
Foundational Proof Checkers with Small Witnesses∗

Dinghao Wu Andrew W. Appel Aaron Stump

Princeton University Washington University in St. Louis

{dinghao,appel}@cs.princeton.edu stump@cs.wustl.edu

ABSTRACT
Proof checkers for proof-carrying code (and similar systems)
can suffer from two problems: huge proof witnesses and un-
trustworthy proof rules. No previous design has addressed
both of these problems simultaneously. We show the theory,
design, and implementation of a proof-checker that permits
small proof witnesses and machine-checkable proofs of the
soundness of the system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods; F.3.1 [Logics

and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—logics of programs, me-
chanical verification; F.3.2 [Logics and Meanings of Pro-

grams]: Semantics of Programming Languages—denota-
tional semantics

General Terms
Languages, Verification

Keywords
Proof Checker, Proof-Carrying Code

1. INTRODUCTION
In a proof-carrying code (PCC) system [10], or in other

proof-carrying applications [3], an untrusted prover must
convince a trusted checker of the validity of a theorem by
sending a proof. Two of the potential problems with this
approach are that the proofs might be too large, and that the
checker might not be trustworthy. Each of these problems
has been solved separately; in this paper we show how to
solve them simultaneously.

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0208601.

To appear in Fifth ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming
(PPDP 2003).
c©2003 by the Association for Computing Machinery, Inc. Permission

to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

The general approach is to write a logic program that
has a machine-checked semantic correctness proof; this tech-
nique can be used in other domains (besides “proof-carrying”)
to write logic programs with machine-checked guarantees of
correctness.

1.1 Small proof witnesses
Necula has a series of results on reducing proof size [11,

12]. He represents logics, theorems, and proofs in the no-
tation of the Edinburgh Logical Framework (LF) [8]. But
the natural representation of an LF proof contains redun-
dancy (common subexpressions) that can cause exponential
blowup if the proofs are written in the usual textual repre-
sentation. Necula’s LFi data structure [11] eliminated most
of this redundancy, leading to reasonable-sized proof terms.

In the PCC framework, given a machine-language pro-
gram, the proof is of a theorem that the program obeys
some safety property. It’s natural to compare the size of the
representation of the proof witness to the size of the binary
machine-language program. Necula’s LFi proof witnesses
were about 4 times as big as the programs whose properties
they proved.

Pfenning’s Elf and Twelf systems [14, 15] are implemen-
tations of the Edinburgh Logical Framework. In these sys-
tems, proof-search engines can be represented as logic pro-
grams, much like (dependently typed, higher-order) Prolog.
Elf and Twelf build proof witnesses automatically; if each
logic-program clause is viewed as an inference rule, then the
proof witness is a trace of the successful goals and subgoals
executed by the logic program. That is, the proof witness
is a tree whose nodes are the names of clauses and whose
subtrees correspond to the subgoals of these clauses.

Necula’s theorem provers were written in this style, orig-
inally in Elf and later in a logic-programming engine that
he built himself. In later work, he moved the prover clauses
into the trusted checker. In principle, proof witnesses for
such a system can be just a single bit, meaning, “A proof
exists: search and ye shall find it.” However, to guaran-
tee that proof-search time (in the trusted checker) would be
small, Necula invented oracle-based checking [12]: the un-
trusted prover would record a sequence of bits that recorded
which subgoals failed (and therefore, where backtracking
was required). This bitstream serves as an “oracle” that
the trusted checker can use to avoid backtracking. The or-
acle bitstream need not be trusted; if it is wrong, then the
trusted checker will choose the wrong clauses to satisfy sub-
goals, and will fail to find a proof.

Using oracle-based checking, the proof witness (the oracle

1



bitstream) is about 1/8 the size of the machine code.1 The
key idea is to run a simple Prolog engine in the trusted proof
checker; the oracle is just an optimization to ensure that the
checker doesn’t run for too long.

1.2 Trustworthy checkers
Necula’s oracle-based checker for PCC comprises approx-

imately 26,000 lines of code:

23,000 Verification-condition generator, written in C
1,400 LF proof checker, written in C

800 Oracle-based Prolog interpreter, in C
700 Axioms for type system, written in LF

26,000 Total trusted lines of code

The largest component is the verification condition gener-
ator (VC-Gen), which traverses the machine-language pro-
gram and extracts a formula in logic, the verification condi-
tion, which is true only if the program obeys a given safety
policy.

This 26,000 lines forms the trusted code base (TCB) of the
system: any bug in the TCB may cause an unsafe program
to be accepted. The large VC-Gen component is a concern,
but so are the axioms of the type system: if the type system
is not sound, then unsafe programs will be accepted. League
et al. [9] have shown that one of the SpecialJ typing rules
is unsound.

The goal of our research [2] is to check proofs of program
safety using a much smaller TCB. We do this by eliminating
the VC-Gen component—we reason directly about machine
code in higher-order logic, instead of the two-step process of
extracting the verification condition and then proving it; and
we write the rules of our type system as machine-checkable
lemmas, instead of axioms. We have shown that the TCB
for a proof-carrying code system can be reduced below 2700
lines, as follows [6]:

803 LF proof checker, written in C
135 Axioms & definitions of higher-order logic, in LF
160 Axioms & definitions for arithmetic, in LF
460 Specification of Sparc instruction encodings, in LF

1,005 Specification of Sparc instruction semantics, in LF
105 Specification of safety predicate, in LF

2,668 Total trusted lines of code

Unfortunately, in this prototype system the proof wit-
nesses are huge: the DAG representation of a safety proof
of a program might be 1000 times as large as the program.
Proof size is approximately linear in the size of the program,2

1Unfortunately, this statistic is somewhat misleading. A
“pure” PCC system would transmit two components from
an untrusted code producer to a code consumer: a machine-
language program and a proof witness. The SpecialJ proof-
carrying Java system on which Necula measured oracle-
based checking transmits three components: The machine
code, the proof, and a Java “class file”. The Java class file,
as is usual in any Java system, contains descriptions of the
types of all procedures (methods) in the program, including
formal parameter and result types. However, the “1/8 size”
figure does not include the Java class files.
2Technically, proof size is roughly proportional to the size
of the program multiplied by the average number of live
variables on entry to a basic block; this is superlinear but
much less than quadratic, for typical programs.

so this factor of 1000 will not grow substantially worse for
larger programs. However, while this early prototype is use-
ful in showing how small the TCB can be made, it is im-
practical for real applications because the proof witnesses
are too big.

1.3 Synthesis
In this paper we will show that Necula’s insight (run a

resource-limited Prolog engine in the trusted checker) can
be combined with our paranoia (don’t trust the logic pro-
gramming rules used by such a Prolog engine) to make a
PCC checker with small witnesses and a small trusted base.

Our approach is as follows. We write a type-checking al-
gorithm in a subset of Prolog with no backtracking, a very
limited form of unification, and with efficiently indexed dy-
namic atomic clauses. We show that the operators of such
a Prolog program can be given a semantics in higher-order
logic, such that the soundness of each clause can be proved
as a machine-checkable lemma. We show that this Prolog
subset is adequate for writing efficient type-checkers for PCC
and for other “proof-carrying” applications.

Our trusted checker is sent the Prolog clauses, with ma-
chine checkable soundness proofs; it checks these proofs be-
fore installing the clauses. Then it is sent a theorem to
check (i.e., in a PCC application, the safety of a particular
machine-language program) and a small proof witness. The
Prolog program traverses the theorem and proof witness;
this traversal succeeds only if the theorem is valid.

The TCB of our new checker is only 366 lines larger than
our previous prototype. It mainly includes all the compo-
nents of our previous system (2668 lines) plus a concise im-
plementation of an interpreter (282 lines of C code) for our
Prolog subset.

2. SEMANTIC PROOFS OF HORN CLAUSES
We will illustrate our approach using an example—a type

checker for a very simple programming language. In this ex-
ample we illustrate the following points, which are common
to many proof-carrying applications:

• The specification of the theorem to be proved is quite
simple (in this case, that the program evaluates to an
even number).

• The proof technique involves the definition of a care-
fully designed set of predicates that allow a simple,
syntax-directed decision procedure (in this case, we
define a syntax-directed type system for evenness and
oddness).

• The syntax-directed rules are provable, from the def-
initions of the operators, as machine-checkable lem-
mas in the underlying higher-order logic (this is what
foundational means: the rules are provable from the
foundations of logic).

• The syntax-directed rules require management of a
symbol table, or context, that would lead to a quadratic
algorithm if implemented naively; we want a linear-
time prover, and we’ll show how to make one.

• The language being typechecked in a proof-carrying
code system (or in proof-carrying authentication) is
the output of another program—the compiler (or a

2



type τ ::= even | odd

decl d ::= · | let x = e; d
expr e ::= x | n | e1 + e2

prog p ::= (d; e)

Figure 1: Syntax of even-odd system.

Var ≡ Num
State ≡ Var → Num → Form
Decl ≡ State → Form
Exp ≡ State → Num → Form
Program ≡ 〈Decl ,Exp〉

(d; e) ≡ 〈d, e〉
· ≡ λs. true
let x = e; d ≡ λs. d s ∧ (∀a.e s a⇒ s x a)
x ≡ λs.λa. s x a
n ≡ λs.λa. a = n
e1 + e2 ≡ λs.λa. ∃a1.∃a2.

e1 s a1 ∧ e2 s a2 ∧
a = a1 plus a2

safe ≡ λp. ∀s. fst(p) s⇒
∃a. snd(p) s a ∧ isEven(a)

Figure 2: Safety specification.

prover). Such languages don’t need all of the syn-
tactic sugar that human-readable languages have, and
processing them is therefore easier.

2.1 Example: even-valued expressions
Consider a simple calculus for expressions with constants,

variables, addition, and let-binding, as shown in Figure 1.
A program consists of a list of declarations and an expres-

sion. An expression is either a variable, a natural number,
or the sum of two expressions. Here is an example:

let x = 4 ; let y = x + 8 ; x + y

There are two declarations followed by an expression; the
program evaluates to 16.

2.2 Safety specification
In this simple example, we define that a “safe” program

is one that evaluates to an even number. In order to define
the safety theorem, we need to know what a program means
and how to evaluate a program. The safety predicate, along
with a conventional denotational semantics of the language
in consideration, is shown in Figure 2.

All of these definitions are treated as axiomatic by our
checker; that is, they are trusted. Variables are represented
as numbers. An abstract State maps a variable to its con-
tent, i.e. a number. A program is a pair of a declaration and
an expression; its semantics is the pair of semantics of the
corresponding declaration and expression. Declaration Decl
is a predicate on states. Expression Exp is a predicate on
a state and a number; that is, given a state the expression
evaluates to a number. The semantics of concrete expres-
sions is straightforward from definitions.

Finally, the safety theorem is based on the semantics of

`p p : even

safe(p)
SafeTy

· `d (d; e) : τ

`p (d; e) : τ
ProgTy

Γ `e e1 : τ1 Γ[x : τ1] `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ
DeclConsTy

Γ `e e : τ

Γ `d (·; e) : τ
DeclNilTy

Γ(x) = τ

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1

�
τ2 = τ

Γ `e e1 + e2 : τ
PlusTy

even
�

even = even

�
ee

odd
�

odd = even

�
oo

even
�

odd = odd

�
eo

odd
�

even = odd

�
oe

Figure 3: Typing rules with static context.

language constructs.3 Given a program p, it is “safe” if: for
any states s, if the declaration of the program, i.e. fst(p),
holds on s, then there exists a number a such that the ex-
pression of the program, i.e. snd(p), evaluates to a and a is
even.

2.3 Type checker
The typing rules appear in Figure 3. There are three

kinds of typing judgements. The judgement for a program
`p checks that the program evaluates to a number whose
type is τ . The declaration judgement `d states that, assum-
ing the environment built so far, and assuming the remaining
declarations hold, the expression has a certain type. The ex-
pression judgement `e asserts that an expression has certain
type under typing context Γ.

These typing rules can be read as a Prolog-like logic pro-
gram. Each rule is a clause of the logic program. The con-
clusion of a rule is the head of the clause, and each premise of
the rule is a subgoal. The typing rules are designed such that
the conclusions of these typing rules are disjoint. Therefore,
when running the type checker (as a logic program) there
is no need to backtrack; we say that such a type system is
syntax-directed.

Furthermore, if we give denotational semantics expressed
in higher-order logic to typing judgements such as `p, `d,
and `e, each typing rule can be proved as a lemma in the
system, thus its soundness is guaranteed with respect to the
foundations of logic. The denotational semantics of typing
judgements is given in Figure 4. Proofs of the typing rules
are quite straightforward and thus omitted here. The deno-
tational semantics of the type operators are part of the safety
proof, not part of the safety specification. That is, they are
not trusted. It is straightforward to prove the safety theo-
rem from the conclusion of type checking rule ProgTy if we
pass τ even when invoking the type checker, as shown in the
SafeTy rule.

Our checker will determine the validity of the safety pred-
icate by determining whether a proof exists. It will not

3For our PCC application, there are only two language con-
structs for the machine code to be proved safe. The machine
code is a sequence of integers encoding machine instructions;
so we only need cons and nil.

3



Ty ≡ Num → Form
Env ≡ State → Form
even ≡ λx.∃n. isInt(n) ∧ x = 2n
odd ≡ λx.∃n. isInt(n) ∧ x = 2n + 1

`p p : τ ≡ ∀s. fst(p) s⇒ ∃a. snd(p) s a ∧ τ a
Γ `d (d; e) : τ ≡ ∀s. (d s ∧ Γ s)⇒ ∃a. (e s a ∧ τ a)
Γ `e e : τ ≡ ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)
τ1

�
τ2 = τ ≡ ∀n1.∀n2. τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

Γ[x : τ ] ≡ λs. Γ s ∧ ∃a. s x a ∧ τ a
Γ(x) = τ ≡ ∀s. Γ s⇒ ∃a. s x a ∧ τ a

Figure 4: Definitions of types and judgements.

construct such a proof as a data structure: instead, it will
traverse a trace of such a proof, composing lemmas in a
syntax-directed way. We call our set of lemmas a type sys-
tem: our machine-checked safety proof of a program P con-
sists of (1) a proof of soundness for the type system, and
(2) the successful syntax-directed execution of the typing
clauses as applied to P .

Efficiency and proof size problem. When type checking a
program, we build a type environment, or context, from the
declarations for variables that appear in the expression. The
rules for traversing a list of declarations and building the
corresponding type contexts are DeclConsTy and DeclNilTy .
When a variable is encountered, we look up its type in the
context. However, the typing rule VarTy does not specify
a context lookup algorithm. Consider the following variable
type-lookup rules.

Γ[x : τ ] ` x : τ
VarTyHit

Γ ` x : τ x 6= y

Γ[y : τ ′] ` x : τ
VarTyMiss

Suppose the context is simply organized as a list in these
two rules; each element of the list is a pair: a variable and its
type. Then each context lookup takes linear time, and type-
checking a whole program will take quadratic time. Corre-
spondingly, the size of the generated proof for a lookup op-
eration is linear with respect to the size of the context, and
thus the safety proof for a program has a quadratic blowup.
In the next section, we give a more efficient algorithm that
still has a provably sound semantic model, and generates
concise proofs.

3. EFFECTIVE CONTEXT MANAGEMENT
As we have explained, we avoid sending large proofs to the

trusted checker by sending a proof scheme with a soundness
proof for the proof scheme. We want the proof scheme to
“execute” efficiently, that is, in linear time with respect to
the size of the program-safety-theorem being proved. And
we want the proof schemes to be written in the “smallest
possible” Prolog-like language: what set of language features
are useful?

Here we will show an efficient proof scheme for contexts;
because this scheme requires dynamic clauses in the Prolog
subset, we have included a limited form of dynamic clauses
in our language design.

`p p : even

safe(p)
SafeTy

d `d (d; e) : τ

`p (d; e) : τ
ProgTy

Γ `e e1 : τ1 bind(x, τ1,Γ) → Γ `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ
BindTy

Γ `e e : τ

Γ `d (·; e) : τ
BindNil

bind(x, τ1, Γ)

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1

�
τ2 = τ

Γ `e e1 + e2 : τ
PlusTy

even
�

even = even

�
ee

odd
�

odd = even

�
oo

even
�

odd = odd

�
eo

odd
�

even = odd

�
oe

Figure 5: Typing rules with dynamic context.

3.1 Dynamic clauses and local assumptions
Many logic programming systems provide a facility for

managing dynamic clauses at run time. In Prolog, users can
assert a fact or clause into database or retract a clause dy-
namically. The assert/retract mechanism can be expensive
if the dynamic clause in consideration is not atomic (i.e.,
has subgoals) because the dynamic clause has to be com-
piled and integrated into the program’s decision trees. If
the dynamic clause is atomic, with input-mode arguments
that are integers or hashable, the assert/retract operation
can be cheap: Prolog systems usually provide efficient sup-
port for asserting or retracting an atomic clause by using
hash tables. That is, asserting, retracting, and querying in-
dexable atomic clauses can be done in constant time per
operation.

In the Logical Framework (LF) [8], or its implementation
Twelf [13, 15], one can use local assumptions [16] to check
dynamic clauses into database. Since these assumptions are
local, their static scopes control their lifetimes; there is no
need to provide an explicit retract mechanism. A clause of
the form {x : τ} A x → B x introduces a local assumption
A x into the context and then solves the goal B x under
this assumption.4 When proof search on goal B has finished,
assumption A is automatically retracted. That is, Twelf uses
a dynamically well-scoped version of assert/retract. One
can use Prolog assert/retract mechanism to simulate Twelf’s
local assumptions, however. We can give semantics to local
assumptions and generate concise proofs so that clauses are
guaranteed to be correct.

Local assumptions are particularly effective—efficient, se-
cure (with a provably sound model), and concise—when we
need to deal with big environments and generate proofs of
lookups in these environments.

3.2 Typing rules
In this subsection, we present an efficient type checking

algorithm using dynamic clauses. We give semantics in the
next subsection. Figure 5 shows typing rules with a dynamic
context management scheme.

The rule ProgTy calls a declaration checking rule and

4It is a dependent type on local parameter x.

4



passes declaration d to it. The declaration d appears twice
in the premise. The declaration checking rules traverse one
d, and the other d is used to pass the original declaration all
the way to the expression checking rules.

The rule BindTy requires some explanation. It first checks
that the expression e1 has type τ1, then asserts this fact as
a dynamic clause (or local assumption) bind(x, τ1,Γ) and
continues type checking.

When type checking a variable expression, we try rule
VarTy to match the previous checked-in local assumptions.
The lookup operation takes constant time and the proof
generated for it is concise. The

�
rules remain the same as

before.
In a conventional Prolog implementation that supports ef-

ficient assert/retract operations for atomic dynamic clauses
like bind(x, τ1,Γ), the type checking algorithm above is lin-
ear. Moreover, it is provably sound as shown in the next
subsection.

3.3 Foundational semantics and proofs
The safety specification remains the same as presented in

Figure 2. The definitions of types and typing judgements
remain untouched except for `d and the new constructor
bind .

Γ `d (d; e) : τ ≡ ∀s. (Γ v d ∧ Γ s)⇒
∃a. (e s a ∧ τ a)

bind(x , τ, Γ) ≡ ∀s. Γ s⇒
∃a. (s x a ∧ τ a)

d1 v d2 ≡ ∀s. d1 s⇒ d2 s

The semantics of dynamic clause bind(x , τ, Γ) is very sim-
ilar to that of the static binding operator Γ[x : τ ] and lookup
operator Γ(x) = τ . It serves both purposes. From these def-
initions it is straightforward to prove the typing rules as lem-
mas and the safety theorem can be proved from the success-
ful type checking of a program from the goal `p (d; e) : even.
Here we give the proof for rule BindTy .

Lemma 1 (BindTy).

Γ `e e1 : τ1 bind(x, τ1,Γ) → Γ `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ

Proof . By definition of `d, for all state s, we assume Γ v
(let x = e1; d) and Γ s, then we prove ∃a. (e s a∧ τ a). This
can be obtained from Γ `d (d; e) : τ . In order to use this
fact, we need to prove the local assumption bind(x, τ1,Γ),
which can be proved from the premise Γ `e e1 : τ1 and the
assumption Γ v (let x = e1; d). �

The machine checkable proof for this rule can be found in
Appendix A.

4. FLIT
For developing our semantic proofs of soundness we use

Twelf, a sophisticated system with many useful features: in
addition to an LF type checker, it contains a type recon-
struction algorithm that permits users to omit many ex-
plicit parameters, a proof-search algorithm (which is like
a higher-order Prolog interpreter), constraint regimes (e.g.,
linear programming over the exact rational numbers), mode
analysis of parameters, a meta-theorem prover, a pretty-
printer, a module system, a configuration system, an inter-
active Emacs mode, and more. We have found many of

these features useful in proof development, but Twelf is cer-
tainly not a minimal proof checker, we would like to avoid
the need to trust it. However, since Twelf does construct ex-
plicit proof objects internally, we can extract these objects
to send to our minimal checker.

The previous section shows that efficient syntax-directed
type-checking uses certain logic-programming constructs (dy-
namic clauses) but not others (backtracking), and that each
Horn clause can be proved sound as a lemma in higher-
order logic. This section describes a suitable logic program-
ming interpreter implemented in Flit, our trusted LF proof
checker. Other aspects of Flit are described in another pa-
per [6]. To achieve a concise and efficient implementation,
we impose several restrictions on the form of goals and pro-
grams. If these are violated, the interpreter will remain
sound but may fail to be complete. This section discusses
these restrictions and the implementation of the interpreter.
We begin with a few basic definitions from logic program-
ming.

4.1 Basic definitions
Flit’s logic programming interpreter can solve goals with

respect to logic programs containing dynamic clauses and
simple arithmetic. Goals are atomic formulas (also called
atoms) of first-order logic. Logic programs are conjunctions
of clauses, where each clause is either a universally quanti-
fied atom or a universally quantified implicational formula
formed from atoms using only conjunctions and implica-
tions. Implications other than the topmost one must be
in the antecedents of other implications; such nested impli-
cations give rise to dynamic clauses. As usual, the head of
a clause is the clause itself for atomic clauses and the conse-
quent of the topmost implication for implicational clauses.
The body of a clause is its antecedent if it is an implicational
clause, and TRUE if it is an atomic clause. We assume the
usual notion of unification of atoms, based on the usual no-
tion of substitution for a finite set of variables. A substi-
tution is ground if all terms in its range are ground. Goals
and subgoals are just atoms. A solution for a goal G with
respect to a logic program P is a substitution σ such that
(A ∪ P) ` σ(G), where ` is provability in first-order logic
and A are axioms for addition, multiplication, and truncat-
ing division on 32-bit natural numbers. These arithmetic
operations are represented as three-place relations, where
the last place gives the output of the operation.5

For reasoning about our logic programming interpreter,
we will make use of a standard natural deduction proof sys-
tem for first-order logic. Then a use of a clause C in a proof
is either an assumption of C, if C is atomic; or an applica-
tion of modus ponens whose implicational argument is C.
The subgoals produced while solving a goal G are just the
atomic formulas contained in the proof of G from A∪ P.

4.2 Flit’s logic programming language
Flit’s logic programming interpreter is sound for arbitrary

logic programs with dynamic clauses. It is complete for solv-
ing goals G with respect to logic programs P, under certain

5Since the 32-bit natural numbers are not closed under addi-
tion or multiplication, goals such as multiply 220 220 X are
not satisfiable. However, our underlying higher-order logic
has the complete theory of the integers; the 32-bit numbers
are just a way of writing some of the constants and evalu-
ating some of the expressions in that theory.

5



conditions. First, all dynamic clauses of P must be atomic.
Second, suppose G is provable from P. Then it must be the
case that G has a proof satisfying the following conditions:

1. Bounded execution. The size of the proof is no more
than some fixed constant MAX PROOF. This assumption is
used to avoid dynamic allocation of memory while trying to
solve G. Although our logic program never constructs the
proof itself, the number of Horn-clause matches it executes
is proportional to the size of the proof; and since we have
not implemented garbage collection, unreclaimed auxiliary
memory used in constructing substitutions may grow pro-
portionally to proof size.

2. Determinism. Every subgoal S in the proof is proved
by a use of the first clause of D∪P whose head unifies with
S, where D are the active assumptions (corresponding to
active dynamic clauses). Under this condition of determin-
ism, the interpreter need not backtrack to be complete. It
is never necessary to try later clauses if a proof cannot be
found from a use of the first unifying clause.

3. Bounded indexes. Let p be an arbitrary point, and
let A be the set of assumptions active at that point. A corre-
sponds to the set of dynamic clauses live at the correspond-
ing point in execution of the logic program. We require that
the first argument of every a ∈ A is a natural number less
than some fixed constant MAX INDEX and distinct from
all other such numbers in A. This allows simple, efficient
indexing of dynamic clauses.

Prolog interpreters typically enter atomic dynamic clauses
in hash table for efficient matching, using one of the pred-
icate’s arguments as the hash key. Our logic programs can
be written with this very restricted form of clause indexing.

Example. The even-odd proof scheme of Figure 5 is a
logic program that conforms to these restrictions. The proof
scheme (1) executes in linear time and space, and it is (2)
syntax-directed. Its dynamic clauses bind(x, τ, Γ) are all
atomic. In our implementation of this proof scheme, we
put the x argument of bind(x, τ, Γ) in the first position to
conform to the (3) bounded indexes rule; and all the indices
x are manifest constants that are small integers.

Our LTAL proof scheme used in the real PCC system also
obeys these restrictions.

4.3 Constructing programs
A logic program is presented to Flit’s interpreter as a set

of LF terms, represented using an expression data structure
(expr) [6]. These terms are built from the LF constants de-
clared in the trusted computing base. They represent proofs
of theorems derivable from the axioms represented by the
constants. The type of each term represents the lemma that
it proves. The set of these lemmas is essentially the logic
program to be used. To massage the LF type into a form
that is convenient for logic programming, however, the fol-
lowing transformations are applied in order:

Mark logic vars. The LF type is of the form

Πx1 : τ1. . . . Πxm : τm.Πa1 : G1. . . . Πan : Gn.G

where x1, . . . , xm are the typed logic variables, G1, . . . , Gn

are the subgoals of the clause, and G is the head of the

clause. Flit distinguishes Π-abstractions declaring logic vari-
ables and Π-abstractions stating subgoals by checking whether
the bound variables, i.e. xi and aj (0 < i ≤ m and 0 < j ≤ n),
occur free in their scopes. If a bound variable occurs free
in its scope, it is a logic variable; otherwise, its type is a
subgoal. The logic variables x1, . . . , xm are marked with a
flag, for use in subsequent processing.

Massage type. The head of the clause is originally buried
beneath Π-abstractions for the logic variables and the sub-
goals of the clause. For more efficient matching, we massage
the type to get the following:

G← Gn, . . . , G1, check(xm), . . . , check (x1)

This puts the head at the top of the expr, and ensures that
subgoals will be solved in the appropriate order, with Gn

solved first. We put expressions check(xi) on this list af-
ter the Gi because if all the subgoals Gi succeed, we must
then check that the logic variables have all been instantiated
to ground terms; this is necessary to ensure that the proof
is not dependent on some nonexistent element of an empty
type.

Rename vars. Finally, all the logic programming vari-
ables of the clause are replaced by distinct fresh variables.

For a clause to add an atomic dynamic clause G before
checking a particular subgoal G′, it should contain an ex-
pression of the form Πa : G. G′ in its list of subgoals.

4.4 Solving goals
After a logic program has been obtained in the way de-

scribed in the previous section, Flit’s logic programming in-
terpreter can solve goals with respect to that program. The
algorithm to do this is given in pseudocode in Figure 6.
This run lp() function aborts if no solution was found for
the goal, and terminates normally otherwise. If a solution
is found, a single global substitution is updated to hold the
unifier. We use the standard simple unification algorithm,
and unroll the unifier lazily while performing unification.

There are four cases in the code of Figure 6. The first is for
solving a pair of subgoals, which is done in the obvious way.
The second case of run lp() is for dynamic clauses. We
add the dynamic clause G, then solve the subgoal G′, and
then remove the dynamic clause. When adding the dynamic
clause, the checker aborts if the first argument position is
not a positive number or if some other active dynamic clause
has this same number in its first argument position. As
described in Section 4.2, the interpreter is not complete for
programs where these conditions are violated. Otherwise
the dynamic clause is added to a static array at the index
given by the number in its first argument position. The
third case implements the check described in Section 4.3
that makes sure logic variables are ultimately instantiated
with ground terms. In fact, the check makes sure that each
logic variable is instantiated with an acyclic ground term.
This is sufficient to implement the occurs check, which is
needed for soundness.

The default case of run lp() is for atomic goals. This
is the only other form of goals allowed by the conditions
of Section 4.2. To solve an atomic goal, we try to find a
clause whose head unifies with the goal. First, if the goal is
an arithmetic goal such as + 3 4 X we perform the fixed-
precision arithmetic. Next, if the first argument of the goal

6



bool run_lp(expr goal) {

int curr_expr_index = next_expr_index;

case goal of

(G,G’) =>

run_lp(G); run_lp(G’);

(G -> G’) =>

int i = add_dynamic_clause(G);

run_lp(G’);

remove_dynamic_clause(i);

check(t) =>

ensure(ground(t));

default =>

expr clause = find_unifying_clause(goal);

if (!clause) abort();

else if (clause has subgoals S) {

new_goal = apply_unifier_and_rename(S);

clear_clause_vars();

run_lp(new_goal);

}

esac

}

Figure 6: Logic program interpreter

is a positive number, we consult the dynamic clause table.
Then we try static clauses of the program; we index on the
predicate symbol of the goal.

If no matching clause is found, then run lp() aborts.
Otherwise, it either succeeds if the clause is atomic, or else
applies the unifier to the clause’s subgoals and tries to solve
them by recursive call to run lp(). When the unifier is
applied, any uninstantiated logic variables are renamed to
fresh variables. Bindings for the static clause variables are
cleared after applying the unifier. Note that if a clause has
more than one subgoal, the subgoals are already packaged
up in order using commas (by “massage-type”), so the first
case of run lp() will be used in the recursive call to solve
them in order.

5. PROOF WITNESSES
Our even-odd example is overly simplistic in that there

is a syntax-directed decision procedure for the main safety
theorem: for an expression E, if the formula safe(E) is true,
then the proof is easily found. In a real proof-carrying code
application, the program E is in machine language; loops
and recursion in the program, and quantified types in the
type system, make type inference impossible.

Thus, in a PCC application, the input to the prover in-
cludes the program E and also an untrusted hint H. The
hint provides loop invariants, type annotations, and other
information which can be used by the prover. Because the
hint is provided by the same adversary who provides the
program, H cannot be assumed accurate, but it can still be
useful in constructing the proof.

We will illustrate using the even-odd example. Let us
provide a hint H which is a list of type annotations, x1 :
τ1, x2 : τ2, . . . , xn : τn. We will write a prover that uses
this hint (even though for this simple language the hint is
not necessary). The root goal is now `p H E instead of
safe(E).

In addition to running the logic program on the root query

`p H E, the checker verifies a (static) proof of the lemma,

`p H E

safe(E)
.

We can’t use this as a logic-programming rule, i.e. we can’t
use safe(E) as our query, because then the logic program
would have to “guess” H, which could require unbounded
backtracking.

The hint H serves as a proof witness for E, in conjunc-
tion with the Prolog program (i.e. proof scheme) and its
semantic soundness proof.

5.1 Layers of specification and proof
To handle proof-checking with hints, the checker software

must process separately several layers of specification, se-
mantics, proof, and logic-programming clauses. It is useful
to think in terms of a proof consumer and an adversary.

Axioms stage 1

Trusted↑ Expression Operators
Untrusted↓ Semantic stage 2

Model
Hint Operators

Proof scheme Clauses
Theorem to be proved Expression stage 3

Proof witness Hint

Stage 1. The proof consumer specifies the Axioms of
a logic, and defines the kinds of theorems she wants to
check—that is, the language of expressions for which she
wants safety theorems—by defining Expression Operators.
One of the expression operators must be a predicate called
safe.

Stage 2. Then the adversary sends a proof scheme, that
is, a logic program (the syntactic type checker in the even-
odd example). This program manipulates goals expressed
using the Expression Operators and the Hint Operators. All
the hint operators must be defined in terms of the underlying
logic—the adversary is not permitted to add uninterpreted
operators to the logic. All the Clauses of the logic program
must be proved as derived lemmas in the logic, from the
definitions of the expression and hint operators, as Lemma 1
does.

The Semantic Model, sent by the adversary, is simply a
set of supporting definitions and lemmas, defined in terms
of the underlying logic, that can be useful in defining the
hint operators and the clauses.

The adversary may define as many hint operators and
clauses as he likes; however, there must be one operator
called `p, and the semantic model must contain a lemma of
the form,

`p H E

safe(E)
.

The proof consumer uses the logical framework (LF) to
check the wellformedness of all the definitions and the proofs
of all the lemmas. Then she loads the Clauses into the
subset-Prolog interpreter.

Stage 3. Finally, the adversary sends an Expression and
a Hint. The consumer needs to verify that the expression
obeys her desired safety property—this was the point of the

7



Axioms
A⇒ B A

B
imp e

∀x.A(x)

A(B)
∀ e

et cetera

Expression Operators
Var ≡ Num
State ≡ Var → Num → Form
Decl ≡ State → Form
Exp ≡ State → Num → Form
Prog ≡ 〈Decl ,Exp〉

(d; e) ≡ 〈d, e〉 · ≡ λs. true
let ≡ λx.λe.λd. λs. d s ∧ (∀a.e s a⇒ s x a)
x ≡ λs.λa. s x a

n ≡ λs.λa. a = n
+ ≡ λe1.λe2. λs.λa. ∃a1.∃a2.

e1 s a1 ∧ e2 s a2 ∧ a = a1 plus a2

safe ≡ λp. ∀s. fst(p) s⇒
∃a. snd(p) s a ∧ isEven(a)

Semantic ModelTy ≡ Num → Form
Env ≡ State → Form
∃! ≡ λF. ∃x. F x ∧ ∀y. F y ⇒ x = y
upd ≡ λx.λa.λs. λy.λb. if (x = y) (a = b) (s y b)

even ≡ λx.∃n. isInt(n) ∧ x = 2n
odd ≡ λx.∃n. isInt(n) ∧ x = 2n + 1
`p ≡ λh.λp.λτ. ∀s. fst(p) s⇒ ∃a.snd(p) s a ∧ τ a
`d ≡ λΓ.λh.λd.λe.λτ. ∀s. (Γ v d ∧ Γ s)⇒

∃a. (e s a ∧ τ a)
`e ≡ λΓ.λe.λτ. ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)
�

≡ λτ1.λτ2.λτ. ∀n1.∀n2.
τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

bind ≡ λx.λτ.λΓ. ∀s. Γ s⇒ ∃a. (s x a ∧ τ a)
v ≡ λd1.λd2. ∀s. d1 s⇒ d2 s

Hint OperatorsTy Env even odd typeof ·

Clausessafe(p) ← `p p : even.
`p (d; e) : τ ← d `d (d; e) : τ.
Γ `d (typeof x : τ1;h) ‖ (let x = e1; d) ; e : τ ←

Γ `e e1 : τ1 ←
(bind(x, τ1,Γ) → Γ `d (h ‖ d ; e) : τ ).

Γ `d (·‖·; e) : τ ← Γ `e e : τ.
Γ `e x : τ ← bind(x, τ1,Γ).
Γ `e e1 + e2 : τ ← Γ `e e1 : τ1 ←

Γ `e e2 : τ2 ← τ1

�
τ2 = τ.

even
�

even = even. even
�

odd = odd.
odd

�
odd = even. odd

�
even = odd.

Expressionlet x = 4 ; let y = x + 8 ; x + y

Hint
typeof x even (typeof y even ·)

Figure 7: Proof scheme for even-odd system. Not
shown are the proofs (in higher-order logic) of all the clauses.

whole exercise!—and she will do it using the adversary’s
proof scheme. Since the proof scheme was proved sound
(and she has checked the proof), then if the logic program
completes successfully, then safe(E) must be valid.

For the even-odd system, the implementation of these
stages is shown in Figure 7; sample source code written in
Twelf is in Appendix A.

Program

ML program

OK!

LTAL
Code

Machine

Proofs of LTAL clauses

LTAL clauses

Checker

compiler

Certifying

LTAL operators

Axioms & Architecture Spec

Indexed
model of
recursive

model of
mutable
fields

Stratified

conventions
register
Model of

types

Figure 8: Foundational PCC Framework. Trusted
components are shaded.

What is a proof witness? Stage 1 (loading axioms
and safety predicate) needs to be done only once per safety
policy. In a PCC application, stage 2 (loading the proof
scheme) would need to be done when there are substantial
modifications to the the untrusted compiler. Stage 3 is re-
peated for each compiled program sent from the compiler to
the consumer. Clearly, any work done in stages 1 and 2 can
be amortized over many executions of stage 3. Although
the foundational proof derives from information transmit-
ted in stages 2 and 3, in measuring the effective size of proof
witnesses we can consider just the Hint sent in stage 3.

6. APPLICATION: FOUNDATIONAL PCC
The even-odd type system is just a toy example to demon-

strate some of the principles. Our real applications are
in proof-carrying code and distributed authorization. Our
checking system scales up to these examples quite well, as
we will explain.

In our application to foundational PCC, the hint H is an
expression in a calculus called Low-level Typed Assembly
Language (LTAL) [7], and the expression E is a machine-
language program, that is, a sequence of 32-bit natural num-
bers.

Figure 8 shows the major components of our foundational
proof-carrying code framework. The LTAL clauses are a
set of clauses in our restricted Prolog subset. Axioms &
Architecture Spec are preloaded into our Checker and must
be trusted as axioms and trusted definitions.6 Between these
two components are proofs, based on the axioms, of all the
LTAL clauses.

A source program is compiled into a machine-code pro-
gram and an LTAL expression. The compiler is not trusted,
because it is a large program that may have bugs. The
trusted checker receives the LTAL clauses, along with their
soundness proofs in higher-order logic; checks the soundness
proofs; and then runs the LTAL checker, which is a syntax-
directed computation in our subset Prolog.

6A trusted definition is one that is used in the statement of
the theorem to be proved; an untrusted definition is used
only in the proof.

8



programs P ::= (M, ~B, ls)
basic blocks B ::= f [~α](v1 :τ1, . . . , vn :τn)S

maps M ::= (L, R, T )
label map L ::= {l1 7→ a1, . . . , ln 7→ an}
register map R ::= {v1 7→ r1, . . . , vn 7→ rn}
type abbrev . map T ::= {t1 7→ τ1, . . . , tn 7→ τn}

instr . sequence S ::= ι;S | branch | jmp

instructions ι ::= add vd, v1, v2 | · · · (53 more)

types τ ::= α | > | ⊥ | int32 | ∃α.τ | · · ·

Figure 9: LTAL Syntax

Chen et al. [7] describe the LTAL and the compiler that
produces it; Tan et al. [19] describe the semantic model
of the LTAL. In this paper we focus on the aspects of the
LTAL calculus that enable it to be type-checked by our tiny
trusted checker.

Because a source-language programmer never sees the LTAL
program, we can design the LTAL calculus to be checkable
in our very restricted language. To use the checker’s limited
support for dynamic clauses, we have arranged the LTAL so
that: All identifiers in LTAL are small integers. No variables
have the same identifier. Program labels, local variables,
and type abbreviations are represented by disjoint sets of
integers. To make the LTAL type system entirely syntax-
directed, we use explicit coercions to guide the typing rules,
instead of relying on subtyping which would require a search.

We use the simple and limited arithmetic provided by the
checker: addition, multiplication, and truncating division on
32-bit natural numbers. Other operators are synthesized,
such as A > B by div B A 0, using truncating division.

6.1 Syntax of LTAL
The syntax is illustrated in Figure 9. An LTAL pro-

gram consists of various maps (including type abbrevia-
tion declarations, label map, and register map), a set of
function declarations, and a start label. Function decla-
ration f [~α](v1 : τ1, . . . , vn : τn)S defines a function (basic
block) with label f , type parameters ~α, formal parameters
v1 : τ1, . . . , vn : τn, and function body S which is a sequence
of LTAL instructions. The function label f is assigned a
code pointer type codeptr[~α](v1 :τ1, . . . , vn :τn).

The label environment L is a map from program labels to
their addresses. The register-allocation environment R maps
variables to temporaries (registers or spill locations). The
type abbreviation environment T maps type abbreviations
to their expansions. Type abbreviations are used to gain
concise type expressions and the type checker opens a type
abbreviation when needed.

6.2 Typing rules
The LTAL has hundreds of clauses. Here we will show just

one: a rule for Sparc add instruction, shown in Figure 10.
The first and second premises state that both x and y have

type int32, 32-bit integer type. Environment LRT is label,
register allocation, and type abbreviation maps. Address `
is the location of current instruction v ← x + y; address `′

is the location of the next instruction. Premise (3) specifies
that this instruction is 4 bytes long.

(1) LRT ; ρ; Φ `v x : int32 (2) LRT ; ρ; Φ `v y : int32
(3) `′ = ` + 4
(4) R(v) = tv (5) R(x) = tx

(6) realreg(tv) = rv (7) realreg(tx) = rx

(8) ym = match reg or imm(y)
(9) Φ′ = {v : int32} ∩ (Φ\v)
(10) decode list ` `′P P ′ i ADD(rx, ym, rv)

LRT ; Γ `ι (`; ρ; �; Φ; P ){v ← x + y}(`′; ρ; �; Φ′;P ′)

Figure 10: Typing rule for add instruction.

Premises (4), (5), (6), and (7) map variables to tempo-
raries and temporaries to registers. They use the R compo-
nent of the LRT environment; R is a context managed with
dynamic clauses.

Premise (8) matches a particular Sparc addressing mode;
premise (9) relates the value typing contexts Φ,Φ′ before
and after execution of the current instruction. The Φ con-
text is small (it just maps currently live local variables) and
is represented as a list, not with dynamic atomic clauses.

The decode list relation in premise (10) maps an instruc-
tion encoding (i.e., an integer) to its semantics. Specifi-
cally, it says that the instruction word at the beginning of
machine code P with length `′ − ` is an add instruction
i ADD(rx, ym, rv). Machine code P is a sequence of inte-
gers (instruction words); the pair (P, P ′) is a conventional
Prolog difference-list.

The conclusion is like a Hoare-logic judgement. In envi-
ronment LRT , the instruction v ← x + y is at location `;
the length of the instruction is `′ − `; this instruction does
not affect type contexts ρ or heap allocation environment
�; value context Φ becomes Φ′ after execution; the machine
code at location `′ is P ′.

For a real-life program, the generated maps L, R, and T

can be very large: the sizes of L and R are approximately
linear in the size of the program, and we intend to be able to
type-check programs with millions of instructions. In this
typing rule, premises (4) and (5) look up the temporaries
of variables v and x in map R; premise (8) looks up the
temporary of y if it is not an immediate. Therefore, an
efficient environment management scheme is necessary.

Such typing rules, though bigger and more complicated
than the rules we presented for the even-odd system, can be
executed by our simple subset Prolog interpreter.

7. EXPERIMENTAL RESULTS
We have measured our trusted checker on the even-odd

microbenchmark and on some small but nontrivial LTAL
benchmarks. Gross statistics about these proof schemes are
as follows:

EvenOdd LTAL
Core Axioms 341 341 lines of LF
App-specific 10 1522 lines of LF
Expr. Ops. 40 2 lines of LF
Sem. Model 218 ∼100,000 lines of LF
Hint Ops. 10 500 lines of LF
Clauses 12 3,500 lines of LF

Expression ∼ 7N ∼ 2N tokens
Hint ∼ 4N ∼ 30N tokens

9



Lines of LF does not include blank lines and comments.
Expression sizes for EvenOdd are measured with N as the
number of declarations, each declaration of the form let xi =
xj + xk; which is 7 tokens per declaration. Expression sizes
for LTAL are measured with N as the number of machine
instructions (32-bit integers) in the program to be proved
safe, with two tokens per integer, for example:
2551193600 next_word 2181292040 next_word 2214748172 end

From this it should be clear why LTAL has only two Ex-
pression Operators; everything shown in Figure 9 is actually
Hint Operators.

The logic program is the set of LTAL typing rules. There
are several hundred LTAL clauses or typing rules, some of
which take dozens of lines to write down, such as the one we
showed in Section 6.2 for Sparc add instruction. The LTAL
semantic model, which provides proofs of all these clauses,
is rather intricate and is the subject of several other papers
[4, 5, 1, 19].

Since the clauses are written in a subset of Prolog, we
can execute them in a standard Prolog system. For each
benchmark, we compare execution time in the (highly opti-
mized) SICStus Prolog compiler with execution time in the
Flit interpreter.

Input size SICS Twelf Flit
EvenOdd

N = 100 0.002 0.99 0.01
N = 1000 0.030 > 3600 0.05
N = 10000 1.460 0.26

LTAL

N = 32 0.005 1.21 0.43
N = 870 0.183 1018 1.32
N = 1816 0.432 > 3600 2.19

All times are in seconds on a 2.2 GHz Pentium 4. Twelf
is not designed for performance, but its advanced features
make it a convenient tool for us to develop machine-checkable
proofs in LF. Flit is faster than SICStus Prolog for large
EvenOdd examples; EvenOdd is unrealistic because the pro-
log program has only a few simple clauses. Parsing the ex-
pression and hint contributes a significant portion of execu-
tion time for EvenOdd examples in SICStus Prolog. Check-
ing LTAL, Flit is about five times slower than SICStus; this
performance may be acceptable in the intended application.

Of course, execution in SICStus loses the benefits of the
tiny trusted base: in that mode we don’t mechanically con-
nect the soundness proof for the LTAL clauses to the actual
SICStus execution, and the SICStus Prolog compiler and
interpreter also become part of the trusted base.

The Flit software currently comprises about 1169 lines of
C code: the 803 lines described in Section 1.2 for parsing
axioms, loading proof graphs, and LF checking the proofs
have grown to 852 lines; our new logic-program interpreter
is about 282 lines, and there are about 35 lines to manage
the stages described in Section 5.1.

Necula’s oracle-based Prolog interpreter [12] is about 800
lines of C code. It should be straightforward to use our style
of LF proof-checking of Prolog clauses, but use oracle-based
execution instead of our interpreter. Then, instead of an
1169-line C program, we would have a 1700-line program.
In such a system, the proof witnesses would be just as tiny
as Necula’s, and the trusted base would be somewhat larger
than that of the system we have described in this paper.

Our interpreter has no garbage collector. Checking the
N = 1816 LTAL example consumes approximately 4 mil-

lion heap nodes. To scale Flit to significantly larger inputs,
garbage collection would be necessary; our trial implemen-
tation of an allocator with two-space copying collector is 70
lines of C code.

8. CONCLUSION
To make a trustworthy proof-checker with small witnesses,

one should define a language for proof-schemes, with a way
to represent and check soundness theorems for the proof
schemes; then one should implement an interpreter to exe-
cute the proof scheme on the theorem and the witness.

Pollack explained much of this in “How to believe a machine-
checked proof” [17]:

... I suggest that the “programming language”
for the checking program be a logical framework
[such as] the Edinburgh Logical Framework ....
we [could] program a checker in the internal lan-
guage of the framework .... The question then
arises: where will we find a believable implemen-
tation of a logical framework?

We ask you to believe very little. Our implementation is
based on LF, higher-order logic, and a small subset of pure
Prolog, all of which are well understood; and our implemen-
tation is about as small as possible—that is, to trust our
system there are less than 1200 lines of code that you have
to understand.

9. REFERENCES
[1] Amal J. Ahmed, Andrew W. Appel, and Roberto

Virga. A stratified semantics of general references
embeddable in higher-order logic. In In Proceedings of
the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS 2002), July 2002.

[2] Andrew W. Appel. Foundational proof-carrying code.
In Symposium on Logic in Computer Science (LICS
’01), pages 247–258. IEEE, 2001.

[3] Andrew W. Appel and Edward W. Felten.
Proof-carrying authentication. In 6th ACM
Conference on Computer and Communications
Security. ACM Press, November 1999.

[4] Andrew W. Appel and Amy P. Felty. A semantic
model of types and machine instructions for
proof-carrying code. In POPL ’00: The 27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 243–253, New York,
January 2000. ACM Press.

[5] Andrew W. Appel and David McAllester. An indexed
model of recursive types for foundational proof-
carrying code. ACM Trans. on Programming
Languages and Systems, 23(5):657–683, Sept. 2001.

[6] Andrew W. Appel, Neophytos Michael, Aaron Stump,
and Roberto Virga. A trustworthy proof checker. In
Iliano Cervesato, editor, Foundations of Computer
Security workshop, pages 37–48. DIKU, July 2002.

[7] Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai
Fang. A provably sound TAL for back-end
optimization. In PLDI ’03: Proceedings of the 2003
ACM SIGPLAN Conference on Programming
Language Design and Implementation, New York,
June 2003. ACM Press.

10



[8] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1):143–184, January 1993.

[9] Christopher League, Zhong Shao, and Valery Trifonov.
Precision in practice: A type-preserving Java compiler.
In 12th International Conference on Compiler
Construction (CC’03), page to appear, April 2003.

[10] George Necula. Proof-carrying code. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 106–119, New York,
January 1997. ACM Press.

[11] George C. Necula and Peter Lee. Efficient
representation and validation of proofs. In In
Proceedings of the 13th Annual Symposium on Logic
in Computer Science, 1998.

[12] George C. Necula and S. P. Rahul. Oracle-based
checking of untrusted software. In POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 142–154.
ACM Press, January 2001.

[13] Frank Pfenning. Logic programming in the LF logical
framework. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 149–181.
Cambridge University Press, 1991.

[14] Frank Pfenning. Elf: A meta-language for deductive
systems. In A. Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction,
pages 811–815, Nancy, France, June 1994.
Springer-Verlag LNAI 814.

[15] Frank Pfenning and Carsten Schürmann. System
description: Twelf — a meta-logical framework for
deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on
Automated Deduction (CADE-16), pages 202–206,
Trento, Italy, July 1999. Springer-Verlag. LNAI 1632.

[16] Frank Pfenning and Carsten Schürmann. Twelf User’s
Guide (Version 1.4). Carnegie-Mellon Univ., 2002.

[17] Robert Pollack. How to believe a machine-checked
proof. In G. Sambin and J. Smith, editors, Twenty
Five Years of Constructive Type Theory. Oxford
University Press, 1998.

[18] David A. Schmidt. Denotational Semantics: A
Methodology for Language Development. Allyn and
Bacon, Boston, 1986.

[19] Gang Tan, Kedar Swadi, Dinghao Wu, and
Andrew W. Appel. Construction of a semantic model
for a typed assembly language. March 2003.

APPENDIX

A. MACHINE CHECKABLE PROOFS
To illustrate the format of the machine-checked soundness

proofs of the type-checking clauses, here we will show the
proofs related to the rule BindTy . Note this is the version
with hints we described in Section 5; the rule without hints
is quite similar.

Since the proof is written in LF, we begin with a brief
introduction to LF. LF is based on the λ-calculus with de-
pendent types, and it has syntactic entities at three lev-
els: objects, types, and kinds. Types classify objects and
kinds classify families of types. A deductive system is repre-
sented in LF using the judgements-as-types and derivations-

as-terms principle [8]: judgements (theorems) are repre-
sented as types, and derivations (proofs) are represented as
terms whose type is the representation of the judgement
(theorem) that they prove. In this way proof checking of
the object logic is reduced to type checking of the LF terms.

In general, a definition in Twelf (an implementation of LF
with many extended features) has the form: name : τ = exp.

including the dot. The type τ encodes the theorem to be
proved, and exp is a term of type τ . By judgements-as-types
and derivations-as-terms principle, term exp is a proof of
the theorem that τ encodes. And the name stands for the
whole term exp with type τ , i.e. the theorem and the proof.
LF and Twelf also permit introducing constructors with the
form name : τ . In our case, we have:

check_decl_cons:

|-d (typeof V Tv HINT) (let V Ev D) Gamma E T <-
|-e Gamma Ev Tv <-
(bind V Tv Gamma

-> |-d HINT D Gamma E T) =
[p1: bind V Tv Gamma -> |-d HINT D Gamma E T]
[p2: |-e Gamma Ev Tv]
|-d_i [s]

[p3: pf (sub_env @ Gamma @ (let V Ev D))]
[p4: pf (Gamma @ s)]

cut (bind_i [s_v]
[p7: pf (Gamma @ s_v)]

|-e_l p2 p7 [a_v]
[p5: pf (Ev @ s_v @ a_v)]
[p6: pf (Tv @ a_v)]

cut (let_e1 (sub_env_e p3 p7) p5)
[p8: pf (s_v @ c V @ a_v)]

exists_i a_v
(and_i p8 p6))

[p10: bind V Tv Gamma]
cut (sub_env_i [s’]

[p12: pf (Gamma @ s’)]
let_e2 (sub_env_e p3 p12))

[p20: pf (sub_env @ Gamma @ D)]
|-d_e (p1 p10) p20 p4.

The notation “[x:t]A” denotes λx : t. A. In the proof
above we first introduce two λ-bindings; that is, we assume
that the two premises of the typing rule hold. Then we use
the |-d introduction rule |-d i to get a proof of

|-d (typeof V Tv HINT) (let V Ev D) Gamma E T,
i.e. the conclusion.

The rule |-d i introduces three λ-bindings: s, p3, and p4.
Note that the type of s is omitted and Twelf will reconstruct
it to a State type. Lemma cut is as follows:

cut: pf A -> (pf A -> pf B) -> pf B =
[p1:pf A][p2:pf A -> pf B] imp_e (imp_i p2) p1.

The imp i and imp e (modus ponens) are introduction and
elimination lemmas for implication. In general, the lemma
cut means if we have a proof of A, and a function which maps
a proof of A to a proof of B, then we can get a proof of B.
This is similar to imp e or modus ponens, but cut uses LF
function type -> instead of object implication. When using
cut, we first prove some formula A, then bind this proof
(give it a name so that we can refer to it later) and continue
to prove the goal (B in this case). The @ is the object logic
level term application.

11


