
Oracle Semantics for Concurrent Separation Logic

(Extended Version)

Aquinas Hobor1⋆ Andrew W. Appel1⋆ Francesco Zappa Nardelli2 ⋆⋆

1 Princeton University 2 INRIA

Abstract. We define (with machine-checked proofs in Coq) a modular
operational semantics for Concurrent C minor—a language with shared
memory, spawnable threads, and first-class locks. By modular we mean
that one can reason about sequential control and data-flow knowing al-
most nothing about concurrency, and one can reason about concurrency
knowing almost nothing about sequential control and data-flow con-
structs. We present a Concurrent Separation Logic with first-class locks
and threads, and prove its soundness with respect to the operational se-
mantics. Using our modularity principle, we proved the sequential C.S.L.
rules (those inherited from sequential Separation Logic) simply by adapt-
ing Appel & Blazy’s machine-checked soundness proofs. Our Concurrent
C minor operational semantics is designed to connect to Leroy’s optimiz-
ing (sequential) C minor compiler; we propose our modular semantics as
a way to adapt Leroy’s compiler-correctness proofs to the concurrent set-
ting. Thus we will obtain end-to-end proofs: the properties you prove in
Concurrent Separation Logic will be true of the program that actually
executes on the machine.

1 Introduction

In recent years there has been substantial progress in building machine-checked
correctness proofs: for a compiler front-end [8], for a nonoptimizing subset-Pascal
compiler [9], and for a multistage optimizing compiler from C to assembly lan-
guage [10]. These efforts, though they are remarkable and inspiring, do not ad-
dress the problem of concurrency. Reasoning about concurrent programs, and
compiling concurrent shared-memory programs with an optimizing compiler, can
be very difficult. The model of computation that programmers might expect does
not correspond to what is provided by the machine.

Can we adapt the sequential-language compilers and correctness proofs to
the concurrent case by adding threads and locks to their source languages? Not
easily. As Boehm explains, “Threads cannot be implemented as a library.” [3]
An optimizing compiler must be aware of the concurrency model or it might

⋆ Supported in part by NSF Grants 0540914 and 0627650.
⋆⋆ Supported in part by ANR (project ParSec ANR-06-SETI-010-02).

January 4, 2008. To appear in European Symposium on Programming (ESOP),
April 2008.

2 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

inadvertantly break the locking discipline by, for example, changing the order
of loads and stores to shared data. Boehm “point[s] out the important issues,
and argue[s] that they lie almost exclusively with the compiler and the language
specification itself, not with the thread library or its specification.” But Boehm
does not present a formal semantics: he just explains what can go wrong without
one. In this paper we provide the formal semantics that Boehm called for. And we
do it in such a way that sequential compilers and proofs preserve their sequential
flavor: we will add threads as a kind of semantic library.

Contributions. First we show that “C + threads” can be specified modularly,
by presenting an operational semantics of Extensible C minor. This language is
sufficient for compiling C, ML, Java, and other high-level languages. Appel and
Blazy [1] have demonstrated a (sequential) Separation Logic, with a machine-
checked soundness proof in Coq w.r.t. the small-step operational semantics of
any possible extension of Extensible C minor.

Second, we present a powerful and expressive Concurrent Separation Logic
(CSL) that goes beyond O’Hearn’s [11] by permitting dynamic lock and thread
creation and by permitting ordinary assertions to describe lock invariants, which
are in turn ordinary assertions. Our CSL is very similar to one that Gotsman
et al. [5] independently developed, demonstrating that it must be the natural
generalization of O’Hearn’s CSL to first-class threads and locks.3

Third, we construct the operational semantics of Concurrent C minor, formed
by extending Extensible C minor with threads and locks. A novel component of
this semantics is a modal substructural logic for reasoning about separation in
space and evolution in time. Our operational semantics is for well-synchronized
programs without data races: any access to a memory location must be per-
formed while holding a lock that gives ownership of that location: at least shared
ownership for a read and full ownership for a write. Access without ownership
causes the operational semantics to get stuck, meaning that the program has
no semantics. One can use CSL (using a proof assistant, or via automatic flow
analysis [6]) to prove that source programs are well synchronized.

Fourth, from the concurrent operational semantics we will construct a pseu-
dosequential oracle semantics for Concurrent C minor. When a sequential thread
peforms a concurrent operation such as lock or unlock, the oracle calculates the
effect of running all the other threads before resuming back into this thread. We
show the correctness of the oracle semantics w.r.t. the concurrent semantics.

The oracle semantics is ideal for reasoning about individual threads—for
compilation and flow analysis, and for reusing proofs about the sequential lan-
guage. Footprint annotations prevent unsound optimizations across lock/unlock
operations but are minimally restrictive across sequential operations. The oracle

3 Our semantic model for CSL is more powerful than Gotsman’s in several ways:
our model permits assertions to be embedded directly into source code, permits
function pointers, recursive assertions, and impredicative quantification; and (unlike
Gotsman’s) ours connects directly to a small-step sequential operational semantics
for a verified-compilable intermediate representation, C minor.

Oracle Semantics for Concurrent Separation Logic 3

is silent when any of the core sequential control- and data-flow operations are
executed, and the operational semantics is deterministic. Therefore, adapting ex-
isting machine-checked correctness proofs of the C minor compiler to Oracular
C minor should be straightforward.

Fifth, we present a shallow embedding of CSL in the Calculus of Inductive
Constructions (Coq). A shallow embedding, because it has no induction over CSL
syntax, permits new CSL operators to be constructed as needed in a modular
way. Our shallow embedding is independent of C-minor statement syntax, thus
permitting the insertion of semantic CSL preconditions as annotations in C
minor programs.

Finally, we demonstrate that CSL is sound with respect to our oracle se-
mantics, and the oracle semantics is sound w.r.t. the concurrent operational
semantics. Thus, properties proved of concurrent C programs will actually hold
in machine-language execution.

2 Extensible C minor

Appel and Blazy [1] describe some changes to Leroy’s original C minor [10] that
make it more suitable for Hoare-Logic reasoning. Expressions can read from the
heap but have no side effects. Expression evaluation Ψ ; σ ⊢ e ⇓ v is with respect
to a program Ψ and a sequential state σ = (ρ; w; m), where ρ is the local-
variable environment of the current function activation; and m is the global
shared memory. The world w specifies the permissions that this thread has to
access memory addresses in m. Worlds enable separation-logic-like reasoning:
our semantics gets stuck on loads/stores outside the world. In this presentation
we elide many details of C minor; interested readers may consult appendix A.

The sequential small-step relation Ψ ⊢ (Ω, σ, κ) 7−→ (Ω′, σ′, κ′) operates on
continuations (Ω, σ, κ) where Ω is an oracle, σ is a sequential state, and κ is a
control stack:

κ : control ::= Kstop | s · κ | . . .

Kstop is the empty control stack, s · κ means “execute the statement s, then
continue with κ.” C minor has other control operators for function return and
nonlocal exit from loops. However, the concurrent semantics is parametric over
any syntax of control with at least Kstop and ·.

Our C minor has a fixed set of control-flow constructs (e.g., if, loop, function
call) and straight-line commands (e.g., assign, store, skip). To build an extension,
one instantiates syntax of additional straight-line commands (e.g. lock, unlock).
Then one provides a model of oracles to help interpret the additional commands.
The oracle contains the state of all the other threads (and the schedule) and
calculates what they do when control is yielded. Since our programs are (proved)
race-free, preemptive schedules will yield equivalent results. For purely sequential
C minor, oracles can be unit.

4 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

3 Concurrent C minor

We extend C minor with five more statements to make Concurrent C minor :

s : stmt ::= . . . | lock e | unlock e | fork e (~e) | make lock e R | free lock e

The lock (e) statement evaluates e to an address v, then waits until it acquires
lock v. The unlock (e) statement releases a lock. A lock at location v is locked
when the memory contains a 0 at v.

Each lock comes with a resource invariant R which is a predicate on world
and memory. The invariants serve as a kind of “induction hypothesis” for a
correctness or safety proof in CSL, and in particular they tell our operational
semantics what addresses are owned by each thread and by each lock, and what
addresses are transferred when locking or unlocking. This is standard in CSL [11];
but we go farther and use the invariants at a crucial point in our operational
semantics to guarantees the absence of race conditions.

As usual in CSL [11] in order that the resource invariant R will be supported
by a unique set of memory addresses in any given memory—these addresses
constitute the memory ownership that a thread gains when acquiring a lock
or loses when releasing it—the invariant R must be precise. The world (∼ set
of memory locations) controlled by a lock need not be static; it can change
over time depending on the state of memory (one could say, “this lock controls
that variable-sized linked list”). When a thread locks a lock, it joins the lock’s
world with its own; when it later unlocks the lock, it gives up the (possibily
different) world satisfying R. This protocol ensures the absence of read/write or
write/write race conditions.

The statement make lock e R takes an address e and a lock invariant R, and
declares e to be a lock with the associated invariant. The address is turned back
into an ordinary location by free lock e. Both instructions are thread-local (don’t
synchronize with other threads or any global lock-controller). It is illegal to apply
lock or unlock to nonlock addresses, or to apply ordinary load or store to locks.

The fork statement spawns a new thread, which calls function e on arguments
~e. No variables are shared between the caller and callee except through the func-
tion parameters. The parent passes the child a portion of its world, implicitly
specified by the (precise) precondition of the forked function. This portion typi-
cally contains visibility (partial ownership) of some locks—then the two threads
can communicate. A thread exits by returning from its top-level function call.

We have not added a join operator, since this can be accomplished by the
Concurrent C minor programmer by the use of a lock passed from parent to
child, unlocked by the child just before exiting.

The concurrent operational semantics checks the truth of lock invariants
when unlocking a lock, and checks the truth of function pre- and postconditions
when spawning or exiting a thread. Failure of this check causes the operational
semantics to get stuck. The language of these conditions contains the full power of
logical propositions (Coq’s Prop), so the operational semantics is nonconstruc-

Oracle Semantics for Concurrent Separation Logic 5

tive: it is given by a classical relation.4 The lock invariants and the function
pre/postconditions can be taken directly from a program proof in concurrent
separation logic.

For an example program in Concurrent C minor, see appendix B.1.

4 Concurrent separation logic

We define the usual operators of Separation Logic: emp, separating conjunction
∗, disjunction ∨, conjunction ∧, and quantifiers ∃, ∀. Bornat et al. [4] explain
the utility of fractional permissions for reasoning statically about alternating
concurrent read with exclusive write access, so singleton “maps-to” is extended
to support fractional permissions e1

π

7→ e2. A share can always be split: e1

π17→

e2 ∗ e1

π27→ e2 ⇔ e1

π1⊕π27→ e2.
In fact we go beyond fractions, building on the share models presented by

Parkinson [12, ch. 5] with a share model of infinite subsets of a countable set (see
appendix C). This permits correctness proofs of sophisticated visibility man-
agement schemes. But here we will simplify the presentation by just writing
100%, 50%, et cetera. 100% gives permission to read, write, or dispose. Owning
0 < π < 100% gives read-only access.

We introduce a new assertion e
π

•→ R, which means that the expression e

evaluates to a memory location containing a lock with resource-invariant R. We
write resource(l, R) to mean that R is precise and closed (w.r.t. local variables). A
location is either used as a lock or as a mutable reference: a lock assertion e

π

•→
does not separate from a maps-to assertion e

π
′

7→ . Any nonempty ownership π

gives the right to (attempt to) lock the lock. An auxiliary assertion, hold e R,
means that lock e with invariant R is locked by “this” thread.

To unlock a lock, the thread must “hold” it: another thread cannot unlock
the lock unless the hold has been transferred. Therefore a lock invariant R for
lock l must claim the hold of l, in addition to other claims S. That is, R ⇔

4 We use a small, consistent set of classical axioms in Coq: extensionality, proposition
extensionality, dependent unique choice, relational choice.

resource(e, R) R ⇔ (hold eR ∗ S)

Γ ⊢ {e
100%

7→ 0}make lock eR{e
100%

•→ R ∗ hold e R}

Γ ⊢ {e
100%

•→ R ∗ hold e R}free lock e{e
100%

7→ 0}

Γ ⊢ {e
π

•→ R}lock e{e
π

•→ R ∗ R}

R ⇔ (hold eR ∗ S)

Γ ⊢ {R}unlock e{emp}

precise (R)

Γ ⊢ {e : {R}{S} ∗ R(~e)}fork e~e{e : {R}{S}}

Fig. 1. Concurrent Separation Logic

6 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

hold l R ∗ S, where ⇔ means equivalence of assertions. We achieve this with a
recursive assertion µR.(hold l R ∗ S), using the µ operator of our CSL.

The assertion that some value f is a function with precondition P and post-
condition Q is written f : {P}{Q}. A function can be either called (within this
thread) or spawned (as a new thread); but to be spawned, its precondition must
be precise: the precondition must specify uniquely the part of the world that the
parent passes to the spawned thread.

To handle functions we extend the traditional Hoare triples with an extra
context to become Γ ⊢ {P}s{Q}. The concurrent extension of the logic is in-
dependent of the sequential operators and we refer to Appel and Blazy [1] for
a description of the sequential logic, in which Γ specifies pre/postconditions of
global functions. The concurrent rules are presented in figure 1; appendix B.2
shows our logic applied to an example program.

Impredicativity. Our logic supports both recursive assertions and impredicative
polymorphism: one can quantify not only over values and shares, but also as-
sertions. We will use this when describing the lock invariants of object-oriented
and higher-order-functional programs, in the same way that impredicative poly-
morphism is needed in the typed assembly languages of such programs. We also
support recursive value-parameterized lock invariants that can describe, for ex-
ample, “sorted list of lockable cells.”

Our CSL does not reason about liveness, and cannot guarantee the absence
of memory leaks. Resources can be sent down a black hole by deadlocks, by
infinite loops, or by unlocking all of a lock’s visibility into its own resource, or
by a thread exiting with a nonempty postcondition.

5 A modal model of joinable worlds

Consider the assertion P = (e
π

•→ R); here one assertion P describes another
assertion R; and maybe R itself describes yet another assertion Q. This makes
first-class locks difficult to model semantically. Intuitively, the solution is that P

is really a series of increasingly good approximations to the “true” invariant; the
kth approximation of P can describe only the k − 1 approximation of R, which
in turn describes only the k − 2 approximation of S. Then we can do induction
on k to reason about the program.

To structure this in a clean way that avoids explicit mention of k, we adapt
the “very modal model” of Appel, Melliès, Richards, and Vouillon [2]. They use
modal logic to reason about the decrease of k as time advances through the
storing and fetching of mutable references. Henceforth we will not mention k

explicitly, but it will be implicit in the concept of the age of a world.

Our new model advances time as locks are acquired and released. But in
addition, now we also reason modally about separation in space. From machine

states we build a Kripke model, which we hide underneath a modal logic,
which we hide underneath the user view of Concurrent Separation Logic.

Oracle Semantics for Concurrent Separation Logic 7

P ∗ Q separating conjunction

P ⇒ Q P ∧ Q P ∨ Q implication, (nonseparating) conjuction, disjunction

∀v.Q ∃v.Q quantification over values, shares, or predicates

v
π

7→ v′ v is the address of readable data (writable if π = 100%)

v
π

•→ R v is a lock with resource invariant R

hold v R the token for “I currently hold the lock v”

v : {P}{Q} v is a function with precondition P , postcondition Q

µF recursive: µF = F (µF)

e ⇓ v the C minor expression e evaluates to v

[A]Coq formula A in the underlying logic is true

resource(l, R) R is a valid resource invariant (precise, closed) for lock l

world w the current state’s world is equal to w

⊲ Q “later”: Q(ρ,w′, m) holds in all worlds w′ strictly later than w

�Q “necessarily”: Q ∧ ⊲ Q

©Q “fashionably”: Q(ρ,w′, m) holds in all worlds w′ the same age as w

!Q “everywhere”: Q(ρ′, w, m′) holds on all ρ′, m′ in the current world

safe(Ψ, κ) with current state σ, for all oracles Ω, stepping Ψ ⊢ (Ω, σ, κ) 7−→∗ ...

cannot get stuck.

Fig. 2. A selection of assertion operators

The Kripke model: σ Q means that assertion Q holds in a state σ. The
forcing relation is simple: Qσ with Q simply a predicate on states. The world
w in σ = (ρ; w; m) plays the same role (granting permissions to read/write
locations) as did the “footprints” φ in Appel & Blazy’s Coq proof of sequential-
Separation-Logic soundness, which makes it easy to use their proof techniques.
The predicates Q of the modal logic are exactly the assertions of the Separation
Logic.

Worlds map locations to permissions. Inside the Kripke model (not in the
modal logic) we write Valπ

w
to describe a nonempty fractional permission π to

access a value-cell in world w. The permission Lockπ

wR says that location l is
a lock in world w with (nonempty) fractional visibility π. (The subscript w is
needed to distinguish the “age” of the Lock permission, as Lockπ

w′R in a later
world w′ has a more approximate semantic meaning.) Fractional visibility of a
lock is enough to lock it; 100% visibility (so no other thread can see the lock)
is required to deallocate the lock. To model that the locking thread “holds” the
lock, and no other thread can unlock it (unless the “hold” is explicitly trans-
ferred), we require that R imply (at least) 50% visibility of the lock itself. That
is, part of the “visibility” of a lock is really modeling “holding” the lock. The
permission Funπ

w
PQ is a function with precondition P and postcondition Q.

Worlds contain lock-permissions; lock-permissions carry assertions; and as-
sertions are predicates on worlds. We resolve this (contravariant) circularity with
a stratified construction as shown in Appendix D.

8 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

A world describes the domain of the heap, where the contents of the heap
reside in the global memory m. We write w1 ⊕ w2 for the disjoint union of two
worlds (where there may be overlap at an address l if the permissions agree and
the shares do not exceed 100%). However, w1 ⊕ w2 is only defined if w1 and
w2 are of the same age; every world in the system ages one tick whenever any
thread does a lock, unlock, or fork.

The operators above the line in Fig. 2 are what one might expect in a model
of Concurrent Separation Logic. Below the line we have some new modal opera-
tors, useful in constructing the semantics but not to be seen by the end user of
the Concurrent Separation Logic. The modalities are contained within our CSL
soundness proof.

Why a modal logic. Suppose we are in world w, and we expect that the current
memory m will satisfy predicate Q after one or more communications. We write
ρ, w, m ⊲ Q. A lock invariant is an example of a predicate we can only establish
“later.” To implement higher-order locks, we use the modal logic to keep track
of approximations of assertions. We weaken Q every time the clock ticks (i.e.,
when a thread communicates), and we use ⊲ to keep track of this weakening.

Suppose we lock l that controls world wl, so our world goes from w to w′⊕w′

l
,

where primes indicate ticking the clock. By “later” we do not refer to the fact
that we gain wl; the modal operator ⊲ talks only about w → w′ or wl → w′

l
. The

operator ∗ talks about the ⊕ joining. See appendix D for further explanation.

6 Concurrent operational semantics

We specify a concurrent operational semantics to justify the claim that we have a
reasonable model of conventional concurrency that corresponds to real machines.
The semantics is “world-aware”, that is, it gets stuck if a thread attempts to read
data for which it has no permission. This means that it must also be “resource-
invariant-aware”, so that it can transfer the appropriate worlds when locking or
unlocking a lock. Therefore, the operational semantics uses the modal logic.

The semantics has two distinct parts. The first part, called the “sequential
submachine,” executes all instructions that do not depend on other threads, such
as call, store, and loop. The second part is fully concurrent; it schedules threads
for execution by the sequential part and also handles the explicit synchronization
commands: lock, unlock, and fork. Although make lock and free lock are new
instructions, they do not require synchronization and can be executed by the
sequential part of the machine.

This two-part design supports the first half of our modularity principle by
hiding the complexities of sequential control- and data-flow from concurrent
reasoning. Oracle semantics (section 7) supports the other half by hiding the
complexities of concurrent computation from sequential reasoning.

Oracle Semantics for Concurrent Separation Logic 9

6.1 Sequential submachine

To build the internal sequential submachine, we extend Extensible C minor
with the full syntax of all the concurrent instructions and rules for evaluating
make lock and free lock . The computational result of both of these statements
is straightforward, so we use the null oracle 6Ω : unit.

To execute make lock e R, the machine evaluates e, ensures that that location
is fully owned and currently contains a zero, and updates the world to treat the
location as a lock with invariant R. The lock is created with 100% visibility and
is held 100% as well.

Ψ ; (ρ; w; m) ⊢ e ⇓ v ρ, w, m (v
100%

7→ 0) ∗ worldwcore

ρ, w′, m resource(v, R) ρ, w′, m (v
100%

•→ R) ∗ hold v R ∗ worldwcore

Ψ ⊢ (6Ω, (ρ; w; m), make lock e R · κ) 7−→ (6Ω, (ρ; w′; m), κ)

free lock e does the opposite, turning a wholly-owned lock back into a regular
location (appendix E.1). At the truly concurrent operations – lock , unlock , fork
– the sequential submachine is simply stuck.

6.2 Threads and Concurrent Machine State

The point of a concurrent machine is to execute several threads of control. We
define a thread θ to be the tuple (ρ, w, κ̂) with local variables ρ, a private world
w, and a concurrent control-descriptor κ̂, defined as follows:

κ̂ : concurrent control ::= Krun κ | Klock v κ

Krun κ means the thread is in a runnable state, with κ as the next sequential
control to execute. Klock v κ means that the thread is waiting on a lock at address
v; after acquiring the lock, it will continue with κ. A list of threads we denote
by ~θ, and we indicate the ith thread by θi.

A concurrent machine state S = (℧; ~θ;L; m) has a schedule ℧, a (finite) list

of thread-ids (natural numbers); a list of threads ~θ; a lock pool L, which is a
partial function that associates addresses of unlocked locks with the worlds they
control; and a memory m. We will be quantifying over all schedules; once given a
schedule, C minor executes deterministically, which greatly simplifies reasoning
about sequential control-flow [1].

A concurrent machine state also carries with it a set of consistency require-
ments, ensuring the threads’ private worlds are disjoint (among other things;
see appendix E.2). In Coq we ensure consistency of concurrent states with a
dependently typed record. For this presentation, any concurrent machine state
given should be considered consistent.

6.3 Concurrent step relation

The concurrent small-step relation Ψ ⊢ S Z=⇒ S′ describes how one concurrent
state steps to another in the context of a program Ψ . The full concurrent step
relation is given in appendix E.3, but the two critical features are a coroutine
interleaving model and a nonconstructive semantics.

10 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

Coroutine Interleaving. The concurrent machine context-switches only for fully
concurrent operations (lock, unlock, and fork). When executing a series of se-
quential instructions, the concurrent machine does so without interleaving (thread-
number i is not removed from the head of the schedule):

Ψ ⊢ (6Ω, (ρ; w; m), κ) 7−→ (6Ω, (ρ′; w′; m′), κ′)
~θ′ = [θ1, . . . , θi−1, (ρ

′, w′, Krun κ′), θi+1, . . . , θn]

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Krun κ), θi+1, . . . , θn];L; m) Z=⇒ (i :: ℧; ~θ′;L; m′)

This coroutine model of concurrency may seem strange: it is true that in general
it is not equivalent to execution on a real machine. However, our operational
semantics permits only well-synchronized programs to execute, so we can rea-
son at the source level in a coroutine semantics and execute in an interleaving
semantics or even a weakly consistent memory model. Of course, this claim will
require proof: but the proof must be done w.r.t. the machine-language program
in a machine-language version of our concurrent operational semantics; this is
future work.

Nonconstructive semantics. The noncomputability of our operational semantics
arises from the unlock rule:

Ψ ; (ρ; w; m) ⊢ e ⇓ v m(v) = 0 ρ, w, m (hold v P) ∗ true

w′ ⊕ wlock = w ρ, wlock, m ⊲P

L′ = v : wlock,L ~θ′ = [θ1, . . . , θi−1, (ρ, w′, Krun κ), θi+1, . . . , θn]

m′ = [v 7→ 1]m ContextSwitch (i :: ℧; ~θ′;L′; m′) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Krun unlock e · κ), θi+1, . . . , θn];L; m) Z=⇒ S

When a lock is unlocked, the semantics checks to make sure that its invariant will
hold later (ρ, wlock, m ⊲P) – that is, after the unlock operation ticks the clock.
If the invariant will not hold, the semantics gets stuck. However, assertions P

may contain arbitrary predicates in classical logic—there is no decison procedure
for assertions. We are saved by two things: first, if we are executing a program
for which we have a proof in CSL, we will know that this check will succeed.
Second, if one actually wished to execute a program to see the result, one could
execute it on the fully constructive erased machine.

An erased machine is simply one that has had all of the worlds and oracles
removed, leading to the following much simpler and constructive unlock rule:

Ψ ; (ρ, m) ⊢ e ⇓ v m(v) = 0 θi = (ρ, Krun unlock e · κ) θ′
i
= (ρ, Krun κ)

Ψ ⊢ (i :: ℧, [θ1, . . . , θi, . . . , θn], m) Z=⇒ (℧, [θ1, . . . , θ
′

i
, . . . , θn], [v 7→ 1]m)

This is a useful sanity check: the real machine takes no decisions based on
erasable information; the erased semantics simply approves of fewer executions
than the real machine.

When to erase. One could imagine (1) prove safety of a concurrent program
w.r.t. the unerased semantics; (2) erase; (3) compile. But this would be a mistake:

Oracle Semantics for Concurrent Separation Logic 11

projection

Ω = (℧, ~θ,L) ~θ = [θ1, . . . , θi−1, θi+1, . . . , θn]
~θ′ = [θ1, . . . , θi−1, (ρ, w, κ̂), θi+1, . . . , θn]

(Ω, (ρ; w; m), κ̂)
i

∝ (℧; ~θ′;L; m)

Ready
θi = (ρ,w, Krun κ)

Ready i (i :: ℧; [θ1, . . . , θn];L; m)
SO-done

Ready i S

Ψ ⊢ StepOthers i S S

SO-step
¬(Ready i S) Ψ ⊢ S Z=⇒ S′ Ψ ⊢ StepOthers i S′ S′′

Ψ ⊢ StepOthers i S S′′

Ω-Invalid
Ω = (i :: , ,) 6 ∃S.(Ω, σ, Krun (sc · κ))

i

∝ S

Ψ ⊢ (Ω, σ, sc · κ) 77−→ (Ω, σ, sc · κ) Note: sc
ranges over
only the
concurrent
instructions.

Ω-Diverges

Ω = (i :: , ,) (Ω, σ, Krun (sc · κ))
i

∝ S

Ψ ⊢ S Z=⇒ S′ 6 ∃S′′.Ψ ⊢ StepOthers i S′ S′′

Ψ ⊢ (Ω, σ, sc · κ) 77−→ (Ω, σ, sc · κ)

Ω-Steps

Ω = (i :: , ,) (Ω, σ, Krun (sc · κ))
i

∝ S

Ψ ⊢ S Z=⇒ S′ Ψ ⊢ StepOthers i S′ S′′ (Ω′, σ′, κ)
i

∝ S′′

Ψ ⊢ (Ω, σ, sc · κ) 77−→ (Ω′, σ′, κ)

Fig. 3. Oracle reduction relation 77−→

as explained by Boehm [3], the compiler may do concurrency-unsafe optimiza-
tions. Instead, we must preserve the worlds in the semantics in both source- and
machine-language. This gives the compiler a specification of concurrency-safe
optimizations. We erase the worlds last, after full compilation.

7 Oracle semantics

A compiler, or a triple {P}c{Q} in separation logic, considers a single thread at
a time. Thus we want a semantics of single-thread computation. The sequential
submachine of section 6.1 is single-threaded, but it is incomplete: it gets stuck
at concurrent operations. The compiler (and its correctness proof) wants to
compile code uniformally even around the concurrent operations. Similarly, in
a CSL proof, the commands c1 and c2 in {P}c1;c2{Q} may contain concurrent
operations, but a soundness proof for the sequence rule of separation logic is
complicated enough (because of C minor’s nonlocal exits) without adding to it
the headaches involved in concurrency. Thus we want a deterministic sequential
operational semantics that knows how to handle concurrent communications.

To build the desired semantics, we will build an oracular machine using our
C minor extension system. As in Section 6.1, we provide the syntax of concurrent
C minor. Instead of providing the empty oracle 6Ω, however, we define a more
meaningful oracle as follows:

Ω : oracle := (℧, ~θ,L)

12 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

An oracle now contains a schedule ℧, a list of threads ~θ, and a lock pool L.

We generalize a sequential continuation (Ω, σ, κ) to a concurrent continuation
(Ω, σ, κ̂) whose concurrent control κ̂ may be ready (Krun κ) or blocked on a lock
(Klock v κ). An oracle allows one to build a concurrent machine S from a thread
number i and a concurrent continuation. The precise relationship is given by

(Ω, σ, κ̂)
i

∝ S, pronounced “(Ω, σ, κ̂) is the ith projection of S” (Figure 3).

To execute the extended statements, we use the rules given in Figure 3. For
clarity, we use the symbol 77−→ for the sequential step in oracular C minor, to
distinguish from 7−→ which is the sequential step in the submachine (section 6.1).
However, both machines are built with the same C minor extension functors
(applied to different oracle types) and therefore have much in common.

When the oracular machine gets to a concurrent instruction, there are several
possibilities. The first is that there is no concurrent machine that can be built
from the situation given (the rule Ω-Invalid). In this case, the machine loops
endlessly, thereby becoming safe. In our proofs we quantify over all oracles—not
just valid ones—and this rule allows us to gracefully handle invalid oracles.

In the remaining two cases, we are able to construct a concurrent machine
S, and take at least one concurrent step: makelock, freelock, block on a lock
(become Klock and context switch), or release a lock (and context switch), or
fork (and context switch). After taking this step, the machine decides (classi-
cally) if the current thread will ever have control returned to it, by branching on
the StepOthers judgement. If the schedule is unfair, if another thread executes
an illegal instruction, or if the current thread is deadlocked, then the current
thread might never have control returned to it. Rule Ω-Diverges models this by
having the machine loop endlessly. The final case is when control returns (rule
Ω-Steps); in this case the step proceeds with the new memory, world, and so
forth that came from running the concurrent machine.

Classical reasoning in this system is unavoidable: first, the concurrent ma-
chine itself requires classical reasoning to find a world satisfying an unlock as-
sertion; second, determining if control will return to a given thread reduces the
halting problem. The nonconstructivity of our operational semantics is not a bug:
we are not building an interpreter, we are building a specification for correctness
proofs of compilers and program logics.

We use the oracular step to keep “unimportant” details of the concurrent
machine from interfering with proofs about the sequential language. The key
features of the oracular step are: 1) It is deterministic (proof in appendix F.1),
2) When it encounters a synchonization operation, it is able to make progress
using the oracle, whereas the regular step relation gets stuck, 3) It composes with
itself, whereas the regular step relation does not (because memory will change
“between steps” due to other threads), and 4) In the cases where control would
never return, such as deadlock, we will be safe.

Oracle Semantics for Concurrent Separation Logic 13

8 Soundness of CSL on the oracle semantics

In this section we prove that Concurrent Separation Logic is sound with respect
to the oracular step. In the next section we prove that the oracular step is sound
with respect to the concurrent operational semantics.

A concurrent machine S is concurrently safe if, for any S′ reachable by
S Z=⇒∗ S′, either S′ can step or its schedule is empty (S′ is not stuck). We
define σ safe(Ψ, κ) for a single thread of the oracular machine to mean that
Ψ ⊢ (Ω, σ, κ) 7−→∗ does not get stuck with any oracle Ω. We call this thread
(Ω, σ, κ) sequentially safe, written Ψ ⊢ safe(Ω, σ, κ). That is, safe(Ψ, κ) is a
modal assertion that quantifies over all oracles; safe(Ω, σ, κ) is a predicate on a
particular thread with a particular oracle.

Appel and Blazy [1] explain how to model the Hoare tuple Γ ⊢ {P}c{Q}
in a continuation-passing style. We improve over Appel and Blazy in that our
assertions are not predicates over programs. Our global assertion Γ = f1 :
{P1}{Q1} ∗ · · · ∗ fn : {Pn}{Qn} characterizes pre-and post-conditions of global
function-names, while theirs characterized function bodies (i.e., syntax). This
means that we can embed semantic assertions in program syntax without circu-
larity. However, we are in danger of a different circularity: Γ ⊢ {P}c{Q} means
“provided that for every fi : {Pi}{Qi} in Γ , the judgment Γ ⊢ {Pi} Ψ(fi) {Qi}
holds, then command c satisfies its pre- and postcondition,” where Ψ(fi) is the
body of function fi. We solve this problem by defining the Hoare judgment as a
recursive assertion. We use the later operator ⊲ to achieve contractiveness, and
we tick the clock at function calls. Because of this tick, by the time the caller
actually enters a function body, it will be later.

Γ ⊢ {P}c{Q} ≈ ∀F, Ψ, κ. (⊲ function pre/postconditions in Γ relate to Ψ) ⇒
F closed w.r.t. modified vars of c ⇒

(�©!(Q ∗ Γ ∗ F ⇒ safe(Ψ, κ))) ⇒
(�©!(P ∗ Γ ∗ F ⇒ safe(Ψ, c · κ)))

The continuation-passing interpretation of the Hoare triple is, for any frame F ,
if Q ∗F is enough to guard κ, then P ∗F is enough to guard c · κ. We say Q ∗F

guards κ when any state σ that satisfies Q ∗ F is safe to execute with control κ.
Each rule of sequential separation logic is proved as a derived lemma from this
definition of the Hoare tuple.

Lemmas: The rules of CSL are proved as derived lemmas from the definition
of the Hoare triple. For sequential statement rules, see [1]; for a proof of a
concurrent rule, see appendix F.2.

Definition. We write Ψ ⊢ Γ to mean that for every function mentioned in Γ , its
body in Ψ satisfies pre/postconditions of its function declarations. The end-user
will prove this using the rules of CSL.

Theorem. Suppose Ψ ⊢ Γ , and Γ ⇒ main : {true}{true}. Then for any n one
can construct wn and a consistent Ω such that (Ω, (ρ0; wn; m), callmain ()·Kstop)
is safe to run for at least n communications+function calls.

14 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

Corollary. If a program is provable in CSL, then callmain is sequentially safe.

9 Concurrent safety from oracular safety

Now we connect the notions of sequential safety and concurrent safety. We say
that a concurrent continuation (Ω, σ, κ̂) is “safe-as i” if, supposing it is the ith
thread of the (unique) concurrent machine consistent with its oracle, then if this
thread is ever ready and selected then it will be sequentially safe:

(Ω, σ, κ̂)
i

∝ S
6 ∃S′.(Ψ ⊢ StepOthers i S S′)

Ψ ⊢ safe-as i (Ω, σ, κ̂)

(Ω, σ, κ̂)
i

∝ S Ψ ⊢ StepOthers i S S′

(Ω′, σ′, Krunκ)
i

∝ S′ Ψ ⊢ safe (Ω′, σ′, κ)

Ψ ⊢ safe-as i (Ω, σ, κ̂)

Progress. All-threads-safe(S) means that each projection of S will be sequen-
tially safe the next time it is ready and selected; this is enough for progress:

∀i, Ω, σ, κ̂. (Ω, σ, κ̂)
i

∝ S → Ψ ⊢ safe-as i (Ω, σ, κ̂)

Ψ ⊢ all-threads-safe(S)

Lemma. If Ψ ⊢ all-threads-safe(S), then S is not stuck. Proof in the appendix
F.4.

Preservation. The preservation theorem is more complex due to the existence
of forks: we need to know that the child will be safe if its function-precondition
is satisfied. To handle this issue, we make the following definition:

∃Γ. ∀ρ, w. (w ∈ ~θ ∨ w ∈ L) →
ρ, w, m (Ψ ⊢ Γ) ∧ (∀v, P, Q. v : {P}{Q} ⇒ �©!(Γ ⇒ v : {P}{Q}))

Ψ ⊢ all-funs-spawnable(℧, ~θ,L, m)

Lemma. If Ψ ⊢ all-threads-safe(S), Ψ ⊢ all-funs-spawnable(S), and Ψ ⊢ S Z=⇒ S′,
then Ψ ⊢ all-threads-safe(S′) and Ψ ⊢ all-funs-spawnable(S′).

Theorem. If each thread is sequentially safe and all functions are spawnable, the
concurrent machine is safe.

Corollary. For any schedule ℧, if the initial thread callmain () is sequentially
safe and all functions are spawnable, then the concurrent machine is safe.

10 Conclusion

An implementation of C-threads comprises an optimizing C compiler and a
threads library implemented in assembly language to handle lock/unlock/fork.
From our oracle semantics, we can derive some very simple axioms that the
proof of correctness of the optimizing compiler can use. For example, the com-
piler may wish to hoist loads and stores from one place to another, as dataflow

Oracle Semantics for Concurrent Separation Logic 15

and thread-safety permit. Thread-safety can be captured by simple axioms such
as,

Ψ ; (ρ; w; m) ⊢ e ⇓ v w ⊂ w′

Ψ ; (ρ; w′; m) ⊢ e ⇓ v

That is, a bigger world doesn’t hurt expression evaluation. To prove w ⊂ w′, we
can provide the compiler with rules such as,

c = loop c′ ∨ c = exit n ∨ c = (x:=e) ∨ c = if e then c1 else c2

Ψ ⊢ (Ω, (ρ; w; m), c · κ) 7−→ (Ω′, (ρ′; w′; m′), κ′)

w = w′

For the extended instructions, the compiler may choose to use no rules at all
(so that it cannot hoist loads/stores across calls to functions which may contain
lock/unlock), or it may use rules that the world can only grow at a lock or shrink
at an unlock. This allows hoisting loads/stores down past lock or up past unlock.
All of these rules can be proved sound for our operational semantics.

Our goal in this research has been to provide the compiler with this simple
and usable (and proved sound) operational semantics, which in turn is a basis
for machine-checked compiler correctness proofs that connect end-to-end (via
soundness of CSL) to correctness proofs of concurrent source programs. In future
work we hope to connect (at the top) to flow analyses that can produce safety
proofs witnessed in CSL, and (at the bottom) to formally prove that machines
with weakly consistent memory operations will correctly execute a world-aware
machine-level operational semantics that is the output of the compiler. Ideally
these should be machine-checked proofs that connect to our Coq proofs of the
CSL soundness that we have described here.

All definitions and claims have been fully machine-checked, except that the
Coq proofs for Sections 8 and 9 are incomplete; these sections have been proved
by hand at the level of rigor traditional for this conference. The concurrent and
oracle machines (excluding core C minor) are specified in 1,331 lines; the proofs
are 14,430 lines; total including sequential C minor and the sequential separation
logic soundness proofs is 42,277 lines.

Acknowledgments. We thank Peter O’Hearn and Matthew Parkinson for many
interesting and useful discussions.

References

1. A. W. Appel and S. Blazy. Separation logic for small-step C minor. In 20th Int’l
Conf. on Theorem Proving in Higher-Order Logics (TPHOLs), 2007.

2. A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model
of a modern, major, general type system. In Proc. 34th Annual ACM Symposium
on Principles of Programming Languages (POPL’07), pp. 109–122, Jan. 2007.

3. H.-J. Boehm. Threads cannot be implemented as a library. In PLDI ’05: 2005 ACM
SIGPLAN Conf. on Prog. Language Design and Implementation, pp. 261–268.

4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL ’05, pp. 259–270, 2005.

16 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

5. A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for
storable locks and threads. In Proceedings 5th Asian Symposium on Programming
Languages and Systems (APLAS’07), 2007.

6. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis. In
PLDI ’07: 2007 ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation.

7. A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for concurrent
separation logic (extended version). Tech. report, Princeton University, Jan. 2008.

8. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. on Prog. Lang. and Systems, 28:619–695, 2006.

9. D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In IEEE Conference
on Software Engineering and Formal Methods, 2005.

10. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In POPL’06, pp. 42–54, 2006.

11. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1):271–307, May 2007.

12. M. J. Parkinson. Local Reasoning for Java. PhD thesis, Univ. of Cambridge, 2005.

APPENDIX

A Simplifications of C minor in our presentation

C minor was designed to be a target language for C, ML, and (sequential) Java
compilers. A number of the language features required to do this have been
elided from our presentation; although the resulting mass of detail was part of
the motivation for the modularity of our model, they make the presentation
overly complex. In addition to the ones presented in the body of this paper,
major features of C minor include:

– Stacks: each state has a local stack pointer, and there is a global allocation
pool for stack frames

– Control-flow: programs have function call, return from the middle of a func-
tion body, and multi-level exit from loops. The addition of other control-flow,
such as exceptions, would be modularly contained within the sequential por-
tions of our proofs and would not impact the concurrent portions

– Memory model: support for mixed byte- and word-addressibility as well as
the ability to distinguish between signed and unsigned data

– Pointer arithmetic: supports ANSI C-style pointer arithmetic

All of these features are handled in our Coq definitions and proofs. Some are
quite simple, such as requiring locks to be unsigned 32-bit integers; others are
harder, in particular handling the stack space.

B Example program

B.1 Programming with locks.

To illustrate the use of our synchronization operators, we present an example
(Figure 4). A thread running main creates a 3-element data block at L + 1 con-

Oracle Semantics for Concurrent Separation Logic 17

void main() with pre:{emp} and post:{emp} {
L := call malloc and zero(4);
i := 0;
make lock L R(L);
fork f(L);
*(L+3) := 1;
block {loop {

if (*(L+3)==0) exit 0 else skip;
*(L+1) := i; *(L+2) := i;
unlock L;
i := i+1;
lock L;

}}
L lock

L + 1 data1
L + 2 data2
L + 3 continue?

free lock L;
call free(L,4);
return ();
}

void f(l) with pre:{l
50%

•→ R(l)} and post:{emp} {
loop {
lock l;
*(l+1) := *(l+1) * 2;
*(l+2) := *(l+2) * 2;
if (*(l+1) > 10) {*(l+3) := 0; unlock l; return (); }
else skip;
unlock l;

}}

S(l, P) = (∃v.(l + 1)
100%

7→ v ∗ l + 2
100%

7→ v) ∗

((l + 3
100%

7→ 1) ∨ ((l + 3
100%

7→ 0) ∗ l
50%

•→ P))
R(l) = µP. (hold l P) ∗ S(l, P)

Fig. 4. Sample concurrent program

trolled by a lock L with resource invariant R(L) (that will be explained in Sec-
tion 4). main makes L by converting an ordinary memory location into a lock. It
forks a thread running f(L). Further communication is done through the shared
data block. When thread f has had enough, it sets word L + 3 to 0 and termi-
nates (by returning from f). Then main converts the lock back into an ordinary
location of memory, frees its resources, and returns safely.

Lemma (informal). This program is safe.

Proof (informal). The main function cannot deallocate L until after the last
time f accesses it; and main cannot deallocate the data block until after the last
time f accesses it. This is because main does not exit its loop until it observes
[data + 8] == 0, which can only happen when f has unlocked L for the last

18 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

time and is about to return. Moreover, whenever the lock is unlocked, data and
data + 1 do point to the same value: at the beginning, both are zero; after main
executes a loop body, both are incremented by one, and if they are the same
before f executes a loop body, they will be the same afterwards. Therefore, the
final test will succeed, and the program will complete safely.

B.2 Proving the example program safe with CSL

We illustrate some particularities of the logic by proving some statements of
the example program in Figure 4. The resource invariant R(l) says that lock l

controls three words of data, of which [l + 1] = [l + 2]; and when [l + 3] = 0 then
in addition l controls 50% of its own visibility. Like any lock, it controls its own
hold.

Since R(l) ⇔ hold l R(l) ∗ S(l, R(l)) is easy via fold/unfold, the make lock in
main turns location L into a lock with invariant R(L) (since our logic supports a
frame rule, we omit frame contexts):

{L
100%

7→ 0} make lock L R(L) { L
100%

•→ R(L) ∗ hold LR(L)} .

The lock invariant is not yet satisfied, but it need not be until the lock is un-
locked.

When function f is spawned, main passes to f a partial knowledge of the lock
L, as stated in f’s precondition:

{ f : {L
50%

•→ R(L)}{emp} ∗ L
100%

•→ R(L)) }
fork f(L)

{ f : {L
50%

•→ R(L)}{emp} ∗ L
50%

•→ R(L)) }

To free lock L at the end, main must reacquire a full share. It does this just before

exiting from the loop. The main loop preserves the invariant L
50%

•→ R(L) ∗ R(L),
and, after taking the if branch, we are left with the loop postcondition

((L + 3
100%

7→ 0) ∗ true) ∧ (L
50%

•→ R(L) ∗ R(L))

This implies L
100%

•→ R(L) ∗ hold L R(L) ∗ . . ., so free lock is permitted.
In the function f, just before unlock l; return(), we dump (50%) ownership of

the lock into its own resource invariant! This trick is necessary so that a thread
can give up all its resources: at the time it unlocks its very last lock, it must
still be able to see (have partial ownership of) this lock, but after unlocking it
must own nothing. The main thread can then safely dispose the lock L.

C Fractional permissions

A simple, intuitive model of a fractional permission is a rational number in the
closed interval [0, 1]. However, Parkinson [12, ch. 5] shows that shares repre-
sented as subsets of a countably infinite set are more expressive, as one can

Oracle Semantics for Concurrent Separation Logic 19

identify which half of the ownership a thread has. (That is, one 50% is not in-
terchangeable with the other; this helps significantly when one needs to define
precise predicates, or in reasoning about “token-factory” protocols.)

Parkinson then points out one minor problem with this approach: it is not the
case that any nonempty share is splittable into disjoint nonempty shares, as the
share might bit a finite subset of the universe. He suggests using an isomorphism
to solve this problem. We do something much simpler but just as effective: we
let the Share type be only infinite subsets of the universe (or the empty set,
representing the empty share).

D Stratified worlds

We want a construction of joinable worlds something like this,

World ∼ loc → Ownership
Ownership ∼ 0w + Valπ

w
+ Lockπ

w
(Assert) + Funπ

w
(Assert)(Assert)

Assert = (Env × World × Mem → Prop)
Mem = loc → value

There is a contravariant occurrence of World within its own definition that,
if understood naively in set theory, would lead to paradoxes. We adapt the
“very modal model” of Appel, Melliès, Richards, and Vouillon [2] to avoid this
paradox. The intuition is that every resource invariant described in a world w

is an approximation, and can be used only in worlds strictly later than w—the
clock ticks whenever a communication takes place. The chain of approximations
terminates, allowing induction over the accuracy of the approximation. When
we say “in world w address l is a lock with resource-invariant R”, we mean that
“if at w you lock l then you gain resource R and its associated world.” The fact
that you can only use R in worlds strictly later than w is not a problem, because
by the time the lock is obtained the thread is in a later world.

Unlike the previous work, where we are concerned with the semantics of
mutable references and we must move to a later world on every machine instruc-
tion, in the current work we move to a new world only when a thread performs a
concurrent operation (lock, unlock, fork). Leaving the world unchanged at most
instructions has the substantial advantage of giving stronger axioms about purely
sequential operations (i.e., the after-world is identical to the before-world). Our
programs will be safe (or correct) for any finite schedule—that is, for arbitrarily
long schedules. For any schedule of length n, we start in a world accurate to
degree n (i.e., with n successor worlds).

20 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

D.1 Construction

We start by defining the theory of joinable things. Type τ is joinable if it has
an associative-commutative relation a ⊕ b = c and an emptiness test satisfying,

empty(e) → e ⊕ a = b → a = b ∀a.∃e. empty(e) ∧ e ⊕ a = a

a ⊕ b = c → empty(c) → empty(a) a ⊕ b = b → empty(a)

a ⊕ b = c → a ⊕ b = c′ → c = c′ a ⊕ b = c → a′ ⊕ b = c → a = a′

Let joinable(τ) be the type of dependent records containing ⊕, empty(), and all
these axioms.

Share, described in appendix C, is a joinable type.
A joinable type need not have a unique empty element. Mainly this is because

in our construction of worlds, worlds of one age will never be joinable with worlds
of a different age, so there must be a different empty world for each age.

Now we want to define Ownership as a joinable type, with a join relation such

that (e.g.) Valπ
w

joins only to Valπ
′

w′ , and only when π joins with π′ and when w, w′

have the same age. However, we haven’t yet defined worlds and assertions. We
define proto-ownerships protoown(A) parameterized by a hypothetical assertion-
type A:

Inductive protoown(A: Type) : Type :=

| NO

| VAL : share -> protoown

| LK : share -> A -> protoown

| FUN: share -> A -> A -> protoown.

We omit here the share-nonemptiness proofs carried by LK, VAL, and FUN.
We construct jown(A) : joinable(protoown(A)) by supplying the appropriate

⊕ relation and proving the join axioms.
For any joinable type τ , the type loc → τ is a joinable type. Let w1, w2, w :

loc → τ ; we say w1 ⊕ w2 = w iff for every l, w1(l) ⊕ w2(l) = w(l). For τ a
type and J : joinable(τ), let joinmap(τ)(J) be the type of dependent records
containing J and also containing various extra axioms about joinmaps. For M :
joinmap(τ)(J), define carrier(M) = τ .

From jown(A) we construct protoworld(A) : joinmap(protoown(A))(jown(A)),
the structure of joinable mappings from address to proto-ownership.

Now we construct “proto-assertions” at level n as,

A0 = unit An+1 = (An, Env × carrier(protoworld (An)) × Mem → Prop)

That is, in Coq,

Fixpoint protoassert (n: nat) : Type :=

match n with

| O => unit

| S n’ => prodT (protoassert n’)

(env -> carrier (protoworld (protoassert n’)) -> mem -> Prop)

end.

Oracle Semantics for Concurrent Separation Logic 21

Now we define protoworld(n) as the joinmap structure on protoown(protoassert(n)),
and we define World as the dependent pair Σn : Nat.protoworld(n). Let level(w)
be the the level of a world (the first component of its dependent pair).

The rest of the model-construction is mostly straightforward, except for the
relations between assertions (predicates on worlds) and protoassertions (predi-
cates on protoworlds). For any world w and assertion Q, where level(w) = n, we
can construct ⌊Q⌋w : protoassert(n) that approximates Q at level n. This is a bit
of dependent-type manipulation in Coq that serves to remind us why dependent
types should be used only when absolutely necessary in models and proofs.

Now we take Lockπ

wR as LK(π)(⌊� R⌋w).

D.2 Resource Invariants

A lock controls some piece of shared memory. A resource invariant of a lock
in CSL is an assertion R that characterizes the heap-portion controlled by the
lock, whenever the lock is in an unlocked state. One wants R to be a precise
predicate in separation logic so that the exact portion of memory controlled by
the lock can be identified. We also want our lock invariants to be closed (that
is, to ignore the local variables, since these are not shared between threads) and
extensional (only depend on those locations in memory where they have the read
permission).

We use the standard definition of a precise predicate, but we express it within
the modal logic, since an assertion might be precise later but not precise now.

ρ, w, m precise(Q) ≡
∀w1, w2, Q(w1, m) ∧ Q(w2, m) ∧ (w1 ⊂ w) ∧ (w2 ⊂ w) ⇒ w1 = w2

A predicate is necessary if, once it becomes true for some value m, it is true
of m in any later world. R is necessary in all worlds if and only if R = �R.
The equality symbol is possible because our assertions are not syntactic: they
are semantic definitions on which nontrivial equalities can hold.

What we require of a resource invariant is that it be “later extensional,” “later
closed,” and “later precise,” and that it imply the holding of the corresponding
lock. We will force it to be necessary by applying � to it.

resource(l, R) = ⊲©!(extensional(� R) ∧
closed(� R) ∧
precise(� R) ∧
(� R ⇒ hold l R ∗ true))

If we attempt to require a stronger property, such as “now and later precise”
instead of just “later precise”, then we lose some of the important identities that
allow equational reasoning in our semantics (for example, see appendix D.3).
However, “later precise” is strong enough to accomplish the following. Suppose
lock l has resource R. A thread unlocks l, thus giving up some portion of its
world. We need to know exactly what portion to give up. But the clock ticks
as the unlock is performed; so instead of splitting worlds before the clock ticks

22 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

(using the preciseness of R, which may not hold), we could just as well split the
world after the tick, using the later preciseness of R.

D.3 Equivalence of locks

In the modal logic itself we can state the equivalence “from now on” of two
predicates, P ∼= Q: �©! (P ⇒ Q ∧ Q ⇒ P), by quantifying over the appropriate
future worlds and memories. We write P = Q for full extensional equality (over
all states past and present).

It would be convenient if whenever Lockπ

w
R = Lockπ

w
R′ then �R = �R′, but

this is not achievable because of the way ⌊·⌋w works. The most we can achieve
is that ⊲ R = ⊲ R′.

Lemma (Lock Predicate Identity). The following three propositions are equiva-
lent:

ρ, w, m ⊲ P ∼= ⊲ Q

Lockπ

w
P = Lockπ

w
Q

ρ, w, m v
π

•→ P ∼= v
π

•→ Q

That is, from approximate equivalence of predicates P and Q we have full equal-
ity of lock specifications. Support for equality allows simpler reasoning in our
machine-checked C-minor proofs; we can use substitution tactics in Coq instead
of weaker tactics that work on equivalence relations.

Oracle Semantics for Concurrent Separation Logic 23

E Full Concurrent Machine

E.1 Sequential sub-machine

Figure 5 contains the rules for evaluating make lock and free lock.

Ψ ; (ρ; w; m) ⊢ e ⇓ v ρ, w, m (v
100%

7→ 0) ∗ world wcore

ρ, w′, m resource(v, R) ρ, w′, m (v
100%

•→ R) ∗ hold v R ∗ world wcore

Ψ ⊢ (6Ω, (ρ; w; m),make lock eR · κ) 7−→ (6Ω, (ρ; w′; m), κ)

Ψ ; (ρ; w; m) ⊢ e ⇓ v

ρ, w, m (v
100%

•→ R) ∗ hold v R ∗ world wcore

ρ,w′, m (v
100%

7→ 0) ∗ world wcore

Ψ ⊢ (6Ω, (ρ;w; m), free lock e · κ) 7−→ (6Ω, (ρ;w′; m), κ)

Fig. 5. Sequential steps to reduce pseudo-concurrent operators

E.2 Consistency requirements for concurrent machine states

– The existence of World(S), which is the join of all of the worlds in the
threads and all of the worlds in L. This guarantees that all threads have
disjoint worlds, implies (in conjunction with precision) the uniqueness of
worlds satisfying lock invariants, and insures that all worlds in the machine
are the same age.

– World(S) will outlast the schedule.
– For every thread at Klock v κ, v is a lock in the world of that thread.
– For every lock (l

π

•→ R) in World():
• resource(l, R), that is, l’s invariant is a valid resource.
• m(l) is either 0 (locked) or 1 (unlocked).
• If m(l) =unlocked, then ρ,L(l), m ⊲R

• If m(l) =locked, then l is not in the domain of L.

E.3 Concurrent small-step relation

The full concurrent small-step relation is given in figure 6.
The context switch relation, ContextSwitch (S) = S′, handles all of the

details of performing a context switch by removing the head of the schedule
(thus allowing the next thread to execute) and aging all of the worlds.

~θ′ is derived from ~θ by aging each thread’s world
L′ is derived from L by aging each lock’s world

ContextSwitch (i :: ℧; ~θ;L; m) = (℧; ~θ′;L′; m)

24 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

cstep-seq

Ψ ⊢ (6Ω, (ρ; w; m), κ) 7−→ (6Ω, (ρ′; w′; m′), κ′)
~θ′ = [θ1, . . . , θi−1, (ρ

′, w′, Krun κ′), θi+1, . . . , θn]

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ,w, Krunκ), θi+1, . . . , θn];L; m) Z=⇒ (i :: ℧; ~θ′;L; m′)

cstep-texit
ContextSwitch (i :: ℧; [θ1, . . . , θn];L; m) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Krun Kstop), θi+1, . . . , θn];L; m) Z=⇒ S

cstep-prelock

Ψ ; (ρ;w; m) ⊢ e ⇓ v ρ, w, m v
π

•→ P ∗ true

ContextSwitch (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Klock v κ), θi+1, . . . , θn];L; m) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Krun lock e · κ), θi+1, . . . , θn];L; m) Z=⇒ S

cstep-nolock
m(v) = 0 ContextSwitch (i :: ℧; [θ1, . . . , θn];L; m) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Klock v κ), θi+1, . . . , θn];L; m) Z=⇒ S

cstep-lock

m(v) = 1 m′ = [v 7→ 0]m L = v : wlock,L
′

w ⊕ wlock = w′ ~θ′ = [θ1, . . . , θi−1, (ρ,w′, Krun κ), θi+1, . . . , θn]

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Klock v κ), θi+1, . . . , θn];L; m) Z=⇒ (i :: ℧; ~θ′;L′; m′)

cstep-unlock

Ψ ; (ρ;w; m) ⊢ e ⇓ v m(v) = 0 ρ, w, m (hold v P) ∗ true

w′ ⊕ wlock = w ρ, wlock, m ⊲ P

m′ = [v 7→ 1]m L′ = v : wlock,L ~θ′ = [θ1, . . . , θi−1, (ρ, w′, Krun κ), θi+1, . . . , θn]

ContextSwitch (i :: ℧; ~θ′;L′; m′) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ,w, Krun unlock e · κ), θi+1, . . . , θn];L; m) Z=⇒ S

cstep-fork

Ψ ; (ρ; w; m) ⊢ e ⇓ v Ψ ; (ρ;w; m) ⊢ ~e ⇓ ~v

ρ,w, m (v : {P}{Q}) ∗ true wparent ⊕ wchild = w ρ,wchild, (~v, m) ⊲ P
~θ′ = [θ0, . . . , θi−1, (ρ,wparent, Krun κ), θi+1, . . . , θn, (ρ0, wchild, Krun (call v ~v · Kstop))]

ContextSwitch (i :: ℧; ~θ′;L; m) = S

Ψ ⊢ (i :: ℧; [θ1, . . . , θi−1, (ρ, w, Krun fork e~e · κ), θi+1, . . . , θn];L; m) Z=⇒ S

Fig. 6. The concurrent small-step relation Z=⇒

The rule cstep-seq uses the core semantics of sequential C minor to perform
a sequential step, and does not context switch. Thread exit (cstep-texit) does
not remove the thread from the list—but scheduling a terminated thread simply
results in a context switch. We do not reason about the resources that threads
free (or fail to free) on termination.

Three rules describe lock acquisition: cstep-prelock to evaluate the lock ad-
dress, block (i.e., Klock), and context-switch to give other threads a chance to
release the lock; cstep-nolock in case the schedule selects this thread again while
the lock is not yet available (m(v) = 0); and cstep-lock to actually acquire the
lock, moving from Klock to Krun and joining the world wlock that satisfies the
lock’s resource invariant into the thread’s local world.

Finally, cstep-fork creates a new thread. Because we spawn function-calls (not
arbitrary commands that might have free C-minor variables), we don’t need com-

Oracle Semantics for Concurrent Separation Logic 25

plex side-conditions on free variables and we can use the empty environment ρ0

in the new thread. There is a nonconstructive test that the function’s precon-
dition is satisfied. The sequential semantics does not need such a test at every
function call; we need it here to know what world is transferred by the (precise)
predicate P that is the function’s precondition. Preconditions of nonspawnable
(ordinary) functions need not be precise.

F Various Proofs

F.1 Oracular Determinacy

Lemma. The oracular step 77−→ is deterministic.

Proof. Proved in Coq; it follows easily from (1) that the concurrent step is deter-
ministic and (2) the sequential semantics of Extensible C minor is deterministic,
given a deterministic extension. Determinacy makes it much easier to do the
proofs for sequential control-flow [1] and concurrent CSL rules (appendix F.2).

F.2 CSL lock rule

Lemma. Γ ⊢ {e
π

•→ R}lock e{e
π

•→ R ∗ R}.

Proof. Let Ψ be a program, F a frame and κ a control. By the definition of post-
conditions in the Hoare triple, we assume that for all σ, if Ψ, σ (e

π

•→ R) ∗ R ∗ Γ ∗ F

then for all Ω, safe(Ω, σ, κ). Now we are given σ = (ρ; w; m) satisfying Ψ, σ

e
π

•→ R ∗ Γ ∗ F . For an arbitrary oracle Ω, the thread k = (Ω, σ, lock e · κ) ei-
ther reduces to itself (rules Ω-Invalid or Ω-Diverges) and is safe, or takes a

step by Ω-steps. Then k
i

∝ S and the c-step Ψ ⊢ S Z=⇒ S′ reduces thread
i by the rule cstep-prelock. This step, like any that contains ContextSwitch,
ages all worlds in S. StepOthers then reduces the concurrent machine to S′′,
where thread i is rescheduled with control Krun: the last rule applied must be

cstep-lock to thread i. Let k′ = (Ω′, σ′, κ)
i

∝ S′, where σ′ = (ρ′; w′; m′). The
world w′ must be w ⊕ wlock where wlock was associated to the lock e in the
lock pool. The consistency requirements of the concurrent machine guarantee
that wlock, m

′′ ⊲ R where m′′ is the memory before executing cstep-lock. This
guarantees that Ψ, σ′

 (e
π

•→ R) ∗ R ∗ Γ ∗ F . Because of world-aging in at least
one cstep, wlock now satisfies R. We deduce safe(k′). Since the oracular semantics
is deterministic,5 states reducing to safe states are safe. We conclude safe(k).

5 This is one of the cases where a carefully designed deterministic semantics for con-
currency is helpful.

26 Aquinas Hobor Andrew W. Appel Francesco Zappa Nardeilli

F.3 The initial world

Theorem. Suppose Ψ ⊢ Γ , and Γ ⇒ main : {true}{true}. Then for any n one
can construct wn and a consistent Ω such that (Ω, (ρ0; wn; m), callmain ()·Kstop)
is safe to run for at least n communications.

Proved in Coq; similar to the proof in Section 12 of [2]. As in that proof
the initial world has a simple structure. However, that proof has no oracles. But
our initial oracle is also very simple, because the concurrent machine starts with
only one active thread.

F.4 Progress

Proof. If the schedule is empty (or picking a nonexistent thread) then S is c-

halted. Otherwise S = (i :: ℧; ~θ;L; m), and from Ψ ⊢ all-threads-safe(S) we
can find Ω, σ, κ̂ such that Ψ ⊢ safe-as i (Ω, σ, κ̂). If κ̂ = Krun κ then Ψ ⊢
StepOthers i S S and (by inversion) Ψ ⊢ safe (Ω, σ, κ). Therefore either κ =
Kstop or (Ω, σ, κ) 77−→ . If κ = Kstop then we can execute cstep-texit. If (Ω, σ, κ) 77−→ ,
there are three cases (in Figure 3) which handle concurent statements. Ω-Invalid
can be eliminated since θi is compatible with S. In both the remaining cases, we
have S Z=⇒ S′ as a hypothesis. Finally, if it is a core statement of C minor, then
we will satisfy the requirements to execute cstep-seq.

	Oracle Semantics for Concurrent Separation Logic (Extended Version)
	Aquinas Hobor Andrew W. Appel Francesco Zappa Nardelli

