that/’ :;,_; . Second, F(r) and definition 1 (Approx) we can conclude

from type(7) (which is a premise of the lemma) there exists that (k _*j = L [¥]k—j-1, M/_’ v) € LF(7)]kj (S"7°e
a setr such thatype(|7]x—,). Third, suppose < (k — j). k- —1) < _(k — 9))- By the_ premises
We must show that, L‘I"Ji', M’,v) € F(r). Note that the of the theorem F' is nonexpansive, which implies

following information-forgetting memory extension holds: that LF(T)J’“—/' - LF/(LTJ’C—J’)J’“—T So we have
(k — 4,9 M) C (i,|¥'];, M"). Since we already have (k=5 = L[V], M',v) € |F([7]k—)]5—;. But
that(k — j, ¥’, M’ v) € F(7) and thatF'(7) is a type, we this |mpl|es gsmce(k: I~ 1) (k —j)) that
can conclude thati, ¥/, M’ ,v) € F(7). Hence we have (k= =1, [¥]k—j-1, M',0) € F(|7]r-;) as we wanted
shown(k — j, ', M’ packv) € 3F. to show. . . .
Finally, we have (M, packe) i Let o [z:=v] be the substitution that is identical to

(M',packv), (k,%,M) C (k — j, ¥ M), and except thqt it maps to_v. Recall that the codomain
(k —j, ¥ M’ packv) € 3F. These three statements of F_contams types (which are_cloged und(_ar memory ex-
imply thatpack e 5 g 1/ 3F. 0 tension). Note_that the foIIow!ng mformaﬂon-forgettlng
o memory extension holds(k — j, ¥, M') C (k — j —
1, |9 |k—j—1,M’). Then by Lemma 9 transitive) we
have(k, ¥, M) C (k—j—1,[¥'|xk—;—1, M’). This, to-
gether with(k — j — 1, |V’ |k—j_1, M',v) € F(|7]k—;)
(which we proved above), allows us to conclude that
Theorem 42 (Open) olr=v] _j 1w ,_m Uz =F(|7]x—;)]. Hence
LetT" be a context and Idf be a nonexpansive type func- from T'[z:=F(|7|k—;)] F ea : 7o it follows that
tional. If e; ande, are (possibly open) terms such that o [z:=v|(e2) :x—j_1, 9/ |,_,_,,m’ T2- But this implies
I'iEer : 3F andl [z :=F(7)] = ez : w2 for any type set o(ealv/x]) tp_j1, (v |, \,m7 T2
7, thenl’ = opene; asz ine; : 7. Finally, we have (M, c(opene;asziney)) —7+!
(M, 0(e2[v/z])); (k, ¥, M) E (k—j—1, [¥')1, M");
ando(ez[v/z]) k—j_1,|w|,_,_,,m’ T2- Hence, we can
conclude that(opene; asx ines) kv, M Ta- O

The type inference theorem fpack now follows from
Lemma 41 in the same manner that Theorem 33 follows
from Lemma 32.

Proof: We must prove under the premises of the theorem
foranyk > 0 and M, ¥, ando such thatM :; ¥ and
o v m I, that we haver(opene; aszines) i w,m To.
SupposeM :; VU and o :uom I By the
premises of the theorem we havde;) :rwm 3IF.
Now, sinceF' is a nonexpansive functional by Lemma 31
we have that3F is a type. It follows that the state
(M,o(ey)) is safe fork steps and that ifiM,o(e1))
generates a value in fewer th@nsteps, that value must
be of the formpackv where v is a value. Hence,
if the state (M,o(opene;asxzines)) does not reduce
to a state of the form{M,o(open (packv)asxinesy))
in fewer than k steps, then we immediately have

15

