
Policy-Enforced Linking of Untrusted Components
(Extended Abstract) ∗

Eunyoung Lee Andrew W. Appel

Department of Computer Science
Princeton University

{elee,appel}@cs.princeton.edu

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, assertion checkers

General Terms
Languages, Security, Verification

Keywords
Linking, component composition, formal logic, proof-carrying

1. INTRODUCTION
Large software systems are often built from loosely-coupled

subsystems. When a programmer uses a third-party soft-
ware component as a building block of her system, she doesn’t
want the code she imports to break the whole system. She
needs some methods guaranteeing that linking the foreign
software component to her system is safe.

The most widely used methods for ensuring safe linking
are type checking and code signing. Checking the type of
the interfaces between two software components ensures that
two components agree on the types they are using. Although
type checking is quite strong and easy to use, it doesn’t guar-
antee that the code will behave in an expected way. Different
static checking mechanisms have been suggested to address
specific security properties of programs: a security-sensitive
type system [5], wrappers which encapsulate untrusted pro-
grams and implement security-concerned properties [7], and
so on. They give the users better facilities to address se-
curity properties than typical type-checking does, but they
still suffer from a lack of expressiveness since their security
or linking policies are fixed and encoded in their type or
logic systems.

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No.9974553 and by
DARPA award F30602-99-1-0519.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

Code signing ensures that someone trustworthy trusts the
code, but it is not always enough for guaranteeing system
safety since trusted software companies or software devel-
opers unintentionally make mistakes. Software signed by
trusted companies can still cause security holes in users’
systems. For example, in November 2002 Microsoft released
a badly coded ActiveX control, signed (as usual) with Mi-
crosoft’s code-signing key; the bug led to a security vulner-
ability. Because Microsoft’s code-signing protocol is insuf-
ficiently expressive, Microsoft was faced with the choice of
setting a kill bit so that no browser would run the control—
thereby disabling thousands of websites, even ones contain-
ing no security-critical data—or not setting the bit—thereby
continuing to endorse the product. Microsoft chose the lat-
ter; it recommended that users who desired a secure system
should remove Microsoft from Internet Explorer’s Trusted
Publisher List [4].

We propose Secure Linking (SL), a flexible way of allowing
software component users to specify their security policy at
link time, giving the users more control than type-checking
or traditional digital signing. Our Secure Linking mecha-
nism would not prevent bugs in ActiveX in the previous
example, but it would give the software provider and the
software consumer finer-grain control of the meaning of cer-
tificates they use. We have developed a logical framework
for SL, providing stronger support for system safety and se-
curity, and we have implemented a prototype system using
the framework.

With the SL framework, a code consumer can establish
a linking policy to protect itself from malicious code from
outside. The policy can include certain properties which
the code consumer thinks useful for system safety: software
component names, application-specific correctness proper-
ties, version information of software components, and so on.
To link and to execute a component in a SL-enabled sys-
tem there must be a machine-checkable proof that the com-
ponent has the properties specified in the code consumer’s
linking policy. This proof might be provided by the code
provider, or might be produced by an untrusted proving al-
gorithm that runs on the code consumer’s machine. The
proof is formed using the logic and inference rules of the
framework. After being submitted, the proof is checked by
a small trusted proof checker in the code consumer, and
if verified, the component is allowed to be linked to other
components in the code consumer.

In this extended abstract, we present the main concept of
our proposed Secure Linking, and outline the design of the

framework and the underlying linking logic. We also briefly
discuss the expressiveness of the linking logic in terms of its
extensibility and interoperability.

2. SECURE LINKING
Suppose that Bob finds a seemingly interesting HTML

document from Alice’s system, and is asked to download a
JavaScript program from Alice’s system in order to read that
document. Should Bob download and install Alice’s code or
not? Is it possible for Bob to specify and enforce his own
linking policy, which is more flexible than type-checking and
more expressive than traditional code-signing at link time?
We will describe how our Secure Linking works to allow
Bob to do what he wants. Bob plays as a code consumer,
in this scenario, because he wants to link outside software
components to his system, and Alice plays as a code provider
because she is providing suspicious-before-verified code to
Bob.

Secure linking policies. A code consumer can spec-
ify what kind of useful behavior he expects from outside
software components in his linking policy. Foreign software
components are allowed to run in the code consumer’s sys-
tem, only when they can prove that they have certain prop-
erties specified in the linking policy.

Code consumers can specify the policies such as: “Game
imports (links to) only version 1.3 of GUI,” “Compiler links
to any version of SymbolTable that has efficientLookup

property as certified by underwritersLab,” “Compiler links
only to the particular implementation of SymbolTable whose
machine code hashes to 8327518932,” “All modules imported
by Game must have been mechanically inspected by a virus
detector,” “Certificate Authority Alice can vouch for the
public key of the virus detector,” “Untrusted modules must
have been checked by a bytecode verifier to assure that they
respect their interfaces.”

Linking decision. A code consumer must check that a
foreign component provides all properties in his linking pol-
icy in order to decide to link the component to other com-
ponents in his system. This sometimes costs the consumer’s
time and resources. Secure Linking requires the consumer
only to verify the proof submitted by a code provider with
the software component; code consumers are relieved from
the burden of proving. For example, Bob checks the proof
from Alice with the certificates by using a trusted proof
checker, and links her component to other components in
his system if the proof is valid; otherwise he rejects it. Since
the certificates Alice submitted are digitally signed, all sig-
natures are verified during the proof-checking time.

Properties. Properties a code consumer wants to en-
force at link time are specified in his linking policy. A
property of a component is an assertion of expected behav-
ior from the component. There are many useful proper-
ties which help systems protect themselves from malicious
outside codes, such as “this software component is type-
checked,” “this software component never accesses outside
of the memory assigned to it,” “this software component
doesn’t read any information from or write any information
to the file system,” or “this software component doesn’t pro-
duce any arithmetic overflow or underflow.”

Third-party authorities. Some properties, like the prop-
erty of being type checked, can be guaranteed by a trusted
compiler, while others cannot be proved easily. These prop-
erties, however, may be accepted as true if a software com-

ponent has assurances made by trusted third-party author-
ities. The trusted authorities can generate assurances re-
sulting from a software audit or some other verification pro-
cesses for software engineering. Such assurances are usu-
ally encoded as digitally signed statements. We call those
assurances property certificates, and third-party authorities
property authorities. The property statements in property
certificates are accepted as true after the digital signatures
on them are verified, and the components are considered to
have the properties mentioned in those certificates.

Since all certificates from property authorities come with
digital signatures, a code consumer should know the public
keys of the signers in order to check the validity of the digi-
tal signatures. Otherwise, the code consumer must have at
least one trusted authority who can provide the right public
keys for verifying the signatures and her public key. These
authorities are called key authorities (also known as certifi-
cate authorities).

Just as a code consumer doesn’t have to know all the
public keys of principals, he doesn’t have to know which
property authorities can guarantee his required properties.
Instead a code consumer specifies that he trusts a principal
as someone who will let him or any code provider know the
property-authority bindings. These authorities are called
property servers. In this way, the code consumer doesn’t
have to enumerate the names of property authorities for
every required property in his linking policy, and he need
not modify the linking policy whenever a property-authority
binding changes.

Library. Although it is possible to keep a software com-
ponent self-contained, it is very common for a software com-
ponent to use pre-installed software components by import-
ing them. A code consumer enumerates what library com-
ponents he has and what properties are exported by each
of those components. At the same time, a component from
a code provider declares what components it imports and
what properties are required for each of the imported com-
ponents. The SL framework checks whether or not the im-
port requirement of a foreign component is satisfied by the
library components a code consumer provides.

In what follows, we will explain the SL framework and
its linking logic. The SL framework is independent of pro-
gramming languages or programming environments; thus,
the explanation of the framework is language-neutral.

3. DESIGN OF THE FRAMEWORK
The framework consists of the linking logic, a proof checker,

a linking policy description language and its parser, a com-
ponent description language and its parser, a tactical prover
and other proving-helping tools, as shown in Figure 1. In
this section, we explain the main parts of the framework ex-
cept for the linking logic. The linking logic is presented in
detail in Section 4.

Linking policy. Linking policies are set by code con-
sumers (e.g., system administrators or component integra-
tors) and specify what software components may be linked
together. The linking policy description language provides a
simple and convenient way of stating linking policies. This
language adopts XML syntax, and its parser produces the
linking logic formulas from a linking policy. The syntax and
semantics of the language are explained in our technical re-
port [3].

A code consumer’s linking policy usually consists of three

proof checker

linking logic

component

 parser

policy

parser

tactical

prover

certificate

 storage

component

description linking policy

proof

axioms
axioms axioms

Untrusted

Trusted Code Base

OK!

Figure 1: System Diagram

parts: a list of useful properties, the names of trusted au-
thorities, and the description of pre-installed library compo-
nents. The required property part is used for specifying the
properties requested from outside components, and consists
of a list of property names. The list of trusted authority
names consists of the names of trusted key authorities and
property servers. This list is used for getting public key cer-
tificates and property certificates from authorities to build
a proof. The library part is a list of component descrip-
tions, each of whose elements describes one library com-
ponent of a code consumer’s. By enumerating available li-
brary components explicitly, a code consumer can hide some
security-critical software components from outside view; it
prohibits outside components from accessing these security-
critical components to attack the system.

Separating linking policies from the linking protocol gives
code consumers more ability to state their linking policies,
and it makes our framework more flexible than frameworks
with fixed linking policies.

Component description. Component descriptions are
prepared by code providers, giving the information of the
components they submit. The component description lan-
guage in the framework is designed to help code providers
describe their components. It also adopts XML syntax, com-
ing with a parser to the linking logic. The full description
of its syntax and semantics is given in [3].

A component description in the SL framework consists
of four parts: a component name, modules, exports, and
imports. The component name is a local identifier of con-
venience for the component. The module part is a set of
code files which implement the component. Each code file
is represented by its file name and cryptographic hash code.
The export part of a component description specifies what
should be visible outside of the component. Components in
the SL framework can export properties (by their names)
as well as identifiers with type information (e.g., class and
method names). The import part shows what other com-
ponents a component depends on. An import request of
a component consists of the name of a dependent compo-
nent and some required properties. The framework locates
a component matching an import request and checks if it
exports all the required properties of the import request.
By allowing exporting and importing properties as well as
class and method identifiers, our framework gives a linker
more information than types, and makes linking safer.

A component description can be built by combining other
component descriptions. It is useful to make it possible to
combine component descriptions, especially when reasoning
with digitally-signed certificates from property authorities.
When signing, it is reasonable for a property authority to
want to sign only on the properties he can guarantee, rather
than sign on all the properties a component description ex-
ports. After collecting component descriptions assured by
property authorities, a code provider combines them, to
build a complete component description. This frees the
property authorities from a burden of assuring more prop-
erties of a component description than they want to.

Proof checker. Given a proof from a code provider, a
code consumer must be able to verify the validity of the
proof. The linking logic of SL is built on top of the PCA
logic [1]. Since the PCA logic itself is an object logic of LF,
a logical framework which allows the specification of logics
[2], every term in the linking logic boils down to a term
in the underlying LF logic. Therefore, the proofs written in
the linking logic can be checked mechanically by any trusted
checker implementing LF.

Tactical prover. We have developed a tactical prover
for our linking logic. Note that the prover doesn’t have to
be trusted since a proof which is invalid will be rejected
by the trusted proof checker. Although the prover itself is
not contained in the trusted computing base (TCB) of the
SL framework, it is worthwhile to develop a prover and to
include as a part of the framework in order to help code
providers to build proofs in the linking logic. The tactical
prover in the SL framework is a logic program consisting of
30 tacticals and 58 tactics, running on Twelf [6]. The goal
to be proved is encoded as the statement of a theorem, and
axioms that are likely to be helpful in proving the theorem
are added as assumptions. The prover generates a derivation
of the theorem; this is the proof that a code provider must
send to a code consumer.

We have shown that our prover is sound (i.e., it is guar-
anteed that every formula that is provable by the prover is
true in the linking logic). Our prover is also complete for
the set of true formulas generated by the linking policy de-
scription language and the component description language
(i.e., it is guaranteed that every true formula in the set is
provable by the prover). Although the underlying higher-
order logic, in which the linking operators are encoded, is
expressive enough to be undecidable, the logic covered by
the tactical prover is an example of an application-specific
sublogic which is decidable, and for which we have demon-
strated a decision procedure. The complete proof can be
found in our technical report [3].

4. LINKING LOGIC
In this section we explain a secure linking theorem of SL,

description parsing, and the representation of properties;
then we discuss the soundness of the linking logic.

Secure linking theorem. Before allowing linking, a
code consumer requires a proof saying that the component
from a code provider satisfies his linking policy. In other
words, the proof must show that a set of modules and its
component description satisfy the secure linking theorem of
the SL framework. The secure linking theorem is written
in the linking logic, and reflects the steps the SL framework
follows to make a linking decision.

signed component dsc(m,dsc, rqSet)
safe imports(dsc, lib, libdsc)
exports required prps(rqSet, dsc)

ok to link(m, dsc, lib, libdsc, rqSet)
[SL theorem]

The above rule shows the secure linking theorem. First,
the framework examines if the logical description of a com-
ponent and the set of modules have been tampered with by
checking cryptographic hash codes and digital signatures;
it generates a set of axioms asserting the binding between
the modules and the component description. With these
axioms, the code provider should prove that the predicate
signed component dsc holds. Second, the code consumer
wants the component to import only components visible in
his linking policy; if so, it is possible for the code provider to
prove that the predicate safe imports holds. Last, the code
consumer requires that the component description exports
all the required properties; if so, the code provider can prove
that the predicate exports required prps holds. If the com-
ponent description and the set of modules satisfy the above
three conditions, that is, if it is provable that those three
predicates hold, then the secure linking theorem is provable,
and linking is allowed; otherwise, linking is denied.

Description parsing. With a given linking policy, the
parser turns the name bindings of property servers and of
key authorities into axioms in the linking logic. A library
component is encoded as a set of properties, which are ex-
ported by the library component. Each required property
specified in a linking policy is translated into a property re-
quest, which will be explained later.

A component description is turned into formulas in the
linking logic after checking the hash codes of binary modules.
Digitally signed statements of certificates from key authori-
ties, property authorities, or property servers are converted
into axioms in the linking logic after verifying their signa-
tures. A component description is encoded as a pair of its
export and its import in the linking logic. The name of a
component as well as the set of exported type identifiers and
the set of exported properties are all treated as properties,
making up the export part of the component. The import
part of a component is encoded as a list of sets of property
requests.

Properties. Property matching happens in two places
at link time: a code consumer checks if a foreign software
component exports all the properties in the linking policy,
and if the foreign component imports only visible library
components of the code consumer.

Since property matching occurs very frequently in proving
the secure linking theorem, it is important to design the logic
keeping property matching easy and simple. We achieved
the goal by dividing property matching into two parts, prop-
erties and property requests. In our design, a property re-
quest is a predicate accepting a property as an argument;
the predicate returns true if the argument matches the re-
quest it implements, or returns false otherwise. Therefore,
checking property matching is turned into simple evaluation
of a predicate.

We gained another benefit by designing property requests
as predicates: it allows one property to have more than one
property request with different semantics. It enriches the ex-
pressiveness of the SL framework. At link time, for example,
component names are typically used in two different ways:
a code consumer may require a component to have some
name - any name - or to have a specific name for an exact

match. These usages can be implemented in the linking logic
by designing two different property requests working on one
property, rather than designing two properties separately.

Soundness. It is desirable to prove our linking logic
sound, i.e., that untrue formulas cannot be proved. Sound-
ness is typically proved by induction over all proofs that can
be built from a given set of inference rules. PCA takes a
different approach, however: each application-specific oper-
ator is defined in terms of the underlying operators of LF
higher-order logic [2], and each inference rule is proved as a
theorem of the higher-order logic. Therefore, the soundness
of PCA logic depends on the already-proven soundness of
LF higher-order logic.

We have chosen PCA as the underlying logic of the linking
logic and used the same approach that PCA took in order
to prove that the linking logic is sound. In other words, the
soundness of PCA and its underlying LF logic proves the
soundness of our linking logic because all the operators in
the linking logic are written in those two logics, and all the
inference rules in the linking logic are proved as lemmas of
those logics.

5. FURTHER DISCUSSION
The SL linking logic is so general that it is easily extended

to give a formal description to real-world linking systems.
We demonstrated the expressiveness of our linking logic by
encoding the linking system of .NET as an example. We
have modeled .NET assemblies as components, and .NET’s
strong naming, version-redirection, hash code verification of
binary code files, and code-signing as properties and prop-
erty requests in the linking logic. With these properties,
the linking procedure of .NET assemblies is reduced to a
case of Secure Linking requiring a specific set of proper-
ties. The detailed discussion can be found in our technical
report [3]. We also discussed how our framework can in-
teroperate other logic-based frameworks concerning system
security, and what benefits can be gained.

6. REFERENCES
[1] A. W. Appel and E. W. Felten. Proof-carrying

authentication. In 6th ACM Conference on Computer
and Communications Security, November 1999.

[2] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of ACM, January 1993.

[3] E. Lee. Secure Linking: A Logical Framework for
Policy-Enforced Linking. PhD thesis, Princeton
University, to appear 2003.

[4] Microsoft. Microsoft Security Bulletin MS02-065,
November 2002. http://www.microsoft.com/technet/
security/bulletin/MS02-065.asp.

[5] G. C. Necula and P. Lee. Safe, untrusted agents using
proof-carrying code. Mobile Agents and Security,
Springer-Verlag, 1998.

[6] F. Pfenning and C. Schürmann. System description:
Twelf – a meta-logical framework for deductive systems.
In Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), July 1999.

[7] Sewell and Vitek. Secure composition of insecure
components. In PCSFW: Proceedings of The 12th
Computer Security Foundations Workshop, 1999.

