
Construction of a Semantic Model
for a Typed Assembly Language?

Gang Tan, Andrew W. Appel, Kedar N. Swadi, and Dinghao Wu

Department of Computer Science
Princeton University

{gtan,appel,kswadi,dinghao}@cs.princeton.edu

Abstract. Typed Assembly Languages (TALs) can be used to validate the safety
of assembly-language programs. However, typing rules are usually trusted as ax-
ioms. In this paper, we show how to build semantic models for typing judgments
in TALs based on an induction technique, so that both the type-safety theorem
and the typing rules can be proved as lemmas in a simple logic.We demonstrate
this technique by giving a complete model to a sample TAL. This model allows
a typing derivation to be interpreted as a machine-checkable safety proof at the
machine level.

1 Overview

Safety properties of machine code are of growing concern in both industryand academia.
If machine code is compiled from a safe source language, compiler verificationcan en-
sure the safety of the machine code. However, it is generally prohibitive to do verifica-
tion on an industrial-strength compiler due to its size and complexity.

In this paper, we do validation directly on machine code. Necula introduced Proof-
Carrying Code (PCC) [1], where a low-level code producer supplies a safety proof
along with the code to the consumer. He used types to specify loop invariants and lim-
ited the scope of the proof to type safety. Typed Assembly Language (TAL) [2] by
Morrisett et al. refined PCC by proposing a full-fledged low-level type system and a
type-preserving compiler that can automatically generate type annotations as well as
the low-level code. Once an assembly-language program with type annotations is type
checked, the code consumer is assured of type safety.

Take a typing rule from the Cornell TAL [2],

Ψ;∆;Γ ` r : ∀[].Γ′ ∆ ` Γ ≤ Γ′

Ψ;∆;Γ ` jmp r

which means that a “jump to registerr” instruction type-checks if the value inr is a
code pointer with preconditionΓ′, and the current type environmentΓ is a subtype of
Γ′. This rule is intuitively “correct” based on the semantics of the jump instruction. (In
this paper we won’t be concerned withΨ,∆, etc. of the Cornell TAL; we show this rule
just to illustrate the complexity of that system’s trusted axioms.)

? To appear in5th International Conference on Verification, Model Checking, and Abstract In-
terpretation (VMCAI ’04),January 2004. This research was, supported in part by DARPA
award F30602-99-1-0519 and by NSF grant CCR-0208601.

In the Cornell TAL system and its variant [3] , such typing rules are acceptedas
axioms. They are a part of the Trusted Computing Base (TCB). However, low-level
type systems tend to be complex because of intricate machine semantics. Anymisun-
derstanding of the semantics could lead to errors in the type system. League et al. [4]
found an unsound proof rule in the SpecialJ [5] type system. In the process of refining
our own TAL [6], we routinely find and fix bugs that can lead to unsoundness.

In systems that link trusted to untrusted machine code, errors in the TCB can be
exploited by malicious code. A more foundational approach is to move theentire type
system out of the TCB by proving the typing rules as lemmas, instead oftrusting them
as axioms; also by verifying the type-safety theorem: type checking of codeimplies the
safety policy, or the slogan—well-typed programs do not go wrong.

1.1 A foundational approach

In the type-theory community, there is a long tradition of giving denotational semantics
[7] to types and proving typing rules as lemmas. Appel and Felty [8] applied this idea
to PCC and gave a semantic model to types and machine instructions in higher-order
logic. In the following years, semantic models of types have been extended to include
recursive types [9] and mutable references [10]. With these models, it is possible to
reason locally about types and operations on values, but unfortunately no model has
been provided to typing judgments such asΨ;∆;Γ ` jmp r and no method is provided
to construct the safety proof for an entire program.

The main contribution of this paper is to use a good set of abstractionsto give mod-
els to judgments so that both typing rules and the type-safety theorem can be mechan-
ically verified in a theorem-proving system. Our approach is truly foundational in that
only axioms in higher-order logic and the operational semantics of instructions need to
be trusted; it has a minimal trusted base. Our approach can be viewed as a way tomap
a typing derivation to a machine-checkable safety proof at the machine level,because
each application of a typing rule in the typing derivation can be seen as the use of a
(proved) lemma.

1.2 Model of TALs

In this section, we give an informal overview of our model of a typed assembly lan-
guage, particularly an induction technique to prove program safety. We will not refer to
any specific TAL in this section.

A TAL program consists of two parts: code and type annotations. As an example,
the following code snippet has a number of basic blocks; each one is givena label (like
l0) and is composed of a sequence of instructions. Each basic block has an associated
type annotation (likeφ0) that is the basic block’s precondition.

φ0 l0 : add 1,1,2
jmp l3

φ1 l1 : ld 2,3
. . .

φm lm : . . .

2

Type annotations are generated by a type-preserving compiler from source lan-
guage types. They serve as a specification (types as specifications). For instance, ifφ0 is
{r1 : int}∩{r2 : box(int)}, it expresses that register one is of type integer and register
two is a pointer to an integer.

Since we need to show the type-safety theorem, the first ingredient is to define what
the safety of code means. Following the standard practice in type theory,we define code
is safe if it will not get stuck before it naturally stops. Note the trick here is to define
the machine’s operational semantics in such a way that the machine will get stuck if
it violates the safety policy (see Section 2). To simplify the presentation, we treat only
nonterminating programs that do not stop naturally.1

We first informally explore how to prove a TAL program is safe. We define “a label
l in a state is safe fork steps” to mean that when the control of the state is atl , the state
can run fork steps. The goal then is to prove that if entry conditionφ0 holds, labell0 is
safe fork steps for any natural numberk. A natural thought is to show it by induction
overk. The base case (k = 0) is trivial; the inductive case is to show labell0 is safe for
k+1 steps given that it is safe fork steps. But at this moment we have no idea in which
state the code will be afterk steps, so we cannot prove that the state can go ahead one
more step.

The solution is to do induction simultaneously over all labels, i.e. prove each label
l i is safe fork+1 steps with respect to its preconditionφi , assuming all labelsl j are safe
for k steps with respect toφ j . Let us take labell0 in the example to see why this new
induction works. Basic blockl0 has length two, and ends with a jump to labell3, which
has been assumed to be safe fork steps, provided that preconditionφ3 is met. Suppose
by inspecting the two instructions in blockl0, we have concluded thatl0 is safe for two
steps and after two stepsφ3 will be true. Combined with the assumedk-step safety of
label l3, labell0 is safe fork+2 steps, which implies that it is safe fork+1 steps.

In this proof method, we still need to inspect each instruction in every block. For
example, in blockl0, we check if the preconditionφ0 is enough to certify the safety of
its two instructions and ifφ3 will be met after their execution. What we have described
essentially is a proof method to combine small proofs about instructions into a proof
about the safety of the whole program. In the rest of this section, we informally give
models to typing judgments based on this technique. Before that, we first motivate what
kind of typing judgments a TAL would usually have.

To type check a TAL program, the type system must have a wellformednessjudg-
ment for programs. Since a TAL program is composed of basic blocks, thewellformed-
ness judgment for programs requires another judgment, a wellformednessjudgment for
basic blocks. Similarly, the type system should also have a wellformedness judgment
for instructions.

The model of the wellformedness judgment for programs can be that all labels are
safe with respect to their preconditions. In the following sections, we will develop
abstractions so that this model can be written down in a succinct subtyping formula:
∆(C) ⊂ Γ. The model of wellformedness of a basic block can be that this particular ba-

1 Every program can be transformed into this form by giving it acontinuation at the beginning
and letting the last instruction be a jump to this continuation. The continuation could return to
the operating system, for example.

3

sic block is safe fork+1 steps assuming all the other basic blocks are safe fork steps.
Based on the induction technique and this model, we can prove the typingrule that con-
cludes the wellformedness of a program from the wellformedness of basicblocks. The
model of wellformedness of instructions is similar to the one of basic blocks and we do
not go into details at this stage.

In Section 2, we present the model of a RISC architecture (Sparc) and formally
define the safety of code based on a particular safety policy (memory safety);Section 3
shows the syntax of a sample TAL; Section 4 shows an indexed model of types and its
intuition. The material in these three sections has been described by other papers [11, 6,
9] as part of the foundational PCC project; we briefly sketch them to set up aframework
within which our proof method can be formally presented in section 5.

2 Safety specification

Our machine model consists of a set of formulas in higher-order logic that specify the
decoding and operational semantics of instructions. Our safety policy specifies which
addresses may be loaded and stored by the program (memory safety) and defines what
the safety of code means. Our machine model and safety policy are trusted and are small
enough to be “verifiable by inspection”.

A machine state(r,m) consists of a register bankr and a memorym, which are
modeled as functions from numbers to contents (also numbers). A machine instruction
is modeled by a relation between machine states(r,m) and(r ′,m′) [11]. For example, a
load instruction (ld) is specified by2

ld s,d ≡ λr,m, r ′,m′. r ′(d) = m(r(s)) ∧
(

∀x 6= d. r ′(x) = r(x)
)

∧ m′ = m ∧ readable(r(s))

The machine operational semantics is modeled by a step relation7→ that steps from
one state(r,m) to another state(r ′,m′) [11], where the state(r ′,m′) is the result of first
decoding the current machine instruction, incrementing the program counter and then
executing the machine instruction.

The important property of our step relation is that it is deliberately partial: it omits
any step that would be illegal under the safety policy. For example, suppose in some
state(r,m) the program counter points to ald instruction that would, if executed, load
from an address that is unreadable according to the safety policy. Then, since ourld
instruction requires that the address must be readable, there will not exist (r ′,m′) such
that(r,m) 7→ (r ′,m′).

The mixing of machine semantics and safety policy is to follow the standard practice
in type theory so that we can get a clean and uniform definition of code safety.For
instance, we can define that a state is safe if it cannot lead to a stuck state.

safe(r,m) ≡ ∀r ′,m′. (r,m) 7→∗ (r ′,m′) ⇒ ∃r ′′,m′′. (r ′,m′) 7→ (r ′′,m′′)

where7→∗ denotes zero or more steps.

2 Our step relation first incrementspc, then executes an instruction. Thus, the semantics ofld
does not include the semantics of incrementing thepc.

4

To show safe(r,m), it suffices to prove that the state is “safe forn steps,” for any
natural numbern.

safen(n, r,m) ≡ ∀r ′,m′. ∀ j < n. (r,m) 7→ j (r ′,m′) ⇒ ∃r ′′,m′′. (r ′,m′) 7→ (r ′′,m′′)

where7→ j denotesj steps being taken.
An assembly-language programC is a list of assembly instructions. For example,

C = add r1,r1,r2; jmp l3; ld [r2],r3; . . .

We use predicate progloaded(m,C) to mean that codeC is loaded in memorym:

prog loaded(m,C) ≡ ∀ 0 ≤ k < |C|. decode(m(4k),Ck)

where|C| is the length of the list; predicate decode(x,Ck) means that wordx is decoded
into instructionCk (thek-th instruction inC). In this paper, we assume codeC is always
loaded at start address 0 and thus thek-th instruction will be at address 4k in the memory
(Sparc instructions are four bytes long).

We define that an assembly programC is safe if any initial state(r,m) satisfying the
following is a safe state: codeC is loaded insidem; the program counter initially points
to address 0; when the program begins executing, entry conditionφ0

3 holds on the state
(r,m).

safecode(C) ≡ ∀r,m.
(

prog loaded(m,C) ∧ r(pc) = 0 ∧ (r,m) : φ0

)

⇒ safe(r,m)

3 Typed Assembly Language

In this section, we introduce a typed assembly language. We will show here a small
subset of our actual implementation. Our full language has hundreds of operators and
rules, as necessary for production-scale safety checking of real software (so it’s a good
thing that our full soundness proof is machine-checkable).

3.1 Syntax

Figure 1 shows our TAL syntax. A TAL program consists of assembly programC and
type annotationΓ. Assembly programC is a sequence of assembly instructions, which
include addition (add), load (ld) and branch always (ba).4 Type annotationΓ takes
the form of a label environment, which summarizes the preconditions of all the labels
of the program. Our TAL has 32 registers, and labels are divisible by 4.

3 In our implementation, the initial conditionφ0 is simple enough to be described directly in our
underlying logic so that semantic model of types is not a partof the specification of the safety
theorem; it is contained entirely within theproof of the theorem.

4 Since our sample TAL cannot deal with delay slots, theba instruction is really aba followed
by anop in Sparc.

5

(program) C ::= i | i;C
(instruction) i ::= add r, r, r | ld r, r | ba l

(label env) Γ ::= {l : codeptr (φ)}∩ . . .

(register num) r ::= 0 | 1 | . . . | 31
(label) l ::= 0 | 4 | 8 | . . .

Fig. 1. Syntax: Typed assembly language syntax

(types) τ ::= int | int=(n)
| box(τ) | codeptr(φ)

(type env) φ ::= >φ | ⊥φ | {n : τ}
| φ1 ∩φ2 | φ[n 7→ τ]

(nat) n ::= 0 | 1 | 2 | . . .

Fig. 2. Syntax: Types

Figure 2 lists the type and type environment constructors. They include integer type
int and immutable reference typebox(τ). The language also has singleton typeint=(n)
containing only valuen. An addressl has typecodeptr(φ) if it is safe to pass the control
to addressl provided that preconditionφ is met.

A type environmentφ specifies types of slots in a vector, such as a register bank
or the list of program labels. Any vector satisfies environment>φ, and no vector can
satisfy⊥φ. A singleton environment{n : τ} means slotn (e.g., registern or labeln)
has typeτ. Intersection typeφ1 ∩ φ2 can be used to type several slots of a vector, e.g.
{n1 : τ1}∩{n2 : τ2} specifies that slotsn1 andn2 have typeτ1 andτ2 , respectively.

We useφ ⊂ {n : τ} to describe that{n : τ} is one of the conjuncts inφ. We write
φ(n) for the type of slotn in φ. Notationφ[n 7→ τ] updates the type of slotn to τ, by first
removing the old entry forn in φ (if one exists), then intersecting it with{n : τ}.

The type annotationΓ, or the label environment, specifies the type of each label
in terms of the code pointer type, so it is also a type environment; we use the same
operators forΓ as forφ.

3.2 Type checking

There are three kinds of judgments in our type system:

– Program judgment`p C : Γ means that assembly programC is wellformed with
respect to type annotationΓ.

– Block judgmentΓ; l `b C : Γ′ means that assembly programC, starting at address
l , is wellformed with respect toΓ′, assuming the global label-environmentΓ. Envi-
ronmentΓ provides preconditions of labels to whichC might jump; Environment
Γ′ is the collection of preconditions of labels insideC and is a part ofΓ. Superfi-
cially, it seems semantically circular to judge the wellformedness of some labels
(Γ′) by assuming the wellformedness of all labels (Γ). However, as indicated in the
overview section, the model of̀b is that from a weaker assumption aboutΓ (every
label inside is safe fork steps), we prove a stronger result aboutΓ′ (every label
inside is safe fork+1 steps).

– Instruction judgmentΓ; l `i {φ1} i {φ2} means that assembly instructioni, at ad-
dressl , is wellformed with respect to preconditionφ1 and postconditionφ2. As in
`b, Γ provides label preconditions. The purpose of having locationl in the judgment
is to be able to compute the destination address for pc-relative jump instructions.

6

Typing rules except for instructions are shown in Figure 3. To check that programC
is wellformed, thePROGrule will call Γ;0 `b C : Γ, thus recursively callBLOCK 1 and
BLOCK 2 rules to check that each basic block inC is wellformed.

RuleBLOCK 1 first looks up preconditionφ1 and postconditionφ2 in Γ for the cur-
rent block, composed of one instructioni; checks the wellformedness of instructioni
with respect toφ1 andφ2; then checks the rest of the code with respect toΓ′. With-
out loss of generality, we assume that each block has exactly one instruction. In rule
BLOCK 2, the postcondition of the last instructioni is ⊥φ, because the control is not
allowed to be beyond the last instruction (an unconditional branch satisfies this post-
condition).

Γ;0 `b C : Γ
`p C : Γ

PROG

Γ(l) = codeptr (φ1) Γ(l +4) = codeptr (φ2)
Γ; l `i {φ1} i {φ2} Γ; l +4 `b C : Γ′

Γ; l `b i;C : {l : codeptr(φ1)}∩Γ′ BLOCK 1

Γ(l) = codeptr(φ) Γ; l `i {φ} i {⊥φ}

Γ; l `b i : {l : codeptr(φ)}
BLOCK 2

Fig. 3. Syntax: Typing rules (except for instructions)

Figure 4 shows typing rules for instructions. The rule for instructionadd requires
that the source registers are of typeint beforehand and the destination register gets type
int afterward. The rule for instructionba needs to look up the type of the destination
label throughΓ and check the current preconditionφ matches the destination one (A
TAL usually has subtyping rules allowing the current precondition tobe stronger than
the destination one).

φ ⊂ {s1 : int} φ ⊂ {s2 : int}

Γ; l `i {φ}add s1,s2,d{φ[d 7→ int]}

φ ⊂ {s : box(τ)}
Γ; l `i {φ}ld s,d{φ[d 7→ τ]}

Γ(l +d) = codeptr (φ)

Γ; l `i {φ}ba d{⊥φ}

Fig. 4.Syntax: Typing rules for instructions

4 Indexed model of types

In this section, we give a brief description of theindexedmodel of types, which is intro-
duced in [9] to model general recursive types. Our induction technique in the overview
section is also inspired by the intuition behind the indexed model.

In the indexed model, a type is a set of indexed values{〈k,m,x〉}, wherek is a
natural number (“approximation” index),m is a memory, andx is an integer.

7

The indexed model of the types and type environments are listed below. For exam-
ple, typeint=(3) would contain all the〈k,m,x〉 such thatx is 3. Memorym is a part
of a value〈k,m,x〉 because to express thatx is of typebox(τ) we need to say that the
content in the memory, orm(x), is related to typeτ.

int ≡ {〈k,m,x〉 | true} int=(n) ≡ {〈k,m,x〉 |x = n}
box(τ) ≡ {〈k,m,x〉 |x ∈ dom(m) ∧ ∀ j < k. readable(x)∧ 〈 j,m,m(x)〉 ∈ τ}

codeptr(φ) ≡ {〈k,m,x〉 |∀ j, r. j < k ∧ r(pc) = x ∧ (m, r) : j φ ⇒ safen(j, r,m)}

>φ ≡ {〈k,m,~x〉 | true} ⊥φ ≡ {〈k,m,~x〉 | false}
{n : τ} ≡ {〈k,m,~x〉 | 〈k,m,xn〉 ∈ τ}
φ1 ∩φ2 ≡ {〈k,m,~x〉 | 〈k,m,~x〉 ∈ φ1 ∧ 〈k,m,~x〉 ∈ φ2}

φ[n 7→ τ] ≡ {〈k,m,~x〉 |∃y. 〈k,m,~x[n 7→ y]〉 ∈ φ ∧ 〈k,m,xn〉 ∈ τ}

We use(m,x) :k τ as a syntactic sugar for〈k,m,x〉 ∈ τ. We write(m,x) : τ to mean
(m,x) :k τ is true for anyk, or (m,x) is a real member of typeτ. Now we explain the
purpose of indexk in the model. In general, if(m,x) :k τ, value(m,x) may be a real
member of typeτ, or it may be a “fake” member that onlyk-approximately belongs
to τ. Any program taking such a “fake” member as an input cannot tell the difference
within k steps.

Let typeτ be box(box(int)). Suppose(m,x) : τ, thenx is a two-fold pointer and
m(m(x)) is of typeint. However, suppose we only know that(m,x) : box(int), then for
one step (one dereference),(m,x) safely simulates membership inbox(box(int)). In
this case, we can say(m,x) :1 box(box(int)).

One property of types is that they are closed under decreasing approximations, that
is, if (m,x) :k τ and j < k, then(m,x) : j τ.

Another example to understand the approximation indexk is the typecodeptr(φ).
A real member(m, l) of typecodeptr (φ) means that if conditionφ is met, it is safe to
jump to locationl . Then(m, l) :k codeptr(φ) would mean that it is safe to executek
steps after jumping tol . Therefore, the definition ofcodeptr(φ) says that for anyj and
r such thatj is less thank, if the control is at locationl and the current state satisfiesφ,
the state should be safe forj steps. In some sense, this definition only guarantees partial
safety: safe withink steps. To show that locationl is a safe location, we have to prove
that it belongs tocodeptr(φ) under anyk.

Sometimes we need to judge not only scalar values such as〈k,m,x〉 but also vector
values〈k,m,~x〉 (a vector is a function from numbers to values). One use is to write
(m, r) :k φ, which means that the contents of machine registers satisfyφ. In this case,
~x is the register bankr. Another use of vector types is the label environmentΓ, which
summarizes the types of all program labels. In this case,~x would be the identity vector
id (map l to l). For example,(m, id) : {l : codeptr (φ)} means that addressl itself has
typecodeptr(φ).

With the semantic model of types, all the subtyping rules and introduction/elimination
rules of types (not shown in the paper) can be proved as lemmas [8, 9]. In particular, the
codeptr elimination ruleCPTR E is useful for the proof of Theorem 2 in Section 5.3.

(m,x) :k+1 codeptr(φ) r(pc) = x (m, r) :k φ
safen(k, r,m)

CPTR E

8

5 Semantic Models of typing judgments

In this section, we develop models for typing judgments based on the induction tech-
nique in Section 1.2. From their models, each of the typing rules is proved as a derived
lemma. Finally, the type-safety theorem is also proved as a derived lemma.

5.1 Subtype induction

Our goal is to provide a proof that codeC obeys our safety policy, or a proof of
safecode(C), which means that any state containing the codeC is safe arbitrarily many
steps under conditionφ0 — exactly what the typecodeptr(φ0) denotes. Thus, our goal
is formalized as(m,0) : codeptr(φ0), for anymcontaining codeC.

As outlined in the overview section, we will prove a stronger resultinstead: all
labels are of code-pointer types under corresponding preconditions. Formally, for any
labell in the domain of label environmentΓ, we will prove(m, l) : Γ(l); another way to
state this is(m, id) : Γ.

A condition onm is that it must contain the codeC. This condition can also be
formalized as types. After all, in our model, types are predicates over states andcan be
used to specify invariants of states. Typeinstr(i) expresses that instructioni is in the
memory.

instr(i) ≡ {〈k,m,x〉 |decode(m(x), i)}

Type environment constructor∆ turns a sequence of assembly instructions into a type
environment that describes the code.

∆(i0; i1; . . .) ≡ {0 : instr (i0)}∩{4 : instr(i1)}∩ . . .

With constructor∆, judgment(m, id) : ∆(C) formally states that memorymcontains
codeC. For such a value(m, id), we want to show it also satisfiesΓ, or (m, id) : Γ. Now
if we define

∆(C) ⊂ Γ ≡ ∀k,m. (m, id) :k ∆(C) ⇒ (m, id) :k Γ

then∆(C) ⊂ Γ expresses that any state containing codeC respects invariantsΓ under
any approximationk.

We explore how to prove∆(C) ⊂ Γ. Assuming(m, id) :k ∆(C), we have to show
(m, id) :k Γ. We will prove it by induction overk. Whenk is zero, judgment(m, l) :0 Γ(l)
is trivially true sinceΓ(l) is a code pointer type, which is always true at index zero by
its definition. The inductive case is that, assuming(m, id) :k ∆(C) ⇒ (m, id) :k Γ, we
have to show that(m, id) :k+1 ∆(C) ⇒ (m, id) :k+1 Γ. Since code environment∆(C)
ignores the index,(m, id) :k+1 ∆(C) is equivalent to(m, id) :k ∆(C). Therefore, to prove
(m, id) :k+1 Γ, we have both(m, id) :k ∆(C) and(m, id) :k Γ.

Our intention is to give models to the typing judgments in our TALbased on this
proof technique. To make the models concise, we abstract away from the indexes by
defining a subtype-plus predicateΓ1 +⊂ Γ2 to simulate the inductive case.

Γ1 +⊂ Γ2 ≡ ∀k,m. (m, id) :k Γ1 ⇒ (m, id) :k+1 Γ2

9

With the subtype-plus operator, the inductive case to prove∆(C) ⊂ Γ can be written
as∆(C)∩Γ +⊂ Γ : assuming codeC is in the memory under indexk andΓ is true under
indexk, prove thatΓ is true under indexk+1. The following subtype induction theorem
formalizes what we have explained.

Theorem 1. (Subtype Induction)
∆(C)∩Γ +⊂ Γ

∆(C) ⊂ Γ

5.2 Semantic model of typing judgments

At the heart of our semantic model is a set of concise definitions for the typing judg-
ments based on the abstractions (especially+⊂) we have developed. We hereby exhibit
such definitions:

`p C : Γ ≡ ∆(C) ⊂ Γ
Γ; l `b C : Γ′ ≡ offsetl (∆(C))∩Γ +⊂ Γ′

Γ; l `i {φ1} i {φ2} ≡ {l : instr(i)}∩Γ∩{l +4 : codeptr(φ2)} +⊂ {l : codeptr(φ1)}

whereoffsetl ({0 : τ1}∩{4 : τ4}∩ . . .) = {l : τ1}∩{l +4 : τ4}∩
The model of`p C : Γ means that any state having the code inside respects invari-

antsΓ.
The judgmentΓ; l `b C : Γ′ judges the validity ofΓ′ by assumingΓ. SinceΓ′ is the

collection of preconditions of labels insideC and is a part ofΓ, the judgment itself has
a superficial semantic circularity. We solve this circularity by giving it a model based
on operator +⊂. By assumingΓ to approximationk, we proveΓ′ to approximationk+1.
Also, since codeC starts at addressl , we need to useoffsetl (∆(C)) to make a code
environment that starts at addressl .

The semantics ofΓ; l `i {φ1} i {φ2} follows the same principle as the one for the
model of`b. We assume that instructioni is at locationl andΓ holds to approximation
k, we prove locationl is a code pointer to approximationk+ 1. In the model of̀ i,
we have an extra assumption{l + 4 : codeptr(φ2)}. In our sample TAL, since every
basic block has only one instruction, every address would have a precondition in Γ.
Therefore,{l + 4 : codeptr(φ2)} is a part ofΓ and need not have been specified as a
separate conjunct. However, in the case of multi-instruction basic blocks,Γ would only
have preconditions for each basic block,φ2 in this case would be reconstructed by the
type system and not available inΓ.

5.3 Semantic proofs of typing rules

Using these models, we can prove both the type-safety theorem and the typing rules in
Fig.3.

Theorem 2. (Type Safety)
`p C : Γ Γ ⊂ {0 : codeptr(φ0)}

safecode(C)

10

Proof. From the definition of safecode(C), we have the following assumptions for state
(r,m) and want to show that safe(r,m).

i) prog loaded(C,m) ii) r(pc) = 0 iii) (m, r) : φ0

On the other hand, the model of`p C : Γ is ∆(C) ⊂ Γ. The deduction steps from∆(C) ⊂
Γ to safe(r,m) are summarized by the following proof tree.

prog loaded(C,m)

(m, id) : ∆(C)
(7)

∆(C) ⊂ Γ Γ ⊂ {0 : codeptr(φ0)}

(m, id) : {0 : codeptr(φ0)}
(6)

(m,0) : codeptr(φ0)
(5)

∀k. (m,0) :k codeptr(φ0)
(4)

∀k. (m,0) :k+1 codeptr(φ0)
(3a)

(m, r) : φ0

∀k. (m, r) :k φ0
(3b)

r(pc) = 0

∀k. safen(k, r,m)
(2)

safe(r,m)
(1)

Step (1) says to prove(r,m) is safe, it suffices to prove that(r,m) is safe for an arbi-
traryk steps. Step (2) is justified by ruleCPTR E in Section 4. Step (3a) is by universal
instantiation. Step (4) is just the unfolding of the syntactic sugar of(m,0) : codeptr (φ0).
Step (5) is by the definition of the singleton environment. Step (6) is by the transitivity
of subtyping. Step (7) can be easily proved by unfolding definitions.

�

Theorem 3.
Γ;0 `b C : Γ

`p C : Γ
PROG

Proof. From the models of̀ p and`b, we have to prove∆(C) ⊂ Γ from ∆(C)∩Γ +⊂ Γ
— exactly the subtype induction theorem (Theorem 1).

�

Theorem 4.
Γ(l) = codeptr(φ1) Γ(l +4) = codeptr(φ2)

Γ; l `i {φ1} i {φ2} Γ; l +4 `b C : Γ′

Γ; l `b i;C : {l : codeptr(φ1)}∩Γ′ BLOCK 1

Proof. The models ofΓ; l `i {φ1} i {φ2}
5 andΓ; l +4 `b C : Γ′ gives us that

{l : instr(i)}∩Γ +⊂ {l : codeptr(φ1)} offsetl+4(∆(C))∩Γ +⊂ Γ′

The goaloffsetl (∆(i;C))∩Γ +⊂ {l : codeptr(φ1)}∩Γ′ is proved by the following lem-
mas:

Γ +⊂ Γ1 Γ +⊂ Γ2

Γ +⊂ Γ1 ∩Γ2 offsetl (∆(i;C)) = {l : instr(i)}∩offsetl+4(∆(C))
�

The proof of ruleBLOCK 2 is similar.

5 The model of̀ i has another clause{l + 4 : codeptr (φ2)} on the left of +⊂. However, since
Γ(l +4) = codeptr (φ2), we can prove thatΓ∩{l +4 : codeptr (φ2)} = Γ.

11

5.4 Semantic Proofs of Machine Instructions

What remains is the proofs of typing rules for instructions (Fig.4). We will show the
technique by informally proving theLOAD rule.

φ ⊂ {s : box(τ)}
Γ; l `i {φ}ld s,d{φ[d 7→ τ]}

LOAD

The precondition states that registers is a pointer to typeτ; the postcondition is that
registerd gets typeτ and types of other registers remain the same. This typing rule is
intuitively “correct” since operationallyld s,d loads the content at addressr(s) in the
memory into registerd.

The semantic model of̀i tells us what the “correctness” of the ruleLOAD means:

{l : instr(ld s,d)}∩Γ∩{l +4 : codeptr(φ′)} +⊂ {l : codeptr(φ)}

whereφ′ = φ[d 7→ τ]. That is, forallk andm, we should prove(m, l) :k+1 codeptr(φ), or
locationl is safe withink+ 1 steps. We can assume (1) there is an instructionld s,d
at addressl in m; (2) all the labels inΓ are code pointers to approximationk; (3) label
l +4 is of typecodeptr(φ′) to approximationk.

By the definition of(m, l) :k+1 codeptr(φ), we start at(r,m) with conditionφ met
and control atl . By the semantics ofld s,d, if the location (locationr(s)) to read
is readable, we can find a succeeding state(r ′,m′) such that(r,m) 7→ (r ′,m′). Not by
coincidence, ruleLOAD has a premise thatφ ⊂ {s : box(τ)}; together with thatφ is met
on state(r,m), readable(r(s)) can be shown.

Therefore, there is a state(r ′,m′) that(r,m) can step to because of the execution of
the instructionld s,d. By the semantics ofld, conditionφ′ can be proved to hold on
state(r ′,m′) and the control of(r ′,m′) is at labell + 4. Because labell + 4 is of type
codeptr(φ′) to approximationk, state(r ′,m′) is safe withink steps. Taking the step by
ld into account, the first state(r,m) is safe withink+1 steps.

Proofs for other typing rules of instructions follow the same scheme. In the case of
control-transfer instructions likeba, the assumption (2) aboutΓ guarantees that it is
safe to jump to the destination address.

6 Implementation

Our work is a part of the Foundational Proof-Carrying Code project [12], which in-
cludes a compiler from ML to Sparc, a typed assembly language called LTAL [6],and
semantic proofs of typing rules. We have successfully given models totyping judgments
in LTAL based on proof techniques in this paper, with a proved type-safetytheorem and
nearly complete semantic proofs of the typing rules.

All the proofs are written and machine-checked in a theorem-proving system—
Twelf [13]: 1949 lines of axioms of the logic, arithmetic, and the specification of the
SPARC machine; 23562 lines of lemmas of logic and arithmetic, theories of mathe-
matical foundations such as sets and lists; 72036 lines of lemmas about conventions of
machine states and semantic model of types; 18895 lines of lemmas about machines

12

instructions and the LTAL calculus. Most of the incomplete semantic proofs are about
machines instruction semantics.

To focus the presentation on the essential ideas, we have not shown many features
of our actual implementation. In this paper we have used immutable referencetypes
to describe data structures in the memory and proved that programs can safelyaccess
these data structures. Our implementation can also deal with mutable references[10] so
that programs can safely update data structures in the memory. Allocation of new data
structures in the memory have also been taken into account by following the allocation
model of SML/NJ. However, we do not currently support either explicit deallocation
(free) or garbage collection. LTAL is also more expressive, including type variables,
quantified types and condition-code types. It can also type-check position-independent
code and multi-instruction basic blocks. Our semantic model supports all these features.

7 Related Work

There has been some work in the program-verification community to use a semantic
approach to prove Hoare-logic rules as lemmas in an underlying logic [7, 14, 15]. Such
proofs have been mechanized in HOL [14]. These works use first-order or higher-order
logic to specify the invariants and have the difficulty that loop invariants cannot be
derived automatically, so the approach does not scale to large programs.

Hamidet al. [16] and Crary [17] use a syntactic approach to prove type soundness.
The first stage of their approach develops a typed assembly language, which is also
given an operational semantics on an abstract machine. Then syntactic type-soundness
theorems are proved on this abstract machine following the scheme presentedby Wright
and Felleisen [18]. The second stage uses a simulation relation between the abstract ma-
chine and the concrete architecture. The syntactic approach does not need the building
of denotational semantics for complicated types such as recursive types, and itcan also
have machine-checkable proofs. However, the simulation step between the abstract ma-
chine and a full-fledged architecture is not a trivial task.

In some sense, the problem we solve in this paper is to give models to unstructured
programs with goto statements and labels. There has been work by de Bruin [19] to give
goto statements a domain-theoretic model. His approach to prove that coderespects
invariants is by approximations over code behavior, i.e. anyk-th approximations of
code behavior respects invariants. In our approach, we use types as invariants and do
approximations over types, i.e. code respects anyk-th approximations of types.

In conclusion, we have shown how to build end-to-end foundational safety proofs
of programs on a real machine. We have constructed a semantic model for typing judg-
ments of a typed assembly language and given proofs for both the type-safety theo-
rem and typing rules. Our approach allows a typing derivation to be interpreted as a
machine-checkable safety proof at the machine level.

References

1. Necula, G.: Proof-carrying code. In: 24th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, New York, ACM Press (1997) 106–119

13

2. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly language.
ACM Trans. on Programming Languages and Systems21 (1999) 527–568

3. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker, D., Weirich,
S., Zdancewic, S.: TALx86: A realistic typed assembly language. In: Second ACM SIG-
PLAN Workshop on Compiler Support for System Software, Atlanta, GA (1999) 25–35
INRIA Technical Report 0288, March 1999.

4. League, C., Shao, Z., Trifonov, V.: Precision in practice: A type-preserving Java compiler.
In: Proc. Int’l. Conf. on Compiler Construction. (2003)

5. Colby, C., Lee, P., Necula, G.C., Blau, F., Cline, K., Plesko, M.: A certifying compiler for
Java. In: Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’00), New York, ACM Press (2000)

6. Chen, J., Wu, D., Appel, A.W., Fang, H.: A provably sound TAL for back-end optimiza-
tion. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’03). (2003) 208–219

7. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. Allyn
and Bacon, Boston (1986)

8. Appel, A.W., Felty, A.P.: A semantic model of types and machine instructions for proof-
carrying code. In: POPL ’00: The 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM Press (2000) 243–253

9. Appel, A.W., McAllester, D.: An indexed model of recursive types for foundational proof-
carrying code. ACM Trans. on Programming Languages and Systems23 (2001) 657–683

10. Ahmed, A., Appel, A.W., Virga, R.: A stratified semanticsof general references embeddable
in higher-order logic. In: 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002). (2002) 75–86

11. Michael, N.G., Appel, A.W.: Machine instruction syntaxand semantics in higher-order logic.
In: 17th International Conference on Automated Deduction,Berlin, Springer-Verlag (2000)
7–24 LNAI 1831.

12. Appel, A.W.: Foundational proof-carrying code. In: Symposium on Logic in Computer
Science (LICS ’01), IEEE (2001) 247–258

13. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical framework for
deductive systems. In: The 16th International Conference on Automated Deduction, Berlin,
Springer-Verlag (1999)

14. Gordon, M.: Mechanizing programming logics in higher-order logic. In G.M. Birtwistle,
P.A. Subrahmanyam, eds.: Current Trends in Hardware Verification and Automatic Theorem
Proving, Banff, Canada, Springer-Verlag, Berlin (1988) 387–439

15. Wahab, M.: Verification and abstraction of flow-graph programs with pointers and com-
puted jumps. Research Report CS-RR-354, Department of Computer Science, University of
Warwick, Coventry, UK (1998)

16. Hamid, N., Shao, Z., Trifonov, V., Monnier, S., Ni, Z.: A syntactic approach to foundational
proof-carrying code. In: Proc. 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02). (2002) 89–100

17. Crary, K.: Toward a foundational typed assembly language. In: The 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press (2003) 198–212

18. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation115(1994) 38–94

19. de Bruin, A.: Goto statements: Semantics and deduction systems. Acta Informatica15
(1981) 385–424

14

