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Under some very general assumptions about how a
program-obfuscation works, deobfuscation is NP-easy.
While this does not immediately lead to a practical deob-
fuscation algorithm, it shows that deobfuscation is much
easier than most other exact program analyses, such as
the related problem of program optimization.

1 Introduction

There are two important problems in the security of mo-
bile programs: protecting the host computer from the
program, and protecting the program from the host com-
puter. For the first problem, many successful techniques
apply from virtual-memory protection to type-checking
and even proof-carrying code. But the second problem
seems harder: computing a result “in full sight” of the
host computer while keeping the algorithms or interme-
diate results secret.

Protection of programs from hosts has many applica-
tions; a typical application is in “digital rights manage-
ment,” where it is desired (for example) to permit the de-
cryption of a document for display on the screen but not
for copying or printing. The display program must some-
how hide the decryption key from the prying eyes of the
host computer and operating system.

Every part of a typical personal computer is accessi-
ble to the person who has physical possession of it. This
means the user can read the disk drive, can insert emula-
tion layers to debug or analyze the execution of the pro-
gram, and so on. Under such circumstances, protection is
difficult indeed.

Some work in this area assumes the use of a secure
processor (or coprocessor) that can do computations that
are not physically accessible to the user [3, 2]. Such ap-
proaches can be made as strong as public-key encryption,
and appear to have significant promise.

However, much of the work in program-protection is
meant to be applicable on conventional, general-purpose
PCs, and does not rely on special hardware. The algo-
rithms used are generally called “code obfuscation;” they
rearrange the protected program to make their control-
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and data-flow more difficult to understand. Collberg [1]
presented one of the first results in systematic code ob-
fuscation, and from his solution one can observe some
important principles of code obfuscation:

• We assume that the obfuscation algorithm takes in
a source program and a secret key, and produces an
obfuscated program whose input/output behavior is
identical to the source program. That is,P= F(K,S)
whereF is the algorithm,K is the key, andS is the
source program.

• We assume that the obfuscation algorithm itself is
not secret. This assumption is analogous to the as-
sumption made in modern cryptography, where en-
cryption/decryption algorithms are assumed to be
published, but the keys are kept secret; encryption
must be secure even if the adversary knows the algo-
rithm. This assumption is made because secrets in-
evitably leak. If a randomly chosen key leaks, then
one can simply (and cheaply) generate a new key,
but if an algorithm leaks, it’s not easy to find a new
algorithm. Also, it is assumed that many people will
be using the algorithm (making it hard to keep se-
cret) but few people will use any given key.

• The obfuscation algorithm should produce an ob-
fuscated programP that is not too much bigger or
smaller than the source programS. In this paper I
will make the (generous) assumption that the size of
the obfuscated program is at most polynomial in the
size of the source, and vice versa. In real life, a con-
stant factor is usually demanded.

• The length of the keyK is polynomial in the length
of S.

• The obfuscation algorithmF runs in polynomial
time.

Collberg’s algorithm works by intertwining some ex-
tra data-structure creation and manipulation instructions
with the instructions of the source program. The data
structure is a directed graph, and this graph is designed
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to have some NP-complete property. Periodically (in-
tertwined with program code), the graph is queried, and
based on the query result the control flow of the original
program is modified. The obfuscator knows which way
the queries will come out; but because of the embedding
of the NP-complete problem, it is difficult to tell from the
examination of the obfuscated program which way the
queries will come out. However, even though there is an
NP-complete problem embedded, it is not entirely clear
whether deobfuscation is really NP-hard.

2 Difficulty of program analyses

The deobfuscation problem is to simplify an obfuscated
program, removing useless control- and data-flow. This is
an example of a program analysis or program optimiza-
tion. That is, ordinary optimizing compilers are inter-
ested in the same thing: to improve a program by remov-
ing useless work. Most of the analyses that optimizing
compilers really want to do are Turing-complete. For ex-
ample,

• Dead-code elimination wants to know, “does
control-flow ever reach this point in the program?”

• Register allocation wants to know, “starting from
this point in the program, can the value of variablex
affect the eventual result computed?”

• Load/store scheduling wants to know, “are these
pointersaliased, i.e. can they contain the same
value?”

All of these problems reduce the halting problem, so they
are all undecidable. Real compilers avoid the Turing
tarpit by solving conservative approximations to these
questions. However, these conservative approximations
can never becomplete– they never guarantee to find a
nontrivial answer – and compilers cope with this by sim-
ply leaving the program (partially) unoptimized in such
cases.

We are interested in a complete deobfuscator, one
which positively finds a source program. At first glance,
the deobfuscation problem – “is there a smaller program
that does the same thing as this one” – appears to be un-
decidable. If we had a general deobfuscatorD, we could
take any instanceP of the halting problem and feed it to
the deobfuscator. IfD(P) is smaller thanP, then compute
D(D(P)). If (and only if) P does not halt, then this pro-
cedure must converge on a one-instruction infinite loop.

3 The nondeterministic algorithm

However, the deobfuscator has access not only to the ob-
fuscated programP, but to the obfuscation algorithmF ;
it lacks only the keyK.

Now, the deobfuscation algorithmD(F,P) can be im-
plemented in nondeterministic polynomial time:

Guess a source programS
Guess a keyK
ComputeP′ = F(K,S)
Verify thatP′ = P.

Based on the assumptions, each step takes at most poly-
nomial time in the size ofP (or in the size ofS). Actually,
this holds even if one of the assumptions is relaxed: the
obfuscation algorithmF could even be permitted to take
nondeterministic polynomial time instead of determinis-
tic polynomial time.

4 Impact of the result

Of course, the fact that deobfuscation is NP-easy does not
immediately and constructively lead to useful deobfusca-
tion programs. An NP upper bound is rather weak. But
the result is still worrisome for obfuscation: in contrast to
so many program analyses that are undecidable, to find
that this one is not only decidable but in a complexity
class almost within practical reach reduces the margin of
security.

In practice, it is my suspicion that program obfusca-
tion will not provide strong security in practice because
the resources and techniques available to attackers are
so numerous and powerful: debuggers, simulators, test-
coverage tools, decompilers. Then, once the attacker has
information about the algorithmF, it should be possible
to make specialized execution-analysis tools tuned toF.
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