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Abstract

While traditional imaging systems directly measure scene properties, computational

imaging systems add computation to the measurement process, allowing such sys-

tems to extract non-trivially encoded scene features. This dissertation demonstrates

that exploiting structure in this process allows to even recover information that

is usually considered to be completely lost. Relying on temporally and spatially

convolutional structure, we extract two novel image modalities that were essen-

tially “invisible” before: a new temporal dimension of light propagation, and a

new per-pixel radial velocity dimension, both obtained using consumer Time-of-

Flight cameras. These two novel types of images represent first steps toward the

inversion of light transport. Specifically, we demonstrate that Non-Line-of-Sight

imaging and imaging in scattering media can be made feasible with additional

temporal information. Furthermore, structure-aware imaging also represents a com-

pletely new approach to traditional color image processing. We show that classical

hand-crafted image processing pipelines can be replaced by a single optimization

problem exploiting image structure. This approach does not only outperform the

state-of-the-art for classical image processing problems, but enables completely new

color camera designs. In particular, we demonstrate camera designs with radically

simplified optical systems, as well as novel sensor designs. The computation for all

imaging problems from this dissertation relies on Bayesian inference using large-

scale proximal optimization methods. We present a mathematical framework and a

corresponding domain-specific language to automate the development of efficient,

structure-aware solvers, allowing to immediately apply the insights gained in this

dissertation to new imaging problems.
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Chapter 1

Introduction

Through billions of years of evolution, pairs of single-lens eyes have emerged as the

dominating sensor of the mammalian visual system. It is remarkable that complex

tasks such as tracking, classification and localization can be performed robustly even

when other sensory inputs are not present. This is enabled by the vast computational

resources that are allocated for the visual system [12]. About half of the cerebral

cortex of primates has been associated with visual tasks [13]. In particular, research

suggests that the visual cortex represents natural scenes by local convolutional

features [14], [15]. It is this compressive representation that enables the mammalian

visual cortex to robustly solve complex high-level tasks.

Similar to the visual system, computational imaging systems attempt to decode

scene features that are non-trivially encoded in the measurements by adding compu-

tation to the measurement process. During the past decade, computational imaging

has made a huge impact in scientific applications [16], consumer imaging [17] and

classification [18], robotic and industrial applications [19], microscopy [20] and

health [21]. The key idea enabling most of these applications is to exploit structure

in the unknowns, that is the scene information to be recovered, and the measurement

itself.

In particular, convolutional structure in the measurement has the benefit that the

latent information is encoded locally. The local encoding, due to the limited support

of the convolutional kernel, preserves global context and therefore facilitates decod-

ing the hidden information from the measurement. Furthermore, it leads to a linear
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model that can be reasoned about using linear algebra, is computationally efficient,

and Fourier analysis has proven to be an effective analysis tool for convolutional

models.

An example of such a convolutional model is the spatial convolution that models

aberrations in imaging optics. Since the end of the 19th century, imaging optics

have been designed to minimize all existing optical aberrations. In 1841 Gauss

first described the linear model of optics [22], and only a few years later, in 1857,

Seidel introduced aberration theory [23], which describes non-linear deviations

from Gauss’s simplified linear model, that is aberrations. Since then optical design

aims at eliminating these aberrations by introducing increasingly complex optical

systems. Only recently, researchers have recognized that optical aberrations can

not only be deliberately minimized but can be designed to carry additional scene

information. One example is coded aperture imaging, where the optical system is

designed to have depth-varying aberrations [24]. Another example is the recent

advances in fluorescence microscopy, where depth-varying aberrations are designed

using a diffractive optical element [20].

In addition to spatially convolutional measurements, spectrally convolutional or

temporal convolutional measurements can also effectively encode scene information.

An example of a temporally convolutional measurement can be found in nature,

which has equipped a few species of animals with remarkable capabilities allowing

them to survive in harsh environments. One of these evolutional strategies is

biological sonar. Animals using biological sonar create pulses of sound and listen

to the reflections of the pulse. In other words, the Linear Time-Invariant (LTI)

system defined by the scene is convolved with an impulse, and the temporal impulse

response of the LTI system is measured. The delay between transmission and

reception, that is the Time-of-Flight (TOF) of the pulses, is used to locate and

classify objects. Notably, microchiropteran bats are therefore able to navigate in

complete darkness, and toothed whales (including dolphins, porpoises, killer whales

and sperm whales) rely on it in their underwater habitat, where scattering and

absorption drastically limit the range of vision [25].

Inspired by biological sonar, optical TOF sensors measure the delay between

light emitted into a scene and received by a co-located sensor. It was the invention of

the laser in 1960 as well as accurate timing electronics that enabled a commercially
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successful application of this principle in Lidar systems [26]. While delivering high

accuracy and range, a major drawback is that distance is only measured to a single

point. Hence scanning is required. Recently, Correlation Image Sensors (CIS) are

revolutionizing the 3D depth imaging market by temporally convolving a scene with

amplitude-modulated flood illumination, which no longer requires scanning. The

sensors consist of an array of pixels that can shift charges generated by incoming

photons into two buckets. By doing so, CIS convolve an incoming temporal signal

with a reference signal. From the resulting convolution signals, the TOF can be

estimated with high accuracy. As this range measurement technique is based on TOF,

structured light or stereo matching techniques are outperformed by a significant

margin due to the small baseline (that TOF-based systems allow) or due to lack

of texture. CIS technology has been developed since the early 2000s [27]. Fast

adoption of CIS-based range sensing has been accelerated by the fact that they can

be fabricated in the Complementary Metal Oxide Semiconductor (CMOS) process.

CMOS technology has been driven by the microprocessor industry and is therefore

inexpensively available for mass-market production. Furthermore, additional logic

for control, signal generation, or processing can be directly implemented on chip

along with the sensor as in Microsoft’s Kinect sensor for Xbox One [28]. Recent

CIS systems, however, do only very limited computation in post-processing [29].

The key argument of this thesis is to exploit structure, both in the unknown scene

information and in the measurements, by adding computation to the measurement

process. This is akin to the mammalian visual system, which performs this process-

ing in the visual cortex. By adding the computation in the form of inverse problems

derived from Bayesian inference, one can, in fact, overcome current limitations

of imaging systems and “make the invisible visible.” We demonstrate this in this

dissertation as visualized in Figure 1.1. Adding computation has allowed us to

extract two entirely new image modalities, beyond traditional color and depth imag-

ing. These new image dimensions enable a large variety of novel applications. For

classical color imaging, this approach leads to new computational camera designs

that significantly outperform traditional systems in many different scenarios.

As shown in Figure 1.1 on the left, the first additional dimension is an ultra-

high-resolution time dimension. Exploiting temporal structure in CIS measurements,

we can separate all light paths corresponding to different photon travel times along
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Chapter 3, [1] Chapter 6, [5] Chapter 7, [6] Chapter 8, [8] Chapter 9, [10]

Chapter 4, [4] Chapter 5, [3]

Chapter 10, [11]

Figure 1.1: Thesis overview and scope (key publications indicated next to
the chapter labels): Adding computation to the measurement process
can overcome limitations of imaging systems by exploiting structure
in the measurements or unknowns. Adding computation to CIS allows
extracting two new imaging dimensions. The first is an additional time
dimension, which is introduced by transient imaging in Chapter 3. Two
applications of transient imaging are demonstrated with imaging in scat-
tering media Chapter 4, and non-line-of-sight imaging in Chapter 5. A
model exploiting convolutional structure in the unknowns for both the
temporal and spatial dimension is discussed in Chapter 6. The second
dimension added to CIS imagers is velocity measured via the Doppler
shift, which is presented in Chapter 7. Adding computation to color
imagers enables new computational camera designs, that outperform
the state-of-the-art. Imaging with radically simplified optics is demon-
strated in Chapter 8. Novel computational sensor designs for challenging
scenarios such as ultra-low-light imaging are shown in Chapter 9. An
optimization framework unifying the computation for all of the methods
above is discussed in Chapter 10.
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this dimension. In other words, this means that such an image with additional

time dimension is the impulse response of the light transport in the static scene.

As light transport is a linear time invariant system that is fully described by its

impulse response, this so-called transient image fully describes the light transport

in the scene. We introduce a physically motivated model for transient images and

reconstruction methods, relying on its convolutional structure in time. The ability

to reconstruct transient images from a co-design of capture and computation has

enabled new applications at the frontiers of vision. We demonstrate reconstruction

of Non-Line-of-Sight (NLOS) objects from indirect reflections, thus turning diffuse

walls into mirrors, and show imaging in strongly scattering media. In both cases, we

exploit information that is treated as noise in regular range-measuring CIS systems.

In this sense, our approach “makes the invisible visible.”

Shown in the center of Figure 1.1, the second additional dimension that we

introduce is the velocity of moving objects. Recently, we were able to demonstrate

that it is possible to capture the Doppler shift of sinusoidally modulated illumina-

tion using CIS with specifically designed modulation signals and low-light image

reconstruction. Using the Doppler shift, one can compute the instantaneous axial

velocity of an object. Measuring the modulated light reflected from the scene with

multiple, differently correlating sensors enables 2D velocity capture along with

usual the depth and amplitude capture. We imagine a variety of applications for this

new imaging modality. In particular, traditionally challenging problems in vision

such as segmentation, classification, and tracking could be drastically simplified by

using this new image dimension.

Shown on the right of Figure 1.1, we demonstrate that adding computation

to color imagers enables a variety of new computational camera designs that can

drastically outperform classical color imaging systems. We demonstrate imaging

with radically different optical designs that do not necessarily follow traditional

design rules, such as minimizing optical aberrations. Instead, we exploit that

aberrations can carry scene information embedded in the measurement. Recently,

we have demonstrated that the specific structure of chromatic aberrations can be

used for imaging with simple, cheap and very compact optics. In other words, rather

than the classical approach of adding more elements to eliminate aberrations in

increasingly complex lens designs, we simplify the optics up to a single element
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and remove the aberrations in computation. Going a step further, this approach can

even enable broadband imaging with ultra-thin diffractive optics. This opens up

a space of very flexible, new optical designs, relying on thin refractive as well as

diffractive elements.

Considering classical color image processing, also shown on the right of Fig-

ure 1.1, we demonstrate that adding computation in the form of Bayesian inference

represents, in fact, a change of paradigm. Color image processing is tradition-

ally organized as a pipeline model. Pipeline steps can accumulate error by never

back-projecting on the measured observation. Replacing pipelines by formal op-

timization does not only yield a very flexible method without this drawback but

also outperforms known methods in classical problems such as demosaicking and

deconvolution. We demonstrate this on a variety of imaging systems using emerging

array sensors, interleaved High Dynamic Range (HDR) and low-light burst imaging.

Here, low-light burst imaging is another example where added computation can

“make the invisible visible.”

Finally, this work covers the computational challenges for all of the methods

shown in Figure 1.1. Expressing imaging tasks as optimization problems using

Bayesian inference is a principled approach as the image-formation can often be

well modeled. Hence, many state-of-the-art imaging methods follow this approach,

like the ones in this dissertation. However, in practice, developing a given image

formation model into a solver method can be time-consuming and error-prone, as

there is a large span of choices in this process. Different combinations of statistical

priors, various formulations of the same objective and different solver methods

can lead to drastically varying reconstruction quality and computational efficiency.

We introduce a generalized mathematical framework and a corresponding domain-

specific language that allow quick exploration of this space. A novel mathematical

compiler attempts to reformulate a problem automatically to find the most efficient

problem translation. The key idea here is, again, to exploit structure in the problem.

For the large variety of applications in this thesis, we demonstrate drastically

increased accuracy, convergence, and computational efficiency compared to naive

black-box optimization, in many cases multiple orders of magnitude in run-time.

This dissertation makes steps towards an “optimal camera” that does not attempt

to capture the full plenoptic function by “brute-force” direct sampling using as many
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sensors as possible, but rather as one that relies on structure in the scene and the

image formation process to only recover the unknowns of interest using few, easily

available measurement. The optics, sensor and reconstruction method of this camera

are jointly optimized for a given application. This also means that there is not a

single optimum. While solving such a higher-level camera optimization problem

is extremely challenging due to its highly non-convex nature involving categorical

and integer variables, parametrized architectures which allow the exploration of a

subspace of the objective are feasible. This dissertation already shows samples of

the search space that have been found by optimizing one variable (e.g. the algorithm

parameters or optics) with all others fixed, essentially performing a first coordinate

descent step. We also demonstrate first steps to extend this idea even further and

consider the scene also as part of the camera. The proposed imaging system for

NLOS objects can be interpreted as a method that essentially turns a diffuse surface

into a large-scale image sensor. One could extend this system to be able to “unfold”

light paths to a large depth while estimating the reflectance of each scene point

on the fly. Starting from a direct bounce, reconstructing object points “around

a corner” from a first bounce, and finally “around two corners” from a second

bounce, and so forth. Ultimately every scene surface will act as a sensor. Such

scene-adaptive imaging systems are yet another sample point of the rich high-level

objective. Independent of this objective being minimized numerically or sampled by

researchers, it becomes clear that the capabilities of known biological image systems

driven by evolution can be outperformed by a significant margin. By capturing light

propagating at the speed of light, this dissertation provides a first indicator for this

margin.

1.1 Dissertation Structure
The remainder of this dissertation will be structured as follows.

Chapter 2. Background and Related Work This chapter explains the building

blocks of the image formation models in this thesis and surveys previous related

work. In particular, it describes the basic working principles of CIS, reviews imaging

optics and explains recent color imaging sensors. Following, we review Bayesian
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approaches for the inversion of the image formation from sensor measurements.

Related traditional methods and work competing with any of the proposed ap-

proaches are discussed. Hence, this chapter lays the foundation for deriving and

understanding the techniques in the chapters that follow.

Chapter 3. Transient Imaging This chapter demonstrates that transient images

can be captured by adding computation to CIS measurements, covering our work [1]

and [2]. We describe the capture sequence consisting of differently modulated

images acquired with a CIS sensor, derives a model for local light/object interaction,

and finally describes an optimization procedure to infer transient images given the

measurements and model. The resulting method produces transient images at a cost

several orders of magnitude below existing methods, speeds up the capture process

by orders of magnitude, is robust to ambient illumination and allows for drastically

increased scene sizes compared to previous methods. Furthermore, this chapter

discusses how to combine transient imaging with spatial light modulators. Relying

on the fact that light transport is separable in frequency, we show that all basic light

transport techniques from conventional projector-to-camera systems can be applied

per individual modulation frequency. The additional spatial light transport analysis

helps to improve resolution in transient imaging.

Chapter 4. Imaging in Scattering Media We use the additional temporal dimen-

sion, which was introduced in the previous chapter, to enable imaging in scattering

media. The core ideas from this chapter have been first presented in our work [4].

Imaging in volumetric scattering is an extremely hard task, since due to the scatter-

ing transport components are non-trivially mixed, leaving only the paths for ballistic

photons undisturbed. Nevertheless, we demonstrate that by exploiting convolutional

structure in transient images, we can separate mixed light paths. We introduce a

new Convolutional Sparse Coding model for transient images, and we demonstrate

that our system can analyze the light transport through scattering and turbid media.

Chapter 5. Diffuse Mirrors In this chapter, we use the additional temporal di-

mension of light to turn diffuse walls into mirrors, covering our publication [3].
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Diffuse walls scatter back into all directions in contrast to mirrors that preserve

directionality of the reflected light. However, in a diffuse reflection, the temporal

dimension of light transport is left intact. This chapter describes an imaging system

to recover NLOS geometry and albedo from second-order diffuse reflections, effec-

tively turning walls into mirrors. An efficient optimization strategy is presented,

linearizing the objective and exploiting sparsity of the unknowns.

Chapter 6. Convolutional Sparse Coding This chapter proposes an efficient

optimization method for data fitting problems using Convolutional Sparse Coding

models, described originally in our work [5]. The proposed technique is generalized

to both reconstruction and learning of convolutional sparse codes. An optimization

method is proposed that finds better minima than the state-of-the-art, has better

empirical convergence and is therefore significantly faster. Due to its general

formulation, the proposed approach can be applied to a large variety of problems

(that do not have to be related to CIS). We demonstrate the application of feature

learning for vision.

Chapter 7. Doppler Velocity Imaging This chapter shows that by adding compu-

tation to CIS measurements we can image instantaneous per-pixel velocity, covering

our publications [6] and [7]. The proposed technique exploits the Doppler effect of

objects in motion, which shifts the temporal frequency of the illumination before it

reaches the camera. We describe how to design coded illumination and modulation

frequencies that directly map velocities to measured pixel intensities. An effective

reconstruction method handling the resulting Poisson noise and misalignment is

introduced. Finally, we discuss a slight modification of our imaging system that

allows for color, depth, and velocity information to be captured simultaneously.

Chapter 8. Simple Lens Imaging We demonstrate high-quality imaging with sim-

ple, ultra-compact optics, first proposed in our work [8] and [9]. Modern imaging

optics are highly complex systems that aim at eliminating optical aberrations by

introducing a large number of individual optical elements. We propose a radically

different design approach using uncompensated, simple optics, which computation-
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ally corrects for the severe aberrations introduced by the simple optics. In particular,

a novel blind, self-calibrating deconvolution method is proposed that relies on the

structure of the aberrations in different color channels of the latent image. We first

demonstrate our approach using a simple refractive spherical lens and demonstrate

first results indicating that it can even enable imaging using ultra-thin diffractive

elements under broadband illumination.

Chapter 9. Flexible Camera Image Processing This chapter rethinks classical

camera image processing as an optimization problem, covering our work [10].

Traditionally, camera image processing is organized as a pipeline of modules, each

responsible for a particular part of the imaging task. This approach introduces a

cumulative error as each step considers only the output of the previous step, not

the original measurement. We replace the full pipeline with a single optimization

problem using Bayesian inference. Observations are modeled using the image

formation while priors are enforced for the latent image. We demonstrate that this

approach is very flexible and applicable to a broad variety of computational camera

designs ranging from traditional Bayer imaging to ultra-low-light burst imaging, in

each case outperforming the state-of-the-art in terms of reconstruction quality.

Chapter 10. Proximal Image Optimization As demonstrated in all previous chap-

ters, an increasingly large number of imaging tasks can be expressed as optimization

problems using Bayesian inference, often outperforming the state-of-the-art. While

designing the objective is often a very principled and elegant approach, there are

many choices in the development of a solver, making this process time-consuming

and error-prone. This chapter introduces a generalized mathematical representation

for image optimization problems and a corresponding domain-specific language,

published as [11], which allows for exploration of this vast array of choices. A

mathematical compiler is proposed that identifies structure in the objective and

based on this chooses the best way to translate a specific problem formulation into

a solver implementation. We demonstrate that exploring the many choices in the

solver development can lead to drastically increased accuracy and computational

efficiency, often multiple orders of magnitude in reduced run-time.
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Chapter 11. Conclusion This chapter describes avenues of future research that

build toward the vision of an optimal imaging system, which not only matches

naturally evolved visual systems found in nature but outperforms them for given

tasks. The features of such an imaging system are outlined, major challenges on

the way toward this vision are discussed, and the next immediate steps based on the

work in this thesis explored.
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Chapter 2

Background and Related Work

In this chapter, we describe the building blocks of the image formation in this thesis,

and survey work related to the proposed techniques. Starting from first principles,

we first describe established models of light in Section 2.1. Following, Section 2.2

discusses the propagation of light, and in particular introduces models for light

transport in macroscopic scenes. Section 2.3 describes light transport in optical

systems, while Section 2.4 reviews sensors that measure properties of the light

transport. The concept of Correlation Image Sensors for range imaging is discussed

in Section 2.5 and Section 2.6. This includes a discussion of CIS imaging in dynamic

scenes and the Doppler effect. Having explained the properties of light transport

and their measurement in various scenarios, Section 2.8 reviews inverse methods

for the recovery of hidden scene features encoded in the measurements.

2.1 Light
Classical electrodynamics explains light as electromagnetic radiation [30]. In par-

ticular, it corresponds to the spectral band from 400 - 700 nm wavelength of the

electromagnetic spectrum, which can be observed by the human eye [31]. This band

lies between the ultra-violet (shorter wavelengths) and infrared (longer wavelengths).

Described by Maxwell’s equations [32], the fundamental laws of electromagnetic

theory, various experiments verify that light behaves like an electromagnetic wave

with synchronized oscillating magnetic and electric fields. These two fields are
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oriented perpendicular to each other and the direction of propagation (and energy

transfer). Hence, they form a transverse wave. Electric and magnetic fields do not

require a medium to exist, and in vacuum an electromagnetic wave propagates at

the speed of light c = 2.99792458 · 108m/s. Treating light as an electromagnetic

wave allows modeling its propagation, including effects of diffraction, interference,

scattering, transmission, reflection, and refraction. The approximation of geomet-

ric optics (i.e. ray optics) simplifies this propagation model. Geometric optics

accurately models macroscopic propagation if the wavelength of light is small in

comparison to the scene.

While treating light as an electromagnetic wave describes many of its properties,

it is important to realize that light is in fact not continuous as a classical wave. This

becomes evident in the photoelectric effect, describing that materials emit electrons

for incident illumination only at a certain frequency of the light but not depending

on its intensity. Einstein first explained that this effect is caused by light being

composed of quanta, i.e. photons [33]. This quantum theory of light seems to be in

conflict with the classical wave description. Modern quantum mechanics solves this

conflict by accurately describing light as a dual wave-particle, which exhibits wave-

like properties for propagating through space, and behaves like a particle during

emission and absorption [34]. This means that propagation effects can be explained

either by the wave or the particle nature of light. However, for a large number

of photons, classical fields are produced on average. Hence, most macroscopic

situations can be explained treating light as an electromagnetic wave [30].

In this dissertation, we describe imaging systems relying on both the wave and

the particle behavior of light. All of these systems are optical, i.e. measure light.

They can be used in a wide range of applications just like the human visual system

mentioned in Chapter 1. This universality results from the fact that radiation with

smaller wavelength (such as UV, X-ray or Gamma radiation) can be harmful to

biological organisms due to the high photon energy. Radiation of lower wavelength,

on the other hand, limits the resolution of a spatial sensor due to diffraction.
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2.2 The Propagation of Light

2.2.1 Transmission, Reflection, and Refraction

The propagation of light in free space follows immediately from the models of light

introduced in the previous section. Using the wave model, electromagnetic waves

travel unaltered through the vacuum at the speed of light. The propagation direction

is perpendicular to the electromagnetic wave front. This can be conveniently

described using light rays, which are lines corresponding to the flow direction of

radiant energy [30]. While the propagation in a vacuum can be described just by

the properties of the wave itself, the propagation in homogeneous media and at

interfaces between different media requires describing the interaction of light with

the molecules in the media.

Transmission For molecules of a size much smaller than the wavelength of light,

this interaction is described by Rayleigh Scattering [35]. This includes gases (e.g.

present in air), transparent liquids (such as water) and clear solids (such as glass).

In these media, every molecule acts as an oscillator that can be set to vibrate upon

absorbing a photon. After the absorption, almost instantaneously, this oscillation

causes the emission of another photon of the same frequency, that is elastic scattering

occurs. Using the wave model of light, we can infer the forward propagation of

light in homogeneous media. The randomly distributed molecules in the medium

create electromagnetic waves in a scattering event. These waves interfere with each

other, defining the new direction of propagation of light. For randomly spaced

molecules, the waves will be in-phase in the forward direction and constructively

interfere, while lateral phases will be randomly distributed and mostly destructively

interfere. The denser the medium, the less lateral scattering occurs [30]. Hence, the

propagation of light in a homogeneous dense medium (such as air and glass) is, in

fact, the same forward propagation as in the vacuum (the lateral and back-scatter

component can be neglected), and it can also be described by light rays.

While the propagation direction is the same as in free space, the apparent

phase velocity of the transmitted light can change in a medium, although the

photons all travel at the speed of light c. This is because the molecules in the
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medium only oscillate perfectly in-phase at low frequencies. As the frequency

of the electromagnetic radiation increases, a phase-lag in the scattered photons

is introduced, hence reducing the phase velocity ν of the apparent transmitted

light [31]. This phase retardation by the molecules is macroscopically described by

the medium’s index of refraction

n =
c

ν
. Index of Refraction (2.1)

Per definition, it is n = 1 in free-space and n > 1 for other materials. See [30] for

a table of n for common materials. Hence, intuitively, light appears to travel slower

in most media, although its photons and the associated electric fields propagate at

the speed of light.

Reflection Let us consider a discontinuity between two media with different

refractive indices; see Figure 2.1. When a beam of light hits this interface, the

photons in this beam scatter at the closely packed molecules across the interface.

A portion of the light is back-scattered, and the remaining portion is transmitted.

Hence, the beam of light is not sustained at the interface but is separated into a

reflected and refracted beam [31]. The fact that two well-defined beams are created

as the result of the scattering can be described using the wave model. A plane wave,

incident on a flat surface at some angle, sweeps across the molecules on the surface,

generating waves along this sweep. As the surface is locally flat and wave fronts are

planar, these waves constructively interfere and form a well-defined reflected wave;

see Figure 2.1. Note that, in principle, all molecules before and after the interface

jointly create the reflected wave. However, the majority of the energy is reflected

in a thin layer at the surface (about half of a wavelength in depth) [30]. Due to the

planar geometry of the wave fronts and interface, the angle of the incident light

beam θi equals the angle of reflected light

θo = θi. Law of Reflection (2.2)
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Figure 2.1: Propagation of light at an interface. When a beam of plane waves
hits an interface, two well-defined beams are formed. As illustrated at
the top left, one beam is reflected off the interface, and another beam is
refracted into the transmitting medium. The corresponding ray model is
shown at the top right. The bottom describes the propagation behavior
of light at this interface as a result of scattering. The incident plane
wave sweeps across the surface of the transmitting media, generating
waves along this sweep that constructively interfere into the reflected
and refracted plane waves.

Refraction Having described the properties of the beam reflected at the interface,

we now consider the light that gets scattered forward, passing the interface, as the

transmitted beam. The molecules at the interface emit waves not only into the

incident medium (combining into the reflected wave) but also in the transmitting

medium; see Figure 2.1 again. These waves constructively interfere with each other

as a well-defined transmitted wave. However, because the waves are propagating

in another medium with a different refractive index, the apparent phase velocity of
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the waves changes. This change in phase velocity causes the combined transmitted

wave to propagate along a different direction. Hence, the beam of light bends [31],

i.e. the beam gets refracted. Macroscopically this behavior is described by Snell’s

law, first described in [36]. For θo, no, θt, nt being the angles and refractive indices

of the incident and refracted beam, it is

sin θi
sin θt

=
νi
νt

=
nt
ni
, Snell’s law (2.3)

where the indices of refraction on the right are derived by division of c.

The laws of reflection and refraction, which are discussed above, can also be derived

from different models for the propagation of light. A very different point of view

is Fermat’s Principle: The path taken by a beam of light between two points is the

one that can be traversed in the least time [31]. The laws of reflection, refraction,

and the concept of optical path length can be derived from Fermat’s Principle [30].

Another elegant model is given by electromagnetic theory, which derives these

laws from boundary conditions on the electric and magnetic fields [30]. Quantum

electrodynamics, on the other hand, describes reflection and refraction with the

particle behavior of light. Every possible light path is assigned a complex quantum-

mechanical probability amplitude. The total probability amplitude is the sum of all

possible paths and describes the macroscopic effect [34].

2.2.2 Global Light Transport

The propagation of light in homogeneous media and at interfaces can be macroscop-

ically described with closed-form models, as explained in the previous paragraphs.

For light transport in complex scenes, this is no longer possible. Instead, accurate

simulation requires the evaluation of integrals over all possible light paths in the

scene, for which no analytic approximation can be found [37]. A large body of work

in computer graphics covers such global light transport simulations, i.e. rendering.

A detailed introduction can be found in [38]. The geometric optics approximation,

i.e. the light ray model, is used to simplify the derivations for complex scenes.
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Figure 2.2: Global light transport in a diffuse scene. From left to right: Direct
illumination only, first indirect bounce of light rays, second indirect
bounce. The steady state limit of these individual ray propagations is the
global light transport.

The classical rendering equation has been introduced in [39]. It is derived from

the law of conservation of energy: The total energy of an isolated system is constant.

For a ray with initial point x and direction ωo, this can be expressed as

L(x, ωo) = Le(x, ωo) + Lr(x, ωo), (2.4)

where here the Spectral Radiance L is used as an energetic quantity for a bundle of

rays. Spectral radiance is the radiant power that is transmitted, refracted, absorbed or

reflected by a surface per unit solid angle per unit projected area per unit wavelength

[W · sr−1 ·m−2 ·Hz−1]. See [38] for an introduction into radiometry and [40] for

a detailed review. Eq. (2.4) states that the radiance L leaving a point x in direction

ωo is the sum of the radiance emitted by the point Le, and the radiance Lr reflected

from other sources at the same point in the same direction. The reflected component

Lr can be expressed as an integral of all components received over the hemisphere

of incident angles Θ, and Eq. (2.4) becomes the rendering equation

L(x, ωo) = Le(x, ωo) +

∫
Ω
Li(x, ωi) · f(X,ωi, ωo) · cos(ωi) dωi

Rendering

Equation
(2.5)

The integral accumulates the incident radiance Li from any other point in the scene

in direction ωi toward x, weighted by the bidirectional reflectance distribution

function (BRDF) f and a cosine attenuation factor due to the incident angle ω
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between the surface normal at x and inward ray. The BRDF f is an intrinsic

property of the surface material, which allows determining the outgoing radiance

for any incident and outgoing beam geometry (by evaluating the integral from the

rendering equation). The function is, in fact, not unit-less but is defined with unit

[sr−1] to make the rendering Eq. (2.5) consistent regarding units.

Li can either originate from a light source or from reflections off other surfaces;

see Figure 2.2. The standard way of solving the rendering equation in computer

graphics is by starting with a solution that contains only the emissive components

and then iterating the scheme to convergence [37]. Another approach is to expand the

integral and sample the space of all paths [41]. The work of [37] gives an overview

of efficient physically accurate simulation methods. Model approximations and

computational methods that allow for real-time rendering are described in [42].

2.2.3 Transient Global Light Transport

Time average

Figure 2.3: Time-resolved Global Light Transport. In the scene on the left, the
backside of the bunny geometry is illuminated with a short temporal flash
and the indirect reflections of the diffuse wall are observed. Simulations
of the light transport in this scene are shown on the right. Traditional
global illumination rendering assumes the speed of light to be infinite,
hence computes the time average of the light transport. Time-resolving
this average reveals structure in the individual components.

To this point, we have considered the speed of light to be infinite. The rendering

equation (2.5) does not model the travel-time of photons along the integrated

light ray components but assumes the transport of radiance to be instantaneous;

see Figure 2.3. This is a common assumption in computer graphics, which aims

at simulating steady-state global light transport [37]. This dissertation covers the
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capture and inversion of the temporally resolved propagation of light. A model for

temporally resolved light transport can be derived from the rendering equation (2.5):

Assuming constant scene geometry and reflectance during the transport, it becomes

L(x, ωo, t) = Le(x, ωo, t)+∫ t

0

∫
Ω
Li (yωi,x,−ωi, t0) · δ

(
t0 + ∆ (x, yωi,x)− t

)
· f(x, ωi, ωo) · cos(ωi) dωi dt0,

(2.6)

where we use yω,x as notational sugar for the surface point found by intersecting a

ray from x along direction −ω with the scene. ∆(x, y) = ‖−→xy‖/c is the time delay

for the light transport from x to y. The delta-function makes sure that light leaving

y at time t0 is registered in x only at its time of arrival t0 + ∆(x, y).

2.3 Optics

Figure 2.4: Optical Systems. An illuminated object surface consists of tightly
packed scattering molecules. An individual scatterer A on the surface
emits spherical waves. A segment of the wave front enters an optical
system that reshapes incoming wave fronts to converge at pointB. Hence,
B is an image of the source A.

Optical systems have been used and developed since remote antiquity, with

simple lenses for vision correction, dating back to at least 1200 B.C.E., and burning-

glasses to create fire, mentioned around 400 B.C.E. [30]. Such systems are designed

to redirect the radiant flow in a scene. Using the wave model from the previous

paragraphs, an illuminated object surface can be described as tightly packed scat-
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tering molecules that emit spherical waves. Considering now a single scatterer A,

as shown in Figure 2.4, its spherical wave fronts spread the emitted radiant energy

with increasing distance, i.e. the corresponding rays diverge.

An optical system can be designed to reshape the wave fronts, such that they

converge to a single point B. Hence, this optical system produces an image of A in

the point B.

2.3.1 Diffraction

It is important to note that practical optical systems are limited in size. Therefore,

only a portion of the wave fronts can be transformed by the system, corresponding

to a cone of rays as visualized in Figure 2.4. It follows immediately from this

limitation that a perfect inversion of the incoming waveforms will not be possible,

but the waves will be diffracted at the entrance of the optical system. To see this,

consider an optical system consisting of just an aperture in the same homogeneous

medium in which the incident waves travel. The straight-forward propagation in

homogeneous media as explained in Section 2.2.1 is not continued at the aperture

as the waves blocked out by the aperture no longer contribute to the overall forward

component. Hence, the direction of energy of an incoming plane wave will be

spread out. Thomas Young in 1804 [43] was the first who described this diffraction

effect with the wave behavior of light. His famous double slit experiment observed

the redirected energy of light incident on two closely spaced slits as a diffraction

(interference) pattern, which can be accurately described using the wave model of

light. Therefore, it also follows that diffraction effects decrease as the wavelength

of the incident light λ becomes small in comparison to the dimensions of the optical

system. However, as the physical dimensions are limited, realizable optical systems

are always diffraction-limited. Specifically, for a circular aperture, a perfect lens

does not focus a point light to a single point but to a spread-out, symmetric, Airy

pattern that can be analytically expressed [30]. Hence, the theoretical limit of a

perfect imaging system can be defined based on whether two nearby imaged point

sources can be resolved as distinct patterns. In 1873, Abbe defined the resolution

limit of a perfect imaging system as the “radius” of the Airy disk pattern, which is
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infinitely large (but quickly decaying). It is

r =
0.5λ

NA
=

0.5λ

n · sin(θ)
, Abbe Resolution Limit (2.7)

where NA = n · sin(θ) is the numerical aperture that is defined in terms of the

incident angle θ and the refractive index of the medium surrounding the lens. Due to

the fuzzy definition of when two blurred sources can be separated, slightly different

criteria exist, which lead to similar analysis results in practice. See [30] for a

detailed discussion on diffraction effects in optical systems.

While diffraction limits the achievable resolution of an imaging system, optics

can also be deliberately designed to exploit interference, as we will show in Chap-

ter 8. This enables ultra-compact optical systems but introduces additional imaging

errors. Nevertheless, many practical optical systems can be well approximated

with the light ray model, i.e. geometric optics, which ignores diffraction and thus

conceptually assumes λ → 0. An overview of such systems will be given in the

following paragraphs.

2.3.2 Geometric Optics

Consider a point source A on an illuminated object surface as illustrated in Fig-

ure 2.4. A typical imaging scenario is now that this source is distanced far from

the optical system (and the sensor located beneath the optics). In this case, the

spherical waves reaching the system are approximately planar. Optical design aims

at reshaping this beam of plane waves to make the wave fronts converge to a single

focus point B. To achieve constructive interference of all incident waves in B, the

number of phase distance along each path P must be equal in both media. That is

Pi/νi + Pt/νt = const., with Pi, Pt being the portion of the path in the incident

and optic medium, respectively. Relying on Eq. (2.1) from Section 2.2.1, we have

niPi + ntPi = const.. Hence, the optimal lens surface for this (monochromatic)

imaging scenario is the hyperbola.

Although hyperbolic lenses perform well in many scenarios, in fact, spherical

lenses are most common in optical systems for imaging and display applications [30].

This is because spherical surfaces are relatively easy to produce by grinding two

roughly spherical surfaces, one convex and one concave, against each other. High-
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quality surfaces with a tolerance of less than λ/10 can be manufactured this way [44].

For a single spherical lens, closed form expressions for the focus point and change

in direction of individual rays can be easily derived from either Fermat’s principle

or Snell’s law. Complex optical systems consisting of multiple elements, however,

have to be analyzed numerically by tracing rays through all elements, using Snell’s

law at each interface. The paraxial approximation allows a drastically simplified

analytic description for rays close to the optical axis. This approximation essentially

relies on the Taylor-series expansion

sin(θ) = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · · ,

cos(θ) = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · · .

(2.8)

For a cone of rays impinging on the lens at small angles θ → 0, the first term in the

Taylor-series is a good approximation, that is sin(θ) ≈ θ and cos(θ) ≈ 1. For rays

in this paraxial region, Snell’s law simplifies to

θini ≈ θtnt, Paraxial Approximation (2.9)

The paraxial approximation shows that closely spaced spherical interfaces, forming

a thin lens, can focus parallel rays in a unique image point. In 1841, Gauss was

the first to describe this linear model of optics for nearly axial rays [22], i.e. first-

order or Gaussian optics. Although accurate ray-tracing simulations without the

paraxial simplification are easy to obtain, the linear model using thin lenses builds

intuition for many imaging tasks. Simple analytic equations describe the relation

between focus-point for parallel rays, object and image point distance (Gaussian

lens formula), location of focus points and planes, and combinations of different

thin lenses. See [30] for an expanded discussion. The paraxial model immediately

describes the macroscopic effect of focusing. With a thin-lens optical system,

moving the sensor relative to the lens allows focusing on different distances, for

objects at infinity with parallel incoming rays to points close to the lens. Hence,

such optical systems essentially perform a perspective transform of the 3D object

space to a 3D image space. The sensor records a 2D slice of the image space, with

some objects in focus and others out of focus.

23



2.3.3 Aberrations

Deviations from the idealized linear model of Gaussian optics are called aberrations.

They accurately describe the errors introduced by using the paraxial and thin-lens

approximations. This includes the imaging artifacts of using spherical lenses instead

of hyperbolic lenses, which were introduced above. Aberrations are divided into

two types: chromatic and monochromatic aberrations.

Chromatic aberrations result from the wavelength-dependency of the refractive

index n. Recalling Eq. (2.1), which defined n = c/ν, the wavelength-dependency

of n becomes obvious because the phase velocity is given in wavelength per period,

that is ν = λ/T . As a consequence, the refraction at an interface is wavelength-

dependent as well, and rays of different wavelengths take different paths through

an optical system. Consider imaging a point light source, the shift or spread of the

imaged point along the optical axis is called axial chromatic aberration, and the

remaining component in the image plane is lateral chromatic aberration. The first

type is observable as chromatic halos in an image while the latter causes colorful

blur and haze in a capture. Chromatic aberrations will be discussed in more detail

in Chapter 8, which presents a method for aberration removal post-capture.

Monochromatic aberrations describe the deviations from linear Gaussian optics

that occur even for a single wavelength (or narrow spectral band). This includes the

five primary aberrations, which are spherical aberration, coma, astigmatism, field

curvature, and distortion. The primary aberrations can be described with sufficient

accuracy by adding the third-order term from the Taylor-series (2.8) to the paraxial

approximation, that is sin(θ) ≈ θ − θ3/3!. In 1857, Seidel introduced aberration

theory [23], which describes the primary aberrations with this model, i.e. Seidel

aberrations. Note that these aberrations are non-linear in the ray directions, while

the measured intensity transported by the rays passing through an optical system

is itself linear, as we will describe further below. As the Seidel aberrations cover

a vast majority of imaging scenarios, aberrations that require higher-order terms

from Eq. (2.8) are usually considered jointly as higher-order aberrations. Figure 2.5

illustrates the imaging errors introduced by the Seidel aberrations. Spherical aber-

ration describes an axial shift in focus for peripheral rays. While central rays are

focused on the image plane (at Bp in Figure 2.5), peripheral rays focus in front of
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Figure 2.5: Seidel aberrations: These five primary aberrations explain the
most severe deviations from the idealized linear Gaussian optics for
monochromatic light.

or behind the image plane (at Bo), depending on the lens being convex or concave.

This causes a circularly blurred image superimposed with the focused paraxial

component. Coma causes a lateral spread of the focused image point for off-axis

object points, i.e. rays that impinge at an angle. This makes point sources appear to

have a tail (coma) similar to a comet. Astigmatism is illustrated at the bottom left of

Fig. 2.5. Peripheral rays traveling in two orthogonal planes, the tangential (including

object point and optical axis) and sagittal plane, focus in different locations in front

of or behind the image plane, Bt and Bs in Figure 2.5. Field curvature describes the

aberrations that focus planar objects, orthogonal to the optical axis, not on a flat but

a curved image plane. If this aberration is present, as for spherical lenses, only rays

in the paraxial region are properly focused. Finally, the bottom right of Figure 2.5

visualizes distortion. This aberration describes for off-axis points a lateral shift in

the image point B′f from the ideal projected image Bf . The image is then distorted

with pincushion or barrel distortion. See [30] for a detailed description of Seidel

and chromatic aberrations.
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All of the explained Seidel aberrations and chromatic aberrations, except the

lateral distortion and chromatic shift, can be reduced by closing down the aperture.

Distortion and lateral chromatic aberration can be mostly corrected post-capture in

software. However, this introduces diffraction blur and reduces the Signal-to-Noise

Ratio (SNR) of the captured image (as will be discussed in Section 2.4).

Modeling Aberrations In practice, all of the discussed aberrations (including

diffraction blur) do not occur in isolation but jointly produce the overall imaging

error. The superimposed aberrations can be elegantly described with a Point Spread

Function (PSF). Figure 2.6 shows the PSFs for a simple biconvex spherical lens.

Figure 2.6: Patch-wise calibrated PSFs for a single biconvex lens at f/2.0. All
Seidel aberrations are present, which jointly cause a spatially varying
PSF. Spherical aberration and field curvature cause the rings, which vary
in size. Astigmatism leads to the cross-shaped components, and coma
causes an elongated tail of these crosses away from the center. Distortion
leads to a shift of the PSFs’ center of mass in the peripheral regions,
which has been removed for a more compact display.
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A PSF describes the response of an imaging system to a point source. Hence,

in general, this can be a 4D function of the 3D spatial position and wavelength of

this source. For a point source A with spectral distribution ξA, resulting from the

illumination and material properties in the scene, the resulting PSF for a sensor with

response ψ is

BA =

∫
ψ(λ) ξA(λ) BA(λ) dλ, (2.10)

where BA is here the spatially varying PSF for the pointA. Common optical systems

are optimized to vary little in the spectral range of the traditional RGB color filters.

Hence, often PSFs are assumed to be invariant for these three channels. Common

lens surfaces vary smoothly, and therefore also the resulting PSF changes smoothly

over the image plane and smoothly with object distance [30]. Therefore, a widely

used assumption is that PSFs are spatially invariant in a local neighborhood. As-

suming invariance for a considered depth-range, the image formation including all

aberrations can then be expressed as a local 2D-convolution in image tile. Con-

sidering an n × m tile, let J, I ∈ Rn×m be the observed blurred image, and the

latent sharp image (that would be captured without aberrations). For a given color

channel the PSF is then a 2D convolutional kernel, and the formation of the blurred

observation can be formulated as

J = B⊗ I, (2.11)

j = Bi, (2.12)

where ⊗ is the convolution operator. Sensor noise is ignored here for simplicity.

Note that this model for the measured image intensity is linear, while the ray di-

rections in the aberrations discussed above itself are non-linear in general. In the

second row, B ∈ Rnm×nm, and j, i ∈ Rnm are the corresponding quantities in

matrix-vector form. The individual pixels of the 2D images are here stacked in

column vectors, and the convolutional operation becomes a convolution (Toeplitz)

matrix. In the remainder of this thesis, we will use either of these identical formula-

tions depending on the context. Finally, the full image will be composed of many

tiles, each with the PSF assumed constant over the tile. The transition between the

tiles can be modeled with a window function W ∈ Rn×m that models the influence
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of each tile on a blurred output pixel. The full image J̃ is then

J̃ =

N∑
a=1

W · Ba ⊗ Ia, (2.13)

where a linear index a ∈ {1, . . . , N} is used for the 2D grid of tiles. A matrix-

form of this equation can be formulated without much effort by adding a few

linear operators for the weighting and patch extraction. It is also straightforward to

express this tiled image formation in the frequency domain, which diagonalizes the

convolution operation. See [45] for a detailed description and analysis of the tiled

image formation model for spatially varying PSFs.

2.4 Imaging Sensors
Image sensors measure the intensity of light that is emitted from an active light

source or sources in the scene and propagates through the potentially complex scene

until reaching the imaging optics, which focus light from different scene points on

different sensor locations. In particular, the optical system gathers a cone of rays

that diverge toward the aperture plane and redirects them to converge onto the 2D

sensor plane, as described in the previous paragraphs. Hence, the directionality

(in the cone of rays) is lost in the measurement process. Instead of the directional

radiance, image sensors estimate irradiance [W ·m−2].

2.4.1 Measuring Irradiance

Solid-state image sensors rely on the photoelectric effect to perform this mea-

surement. As mentioned in Section 2.1, this effect refers to the generation of

electron-hole pairs in a material when illuminated with light. In particular, the

energy of the generated electrons is proportional to the frequency of the illumi-

nating light but not the intensity. For low frequencies of the incident illumination,

below a threshold, no electrons are generated independently of the intensity. The

photoelectric effect had first been observed by Hertz in 1887 [46] but could not be

described with the classical wave model of light. It was Einstein in 1905 [33] who

first explained this effect with light being composed of quanta, i.e. photons [33].
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The energy of a photon is

E = hf =
hc

λ
, (2.14)

and hence proportional to the frequency is f = c/λ. Here, the factor h =

6.6260755 · 10−34Js is Planck’s constant.

Charge Generation When a stream of photons impinges on a material, the energy

E of every photon can be absorbed by electrons in the clouds around the atoms in

the material, removing the electrons from their atoms as free charges that macro-

scopically lead to the photo-electric effect. Whether this photo-conversion happens

depends on the material properties, e.g. insulators require extremely high energy to

generate free-moving charges. In solids, electrons can exist in two distinct energy

bands, a valence band (low energy) and a conduction band for free-moving charges

(high energy). These bands are separated by an energy gap, i.e. band gap. For

isolators, this is a large band gap (electrons do not reach the conduction band at

room temperature), while the bands overlap in conductors. For silicon, the band gap

is 1.11 eV. Hence, from Eq. (2.14) it follows that photons with wavelengths larger

than 1125nm will not interact with silicon at all.

However, even photons with higher energy do not necessarily create an electron-

hole pair in the semiconductor (hole refers here to the electron-hole in the atom that

contained the freed electron). Photon absorption is a statistical process depending

on the energy of the photon and the material properties, which can be modeled with

an exponential [47]. The penetration depth of a photon is defined as the depth where

1/e (37%) of the incident radiation are absorbed. Hence, this depth exponentially

depends on the wavelength of the photons. For example, red light penetrates silicon

much less deeply than blue light does. Photons of longer wavelengths may not get

detected at all, or may generate charges at deep penetration depths that accumulate

in nearby pixels, i.e. cross-talk.

The overall charge generation process of a sensor is summarized with its quan-

tum efficiency η, which is defined as the ratio of the detected electron-hole pairs e

to the number of incoming photons i; see Eq. (2.15).

η(λ) =
e(λ)

i
. Quantum Efficiency (2.15)
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Here, i and e are measured for the total area of a sensor pixel, which also includes

light-insensitive areas occupied by on-sensor electronics. Hence, this definition of

the quantum efficiency also models fill-factor effects, including micro-lens optics

that aim at increasing it. Note that η depends on the wavelength of the incident

radiation, including depth-dependent photon absorption effects [47].

Charge Accumulation Without any electric field applied to the semiconductor, the

electrons generated from photon absorptions move around by thermal diffusion and

self-induced drift. Thermal diffusion describes the movement in random directions

due to thermal energy for temperatures larger than 0◦K, and self-induced drift occurs

between charges of the same polarity due to repulsive Coulomb forces [47]. Due to

this movement, eventually, the electron-hole pairs recombine.

To detect them, electric fields are generated in the individual photodetectors to

separate the charges. In most silicon detectors this field is created by doping narrow

zones in the silicon. Doping refers to the process of introducing impurities into the

silicon to alter its electrical properties. Two types of dopants exist: electron donor

impurities (n-type) that contribute free electrons and electron acceptor impurities

(p-type) that create holes. A very basic detector is the p–n diode. It consists of

a junction of p-type and n-type doped semiconductor materials. At this junction,

some electrons from the n-region (that reach the conduction band) diffuse into the

p-type region to combine with holes, creating positive/negative ions on both sides,

respectively. This creates an electric field in this depletion region [47]. If a photon

gets absorbed in this depletion region, the resulting charge is moved by this electric

field toward the cathode. Hence, a current is produced. In conventional CMOS

sensors, p–n diodes are often reverse-biased. In this operating mode, a potential

is applied to the semiconductor, which pulls electrons and holes away from the

junction. Hence, the depletion region is significantly increased [47]. For further

reading on semiconductor physics, we refer the reader to [47].

The number of electrons that can be retained in the depletion zone is called the

well capacity. When high irradiance exceeds this capacity, charges may travel to

nearby pixels, which causes so-called Blooming artifacts. Greater well capacity

prevents this and increases the dynamic range of a sensor. Dynamic range is defined

as the ratio of the largest detectable signal to the smallest detectable signal. This
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sensor metric quantifies how well both bright and dark features can be measured.

It depends not only on the well capacity but also on the dark current. Electrons

that are thermally generated in the depletion zone cannot be distinguished from

photoconverted electrons [27]. This causes a measurement floor for low irradiance

values, i.e. the dark current. Dark current can be reduced by cooling the sensor.

The well capacity can be increased by enlarging the depletion zone, which can,

in general, be achieved by increasing the pixel area, and changing doping and

detector-dependent properties (e.g. the gate voltage in CCD pixels [47]).

2.4.2 CCD and CMOS Sensors

Having described the basic principles of charge generation and accumulation in

semiconductor imagers, we now review the two main sensor types: CCD sensors

and CMOS Active Pixel Sensor (APS) sensors. These differ drastically in the ampli-

fication and the transfer of the photoconverted charges away from the charge bins in

the photodetectors. Figure 2.7 illustrates the two sensor designs.

Figure 2.7: CCD and CMOS APS sensor working principle. In a CCD sensor,
charges accumulated in the individual collection sites are sequentially
transferred to neighboring pixels by charge-coupling. Similar to a bucket
brigade, charges are moved along lines off the sensor to a single output
amplifier. In contrast, CMOS APS sensors connect a buffer amplifier to
each pixel’s charge collection site. The locally amplified charge can then
be read out over relatively long wires using column and row addressing
(red wire for the red pixel).
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As a very basic image sensor, one could realize a grid of p–n diodes in a silicon

substrate with metal connectors (wires) from each diode to an output stage. As the

metal connectors would need to cover the whole sensor area, they are relatively long

compared to the pixel size. Hence, a large read-out capacitance would be introduced

by these wires, causing a low SNR and low read-out speed [27]. CCD and CMOS

APS sensors solve this problem using different approaches.

Charge-Coupled Device (CCD) sensors were first proposed in 1969 [48], [49].

These sensors consist of a grid of diodes as photodetectors. The diodes are biased

in the deep depletion mode, which means that the depletion zone under the gate is

completely depleted of free electrons. The depletion region increases with the gate

voltage, similar to the p–n diode described above. For further reading on the CCD

photodiodes; see [49]. During integration, photoconverted charges are accumulated

in the depletion region under the photogate. See Figure 2.7 for an illustration on the

top left. To read out the collected charges after the integration, the neighboring gate

voltage is increased to match the bias potential. This causes the potential wells under

both gates to merge. Hence, due to thermal diffusion and self-induced drift, the

charges will distribute equally under both gates [27], i.e. charge-coupling will occur.

This is illustrated on the center left in Figure 2.7. Afterward, the potential of the

photogate is removed, causing the charges to migrate completely under the adjacent

gate; see the bottom left in Figure 2.7. Repeating this process, the photogenerated

charges can be moved along lines of gates to the output.

This charge transfer is very efficient: Typical CCD sensors drop only between

0.01% and 0.001% of the charges between two pixels (which mostly consist of

three to four gates) [27]. Hence, for a scanline length of 1, 000 pixels, a drop of

only 1% can be achieved. After leaving the sensor area, the charges are converted

to an output voltage sequentially in a single, low-capacitance output amplifier [27].

This leads to a low-noise and homogeneous output across all sensor pixels. While

this is a strong benefit of CCD sensors, it also leads to low read-out speed due to

the sequential output. Furthermore, high gate voltages between 10V and 20V are

required for large depletion regions. Therefore, CCD sensors suffer from larger

power consumption. Finally, the CCD fabrication process prohibits processing logic,

such as read-out or signal processing logic, to be integrated on the same chip as the

sensor [49].
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CMOS APS sensors have almost completely replaced CCD sensors in the con-

sumer market because they resolve many of the issues discussed above. In particular,

CMOS technology enables the integration of processing logic along with the sensor

on a single chip; it has low power consumption and drastically reduced manufactur-

ing cost [47]. CMOS APS sensors consist of a grid of reversely biased photodiodes,

each connected to a buffer amplifier. Hence, every pixel contains an active stage [27].

The locally amplified charges can then be read out over relatively long wires with

large capacity. The individual pixels are addressed in a matrix with row and column

decoders, as visualized on the right in Figure 2.7. Hence, this allows reading out

image sub-regions at high speed, which is in contrast to CCD sensors that require

full-sensor read-out. In addition, different integration start and end times can be

used in each pixel.

However, compared to CCD sensors, the increased flexibility in operation and

manufacturing come at the cost of a reduced SNR. Due to manufacturing variation

in the photo-detector and buffer amplifier (e.g. gate size and doping concentration),

every pixel has a different offset and gain, resulting in fixed pattern noise. Besides

this fundamentally different noise component, traditionally sensors in CMOS tech-

nology suffer from lower quantum efficiency, well capacity and higher read-out

noise. However, the image quality of CMOS sensors is reaching CCD quality even

in high-accuracy scientific applications [50]. Finally, it is even possible to realize

CCD structures in CMOS [27]. This allows using the highly efficient charge transfer

mechanism also on CMOS sensors, such as CIS TOF sensors, which will be reviewed

in detail in Section 2.5.

2.4.3 Sensor and Noise Model

To understand sensor measurements and perform inference tasks using measured

data, it is essential to accurately model the underlying measurement process. How-

ever, as discussed in the previous paragraphs, a variety of different sensor types,

operating modes and technical implementations exist. Hence, to compare different

sensors for different applications, not only an accurate but also a generalizing model

is necessary. The EMVA Standard 1288 [51] presents such a unified model along

with calibration procedures for the model parameters. It covers all digital color (and
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monochrome) cameras with linear photo response, and can even serve as a basis

for emerging sensor types, such as CIS TOF cameras [52]. Since its introduction

in 2005, the EMVA Standard 1288 has been adopted by a large number of sensor

manufacturers [51]. In the following, we introduce a sensor and noise model that

closely follows this standard.

Figure 2.8: Sensor model for digital cameras with linear photo response. Dur-
ing integration, a fraction η(λ) of the photons with wavelength λ generate
electric charges. These charges and a signal floor of thermally generated
charges (dark noise) are accumulated in the pixel. Subsequently, the
collected charges are amplified with gain K and quantified, resulting in
the measured digital value.

Sensor Model Figure 2.8 illustrates the sensor model. For simplicity, we consider

spectral irradiance E of a single wavelength λ to be incident on the sensor. Only

the quantum efficiency η from Eq.(2.15) is assumed to be wavelength-dependent.

Hence, all wavelength-dependent effects can be modeled as linear combinations of

the single wavelength model. During an integration of time t a mean of

i =
AEt

hf
=
AEλt

hc
[#photons] (2.16)

photons hits a single pixel. Here, A is the area of the pixel and the second equation

is derived from Eq. (2.14). Only a fraction η(λ) of the i photons generates charges

that are accumulated in the pixels charge bin. However, thermally generated charges

idark are also accumulated in the charge bins. The combined charges are amplified

with the gain factor K of units of DN/e−, which is digits per electrons. Note that

this is an analog amplification. The amplified analog signal is finally converted into

a digital signal in the analog-to-digital converter (ADC), resulting in the measured
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digital pixel value j. This value can be modeled as

j = min ( K(η(λ)i+ idark) + n, jsat )

= min ( Kη(λ)i+ jdark +K(ne + nd) + nq, jsat )
(2.17)

The operator min(·, jsat) clamps the measurement to the saturation value jsat, which

is defined as the maximum measurable gray value. Note that jsat is limited by the

full well capacity, the amplitude gainK and the ADC. The corresponding irradiance,

however, does not reach the well capacity but a slightly smaller value, as the ADC

usually reaches its maximum value before the maximum well capacity is achieved.

The variable n in the first row of Eq. (2.17) models additive noise introduced in the

measurement process, which will be discussed in detail below. In the second row,

we introduce jdark = Kidark as the dark signal that is measured without any light

incident on the sensor. As idark consists of thermally generated charges, this dark

signal depends on the temperature (and grows proportional to the integration time

t). Note that the measurement can also be expressed in terms of incident irradiance

E, combining Eq. (2.16) and Eq. (2.17) leading to

j = min

(
Kη(λ)

AEλt

hc
+ jdark +K(ne + nd) + nq, jsat

)
. (2.18)

Using Eq. (2.18), the linearity of the sensor can easily be verified by measuring the

mean response µj for varying exposure t or irradiance E.

Noise Model To describe the stochastic variation in the measurement j, all

variables in Eq. (2.17) except for K are random variables. The variable n =

K(ne + nd) + nq models additive noise that is introduced at three points in the

measurement process. The component ne models the shot noise fluctuations of

photo-generated charges η(λ)i and the thermal noise charges idark [51] as an additive

offset to their sum. Both, the photo-generated charges and thermal noise charges,

follow a Poisson distribution. Since the sum of Poisson-distributed random variables

itself is Poisson-distributed, which allows us to use a single random variable ne. The

second component nd from Eq. (2.17) models normal-distributed noise introduced

in the read-out of the charges and the amplifier. Both, ne and nd are amplified by
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gain factor K, which also converts the fluctuations in the electrons to digits. Finally,

nq models post-amplifier noise in the ADC. nq is uniformly distributed between

the quantization levels [53]. Due to the laws of error propagation, the (temporal)

variance of n is given as

σ2
j = K2(σ2

e + σ2
d) + σ2

q

= K2σ2
d + σ2

q +Kµj ,
(2.19)

where σ2
j , σ

2
e , σ

2
d, σ

2
q are the variances of j, ne, nd, nq. In the second row of Eq (2.19),

we have used a property of the Poisson distribution; that is its variance equals its

mean, i.e. σ2
e = µj . Using Eq. (2.19), it is possible to calibrate the system gain

K from the linear relationship between the variance σj and µj , [51]. The offset

K2σ2
d + σ2

q allows calibrating σ2
d, as σq is known from the ADC quantization levels.

Finally, having estimated K, it is possible to calibrate the quantum efficiency η(λ)

using the linear relationship between Kη(λ) and µj described in Eq. (2.17). For a

detailed description of this calibration approach, classically known as the Photon

Transfer Method, we refer the reader to [54], [55].

Above, we have discussed a sensor and noise model for an individual pixel.

Note that often spatial non-uniformities between different pixels are described as an

additional type of noise, so-called fixed pattern noise. However, because this effect

is temporally static, it is, in fact, not noise but inhomogeneous parameters of the

same per-pixel model.

The EMVA Standard 1288 describes standardized calibration methods not only

for these non-uniformities but for all parameters of the sensor and noise model

that we have introduced above. This also includes the spectral sensitivity, which

is captured in η in our model. We refer the reader to [51], [56] for an in-depth

discussion and a reference implementation.

Signal-to-Noise Ratio and Model Approximations Having introduced the sensor

and noise model above, we can analyze the effects of the model parameters on the
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signal quality. A common quality measure is the Signal-to-Noise Ratio, that is

SNR(µi) =
η(λ)µi
σj

=
η(λ)µi√

η(λ)µi + µjdark + σ2
d + σ2

q/K
2
, (2.20)

which is defined as the ratio of the mean signal and the standard deviation of the

noise. The effect of the quantization noise is damped by factor 1/K2, and hence

is often ignored in practice. An accurate and compact noise model is the mixed

Poissonian-Gaussian model from [57]. Reducing the model to only Poisson and

Gaussian noise allows exploitation of the heteroskedastic normal approximation

P(µ) ≈ N (µ, µ),
Heteroskedastic

Approximation
(2.21)

where here P(µ) is a Poisson distribution with mean µ and N (µ, µ) is a Gaussian

distribution with mean and variance µ. This approximation becomes more accurate

with increasing λ. It allows modeling the overall noise n as a Gaussian distribution

with a spatially changing variance, depending on the (unknown) latent signal value

η(λ)µi [57]. While this approximation simplifies inference tasks for high and

medium photon scenarios, low photon scenarios are common in many applications.

The border cases are

SNR(µi) ≈


√
η(λ)µi for η(λ)µi � µjdark + σ2

d + σ2
q/K

2

η(λ)µi√
µjdark +σ2

d+σ2
q/K

2
for η(λ)µi � µjdark + σ2

d + σ2
q/K

2
.

(2.22)

The SNR changes from a linear dependency on µi in the low photon range to a

square root relationship in the high photon range. In other words, for well-exposed

images, the SNR scales with square root of incoming photons. Using Eq. (2.16),

this means that increasing the pixel area by 4 (e.g. doubling width and height)

or increasing the exposure time by 4 will increase the SNR by 2× (given that no

saturation occurs).

Finally, we can define an ideal sensor as one with no read-out noise, no quantiza-

tion noise, dark current of 0, and quantum efficiency of η(λ) = 1. Using Eq. (2.20),

an ideal sensor defines the upper bound SNRideal(µi) =
√
µi.
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Multi-Shot Capture Due to saturation in our model from Eq. (2.18) and motion blur

for dynamic scenes, the SNR cannot be arbitrarily increased by a longer exposure

time. Furthermore, the square-root dependence requires long exposure times for

significant improvements in SNR. A successful approach to enabling longer exposure

times is using a burst of short exposure captures [58]. The burst captures have to be

registered to compensate for camera or scene motion but can drastically increase

the SNR [59]. Capturing several images also allows for an increased dynamic

range, which was introduced above. High-dynamic-range (HDR) imaging can be

implemented by capturing an image stack with different exposure times. By doing

so, measurements can be reconstructed that contain more detail in the very dark

and bright areas than would otherwise be possible. We refer the reader to [17] for a

detailed discussion. Multiple frames can also be combined to reduce motion blur

[60] or to super-resolve more detail than is available from a single image [61].

2.4.4 Color Imaging

The sensor model from above has been described for incident light of a single wave-

length. For a spectrum of light Ω the model can be easily extended by integrating

the photo-generated charges in Ω, as done in the charge bucket by the accumulation.

Eq. (2.17) becomes

j = min

(
K

∫
Ω
r(λ) η(λ) i(λ) dλ+ jdark + n, jsat

)
, (2.23)

where i(λ) is the incident number of photons per wavelength λ. As already described

in Section 2.3.3, image sensors sample the incident spectrum by adding different

spectral band-pass filters on the pixels, i.e. color filters. As perfect band-pass

filters are hard to realize in practice, we model the filters with a general modulation

r : R → R+. In order to sample different spectral bands, the different filters are

spatially multiplexed on the pixel array. Different sets of spectral filters may be

used, whose measured response (the accumulated j) eventually can be converted

into a parameter vector of a chosen color space. A key result from colorimetry

is that in most scenarios the response from three band-pass filters is enough to

visually distinguish colors. Hence, commonly, three color filters peaking around
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the red, green and blue band are used, arranged in a Bayer array [62]. The colors

can then also be described with three scalars, i.e. the R, G, B component, which

may be converted to different color spaces. We refer the reader to [17] for a detailed

introduction to photometry and colorimetry.

Color Image Processing Early color image processing aims at estimating these

RGB pixel values at full sensor resolution from the noisy, subsampled measurements

j. Traditionally, this task is implemented as a pipeline of simple stages [63]. These

image signal processors (ISPs) usually take in raw Bayer sensor measurements,

interpolate over defective or stuck pixels, demosaick the sparse color samples to a

dense image with RGB in every pixel [64], attempt to denoise the noisy signal [65],

enhance edges, tonemap the image to 8 bits per channel, and optionally compress

the image. The camera capture parameters are controlled by the auto exposure,

focus, and white balancing algorithms [66].

Demosaicking and denoising play key roles in this image processing pipeline

because they are both hard inverse estimation problems. We refer the reader to [64]

for an overview of state-of-the-art demosaicking methods. Many approaches have

been proposed for image denoising. Self-similarity and sparsity are two key concepts

in modern image denoising. Non-local image modeling utilizes structural similarity

between image patches. Non-local means (NLM) [67] filters a single image using a

weighted average of similar patches for each pixel. Many orthogonal transforms,

such as DFT, DCT, and wavelets, have good decorrelation and energy compaction

properties for natural images. This property has been utilized in local transform-

based denoising schemes, such as wavelet shrinkage [68] and sliding window DCT

filtering [69]. BM3D [70] was the first denoising algorithm to simultaneously

exploit sparse transform-domain representations and non-local image modeling.

Combining internal (such as BM3D) and external (such as Total Variation) denoising

has recently been shown to be advantageous; [71] run two methods separately and

then merge the results.
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2.4.5 Modified Sensor Designs

A variety of sensor designs and capture methods has been proposed that differ

from traditional Bayer array color imaging with a single main lens as discussed

above. One line of research is to use sensor arrays with individual optics. An

extremely thin camera design is possible by integrating several small lenses over a

sensor, as in the TOMBO [72] and PiCam [73] design. By using per-lens spectral

filters, the PiCam design eliminates the Bayer array. Furthermore, the optics can be

drastically simplified as chromatic aberrations only need to be corrected over a small

wavelength band of the per-lens filter. Tiled sensors like PiCam also allow measuring

angular components of the light transport from the different tiled viewpoints in a

so-called light field [74, 75].Captured light field can be post-processed to allow

changing of the viewpoint or focus, creating a large virtual aperture, extracting

depth from the scene, etc. Traditional Bayer sensor designs have also been modified

to extend the dynamic range that they capture. For example, the density of the

color filter array can be varied per pixel [76], but this comes at the cost of reduced

light efficiency. Alternatively, the sensor design itself can be modified to allow for

per-row selection of the exposure time or sensor gain [77, 78].

2.5 Time-of-Flight Imaging
Having discussed a broad variety of image sensors that measure irradiance, this sec-

tion on TOF imaging describes a fundamentally different sensor type. TOF imaging

systems measure the Time-of-Flight of light traveling from an active source along a

global illumination path through the scene back to the sensor. Assuming a collocated

source/sensor and a single reflector, such a TOF measurement immediately allows

inferring the distance of this reflector.

2.5.1 Optical Range Imaging

A large variety of different methods for optical range measurements exists. Stoykova

et al. [79] give an extensive overview. Optical range systems can be categorized

into the two main groups of triangulation-based and collinear setups, where the

sub-categories single/multi-camera and passive/active exist.
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Collinear methods. Collinear setups do not rely on a baseline (for triangulation)

and can, in theory, share the optical path for illumination and camera optics (al-

though that is in practice mostly not the case). Passive collinear single camera

systems include the shape-from-X methods: shape-from-shading [80], [81], shape-

from-defocus [82], [24], shape-from-texture [83]. Due to major ambiguities in the

forward model describing the image formation, these techniques lead to extremely

challenging inverse problems lacking efficient regularization techniques. Active

collinear single-camera systems include TOF-based systems [84], [85], including

also shutter-based approaches [86], [29], depth-from-defocus [87], intensity-falloff-

based methods [88] and also methods based on interferometry [89], [79].

Triangulation-based methods. Triangulation-based methods require a baseline

between multiple cameras, or between illumination and camera (if the system is

active). Passive triangulation-based systems using multiple cameras [90] rely on

solving the correspondence problem [91], which is computationally hard and can fail

in regions with little texture. Furthermore, the depth accuracy depends on the size

of the baseline, which is undesirable for small devices. Active triangulation-based

systems rely on modulated illumination and a camera for triangulation, [92], [93].

The modulated illumination is introduced to solve the correspondence problem [94].

While being robust to regions with little texture, the methods suffer from accuracy

for small baselines and ambient illumination, thus need high-intensity focused

illumination. To achieve high accuracy, many structured light methods rely on

multiple projected patterns and therefore are severely limited by acquisition speed.

Spatial multiplexing [95] can overcome some of these limitations, however, at the

cost of significantly decreasing spatial resolution and adding expensive computation.

Comparison of optical range imaging methods. Comparing all optical ranging

systems listed above, passive single-camera systems represent the class with the

lowest accuracy due to the major ambiguities in the image formation [79]. Passive

triangulation-based systems resolve many of these ambiguities by introducing

multiple views and therefore significantly improve accuracy in comparison to

passive single-camera systems [91]. However, precision is still limited by solving
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the correspondence problem, which is significantly simplified with active structured

light illumination methods. Comparing now TOF cameras to triangulation-based

systems, Beder et al. [96] show that, for indoor scenarios, TOF cameras improve

depth accuracy an order of magnitude over passive stereo systems. Comparable

structured light systems can achieve similar accuracy as demonstrated by Langmann

et al. [97]. However, the main difference between TOF cameras and triangulation-

based systems is that the accuracy of the latter is a quadratic function of the inverse

depth and only linearly depending on the baseline as derived in [98]. While the

range of TOF cameras can be extended by simply increasing the illumination power,

this is a fundamental limit for active and passive triangulation-based systems. It

also means that high accuracy requires large baselines, which severely restricts the

size of the system. Because of this fundamental limitation and the drawbacks of

triangulation-based methods outlined in the previous paragraph, TOF imaging is a

very promising technology. Below, we review TOF imaging in detail.

2.5.2 Impulse Time-of-Flight Imaging

TOF range imaging systems can be classified by the type of their illumination

modulation, that is impulse modulation or continuous wave modulation. In impulse

Time-of-Flight imaging, a pulse of light is emitted into the scene and synchronously

an accurate timer is started. The light pulse travels from the illumination source to

the object and is directly reflected back to the sensor (assuming direct reflection at the

scene object). Once the sensor detects the reflected light pulse, the timer is stopped,

measuring the round-trip time τ . Given the speed of light c = 299, 792, 458 m/s

and assuming collinear sensor and illumination, one can then calculate the depth

d of the object point reflecting the pulse as d = cτ/2. Classical Lidar range

imaging [99], [26], is based on impulse Time-of-Flight imaging, with [100] among

one of the first introducing a practical Lidar system.

Impulse illumination has the advantage that a high amount of energy is trans-

mitted in a short time-window. Therefore, high SNR is achieved with regard to

background illumination [27], while the mean optical power stays at low eye-safe

levels. The high SNR allows for high accuracy measurements over a wide range of

distances [26]. A further advantage is that Multi-Path Interference can be reduced
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simply by detection of the first peak and temporal gating. We will discuss Multi-Path

Interference in detail later in this section.

Drawbacks of impulse illumination are that due to varying ambient illumination,

attenuation due to scattering and varying scene depth, both the peak intensity of the

pulse and the ambient illumination offset change. Thus, the sensors require a large

dynamic range to detect pulses, which are usually implemented by thresholding [99].

Another drawback of pulsed illumination is that currently only laser diodes deliver

the required short pulse width with high optical power [27]. However, the pulse

repetition rate of laser diodes is limited to 10 kHz - 150 kHz in recent systems [101].

This severely limits the frame rates of scanning systems that scan the scene point-by-

point and also average multiple captures for improved SNR. Furthermore, scanners

significantly increase sensitivity to vibrations, cost and system size [85]. In fact,

most impulse-illuminated systems are scanning systems [26]. This is due to the

difficulty in implementing high-accuracy pixel-level timers [84]. To illustrate

the required precision, note that a for a distance resolution of 1 mm, light pulses

need to be separated with a time resolution of 6.6 ps. Only recently, advances in

implementing large arrays of Single-Photon Avalanche Diodes (SPAD) in standard

CMOS enable efficient scanner-less pulsed range imaging [102]. However, SPADs

implemented in silicon technology at room temperature are not able to reach the

timing resolutions necessary for mm-resolution [102]. Therefore, either simple

averaging of many periodic pulse trains in time-correlated single-photon counting

(TCSPC) or continuous wave modulation is done to improve the timing uncertainty.

The principles and benefits of continuous wave modulation are described in the

following paragraphs.

2.5.3 Continuous Wave Time-of-Flight Imaging

In continuous wave TOF imaging, rather than using impulse illumination, the light

source is modulated. The electromagnetic waves present in the illumination itself

(e.g. in the case of a laser illumination only a very narrow spectrum) represent

the carrier wave that gets modulated. In general, different modulation methods

exist. While frequency modulation for TOF imaging has been explored [103], by

far the most popular modulation technique is amplitude modulation due to its
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comparatively very simple implementation. As the fundamental principle of these

sensors is based on temporal correlation (or convolution), we use in this dissertation

the term Correlation Image Sensors (CIS) .

In CIS range imaging the intensity of the light source is modulated with a

periodic modulation signal. Rather than directly measuring the TOF as in impulse

TOF imaging, the phase difference θ between a reference signal (often the transmitted

signal) and the received signal is measured. θ can be estimated by cross-correlation

between the reference and received signal. Given the modulation frequency f of the

periodic illumination, it is θ = 2πfτ and thus the depth is d = cτ/2 = c/(4πf)θ.

One of the first CIS systems was introduced by Lange [27]. A survey of recent

systems and their limitations can be found in [85], [84]. Using Amplitude Modulated

Continuous Wave (AMCW) illumination rather than pulsed illumination has the

advantage that the light source does not need to provide short pulse width at high

rates, thus, in practice, inexpensive LED illumination can be used [27]. Furthermore,

accurate per-pixel timing is required for pulsed TOF imaging. This is not necessary

for Photonic Mixer Devices or time-gated photon counters [84], which therefore

can be implemented significantly more easily.

A variety of different modulation waveforms has been proposed. Most com-

mon are sinusoidal waves or square waves [104], [27]. Frequency modulation via

chirping has been explored in [105]. Pseudo-noise modulation has been proposed

in [106], and pseudo-random coded illumination was used by Whyte et al. [107].

CIS sensors Sensors for correlation imaging are based on two working principles:

correlation during or after exposure. The most popular class of sensors performs the

correlation of the incoming modulated signal during exposure. This is achieved by

using Photonic Mixer Device (PMD) pixels that direct the photo-generated charge

toward multiple taps (commonly two). Such a pixel is illustrated in Figure 2.9. The

charge accumulation and transport are achieved using the CCD principle discussed

in Section 2.4. The main difference from a common CCD image sensor is that the

charge transfer between the group of accumulation sites occurs during the exposure.

The direction of the transfer can be modeled as a scalar between -1 (maximum

field strength toward the left bin) and +1 (fully toward the right bin) according

to a temporally varying modulation function f . The left bin corresponds then to
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negative values while the right models positive values. This means that the sensor

essentially correlates a temporally varying illumination function g with the sensor

modulation function f ; see the right side of Figure 2.9. The correlation value is

the subtraction of the left from the right (as we assigned negative values to the left

bin). Using a zero-mean sensor modulation function f , unmodulated ambient light

is removed in this subtraction as constant bin offset after or even during integration.

This is also illustrated on the right side of Figure 2.9. The CIS sensor design

was first proposed by [108], the application to phase imaging was shown in [109]

and simultaneously a design for cm-accurate depth imaging was first presented

by Schwarte et al. [110], who also introduced the term Photonic Mixer Device [111].

We refer the reader to [27] for a detailed discussion of the Photonic Mixer Device

sensor design. Nearly all commercial CIS designs are currently based on PMD

technology [85]. An alternative approach is to do the correlation after exposure
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Figure 2.9: Working principle of a PMD pixel. Photo-generated charges are
directed toward two bins using an electric field between two electrodes,
i.e. the CCD transport principle (left). The intensity g of the light source
and the electric field f is modulated during integration (right). The
sensor correlates the signal g with f . Unmodulated light is accumulated
equally in both buckets and can be removed during or after integration.

on the electronic signal generated by the photosensitive pixel during measurement.

The correlation can be done with analog electronics using standard photodiodes as
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sensors. However, this sensing approach requires complex electronics per pixel,

has high-power consumption and suffers from noise in the signal processing [84].

Using SPAD sensors in Geiger mode, the correlation can be performed in the digital

domain after read-out; see [112].

2.6 Working Principles of CIS

Having listed the benefits of continuous wave TOF imaging using CIS in the previous

section, we now describe the basic working principles of this technology in detail.

Sinusoidal waves are often used in the CIS literature [85] to approximate the actual

shape of the modulation waveform. In the following, we assume a sine wave

model for simplicity of notation. However, it can be expanded straightforwardly

to a general model by using a superposition of all harmonics for the modulation

waveforms. Figure 2.10 on the left presents an overview of the CIS image formation

using sinusoidal modulation.

Figure 2.10: CIS TOF imaging with its most common capture modes. Left:
Homodyne setup using the same frequency for illumination and sensor
modulation. Right: Heterodyne setup using different frequencies.

Assuming a single diffuse reflector in the scene, the light source sends intensity-

modulated light g(t) with a periodic modulation signal into the scene. Assuming
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that the modulation signal is cosine, the signal incident on the sensor is s(t):

g(t) = cos(ωgt) + 1

s(t) = a cos(ωgt+ φ) + I

f(t) = cos(ωf t+ θ)

(2.24)

We see that the illumination g(t) received a phase shift φ due to the round-trip

travel time of the photons, a change in amplitude a and an offset I due to ambient

illumination. As discussed in the previous paragraphs, each Photonic Mixer Device

can direct incoming photons into two neighboring buckets. By doing this at a

certain temporal rate, the incoming signal can be multiplied with another periodic

modulation function f(t). Assuming again that this is a cosine with a phase shift θ

as in Eq. (2.25), we get the continuous signal p(t) in Eq. (2.25).

p(t) = [cos(ωf t+ θ)] · [a cos(ωgt+ φ) + I]

=
a

2
cos((ωg − ωf )t− φ+ θ)+

a

2
cos((ωg + ωf )t+ φ+ θ)+

I cos(ωf t+ θ)

(2.25)

The continuous p(t) is then integrated over the exposure time T and results in the

measurement b. The reason why the sensor modulates is that due to the high fre-

quency of the illumination (in the MHz range), one would need very high temporal

sampling rate to sample the incoming signal s directly. As we will see below this is

not necessary for the sampling of the modulated s. Note that CIS sensors allow for

extended exposure intervals, much like regular cameras, by integrating over a very

large number of periods of the wave, thus essentially correlating f and s. This is a

key benefit of CIS sensors, in contrast to impulse-based systems.

2.6.1 Homodyne Measurement

In general, the angular frequencies ωg, ωf of the illumination/sensor modulation

can be different. In a homodyne setup, we have ωf = ωg. In a heterodyne setup, it

is ωf 6= ωg. The homodyne setting is used in nearly all commercial systems [85]. It
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is illustrated on the left of Figure 2.10 with ω = ωf = ωg and results in Eq. (2.26):

bθ(ρ) =

∫ ρ+T

ρ
p(t) dt =

1

2
a cos(θ − φ), (2.26)

where the last two terms from Eq. (2.25) disappear due the integration (which is

low-pass filtering plus sampling) when assuming the T � 1/ω. As illustrated

in Figure 2.10, b is constant over time. This is the reason why it was useful to

include the phase shift θ in the sensor modulation. This additional shift allows us

to evaluate the correlation measurement b at different samples. Evenly sampling

for θi = i · 2π/N for i ∈ {0, . . . , N − 1} allows us to do a frequency analysis of b

by using the discrete Fourier transform. The signal of interest will be in the first

frequency bin, giving the estimate in Eq. (2.27).

φest = − atan

(∑
i bθi(0) sin(θi)∑
i bθi(0) cos(θi)

)
aest =

√(∑
i
bθi(0) sin(θi)

)2
+
(∑

i
bθi(0) cos(θi)

)2
(2.27)

For N = 4, one gets the form commonly mentioned in the literature [29]. Having
finally computed the estimate φest of φ, one can simply compute the distance d

from the time of flight using dest = c
2·ω · φest.

2.6.2 Heterodyne Measurement

For the heterodyne setting [113, 114], it is ωg 6= ωf , which is illustrated on the right

in Figure 2.10. In particular, let us assume a small frequency shift ωf = ωg − ωδ.
We then get from Eq. (2.25):

bθ(ρ) =

∫ ρ+T

ρ
p(t) dt =

a

2

∫ ρ+T

ρ
cos ((ωg − ωf )t− φ+ θ) dt+

a

2

∫ ρ+T

ρ
cos ((ωg + ωf )t− φ+ θ) dt︸ ︷︷ ︸

≈0

+

∫ ρ+T

ρ
I cos(ωf t+ θ) dt︸ ︷︷ ︸

≈0

≈a
2

cos (ωδρ− φ+ θ) ,

(2.28)
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We see that the difference in the two modulation frequencies introduces a low-

frequency beating pattern that preserves the distance-dependent phase shift φ. This

is illustrated in Figure 2.10 at the bottom right. Again, as in the homodyne case,

the high-frequency terms are removed in the integration. In particular, we assume

here a finite integration period T with 2π(1/T ) >> ωf and ωf >> ωδ. Integrating

from −∞ to +∞ would result in bθ(ρ) = 0, and no meaningful signal would be

extracted. In fact, the last approximation for Eq. (2.28) assumes that T is small

enough so that the cosine integrand is locally linear.

Finally, the reconstruction of the unknowns φ, θ, a can be done by sampling

the harmonic b over time with θi = i · ωδ/FPS, where FPS are here the camera

FPS. Estimating the unknowns from the samples is then done in the same way as in

Eq.(2.26).

2.6.3 Analysis in the Spectral Domain

In the previous paragraphs, we have derived and explained the image formation

for CIS in the temporal domain. The same image formation model can also be

derived in the frequency domain, which can help build a deeper understanding of the

measurement process. Figure 2.11 shows a spectral analysis of the homodyne and

heterodyne measuring mode. The plots show the amplitude spectra. Phase spectra

remain unchanged except the first row, where interaction with the scene introduces

the distance-dependent phase shift φ.

In the first row, the amplitude spectrum of the single-frequency illumination

spectrum ĝ gets attenuated by the factor a. We absorb here illumination distance

fall-off and non-perfect reflection at the scene object in this factor. The second row

shows that the spectrum ŝ incident on the sensor gets convolved with the modulation

spectrum f̂ . This is because multiplication in the spatial domain corresponds to

convolution in the spectral domain. This convolution results in a high-frequency

component, the sum of ωg + ωf , and a low-frequency component, the difference

of ωg − ωf . Thus, in the homodyne setup, the low frequency is, in fact, 0. In the

heterodyne configuration, it is a small beating frequency (assuming that ωg and ωf
lie close together). The last row in Figure 2.11 shows that the integration during

exposure corresponds to multiplication with a sinc low-pass filter in the spectral
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Figure 2.11: Spectral analysis of CIS TOF imaging for the homodyne measur-
ing mode (top) and heterodyne measuring mode (bottom).
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domain, removing the high-frequency components. A mathematical derivation of

the spectral analysis discussed above can be found in the Appendix in Section A.1.

2.6.4 Sensor and Noise Model

The model used so far is an idealized one. It includes neither noise, nor system-

atic deviations from the ideal sensor or light source. However, in practice, the

most commonly used operating mode is the homodyne mode with the inverse

trigonometric estimation from Eq. (2.27). Therefore, various types of errors in the

depth estimation can be observed. A list of the most severe deviations is given in

[85]. One can observe a systematic distance-dependent error, i.e. wiggling error

[115], an intensity-dependent depth error [116], temperature-dependent depth devia-

tions [117], exposure-time-dependent deviations [117], static pixel inhomogeneities

[85], and random fluctuations (noise) in the depth estimate. Lindner and Kolb [116]

and Khalmann et al. [117] identify the error components depending on distance, in-

tegration time and amplitude as the most severe ones. Both approaches reduce these

systematic errors by first measuring the deviation for a range of different estimated

depths, amplitudes and integration times. A depth estimate is then corrected using

the interpolated deviation from a 3D lookup-table or B-spline [116]. However, this

data-driven approach does not identify the inaccuracies in the model corresponding

to the observed depth error, and therefore it does not generalize well beyond depth

estimation (especially for higher-dimensional CIS-based imaging such as transient

imaging).

In contrast, Schmidt and Jähne [118] and Schmidt [52] propose a modified phys-

ical model to explain the observed error. As discussed in the previous section, CIS

pixels are groups of collection sites with CCD transfer to the collection sites. Hence,

the EMVA Standard 1288 for image sensors, reviewed in Section 2.4.3, can be

extended to model CIS sensors. To represent the systematic errors, the works [118]

and [52] extend it to allow for non-sinusoidal illumination g and sensor modulation

f , non-linear photo-response, adaptive suppression of background illumination and

spatial non-uniformities. The depth-dependent errors can then be explained by

higher-order harmonics in the modulation signals, whereas the amplitude and inten-

sity dependence are due to a non-linear photo-response and background suppression.
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While a non-linear photo-response can easily be inverted after integration in each

bucket [52], different approaches address non-sinusoidal modulation. Payne et al.

[119] propose a phase-shifting scheme during the integration, which significantly

reduces higher-order harmonics. Without changing the acquisition, the ideal sinu-

soidal model can be expanded to allow for arbitrary periodic modulation signals

using a superposition of all harmonics present in the waveform. This harmonic

CIS model is derived in Section A.2. Noise can be modeled as a sum of shot noise,

read-out noise and amplifier noise, which are independent between taps, exactly as

discussed for image sensors in Section 2.4.3. In the case of a sensor reading out

all taps independently, the quantization noise can also be considered per tap. If a

tap-difference value is read out, the quantization is applied after the tap subtraction.

For a 2-tap sensor, the mixed Poisson-Gaussian noise model from Section 2.4.3

then becomes a Skellam-Gaussian noise model. We refer the reader to [52] for

a discussion of calibrating the sensor and noise model parameters, again closely

following the EMVA 1288 calibration procedures.

2.6.5 Multi-Path Interference

In CIS TOF imaging, it is essential to handle the effects of global illumination.

Describing the basic measurement principles above, we have assumed illumination

along a single path from the light source to a single diffuse reflector and back to

the camera pixel. In general scenes, however, emitted light can be reflected or

scattered many times at different scene points until returned to the sensor. Thus,

multiple returns along different paths can be superimposed at the sensor, which is

the Multi-Path Interference (MPI) problem. Resolving MPI is critical, especially in

CIS TOF imaging, for two reasons. First, the scene is flood-illuminated, creating

significantly more potential MPI than with a scanned focused beam illumination.

Second, when sine modulation is used (as in many commercial systems [85]),

multiple superimposed sinusoids of the same frequency result in another sinusoid

with the same frequency but different phase. See the illustration in Figure 2.12.

This means that even for a very low number of mixed paths, resolving MPI is

hopeless with a single frequency. In contrast, impulse TOF could untangle a low

number of separated paths using simple thresholding. Recently, many approaches
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Figure 2.12: Multi-Path Interference. In the scene on the top, contributions
from direct and indirect light paths (direct red and indirect blue) are su-
perimposed in the measurement. In CIS TOF imaging, the sinusoids for
each path result in another measured sinusoid of different phase (black),
indistinguishable of a single reflector at a different depth. Impulse TOF

can separate the components in principle. However, the sensor requires
extremely high temporal resolution and almost continuous readout.

have been proposed to mitigate MPI effects. The methods from [120], [121], [122]

all model light transport only for the piecewise Lambertian scenes. A scene approxi-

mation step followed by an MPI reduction step based on the previous scene proxy is

done (either once or iteratively [122]). Another class of methods models sparse two-

path MPI for specular scenes [123], [124], [125]. Reduction of MPI is performed

per-pixel without estimating a scene approximation. All of the methods described

so far consider only special cases of general light transport. Recently Freedman

et al. [126] made an attempt to generalize per-pixel MPI reduction by assuming a

temporal sparse backscatter signal with a robust data-term. The multi-frequency

method can be implemented efficiently using a look-up-table. Finally, the last

class of methods not only relies on CIS measurements, like all approaches above,

but uses additional spatial light modulation [127],[2]. Recently, O’Toole et al. [2]

achieved state-of-the-art results combining spatial light modulation and sparsely

coded backscatter.
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2.6.6 Dynamic Scenes

Motion Artifacts So far we have considered static scenes. Hence, if measurement

time is of no concern, an arbitrary number of measurements can be acquired se-

quentially, i.e. temporally multiplexing. However, real-world scenes can contain

motion of the camera or any of the objects in the scene. This scene motion con-

sists of an axial component along the optical axis and a lateral component in the

orthogonal plane. Due to the motion, in practice, temporal multiplexing requires the

overall capture time of all N for a range estimate to be small compared to the scene

motion. This can be achieved by increasing the frame-rate of the camera or the

number of measurements that can be acquired simultaneously during a frame, for

example through spatial multiplexing. 4-tap (or 4-bucket) sensor designs have been

proposed [27], [128], which add two more charge buckets to each pixel. Hence,

four correlation measurements can be acquired during a single exposure [128].

However, spatial multiplexing sacrifices spatial resolution, which is low for cur-

rent CIS sensors [85] due to the large pixel structures required for the CCD-based

charge transport. Hence, the majority of CIS TOF camera systems use the discussed

2-tap design as a trade-off between pure time multiplexing (1-tap) and pure spatial

multiplexing (4-tap).

Different approaches addressing motion artifacts for 2-tap CIS sensors have been

proposed in the literature. [52] and [129] present models for the raw measurements

in each bucket and corresponding calibration procedures. Doing so, they are able to

reduce the bias between the individual taps of a CIS, which is usually removed by

simply using the measurements θ2, θ3 from Section 2.6.1. These two measurements

are 180◦ offset with regard to θ0, θ1 and therefore exactly invert the role of the

buckets in the correlation. Having removed the systematic bias between the two

taps, the measurements for θ2, θ3 are no longer necessary, and N becomes 2, that is

the frame rate increases by 2×. Another approach is presented in [130] and [131].

Both works accumulate the values from both buckets of a CIS pixel, yielding an

intensity image of the scene. Having computed intensity images for all sequentially

captured measurements, optical flow is computed between all frames, and the raw

data is warped to the first frame.

54



Doppler Effect While scene motion causes artifacts when correlating sequential

frames, sinusoidal illumination, in fact, encodes both motion and depth information,

even during a single frame. Radial velocity is encoded in the frequency due to the

Doppler effect, and depth, as before, in the phase. The Doppler effect describes the

change in frequency of a wave for the receiver of this wave that is moving relative

to its source. For an emitted wave of frequency ωg, a reflected signal of frequency

ωs = ωg + ∆ω is arriving on the sensor, where the frequency shift depends on the

radial object velocity as well as the emitter frequency:

∆ω =
v

c
ωg. Doppler Shift (2.29)

Christian Doppler first discovered this effect, observing that the spectrum of astro-

nomical objects shifts depending on their velocity [132]. Since then the Doppler

effect has found widespread use in astronomical imaging, meteorology, traffic law

enforcement, radiology, healthcare, and aviation. Doppler spectroscopy, for ex-

ample, measures radial velocity of otherwise undetectable planets by observing

wavelength shifts of their respective stars [133]. The rate of expansion of the uni-

verse can be estimated by Doppler spectroscopy as well [134]. Doppler velocimetry

is a common technique in healthcare to measure blood flow using ultrasound or

lasers. The basics of ultrasound Doppler velocimetry can be found in [135]. Al-

brecht [136] gives a detailed survey of laser Doppler velocimetry. Laser Doppler

velocimetry also has found widespread commercial adoption with the contact-less

measurement of movement in computer mice [137]. Doppler radar velocimetry uses

radio waves for velocity estimation. This technology has numerous applications in

aviation, meteorology, and remote sensing. Meikle [138] presents a detailed survey

of state-of-the-art radar technologies. In its simplest form, continuous wave Doppler

radar sends out continuous electromagnetic waves and determines the velocity of

the targeted scene object directly from the returned Doppler-shifted signal. This

method is commonly used in police speed guns. Doppler pulse radar simultaneously

measures velocity and range and is broadly used in aviation for tracking, classifica-

tion and prediction [139]. In Doppler pulse radar, short pulses of radio energy are

sent out to an object. The round-trip TOF of the returned pulse determines a range

estimate, while its Doppler shift provides an estimate of the velocity. Both Doppler
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radar and Doppler Lidar are commonly used in meteorological applications, such as

wind velocity estimation [140, 141].

All of the methods reviewed above rely on the Doppler effect of the light wave

itself, that is the carrier wave for a CIS system. As the frequency of the amplitude

modulation in a CIS TOF system is six orders of magnitude lower than the carrier

frequency, the Doppler effect is also reduced by this factor, recalling Eq. (2.29).

For example, given a typical modulation frequency of 50 MHz and a speed of 10

m/s, this results in a tiny frequency shift of 1.67Hz. However, by exploiting the

temporally convolutional image formation of CIS sensors, we show in Chapter 7

that it is nevertheless possible to extract the Doppler shift using inexpensive CIS

TOF cameras. Our approach allows imaging of both axial velocity and range. It is a

full-field imaging method, meaning that it does not require the scene to be scanned

sequentially unlike most existing Doppler radar or Lidar systems that capture only a

single scene point at a time.

2.7 Transient Imaging
With the light transport models from the previous sections at hand, we now review

work related to transient imaging, which we realize in the following chapter using

CIS sensors. Recalling Section 2.2.3, global light transport is not an instantaneous

process but has a temporal dimension. Transient imaging is a new imaging modality

capturing this temporal dimension. To illustrate this, imagine an illumination source

emitting a short pulse of light. Having a camera with ultra-high temporal resolution,

these pulses could be observed “in flight” as they traverse a scene and before the

light distribution achieves a global equilibrium. A transient image is then the rapid

sequence of frames capturing this scene response, hence representing the impulse

response of a scene. As light transport is a linear time invariant system that is fully

described by its impulse response, such a transient image fully describes the light

transport in the scene. This illustrates the potential of this new image modality.

The original idea behind transient imaging goes back to work performed in

the late 1970s by Abramson [142, 143] under the name “light-in-flight recording.”

Abramson created holographic recordings of scenes illuminated by picosecond

lasers, from which it was possible to optically reconstruct an image of the wave
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front at a specific time. While the scene complexity was limited by technical

constraints of the holographic setup, other researchers already used this approach

for tasks such as shape measurements (e.g. [144]).

2.7.1 Impulse vs. Continuous Wave Transient Imaging

Recently, interest in transient imaging has been rekindled by the development of

femtosecond and picosecond lasers, allowing for ultra-short impulse illumination,

as well as ultra-fast camera technologies. Velten et al. were the first to combine

both technologies [145] to capture transient images, which allows for a simplified

setup compared to the holographic approach, as well as significantly more general

scene geometries. Transient imaging has many exciting applications. Starting with

the introduction of an image formation model [146] and the pilot experiments by

Kirmani et al. [147], there have been several proposals to use transient images as

a means of reconstructing 3D geometry that is not directly visible to either the

camera or the light sources Pandharkar et al. [148], Velten et al. [149], to capture

surface reflectance [150], to perform lens-less imaging [151] or simply to visualize

light transport in complex environments to gain a better understanding of optical

phenomena [152]. Wu et al. [153] recently proposed the use of transient images

together with models of light/object interaction to factor the illumination into direct

and indirect components.

Unfortunately, impulse transient imaging relies on expensive custom hardware,

namely a femtosecond laser as a light source, and a streak camera for the image

capture as in Velten et al.’s setup [145]. While capturing high-resolution transient

images, these components amount to hundreds of thousands of dollars’ worth

of equipment that is bulky, extremely sensitive, difficult to operate, potentially

dangerous to the eye, and slow. For example, a streak camera measures only a

single scanline of a transient image in each measurement. To obtain a full transient

image, it is, therefore, necessary to mechanically scan the scene. Due to the very

limited amount of light in a femtosecond pulse, averaging of multiple measurements,

complicated calibration and noise suppression algorithms are required to obtain

good image quality. All in all, capture times of an hour or more have been reported

for a single transient image [145].
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2.7.2 Continuous Wave Transient Imaging

In this dissertation, we address this problem in the following Chapter 3 by intro-

ducing a novel method using continuous wave illumination with an inexpensive

widespread CMOS CIS plus computation for obtaining the transient image.

A number of recent works have built on our computational CIS-based transient

imaging, of which many are described later in this dissertation. In Chapter 5, we

present a CIS-based transient imager able to recover geometry and albedo outside

the line of sight from second-order diffuse reflections, effectively turning walls into

mirrors. Lin et al. [154] and [155] present different regularization approaches for

the reconstruction of transient images from the CIS measurements. We analyze the

sparsity of transient images in Chapter 4 and present a new physically motivated

model in Chapter 4, Chapter 6. Gupta et al. [156], Freedman et al. [126] and

Kadambi et al. [157] present approaches for resolving multi-path ambiguities by

reconstructing (partly complete) transient images. All of these works rely on our

image formation model. In Chapter 4 we present a new approach for imaging

through scattering and turbid media based on this model. Finally, Jarabo et al.

[158] have investigated effective rendering of transient images, which allows for

the simulation of complex transient imaging scenarios.

2.8 Inverse Methods
A large variety of optical measurement systems has been described in the previous

sections, ranging from traditional color cameras to impulse- or correlation-based

TOF cameras. For each system, the measurement process has been explained and

formalized with a mathematical model. Relying on these models, this section

reviews approaches for the inference of scene features that are non-trivially encoded

in the measurements, i.e. hidden or latent features. Similar to the mammalian visual

system, described in the introduction of this thesis, this inference is done by adding

computation to the measurement process.
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2.8.1 Inverse Problems

The measurement process can be generalized for a large class of optical imaging

systems (including the ones covered in this thesis), that is

j = M (i), (2.30)

where here i ∈ Rm is a vector of m latent scene features and j ∈ Rn is the mea-

surement vector consisting of a set of n observations. M models the measurements

j, i.e. the forward model. The model is parametrized by i. It is important to note,

that this model M is not a function, but is in fact a random process that generates

the observations as samples from the distribution describing the measurement pro-

cess. As introduced at the very beginning of this thesis in Section 2.1, the inherent

particle-nature of light causes statistical fluctuations in optical imaging systems.

The inverse problem corresponding to Eq. (2.30) is

ĩ = M−1(j) (2.31)

This means, given an observation j, an inverse forward model M−1 is evaluated to

recover an estimate ĩ of the hidden parameter vector i. A large variety of different

M−1 has been proposed, varying in the distance ĩ− i depending on the properties

of the forward model. Again, this is because M is not an invertible function, for

which this distance could be made 0 by selecting its inverse function as the inverse

forward model.

2.8.2 Statistical Image Recovery

To estimate the latent unknowns from the observations, we rely on Bayesian in-

ference. By using Bayes’ rule, Bayesian inference exploits both the observations

and the prior knowledge on the unknowns. In contrast, Frequentist inference does

not rely on priors but only on the measured observations. Both approaches have

been used for inference in imaging systems, for example, traditional versus prior-

based burst imaging discussed in [10]. However, in the remainder of this thesis, we

show a wide variety of imaging problems that benefit from prior knowledge on the

unknowns.
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Figure 2.13: Bayesian Inference. The left plot illustrates the Bayesian ap-
proach to inference: The likelihood of observing a measurement is
combined with prior knowledge on the latent variables. Using Bayes’
rule the combined belief is expressed as a posterior distribution. The
right shows a more complex, bimodal, posterior.

Figure 2.13 illustrates Bayesian inference. Statistical variations in the forward

model M are formalized in our approach using the following likelihood function

L(i|j) = p(j|i) ∝ exp ( −G(j, i) ) . Likelihood (2.32)

The likelihood equals the sampling Probability Distribution Function (PDF) p(j|i),

which describes the probability of an observed measurement given the latent vari-

ables i. Without loss of generality, the sampling distribution is modeled here as an

exponential on a distance function G : Rn × Rm → R. Intuitively, G assigns a

distance between all possible measurements and unknowns, which is transformed

into a PDF by the exponential. Prior knowledge on the unknowns can be encoded

with

p(i) ∝ exp ( −F (i) ) , Prior (2.33)

which assigns a probability to an arbitrary unknown (independent of any observa-

tions being made). Again an exponential model is used, in which intuitively F

assigns a cost to less likely unknowns. Using Bayes’ rule the posterior probability

p(i|j) is

p(i|j) =
p(j|i)p(i)
p(j)

. Bayes’ Rule (2.34)
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The posterior combines both, prior knowledge and observed measurements, and

hence describes all that can be inferred about the unknowns i from the j (assuming

all available priors are used). However, computing the full posterior PDF is infeasible

for most inverse problems in imaging, which require large-scale inference with

millions of latent variables and observations. Therefore, usually point estimates of

the posterior are used. A strong choice for a wide variety of imaging applications is

the Maximum A Posteriori (MAP) estimate

iMAP = argmax
i

p(i|j) = argmax
i

p(j|i)p(i), MAP estimate (2.35)

iMMSE = E(i|j) =

∫
p(j|i)x di. MMSE estimate (2.36)

MAP estimates the unknowns for the point where the posterior reaches its maximum

probability. While this is a good strategy for unimodal posterior distributions, it

can lead to undesired estimates for multimodal posteriors. Figure 2.13 shows a

bimodal posterior on the right, which contains a large probability mass in the mode

without the maximum. Here, other estimates, such as the Minimum Mean Square

Error (MMSE) estimate in Eq. (2.36), can be beneficial. Given a point estimate,

Bayesian inference can also provide measures of the uncertainty in this estimate,

such as the variance or confidence intervals of the posterior. We refer the reader

to [159] for a detailed discussion of Bayesian inference.

MAP estimation has been proven to be a successful approach for many imaging

applications. In Chapter 9, we demonstrate that even classic image processing

tasks (such as demosaicking), which traditionally are approached with specialized

hand-tuned pipelines, significantly benefit from Bayesian MAP estimation. The

MAP problem from Eq. (2.35) can be reformulated as

iMAP = argmax
i

p(i|j)

= argmin
i

− log (p(j|i)p(i))

= argmin
i

− log (p(j|i))− log (p(i))

= argmin
i

G(j, i)︸ ︷︷ ︸
Data Fidelity

+ F (i)︸︷︷︸
Regularizer

.

(2.37)
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The logarithmic transform in the second row can be applied since the logarithm

is a monotonic function. In the last row, we have used Eq. (2.32) and Eq. (2.33).

The final objective function is a sum of two terms: a Data Fidelity term originating

from the likelihood, and a Regularizer term from the prior distribution. All the

deterministic components of the data fidelity term, that is the ones independent

of noise, are called image formation model. In contrast, the forward model M

from Section 2.8.1 includes noise. Literature in the field often uses the term “prior”

interchangeably with the term ”regularizer.” Finally, Eq. (2.38) shows an example

following the Bayesian approach described in the previous paragraphs.

L(i|j) ∝ exp

(
−‖j−Bi‖22

2σ2

)
and p(i) ∝ exp ( −‖i‖1 )

⇒ G(x) =
1

2σ2
‖j−Bx‖22 and F (x) = ‖x‖1

(2.38)

The likelihood models the blurred observations j using the convolutional model

from Eq. (2.12) in Section 2.3.3. B is here the convolution matrix corresponding to

a convolution with kernel B. The observations follow a normal distribution with

a standard deviation of σ. Hence, the likelihood models Gaussian noise with the

same standard deviation. The prior places a Laplacian distribution on the unknowns

i. Intuitively, this choice corresponds to the prior knowledge of the unknowns being

sparsely distributed, e.g. astronomy images. The second row of Eq. (2.38) shows the

corresponding `2-norm data fidelity and `1-norm regularizer. The image formation

model as defined above is here B.

2.8.3 Linear Models

A large class of inverse problems in imaging can be formulated by using linear

image formation models and priors on linear transforms. Eq. (2.39) shows the

modified likelihood and prior for this linear model.

L(i|j) ∝ exp ( −G(Φi) )

p(i) ∝ exp ( −F (Ωi) )
(2.39)
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Many inverse problems in imaging are accurately modeled using a linear image

formation Φ. Remember that both light transport and conventional image sensors

are linear; see Section 2.2 and Section 2.4. Problems with linear image formation

include classical image processing problems, such as demosaicking [10], deconvolu-

tion [160], [161], inpainting [162], and denoising [163]. Furthermore, the remainder

of this thesis presents inverse problems for traditional and novel computational cam-

era designs, that all can be modeled using a linear image formation. A large number

of recent reconstruction approaches rely on image priors that are formulated on

the linear transforms Ωi. This includes Total Variation (TV) regularizers [164], hy-

perlaplacian gradient priors [160], [165], mixture model priors [163], patch-based

shrinkage [166], and convolutional priors [167].

Given the general linear reconstruction model from Eq. (2.39), we follow the

Bayesian approach described in the previous chapter yielding the MAP estimate

iMAP = argmin
i

G(Φi) + F (Ωi). (2.40)

2.8.4 Optimization Methods

Over the past years, numerical optimization has become a standard tool for solving

a number of classical restoration and reconstruction problems in computational

photography. Examples include the traditional image processing problems listed

above as well as image editing problems such as tone mapping [168], Poisson-

blending [169] and colorization [170]. Very efficient solvers have been developed

for most of these problems [167, 171]. Optimization techniques are also becom-

ing increasingly popular solutions for scientific imaging problems such as X-ray

tomography [172] and phase retrieval [173].

The literature on algorithms for solving image optimization problems is exten-

sive. A particularly fruitful line of research has focused on solving convex optimiza-

tion problems with the structure of the MAP problem above from Eq. (2.40), that is

problems where F and G are convex. The main challenge in solving Eq. (2.40) is

that the objective has to be jointly minimized over the sum of the data and regularizer

term. Splitting methods avoid solving this challenging problem by turning the joint

problem into a sequence of simpler optimization problems, alternately involving
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only one of the two terms. This is achieved by introducing a slack variable y giving

iMAP = argmin
i

G(Φi) + F (Ωi)

= argmin
i

G(Φi) + F (y) s.t. y = Ωi .
(2.41)

It is easy to see that this problem is equivalent to Eq. (2.40) by substituting the

constraint. A prominent splitting method is the Alternating Direction Method of

Multipliers (ADMM) [174]. This method finds a saddle point of an augmented

version of the classical Lagrangian for the constrained problem from the second row

of Eq (2.41). The augmented Lagrangian is

Lρ(i,y, λ) = G(Φi) + F (y) + λT (Ωi− y) +
ρ

2
‖Ωi− y‖22, (2.42)

where λ is here the Lagrange multiplier associated with the constraint and ρ ∈ R+

is a penalty for the quadratic term added to the classic Lagrangian. See [174] for a

detailed discussion of this augmented version. ADMM can then be formulated as the

following algorithm.

Algorithm 1 ADMM for Eq. (2.41)

1: for k = 1 to V do
2: ik+1 = argmin

i
Lρ(i,yk, λk)

3: yk+1 = argmin
y

Lρ(ik+1,y, λk)

4: λk+1 = λk + ρ(Ωik+1 − yk+1)
5: end for

In the first two steps, the method minimized the augmented Lagrangian al-

ternately with regard to i and y while fixing the other variables. The last step

performs a gradient ascent of the Lagrange multiplier. The Lagrange multiplier

accumulates here the (scaled) consensus error. A powerful tool for the description,

implementation and analysis of splitting algorithms is given by proximal operators.

The proximal operator of a function f is defined as

proxτf (v) = argmin
x

(
f(x) +

1

2τ
‖x− v‖22

)
,

Proximal

Operator
(2.43)
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where τ > 0. The proximal operator optimizes over the function in isolation but

incorporates a quadratic term that can be used to link the optimization with a broader

algorithm. It can be interpreted as a gradient step for f when τ is small and f is

differentiable [175]. We can reformulate Algorithm 1 as the following Algorithm 2

using proximal operators.

Algorithm 2 Proximal ADMM for Eq. (2.41)

1: for k = 1 to V do
2: ik+1 = argmin

i
G(Φi) + 1

2ρ‖Ωi− yk − λ̃k‖22

3: yk+1 = argmin
y

F (y) + 1
2ρ‖Ωik+1 − y − λ̃k‖22 = proxF

ρ
(Ωik+1 + λ̃k)

4: λ̃k+1 = λ̃k + Ωik+1 − yk+1

5: end for

Here, we use the scaled Lagrange multiplier λ̃ = λ/ρ as a notational short-

cut. We can now also understand why proximal algorithms like ADMM provide

an efficient way to solve the considered linear MAP problems. If G is quadratic or

separable, the first row becomes computationally cheap. If now the function F is

separable, then also its proximal operators parallelize and yield very efficient dis-

tributed solver methods. A number of proximal algorithms have been explored; see

[175]. Besides ADMM, prominent examples include the proximal point algorithm

[176], forward-backward splitting [177], the Pock-Chambolle algorithm [178, 179],

the split Bregman method [180], ISTA and FISTA [181], and half-quadratic splitting

[182]. Recent work has applied these methods and new ones such as iPiano [183] to

nonconvex optimization problems and found conditions that guarantee convergence

(though not necessarily to the global optimum); see, e.g., [184–186].
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Chapter 3

Transient Imaging

In this chapter, we demonstrate transient imaging using inexpensive CIS TOF cam-

eras. It is shown that CIS measurements encode transient images in convolutional

structure. We derive a convolutional model for the local light/object interaction.

Using a sequence of differently modulated CIS images, an inverse problem can be

solved to infer the latent transient image from these measurements. The resulting

method produces transient images at a cost several orders of magnitude below exist-

ing impulse-based methods, listed in Section 2.7, while simultaneously simplifying

and drastically speeding up the capture process.

3.1 Introduction
To enable fast, simple, and inexpensive transient imaging, we replace direct, impulse-

based, acquisition methods with a CIS TOF camera plus computation. In particular,

we attempt to substitute the complex femtosecond laser and streak camera setup

discussed previously in Section 2.7.

In the following, we describe and demonstrate the approach that makes this

possible. We derive a convolutional model for the relationship between transient

imaging and traditional time-of-flight imaging using Photonic Mixer Devices. The

estimation of transient images from CIS measurements is then formulated as an

inverse problem. This problem is ill-posed but can be solved in a MAP approach,

following Section 2.8, by introducing regularization terms as well as a model of
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Figure 3.1: Left: Our capture setup for transient images (from left: computer,
signal generator, power supply, modulated light source, CIS camera).
Middle: A disco ball with many mirrored facets. Right: The same sphere
as seen by our transient imager when illuminated from the left, colored
according to the time offset of the main intensity peak.

local surface/light interactions. Finally, we demonstrate a prototype system with

a modified PMD camera that allows for flexible measurements of Time-of-Flight

images using a range of different modulation frequencies and phases. The system is

inexpensive, portable, eye-safe, insensitive to background light, and acquires data at

a much higher rate than streak cameras, enabling transient imaging even outside lab

environments.

3.2 Transient CIS Image Formation

3.2.1 Generalized CIS Model

In the related work Section 2.6, we have have introduced an idealized model using

perfectly sinusoidal modulation in the CIS image formation. While this approximate

model builds intuition and is sufficiently accurate for many applications, in general

only the following assumptions on g, s have to be made. The sensor modulation fω
is a zero-mean periodic function with period T = 2π/ω, that is

fω(t+ k · T ) = fω(t) and
∫ T

0
fω(t) dt = 0. (3.1)

For an arbitrary incident irradiance s, the CIS measures the following modulated

exposure

bω,φ =

∫ NT

0
s(t) fω(t+ φ) dt, (3.2)
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where φ is a programmable temporal offset. This is a temporally convolutional

model. Recalling Section 2.6, CIS sensors integrate over a large number of N

periods (ca. 104–105), hence, they essentially correlate s and f . In contrast to

impulse-based systems, this allows extended exposures, much like regular cameras.

3.2.2 Single Reflection

To illustrate the general model, we first consider the special case of a single reflector

in the scene. Recalling Section 2.6, depth TOF imaging commonly assumes the

direct illumination of a single object point by a single point light source, effectively

meaning that only a single light path contributes to the sensor reading. This is

illustrated on the top of Figure 3.2. Under this assumption we obtain the incident

signal sω from Eq.(3.3).

sω(t) = I + αa · gω(t+ τ), (3.3)

with I being the DC component of the light source plus any ambient illumination,

a is the modulation amplitude for the light source, α is an attenuation term due to

surface reflectance and distance-based intensity falloff, and τ is the TOF from the

light source to the object point and then to the CIS pixel. The modulated exposure

measured by the sensor becomes then

bω,φ =

∫ NT

0
(I + αagω(t+ τ)) fω(t+ φ) dt

=I ·N
∫ T

0
fω(t+ φ) dt︸ ︷︷ ︸

=0

+ αa ·N
∫ T

0
gω(t+ τ)fω(t+ φ) dt︸ ︷︷ ︸

=cω,φ(τ)

.
(3.4)

The correlation coefficients cω,φ(τ) can either be determined analytically for specific

fω, gω such as sinusoids, or they can be calibrated using objects at different known

distances d using the relationship τ = ω/c · d, where c is here the speed of light.

Relating the general model back to range imaging, two measurements bω,0◦ and

bω,90◦ are obtained for per pixel range estimation. Using the known cω,φ(τ), it is

then possible to solve for the pixel intensity αa and the distance d of the object

visible at that pixel. In general, measurements bωi,φi for many different modulation
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Figure 3.2: Top: Operating principle of a conventional CIS PMD sensor. Light
from a modulated light source arrives at a pixel sensor via a single light
path with time delay τ . The PMD sensor modulates the incident light with
a reference signal fω and integrates the resulting modulated exposure
to obtain a distance-dependent correlation. Bottom: in the presence of
global illumination, the incident illumination is a superposition of light
with different phase shifts. Multiple measurements at different phases
and frequencies are taken to analyze such light interactions.

frequencies and phases (ωi, φi) can be acquired. This yields a collection of different,

travel-time dependent correlation coefficients cωi,φi(τ).

3.2.3 Global Illumination

Using a multitude of measurements over a wide frequency range, we can relax the

requirement that light only arrives at the sensor via single light path, and move to a

full global illumination model instead. Temporally-varying global light transport

has been reviewed in Section 2.2.3 and is illustrated in Figure 3.2 on the bottom.
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Integrating over all light paths in the scene, Eq. (3.4) then becomes

bωi,φi =

∫ ∞
0

∫
P

∫ NT

0
(I + δ(|p| − τ)αp · agωi(t+ τ)) fω(t+ φi) dt dp dτ

=

∫ ∞
0

∫ NT

0
(I + i(τ) · agωi(t+ τ)) fω(t+ φi) dt dτ

(3.5)

We integrate now the modulated light along all ray paths, connecting the light source

and the sensor pixel, P is the space of all such ray paths. The factor αp is the light

attenuation along such a path p, and |p| is the travel time along path p. Following

Section 2.2.3, the delta-function makes sure that the path contributions with the

same travel time τ are integrated for a certain time offset τ . In the second row of

Eq.(3.5), we encapsulate all path components of the same length in i. As explained

in the related work in Section 2.2.3, this is a pixel of the transient image.

i(τ) =

∫
P
δ(|p| − τ)αp dp Transient Pixel (3.6)

I(x, y, τ) = ix,y(τ) Transient Image (3.7)

Note that above we have considered the measurement bωi,φi for a single pixel. A

regular grid of transient pixels is a transient image, hence it is three-dimensional,

with two spatial and one time coordinate. We can see from Eq. (3.6), that the

transient image is the impulse response of a scene, i.e. the intensity profile as

a function of time when the scene is illuminated by a very short pulse of light.

Recognizing that i does not depend on t in Eq. (3.5), we can reformulate it as

Eq. (3.8) using the correlation coefficients.

bωi,φi =

∫ ∞
0

∫ NT

0
i(τ)︸︷︷︸

Transient
Pixel

agωi(t+ τ)︸ ︷︷ ︸
Light

Modulation

fω(t+ φi)︸ ︷︷ ︸
Sensor

Modulation

dtdτ

=a

∫ ∞
0

i(τ)N

∫ T

0
gωi(t+ τ)fω(t+ φi) dt︸ ︷︷ ︸

=cωi,φi (τ)

dτ

(3.8)
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Hence, the convolutional model allows for separating the transient component from

the correlation on the CIS sensor. Discretizing τ in m temporal bins {τ1, . . . , τm}
to the following linear model

b = Ci + n with Ci,j = cωi,φi(τj) (3.9)

The vectorized transient image is i ∈ Rm, with the components stacked. The

measurement b ∈ Rn denotes the vector of all n modulated exposures observed at

all pixels in the image. The correlation coefficients cωj ,φj are arranged in a matrix

C that maps a transient image to the vector of observations b. Finally, n models

additive noise, which we have discussed in Section 2.6.4.

3.3 Transient Imaging using CIS

This section describes how we estimate a transient image from the sensor measure-

ments b. We first formulate the corresponding linear inverse problem and then

present a method to solve this optimization problem.

3.3.1 Inverse Problem

The model from Eq. (3.9) contains a linear transform C which is not well condi-

tioned and additive noise n. Approximating g and f with sinusoidal waveforms

as in Section 2.5, C becomes a truncated Fourier transform. The maximum fre-

quency is limited by the sensor and light source and usually around 100 MHz [85].

This means the correlation coefficients vary slowly with distance for the range of

feasible modulation frequencies and scene scales (Section Section 3.4). Due to

the ill-conditioned C and the noise, the inverse problem of recovering i from b is

ill-posed, hence directly solving for i fails.

The challenging inverse problem is solved following the MAP approach in-

troduced in Section 2.8. We use spatial and temporal priors, and a likelihood

approximating the noise distribution. In particular, two types of priors are used:

a prior on the gradients, leading to a convex optimization problem which can be

solved to high accuracy, and a Gaussian-Exponential prior leading to an objective

function with local minima. Specifically, the spatial and temporal gradients are
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assumed to follow a heavy-tailed distribution. In other words, we assume that the

temporal and spatial profiles are sparse. The Gaussian-Exponential prior assumes

that a transient pixel can be expressed using a model m(·) of the local interaction

of light with objects. Approximating the n as Gaussian noise, the resulting MAP

estimation problem from Section 2.8 becomes

iopt = argmin
i

1

2
‖Ci− b‖22 + λ

∑
x

‖∇zix‖H + θ
∑
τ

‖∇xiτ‖H

s.t. i ∈ m(C)
(3.10)

The first term is the Data Fidelity, which originates from the Gaussian likelihood.

Gradient Priors The other two terms in the first line respectively represent gradient

regularizations along the temporal direction for each individual pixel, and along

the spatial dimensions for each individual time slice. We expect the gradients

for both the spatial and temporal slices to be sparse, but with occasional outliers

(discontinuities). In our work we chose the Huber penalty function [187]. The

Huber penalty ‖.‖H is an `1/`2 hybrid error measure and defined as

‖x‖H =
∑
k

hε(xk) with hε(x) =

{
|x| − ε

2 if |x| > ε
|x|2
2ε else

(3.11)

Huber fitting is commonly used in robust statistics since it allows for outliers in

the common Gaussian models [174]. The parameter ε > 0 defines the trade-off

between the Gaussian fit (quadratic) for small values and a Laplacian fit (`1-norm).

In Eq. (3.10), spatial and temporal gradients are Huber-penalized. In contrast to

the Laplacian gradient penalty, the Huber gradient-penalty does not introduce non-

smooth discontinuities in smooth regions. If we would allow ε = 0, the spatial `1
gradient-penalty would become the well-known TV penalty [188], which contains

such discontinuities as staircasing [178].

Gaussian-Exponential Priors The Gaussian-Exponential prior leads to the con-

straint in the MAP problem from Eq. (3.10). Here, m(C) is a notational shortcut for

the image of our model function m(·) that expresses the transient pixel profiles as a
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Figure 3.3: Two different time profiles of the model mx(·) fitted to ground-
truth measurements, which were acquired by Velten et al. using a fem-
tosecond laser and streak camera [152].

mixture of exponentials and Gaussians. This model is inspired by recent work by

Wu et al. [189] and applies to each pixel independently. Specifically, we model the

light interaction at each local surface point as a combination of surface reflection

and subsurface scattering. For surface reflection, the temporal impulse response to

a short pulse of light is a Dirac peak, which we represent as a Gaussian Gσ, where

σ is related to the temporal resolution of the acquisition system. For subsurface

scattering, the temporal impulse response can be modeled as an exponential decay

E [189]. In a complex scene with global illumination, the model mx(·) for the time

profile at pixel x can therefore be expressed as a superposition of K Gaussians and

exponentials, that is

mx(u) =

Kx∑
k

rx,kGσ(τ − px,k) + ax,kE(dx,k, τ − px,k), (3.12)

where the model parameters u are the set of all (temporal) positions px,k for the

Gaussians and exponentials, combined with their amplitudes rx,k and ax,k, and

finally the exponential decay parameters dx,k which depend on the density of the

scattering medium.

u =
⋃
x,k

{rx,k,px,k,ax,k,dx,k} .
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To illustrate the model we have fitted ground-truth traces from a streak camera

setup. For this experiment, we used the “tomato” transient image that Velten et al.

obtained using a femtosecond laser and streak camera [152]. Figure 3.3 shows the

fitted transient profiles for different pixel locations.

3.3.2 Optimization via Splitting

The objective from Eq. (3.10) is non-convex due to the constraint, which contains

the non-convex set m(C). The constraint even contains integer variables (Kx). In

contrast, note that all penalties from the first line are convex. To solve this problem,

we introduce a variable u and a new consensus constraint m(u) = i.

iopt,uopt = argmin
i,u

1

2
‖Ci− b‖22 + λ

∑
x

‖∇zix‖H + θ
∑
τ

‖∇xiτ‖H ,

s.t. m(u) = i

(3.13)

with the consensus constraint this problem is equivalent to the one from Eq. (3.10).

We solve this problem by first eliminating the constraint as an additional penalty

term, and then perform coordinate descent w.r.t. i and u. See Section A.3 for a

detailed discussion. The coordinate descent splits the hard joint problem into a

sequence of simpler problems only involving i and u. The i-subproblem is a convex

problem since it does no longer involve the model. The u-subproblem is separable

per pixel. Finally, the integer variable can be iteratively estimated as part of the

coordinate descent.

Summarizing, the Gaussian-exponential prior makes the optimization problem

hard and costly to solve. The described coordinate-descent has weak convergence

guarantees and is not guaranteed to find a global minimum. Due to the many

parameters in C the u-subproblem is expensive. In Chapter 4 we will introduce a

modified model that exploits the convolutional structure of transient images. By

doing so we eliminate all of the discussed issues and combine the i-subproblem

with the model. Hence, in the following, we will cover the i-subproblem, while

the i-subproblem is discussed in Section A.3. Furthermore, note that omitting

the Gaussian-exponential prior also results in an optimization of the form of i-

subproblem.
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3.3.3 Solving the i-subproblem

The i-subproblem is given in Eq. (3.14).

iopt = argmin
i

1

2
‖Ci− b‖22 +

λ
∑
x

‖∇zix‖H + θ
∑
τ

‖∇xiτ‖H +

ρ

2
‖i−m‖22

(3.14)

The last term is here a quadratic coupling term. In our coordinate descent scheme

it is m = m(u) from the previous u-subproblem; see Section A.3. Eq. (3.14) is a

convex problem of the form discussed in Section 2.8.3. In particular, we choose

Φ = I, G(v) =
1

2
‖Cv − b‖22 +

ρ

2
‖v −m‖22 ,

Ω = S, F (v) = ‖v‖H ,
(3.15)

where here the matrix S applies the temporal derivative operator to all pixel time

sequences and the spatial gradient operators to all time slices (according to Eq. 3.14).

Since we can express our problem in the form of Eq. (2.40), it can be solved with

a proximal algorithm as discussed in Section 2.8.4. We use the first-order primal-

dual framework by Chambolle and Pock [178], which is equivalent to a linearized

version of ADMM [175]. We discuss various proximal algorithms, including the

Chambolle-Pock method, in Chapter 10. Note that different choices of the algorithm

and the functions in Eq. (3.15) can be made. Chapter 10 also presents method to

automatically compare amongst different algorithms and problem formulations to

yield an optimal solver method.

To solve the problem with the Chambolle-Pock method, the proximal operators

for F ∗ and G have to be known. These are given by

proxτF ∗(v) =
v

1+τε

max
(

1,
∣∣∣ v

1+τε

∣∣∣)
proxτG (v) =

[
τCTC + (1 + τ)I

]−1
(τCTb + v + τρm),

(3.16)

The Huber proximal operator amounts here to a simple pointwise evaluation. The
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second proximal operator requires the solution of a linear system. However, since

C is of small dimensions, it can be solved to high accuracy using a direct inver-

sion in parallel for each pixel. The inverse can be cached which makes this step

computationally efficient in the iterative scheme.

3.4 Setup

Figure 3.4: The main components of our capture setup. Left: Modified PMD

imager. Right: Light source with six uncollimated laser diodes.

We now describe the physical setup we developed to acquire transient images

of real scenes.

The CIS camera is based on the PMDTechnologies CamBoard nano, an eval-

uation platform for the PMD PhotonICs 19k-S3 image sensor. We removed the

on-board light source and the default 830 nm longpass filter. Since our technique

is based on the use of a wide range of modulation frequencies, we intercepted the

on-board modulation signal and replaced it with our own input from an external

source, and added a trigger output that signals the start of the integration phase. We

confirmed that the sensor can be operated at modulation frequencies up to 180 MHz,

but managed to obtain stable results only up to 110 MHz.

Our light source is a bank of six 650 nm laser diodes with a total average output

power of 2.4 W. Since the beams are not collimated, eye safety is not a concern

at reasonable distances from the device. Two groups of three diodes are driven

through a iC-Haus 6-channel constant current driver each (type iC-HG), with each

diode occupying two driver outputs for DC bias and the high-frequency modulation.
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Using a fast photodiode (Thorlabs FDS010) and a 500 MHz, 2 GS/s oscilloscope,

we confirm that this setup can modulate the output intensity by a full 100% up to a

frequency of 180 MHz.

As our modulation source signal, we use the DDS9m/02 signal generator from

Novatech Instruments, which is based on the Analog Devices AD9958 direct digital

synthesizer chip. We use the digital output of the signal generator to modulate both

the light source and the camera with a square wave.

A microcontroller circuit sets modulation frequencies and phases on the syn-

thesizer board. Reacting to the trigger signal from the camera, it switches the

modulation signals for light source and camera in accordance with the currently

set integration time (we take an exposure series from 120 to 1920µs in steps of

one f-stop). The sensor data is read out through the API provided with the camera

board.

Measurement Routine. In order to complete a full measurement over a frequency

range from 10 to 120 MHz in steps of 0.5 MHz, our capture system takes about 90

seconds. Note that we operate the setup at a duty cycle of less than 1%, in order to

avoid overheating of the critical components (signal buffer and laser driver ICs, laser

diodes, PMD sensor) that are not equipped with heatsinks or active cooling. We

therefore estimate that with proper thermal management, another significant speedup

will be achieved, reducing the overall acquisition time to only a few seconds.

There are several ways our method deals with the dynamic range issues. The

working principle of PMD sensors is itself very effective in suppressing ambient

illumination, the sensor provides high-bit depth readouts (14 bits) and, finally, we

do take an exposure sequence as described just above. That said, if very bright light

paths and very dim light paths mix in the same pixel, the reconstruction quality of

the dim paths will suffer.

Calibration. In order to obtain the correlation matrix C, we perform a calibration

step. We place camera and light source as close to each other as possible, and facing

a diffuse white wall, with no other objects nearby that could scatter light into the

line of sight. For each frequency, we sample the distance-dependent correlation
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coefficients by varying the relative phase between the sensor and the light source

modulation signals. This allows us to emulate different optical delays without

mechanically moving parts.

The calibration measurements for frequencies from 10 to 120 MHz in 1 MHz

steps and distances from 0 to 20 m in 0.1 m steps take about 6 hours to complete,

with a further 30 minutes to extract the matrix from the raw sensor readings. We

average the calibration matrices over a 40×40 pixel region in order to reduce

acquisition noise.

We note, however, that the calibrated matrix C obtained in this fashion is also

valid for different geometric configurations of sensor and camera, with only a change

in the physical interpretation of the resulting reconstructed transient images. This

means that the calibration step is essentially a one-time operation. Figure 3.5 shows

a color visualization of the recovered correlation coefficients, with the vertical axis

corresponding to different frequencies, and the horizontal axis corresponding to

different path lengths, or travel times.
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Figure 3.5: A visualization of the correlation coefficients for different path
lengths (horizontal axis) and modulation frequencies (vertical axis).
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3.5 Results
We evaluated our approach using both synthetic data for ground truth comparisons,

and measurements using our custom setup.

3.5.1 Synthetic Examples

For our synthetic experiments, we used a transient image that Velten et al. obtained

using a femtosecond laser and streak camera [152]. Since this dataset was captured

for a smaller scene than the size of scenes we target with our setup, we simulated

a larger scene by scaling the time dimension by a factor of 20. We then used the

PMD sensor model from Eq. (3.5) to simulate measurements of bωi,φi for different

frequencies and phases, also adding Gaussian noise with a sigma of 1%.

Figure 3.6: A couple of selected frames from simulation with ground-truth
data. Top: Original ground-truth frames. Bottom: Reconstructions using
our method. Temporal profiles for a few representative pixels are shown
in Figure 3.7.

Figure 3.6 shows reconstructed frames (bottom row) in comparison with the

ground truth (top). The key features are reproduced, although a certain amount of

temporal smoothing is noticeable. An examination of time profiles for additional

pixels confirms this analysis (Figure 3.7). In green, we also show a direct least-

squares fit of the model to the ground truth curves. These curves demonstrate

the expressiveness of the model. Even though the direct fit exhibits shows sharp

discontinuities due to the use of exponential segments with a step function onset,
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Figure 3.7: A selection of time profiles for different pixels from the example
in Figure 3.6. Each graph shows the original time profile, which we treat
as ground truth (blue), a direct fit of the model to this ground truth curve
(green), and finally the result of our full optimization procedure using
simulated PMD measurements (red, see text).

the examples show that the key features of the time sequences can be represented

using the model. Furthermore, in the actual reconstruction from CIS measurements,

the i-step smoothes out the discontinuities. These results demonstrate that our

method can qualitatively reconstruct transient images, including complex scenarios

with multiple discrete pulses of light arriving at a surface point, as well as broad

temporal profiles resulting from indirect illumination via a diffuse surface. Note the

resolution limit for our method is scene-dependent due to non-linear nature of our

MAP approach.

3.5.2 CIS Measurements

Using our own setup, we captured a few settings with characteristic light transport.

Individual time slices of three additional datasets are shown in Figure 3.9. The

scenes and single-image visualizations of the recovered transient images are shown

in Figure 3.1 and Figure 3.8. See the Appendix Section A.3 for an additional simple

scene. The left column of Figure 3.9 shows a wavefront propagating though a scene
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Figure 3.8: Our test scenes, in addition to the one from Figure 3.1. All scenes
are illuminated from the left, with the rainbow images encoding the
temporal location of the main intensity peak for each pixel. Top: Various
objects on a table, and their reflections in mirrors placed nearby. Note
how the items and mirrored counterparts light up at different times.
Bottom: Four bottles filled with slightly scattering water. The specular
reflections reach the camera before the light scattered inside the bottles.

with a mirrored disco ball placed in the corner of a room. In the first frame, the

wavefront has just reached the front of the ball. In the second frame, the ball is now

fully illuminated, and we see the wavefront propagating along the left wall. The

third frame shows the first caustics generated by reflections in the mirror. More

caustics appear for longer light paths near the top and bottom of the fourth image,

and the direct illumination is now approaching the back of the corner from both

sides. First indirect illumination in the floor is visible. In the last frame, the caustics

have disappeared, and the indirect illumination is now lighting up the shadow of the

ball.

The second column of the figure shows a scene with several bottles, filled

with water and a small amount of milk to create scattering. In the first frame, the
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Figure 3.9: Time slices from three transient images captured with our setup,
and reconstructed with the method from Section 3.3. Each of the three
columns shows a result for one of the test-scenes shown in Figure 3.1
(discoball scene on the left) and Figure 3.8 (water bottles scene in the
center and mirrors scene on the right). A variety of global illumination
effects can be observed. Please see the text for a detailed explanations of
the different effects which we capture in each example.
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wavefront has just reached the front of the leftmost bottles, and is reflecting off their

surface. In the second frame, scattering effects are becoming visible in the bottles.

Next, the light reaches the far wall, showing caustics of the light transport through

the bottles. Indirect illumination of the back wall from light scattered in the bottles

appears in the fourth frame. This light continues to illuminate the back wall even

after the bottles themselves have darkened (last frame).

Finally, the last column of Figure 3.9 shows a scene with several foreground

objects and two mirrors. We first see initial reflections coming off the foreground

objects. As the light propagates further, the foreground objects are now fully

illuminated, and the wavefront reaches the back walls, but the mirrors remain dark.

In the third frame reflections of the foreground objects are starting to become visible

in both the left and the right mirror. In the fourth frame, the left mirror shows a

reflection of an object in the right mirror. This reflection lingers in the last frame,

even after the wavefront has passed by the foreground objects.

3.6 Spatio-Temporal Modulation
The presented approach can also be easily combined with spatial modulation. A

number of recent works [190–192] analyze or capture light transport through spatial

modulation using projector-camera systems, where the transport is here again

assumed to be instantaneous. An established way to describe such systems is given

using the light-transport matrix T [192, 193], that is

i = T p (3.17)

where here now i represents a 2D image with the X pixels stacked in a column

vector, T is the scene’s X×Y transport matrix, and p is a vector that represents the

scene’s spatially-varying illumination, e.g., a 2D pattern projected onto the scene by

a conventional video projector.

The spatial light transport can be interpreted as the time-average of the tempo-

rally resolved transport, that is

T =

∫ ∞
0

T̃(τ) dτ, (3.18)
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Figure 3.10: Simulated transient light transport, rendered using a modified
path tracing integrator for non-caustic transport and a photon mapping
integrator for caustic transport. For each camera pixel i, we simulate
the travel time τ of all light paths from the scene lit by a projector pixel
j. (a) The scene contains, from left to right, a diffuse bunny, a mirror
casting caustic light on the bunny, a glossy bowl, a diffuse v-shaped
wedge, and a glass dragon. (b) A transient image of pixels i across
times τ . (c) Conventional light transport matrix, describing each camera
pixel i in response to projector pixel j.

where T̃(·) simply extends the transient image from Eq.(3.6) by the spatial pattern

dimension. Without modulation we have p = 1 and considering a pixel k it is

i(τ) =
∑

a T̃(τ)k,a. Now, emitting a spatio-temporal pattern p̃(t), will produce

the incident sensor signal

s̃(t) =

∫ ∞
−∞

T̃(τ) p̃(t− τ) dτ
def
= (T̃ ∗ p̃)(t) (3.19)

where the operator ∗ convolves a matrix function and a vector function over time

(with notation adopted from [194]). With this temporally modulated signal incident

on the sensor, we can adapt Eq. (3.8) specifically for CIS sensors and get

bωi,φi =

∫ NT

0
fωi(t+ φi)

∫ ∞
−∞

T̃(τ)p̃(t− τ) dτ dt

=

[∫ ∞
−∞

T̃(τ)

(
N

∫ T

0
fωi(t+ φi)gωi(t− τ) dt

)
dτ

]
p

=

[∫ ∞
−∞

T̃(τ)cωi,φi(τ) dτ

]
p (3.20)
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It becomes obvious that adding spatial modulation leads to a straight-forward ex-

tension to Eq. (3.8). We also see that the light transport is separable for each CIS

measurement. Hence, we can simply code the illumination by using a projector

instead of our flood light source. For example, one can replacing the RGB light

source of an off-the-shelf DLP LightCrafter projector with a collimated version of

the light source from Section 3.4. The spatial modulation can then, for example,

be used to only selectively capture direct/retroreflective and indirect components

as discussed in [190]. Since direct paths always satisfy the epipolar constraint,

simply randomly turning pixels corresponding to epipolar lines on the projector

(a) PMD image (b) t = 1.9 ns (c) t = 3.2 ns (d) t = 5.0 ns

Figure 3.11: Transient imaging in combination with spatial modulation. (a)
Scene captured with a normal camera under ambient illumination (rows
1, 3) and CIS camera under projector illumination (rows 2, 4). (b-d)
Frames from the transient image reconstructed as before (rows 1, 3) and
with added spatial modulation (rows 2, 4). Notice the direct component
is a sharp impulse travelling along the walls.
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(with probability 0.5) will suppress indirect paths from the projector to the cam-

era. The direct/retroreflective component can then be estimated by capturing an

unmasked measurement and subtracting the indirect-only component from it. We

refer the reader to [190] for an in depth discussion of spatial light transport probing.

Figure 3.11 shows results of transient imaging combined with this approach. The

added spatial modulation aids the transient reconstruction by separating the direct

and indirect components, hence simplifying the unmixing significantly. Note that

the direct pulse of light traveling along the wall and the caustic light reflected by

the mirror have high-temporal resolution in our reconstructions, whereas they ap-

pear very broad when reconstructed without transport decomposition. We refer the

reader to our publication [2] for an in-depth analysis on the combination of transient

imaging with spatial modulation, which goes beyond the scope of this dissertation.

3.7 Discussion
In this chapter we have presented a method for transient imaging with CIS TOF

cameras. The hardware was modified to allow for different modulation frequencies

and phases for both the sensor and the illumination. Solving a MAP estimation

problem with spatial and temporal priors, we can robustly reconstruct transient

images from CIS measurements. Unlike existing systems for the capture of transient

images, ours does not require ultrafast temporal sensing or illumination. As a result,

we achieve transient images with hardware costing a fraction of the price of the

femtosecond laser/streak camera combinations. Our method reduced acquisition

times, makes hardware more portable, and supports easier modes of operation.

A disadvantage of our system is the limited spatial and temporal resolution

of CIS. The PMD PhotonICs 19k-S3 has a spatial resolution of only 160×120

pixels. Sensors of higher resolution are available, such as the 512×424 sensor of

the Microsoft® Kinect® 2. However, most commercial camera systems like the

Kinect® 2 are system-on-chip designs [195] which cannot be modified as proposed

in this chapter and do not expose modulation control. The time resolution of our

approach is limited by the maximum modulation frequency that can be applied

to the illumination and the PMD sensor around 110 MHz, which corresponds to a

spatial wavelength of about 2.70 m. The size of the investigated scene should not
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be significantly below this wavelength. We therefore work with larger-scale scenes

than Velten et al. [152].

The Gaussian-Exponential prior leads to an non-convex optimization problem

that is hard and expensive to solve. While the convex i-substep can be solved

efficiently, in under a second, the u-step takes several hours per dataset. Furthermore,

the model allows for discontinuities which can be observed in Figure 3.3. We

eliminate these issues in the following Chapter 4 by introducing a modified model.

By exploiting the convolutional structure of transient images, a sparse model without

discontinuities and corresponding convex objective can be formulated.

In summary, we have demonstrated the combination of an inexpensive hardware

setup and an inverse problem to acquire transient images using CIS sensors. This

approach reduces the barrier of entry for performing research in transient imaging

and its applications. In the following chapters, we build on the proposed approach

and demonstrate such applications.Chapter 4 demonstrates imaging in scattering and

turbid media, and Chapter 5 presents a method which enables imaging of objects

outside of the line of sight. In both of these traditionally challenging imaging

scenarios, we show that adding computation can “make the invisible visible.”
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Chapter 4

Imaging in Scattering Media

In this chapter, we demonstrate imaging in scattering and turbid media using CIS.

This is an extremely challenging scenario since scattering events can occur not just

at object surfaces, but at any location in a volume of point scatterers. Unmixing the

continuum of path contributions is a hard inverse problem that is hopeless to solve

without strong priors.

We solve this problem relying on a new physically-motivated model for transient

images derived from an analysis of sparsity in transient images. By exploiting

convolutional structure, we eliminate the issues of the Gaussian-Exponential priors

mentioned before, at the very end of the previous chapter. The model leads to a

convex convolutional sparse coding problem for recovering transient images from

CIS. We demonstrate our method for imaging through scattering media of various

densities.

4.1 Introduction
Imaging through scattering media has recently received a lot of attention. While

many works have considered microscopic settings such as imaging in biological

tissue [196, 197], we consider here the macroscopic problem, having in mind

ultimate target applications such as underwater imaging or imaging through fog.

Impulse-based approaches have been reviewed in Section 2.7.1. These methods

image individual femtosecond laser pulses with streak cameras [147, 149], or fast
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Figure 4.1: Example of imaging in scattering media using our approach. Left:
Original scene with objects submerged in water-filled glass tank. Center:
160 ml milk added. Right: Objects that are “invisible” due to strong
scattering, like the structured object on the top right or parts of the
circular object become detectable using our approach.

gated cameras [196, 198, 199]. However, impulse-based approaches suffer from

low SNR, since ambient illumination can easily overpower the laser pulse. Therefore,

various approaches have been explored to increase the SNR. Dalgleish et al. [200]

combine time gated imaging with spatial modulation for an underwater imaging

application. Mullen and Contarino [201] propose a hybrid system that combines

gated imaging with microwave amplitude modulation per pulse see also [202–204].

The amplitude modulation in the GHz-range reduces multi-path mixing components

significantly as also discussed in [156]. However, these hybrid impulse-based

approaches still directly sample the modulated incident scene response which is

affected by ambient light. Therefore, many repeated impulses per capture are

required. In contrast, CIS TOF cameras allow for the integration over many (ca. 104–

105) pulses of a modulated light source. It is key to realize that these sensors perform

adaptive in-pixel background suppression during the integration. As discussed

in Section 2.6.4, and in more detail in [52, 205, 206], the unmodulated background

component of photo-electrons is measured in both buckets equally and can be

drained during exposure (potentially multiple times). This operating mode allows

CIS sensors to amplify the signal component independently of the ambient light by

increasing the exposure time, while saturation due to ambient light no longer occurs.

Note also that it allows a per-pixel exposure time [205].

can be effectively used for imaging in scattering and turbid media, when com-

bined with computational analysis based on sparse coding; see Figure 4.1. Recalling

Chapter 3, the primary advantage of Correlation Image Sensors is that they have
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Figure 4.2: Left: Surface reflections superimpose indirect path contributions
(red) on the direct path (blue). As already discussed in Section 2.6.5,
TOF imaging has to account for the indirect path contributions. Right:
Imaging in scattering media results in indirect contributions not only
from object surfaces, but due to scattering in the entire volume (light
blue). Note that in both cases a continuum of indirect paths is measured.

extended exposure intervals, much like regular cameras, and they integrate over

many (ca. 104–105) pulses of a modulated light source, instead of a single pulse,

resulting in drastically reduced capture time, as well as slower, less expensive

electronics. However, for imaging in scattering media multi-path contributions are

even stronger than for regular TOF imaging; see Figure 4.2. At a pixel a mixture

of path lengths is measured, where only few ballistic photons directly hit objects

submerged in the scattering media, and a large number of indirect paths are created

by scattering events in the entire volume. This strong scattering, which makes tradi-

tional imaging very challenging, can only be handled if multi-path contributions are

removed effectively. In the following, we present a sparse convolutional model that

encodes strong prior knowledge on the transient image, and hence enables effective

MPI suppression in scattering and turbid media.

4.2 Sparse Transient Mixture Model

4.2.1 Are Transient Images Sparse ?

The idea of using sparse representations for signal recovery was first analyzed

extensively by Donoho and Candes et al. [207, 208] and since then has found use

in many domains [209]. Several recent works [126, 210, 211] attempt to resolve

multi-path interference by assuming sparsity of the transient profiles in the Dirac
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basis. The vastly popular idea of compressed sensing [207] can be applied in a

straightforward manner, by trying to solve the basis pursuit denoising problem [212]:

iopt = argmin
i

‖i‖1 subject to ‖Ci− b‖22 < ε, (4.1)

following again the notation from Chapter 3. Eq. (4.1) is a convex relaxation of the

sparsity requirement ‖i‖0 < K, where K determines the sparsity, and hence can

be solved using convex optimization methods. The problem from Eq. (4.1) can be

interpreted in our Bayesian framework from Section 2.8.1 as the MAP estimation

problem

iopt = argmin
i

1

2
‖Ci− b‖22 + λ ‖i‖1 (4.2)

The parameter λ is here related to the reciprocal of Lagrange multiplier of the con-

strained basis pursuit denoising problem from Eq. (4.1). For appropriate parameters

of λ, ε both problems yield the same solutions [212]. This formulation has first been

proposed for compressed sensing tasks in [213]. From a Bayesian perspective, this

problem is MAP estimation problem with Gaussian Likelihood and a Laplacian prior

distribution on the basis coefficients. As in the previous chapters, the parameter

λ can then be simply interpreted as a weight absorbing the scaling variables of

the likelihood and prior distribution, i.e. a trade-off between the data fidelity and

regularizer.

The basic assumption of the compressed sensing approach from Eq. (4.1), (4.2)

is i being sparse. However, this is violated for many realistic environments, and

in particular in the case of scattering media. For regular scenes the (intensity-

modulated) radiosity leaving a single scene point integrates over a continuum of

scene points, and thus in general cannot be sparse. For example, any concave

object can be expected to deliver a non-sparse response. Especially for imaging

in scattering media, the assumption of temporal sparsity breaks down. This is

demonstrated empirically in Figure 4.3 on the left by plotting the histogram of the

`0-“norm”, that is the number of non-zero entries, of a high-resolution transient

image captured by Velten et al. [214].

The transient image depicts a scene composed of scattering objects (a tomato)

and diffuse surfaces. However, note that even pixels that do not view a scattering
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Figure 4.3: Sparsity of 40K signals of a transient image measured image (left).
Sparsity after fitting to the convolutional basis proposed in this chapter
(right).

object are not necessarily completely sparse, as we will show later in Section 4.3.2.

The signal has been thresholded for 0.1 of the peak signal value along each pixel

so as not to interpret sensor noise as sparse components. A large number of pixel

signals have more than K > 100 components, which cannot be considered sparse,

given a time discretization of M = 220 in this example.

4.2.2 Sparse Local Model for Transient Light Interaction

Having shown that the popular sparse model does not apply in the Dirac basis for

realistic scenes (and especially not for scattering media), we now introduce a model

for local light transport interaction. This model leads to an overcomplete basis

transforming the signal into a space where it is sparse/compressible.

Building on Section 3.3, we model the temporal PSF of direct local surface

reflection from a single point as a Dirac peak, while the temporal structure of

scattering processes is best represented by an exponential decay. However, now,

in both cases, this PSF is convolved with a Gaussian that models the temporal PSF

and resolution of the correlation image sensor. It is therefore plausible to describe

a transient pixel by a mixture of exponentially modified Gaussians. Originally

developed to describe chromatographic peaks [215], this versatile model has since

been adopted in different fields such as high-energy physics, where it is used to

model the response of pixel detectors [216]. A single exponentially modified
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Figure 4.4: A few samples of the exponentially modified Gaussian signals
located at µ = 50. Curves are normalized by adjusting amplitude a.

Gaussian can be defined as

h (τ ; a, σ, ρ, µ) = a · exp

(
1

2

(
σ

ρ

)2

− τ − µ
ρ

)
·

(
1 + erf

(
(τ − µ)− σ2

ρ√
2σ

))
,

(4.3)

where a (amplitude), σ (Gaussian width), ρ (skew) and µ (peak center) are the

parameters of the exponentially modified Gaussian function, and τ is the travel

time at which it is evaluated. If we stack the parameters for a single exponentially

modified Gaussian in a vector u = [a, σ, ρ, µ]T , then we can model the transient

time-profile i as the mixture:

i(τ) =

N∑
k=1

h (τ ;uk) , (4.4)

where N is here the number of mixture components. Figure 4.4 shows a few

samples of the signals. We note that the joint modeling of the exponential and

Gaussian nature of our signals has a key advantage over previous models: the

basis functions and hence the reconstructions are inherently smooth. The Gaussian-

Exponential prior from Section 3.3, on the other hand, produces discontinuous

solutions whenever exponential components are being used.

Now, fitting this model to the data from Figure 4.3 (using the method described

below), we can see that it defines a basis that transforms the transient image signals

into a space that is significantly sparser than the signal itself; see Figure 4.3, right.
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4.3 Transient Convolutional Sparse Coding
In order to find the optimal mixture parameters, commonly a non-convex non-

linear problem is solved, which is prone to local minima and expensive to solve.

Furthermore it leaves the number of mixing components open, which was solved

in Chapter 3 using an alternate scheme that also offers no guarantee of global

convergence.

We follow here a different approach and first linearize the above model by

sampling the parameter space and later use it in basis pursuit fashion in a convex

reconstruction problem. Linearizing the basis functions gives

D = [h (s;u0) , . . . , h (s;uN )] (4.5)

where s is the vector of all the sampling positions of the signal and N is the

number of samples in the set containing all C = {σ, ρ, µ} with a = 1. Including

this (massively overcomplete) basis D in Eq. (4.2) leads to the following pursuit

denoising problem.

xopt = argmin
x

1

2
‖CDx− b‖22 + λ ‖x‖1 (4.6)

The over-completeness of the basis is now handled by the sparsity prior. The

values of a have now become the vector of basis coefficients x. For simplicity, we

consider only one pixel, although the approach can be trivially extended to multiple

pixels/measurements.

However, the basis D is still extremely large (due to the large set C), which

makes the optimization inefficient even for problems of moderate size. One sig-

nificant improvement to this situation is to exploit the convolutional nature of the

basis. Instead of sampling the parameter space for µ (i.e., the translation of the peak

along the time axis), one can fix µ and reformulate the problem as the following

optimization problem:

xopt =argmin
x

1

2

∥∥∥∥∥C
K∑
k=0

Dk ⊗ xk − b

∥∥∥∥∥
2

2

+ λ ‖x‖1

subject to Dk ∈ h
(
s, C′

)
∀k ∈ {1, . . . ,K}

(4.7)
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The basis vectors are now sampled from the space of pulse shapes, C′ = {σ, ρ},
and invariant to translation. Therefore the size of the basis is drastically reduced

from previously N = K · dim(x) to just K, i.e., by typically around 2 to 3 orders

of magnitude.

This approach is motivated by the signal processing of the acoustic nerve,

where shift-invariant sparse coding has first been proposed by Lewicki and Se-

jnowski [217]. Recently, convolutional sparse coding has also been used for audio

and image detection tasks [218–220] motivated by the recent success of convolu-

tional deep neural networks in image classification and detection [18].

4.3.1 Reformulation in the Spectral Domain

The problem from Eq. (4.7) can be defined even more compactly in the Fourier

domain. The convolution reduces to pointwise multiplication, here expressed by the

operator �:

xopt =argmin
x

1

2

∥∥∥∥∥C F−1

(
K∑
k=0

D̂k � x̂k

)
− b

∥∥∥∥∥
2

2

+ λ
K∑
k=0

‖xk‖1 ,

subject to Dk ∈ h
(
s, C′

)
∀k ∈ {1, . . . ,K}

(4.8)

The operators F, F−1 denote here the Fourier transform and the inverse Fourier

transform, respectively. The operator ·̂ is a notational shortcut the frequency domain

representation of a variable, that is v̂ = F(v). Due to the frequency domain

formulation, this linear inverse problem can be solved with an efficient ADMM

algorithm. In Chapter 6 we describe a generalized approach to convolutional sparse

coding, which also allows to learn convolutional structure when not given by the

physical model. A detailed description of frequency domain convolutional sparse

coding will be given in this chapter. Since it will also cover the implementation

details of our approach, the remainder of this chapter evaluates the proposed model

for transient imaging in scattering media.
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4.3.2 Synthetic Evaluation

To generate ground-truth pixel profiles, we sampled a high resolution “ground truth”

transient image measured by Velten et al. using direct temporal method [214]. The

observations are then generated by assuming a typical sinusoidal measurement

matrix C where f, g are defined as in Eq. (2.24). We sample ω evenly spaced in 100

steps from 10 MHz to 120 MHz, which is a realistic range for recent CIS systems,

recalling Chapter 3, and φ as 0, π/2, giving exactly 100 ·2 measurements j per pixel.

The measurements are normalized and then corrupted with 1% Gaussian noise.

Figure 4.5 shows synthetic results for two different pixel profiles. We compare our

method (“Reconstruction Gauss-Exp”) to the ground-truth signal (“Original”) as

well as two recent methods from transient imaging literature: Lin et al.’s smooth

frequency-domain interpolation (“FFT model”) [221], the non-linear non-convex

model-fit from Chapter 3 (“Sequential model”). For the sake of completeness, we

further add comparisons to various state-of-the-art sparse reconstruction techniques,

namely LASSO (“Sparse reconstruction LASSO”) [222], OMP (“Sparse reconstruc-

tion OMP”) [223] as well as Generalized Approximate Message Passing [224] using
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Figure 4.5: Example showing the effect of our sparse coding optimization on
two pixels from the “Tomato” dataset. From left to right: (a) Proposed
new model, (b) FFT and sequential models, (c) state-of-the-art sparse
reconstruction (LASSO and OMP), (d) two state-of-the-art compressed
sensing models (GAMP).
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Donoho/Maleki/Montanari-style thresholding (“GAMP-DMM”) and assuming a

Laplacian signal in an MAP formulation (“GAMP-MAP”).

One can see that, although these pixels are dominated by direct reflections, the

signals are not sparse at all, and time-domain sparse backscatter models as used

by Freedman et al.’s SRA [126], or Bhandari et al. [211] are not capable of close

reconstructions. Our method, on the other hand, produces solutions that follow

the ground-truth distributions more closely than any of the competing models. In

particular, the exponentially modified Gaussian basis outperforms approaches that

solve non-linear non-convex optimization, such as the one from Chapter 3. Out of

all the methods tested, the one delivering the poorest fit is [221], which imposes the

weakest prior by just interpolating smoothly in the Fourier domain.

4.4 Results
In this section we show results for imaging in scattering media using our reconstruc-

tion method proposed in the previous section. The measurement setup is explained

first. After that the results are analyzed qualitatively and quantitatively.

4.4.1 Setup

Camera We use a correlation image ToF camera prototype for our experiments

using red laser light as illumination, see Figure 4.6 on the left.

The TOF camera consists of a modulated light source and a correlation image

detector. As in the previous Chapter 5, the sensor is a PMD CamBoard nano,

modified to allow for external control of the modulation signal (since access to its

FPGA configuration was not available). The light source consists of an array of 650

nm, 250mW laser diodes which are operated in pulse mode, also described in the

previous chapter.

We measure ω evenly spaced in 3 steps from 20 MHz to 60 MHz and φ evenly

spaced between 0 and 5 m/cω in 201 steps and with an additional shift of (0, π/2),

resulting in a measurement vector j with exactly N = 201 · 2 · 3 samples per pixel.

Calibration As described in Chapter 3, we calibrated the matrix C by measuring

a diffuse planar target that is mounted on a translation stage perpendicular to the
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Figure 4.6: Camera prototype and setup: We use a modified PMD Technolo-
gies CamBoard nano using an array of red laser diodes for illumination
(left) as described in the previous Chapter 5. In our setup we image a
tank filled with a scattering medium of different concentrations frontal
with the cameras. The spatial dimensions and arrangement of the setup
is shown in the center. The setup is shown on the right.

z-axis. The target is translated along this axis at positions according to different

travel times τi, i ∈ {1 . . .M}. We populate C column by column for each τi.

Measurement Setup An image of our measurement setup is shown in Figure 4.6 on

the right. We placed a water tank with glass hull at a distance of 1.2 m in front of our

camera, so that the optical axis intersects the center of the largest planar side. The

light source is placed at a slight offset to the right to eliminate direct reflections of

the air-to-glass interface on the camera-facing wall. See the schematic in Figure 4.6

in the center for the exact spatial alignment.

Scattering Media We filled the tank with 80 liters of water and submerged objects

at different positions in the water (and in particular at different distances to the

camera). We then evaluated our approach on two different scattering materials

with a series of different concentrations. First, we conducted a sequence of 100

experiments using homogenized milk from 0 ml to 500 ml in 5 ml steps. Second, we

conducted a sequence of 50 experiments using Gypsum plaster with a continuum of

particle sizes ≤0.125 mm. We used 0 oz to 50 oz in 1 oz steps.

For each of the 150 experiments we take a full measurement with the measure-
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ment parameters as described above.

4.4.2 Qualitative Results

Figure 4.7 and Figure 4.8 show qualitative results for imaging through scattering

media of increasing density. Objects are immersed in a tank filled with water, to

which increasing concentrations of milk (Figure 4.7) or plaster (Figure 4.8) are

added. See Section A.5 for the full sequence of all concentrations that we tested.

With increasing concentration, visibility through the scattering medium quickly

drops off for a conventional camera (top row). On the other hand, a light transport

analysis based on Correlation Image Sensors, not only increases the ability to detect

objects in highly turbid solutions, but also allows for a simultaneous estimation of

distance (color coded images in the bottom column of each figure).

4.4.3 Quantitative Results

To quantitatively analyze our results, we measure the error of the depth estimate

for three distinct camera pixels with respect to the measured ground truth depths.

The three camera pixels ‘plate’, ‘holder’ and ‘bar’ are chosen as representatives

for objects located at different depths in the reconstruction volume. Their spatial
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Figure 4.7: Qualitative results for the milk experiment described in Sec-
tion 4.4.1. Experiments in each column from left to right: 0 ml, 20
ml, 40 ml, 80 ml, 300 ml of milk in water. Each column shows the
regular camera image (top), peak image for red camera reconstruction
(bottom). Peak images are here a parabola fit through the two nearest
neighbor points of the strongest peak, where the position is encoded as
as hue and the intensity is encoded as value in the HSV color model.
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Figure 4.8: Qualitative results for the plaster experiment from Section 4.4.1.
Experiments from left to right: 0 oz,4 oz, 8 oz, 16 oz, 59 oz of plaster in
water. The same visualization as in Figure 4.7 has been used.

positions are shown in Figure 4.9 (left). All objects have approximately diffuse

reflectance except for the ‘plate’ which does have a specular component. Ground

truth depth measurements for all pixels were acquired manually. The pixel ‘plate’ is

located at 5.5 cm behind front facing glass wall of the tank, pixel ‘holder’ at 21.5 cm

into the tank, and ‘bar’ at 40.0 cm, touching the rear-facing wall of the tank.

The center and right portions of Figure 4.9 show the error with respect to the

ground truth pixel depth for all 100 experiments with milk as scattering media and

all 50 experiments with plaster as scattering media as described in Section 4.4.1.

We can see that the error of pixels ‘plate’ and ‘holder’ has a fairly low slope and
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Figure 4.9: Error for three specific pixels shown on the left. The error of
the position is shown for all 100 experiments using milk as scattering
medium and all 50 experiments using plaster as scattering medium. The
error is measured with respect to 0% concentration and corrected for
the speed of light in water. Standard time-of-flight depth reconstruc-
tion (atan solution from Section 2.6.1) breaks down even at very low
concentrations of scattering agent.
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remains almost flat around 1 cm–5 cm even for strong concentrations. These pixel

depths are located close to the front and in the middle of the reconstruction volume,

so the scattering is reduced in comparison to pixel ‘bar’ which is at the very rear of

the reconstruction volume. Its error is significantly larger; around 10 cm–20 cm due

to the increased scattering. However, performing a naı̈ve reconstruction as described

in Section 2.6.1 on the same pixel resulted in even significantly larger errors around

30 cm–60 cm for both the plaster and the milk sequence of experiments.

4.5 Discussion
In this chapter, we have demonstrated that CIS imagers can be used for imaging in

scattering and turbid media. In the presence of scattering, light rays emitted into the

scattering volume are perturbed by a large number of point scatterers, each causing

a scattering event. Unlike MPI problems for range imaging, with large free-space

components, the point scatterers are continuously distributed in the volume. Hence,

imaging in scattering media is a hard MPI problem, which requires the unmixing of

this continuum of path contributions.

The key to solving this problem using Correlation Image Sensorss lies in ex-

ploiting strong prior knowledge on the transient light transport. By identifying

convolutional sparse structure in transient images, we have formulated a compres-

sive and expressive representation. This representation is based on exponentially

modified Gaussians, which are tailored towards representing combinations of sur-

face reflection and volumetric scattering. Exploiting convolutional structure of

transient images is key for allowing the prior to find the sparse signal structure. By

solving the resulting convolutional sparse coding problem, we have demonstrated

imaging in turbid and scattering media. Our method significantly outperforms naive

TOF range imaging methods that do not resolve MPI. It is robust across a large range

of scattering densities, demonstrating that our model generalizes well.

In contrast to impulse-based methods, our CIS-based approach inherits the

advantages mentioned in the previous Chapter 3, that is robustness to ambient illu-

mination (all measurements presented in this chapter were taken with room lighting

switched on), and works with higher light levels than approaches based on single

light pulses. However, the proposed approach requires computational reconstruc-
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tion, whereas impulse-based methods perform direct sampling. The quality of our

multi-path unmixing is limited by the condition number of C, while impulse-based

methods are limited by the pulse-shape and temporal camera resolution. Since C is

a truncated Fourier transform, see Section 3.4, the modulation frequency determines

the limit here, which for commercially available CIS imagers is up to 100 MHz.

However, this means also that our method will directly benefit from increases in

modulation frequency for future TOF range imagers. Furthermore, our convolu-

tional sparse model, which enables the results in this chapter, generalizes to other

TOF technologies, such as direct temporal sampling (C can be calibrated with a

delay-sweep, as before in Chapter 3).
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Chapter 5

Diffuse Mirrors

The functional difference between a diffuse wall and a mirror is well understood:

one scatters back into all directions, and the other one preserves the directionality

of reflected light. The temporal structure of the light, however, is left intact by

both. In other words, assuming simple surface reflection, photons that arrive first

are reflected first.

In this chapter, we exploit this insight to recover objects outside the line of

sight from second-order diffuse reflections, effectively turning walls into mirrors.

We formulate the reconstruction task as a linear inverse problem on the transient

response of a scene, which we acquire, similar to the previous Chapters 4 and 3,

using an affordable setup consisting of a modulated light source and a CIS TOF

camera. By exploiting sparsity in the reconstruction domain, we achieve resolutions

in the order of a few centimeters for object shape (depth and laterally) and albedo.

Our method is robust to ambient light and works for large room-sized scenes. It is

drastically faster and less expensive than previous approaches using femtosecond

lasers and streak cameras, and does not require any moving parts.

5.1 Introduction
Object reconstruction from real-world imagery is one of the central problems in

computer vision, and the very mechanism of image formation (each pixel measuring

light flux as a multidimensional plenoptic integral) is one of the main reasons why it
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Figure 5.1: (a) illustration of our measurement scenario (to scale). A diffuse
wall is illuminated by a modulated laser beam and observed by a TOF

camera. From diffuse reflections, we infer the geometry and albedo of
objects within a bounding volume (green) that is completely occluded
to both light source and camera, but visible from most locations on the
wall. In this example, of two letters are placed in the unknown volume;
see the scene photograph in top right inset in (a). The shape of the letters
becomes clearly visible in the reconstruction (b,c).

is so challenging. To overcome the limitations of standard monocular images taken

under uncontrolled illumination with respect to many vision tasks, a wide range of

novel capturing approaches has emerged that extend the concept of digital imaging

with structured light or new sensing techniques involving masks, filters or integral

optics (light fields) [225].

The additional temporal dimension introduced by transient imaging can solve

some of these challenges. By undoing the temporal mixing of the light transport,

transient imaging has enabled the use of diffuse reflectors to image objects via

the time profile of reflections from ultra-short laser pulses [149, 226]; see also

Section 2.7. However, reconstruction of the this data from transient images is a hard

inverse problem, that is sensitive to the exact parametrization of the problem as well

as the priors and regularization terms that are employed. In this chapter, we develop

a new parametrization for this inverse problem, and combine it with a novel set of

sparsity inducing priors to achieve a robust reconstruction of geometry and albedo

from transient images.

As discussed in Chapter 3, a major challenge is that the instrumentation required

to measure the transient images themselves has traditionally suffered from severe
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practical limitations including excessive hardware cost (hundreds of thousands of

dollars), long acquisition times (hours) and the difficulty of keeping the sensitive

system calibrated. We solve this problem by building on the method from the

previous Chapter 3 using widespread CIS TOF sensors for obtaining the transient

image. The inverse problems for transient image reconstruction and geometry

recover can be merged into a single non-linear optimization problem that can be

solved efficiently. The result is a system that is by several orders of magnitude more

affordable and acquires data faster than previous solutions. We demonstrate the

effectiveness of our setup and the computational scheme by reconstructing both a

low-contrast albedo and the geometry of hidden objects.

5.2 Image Formation Model

5.2.1 Assumptions

We make several assumptions for the image formation; see Figure 5.2. The hidden
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Figure 5.2: A schematic of our measurement setup illustrated in Figure 5.1.
All distances are in meters. An isotropic point light source is created
on the diffuse wall by illuminating it with a laser beam. This diffuse
light source illuminates scene objects in the unknown scene volume
(green), outside of the line of sight of the camera. Some of the light
is reflected back to the wall (1st bounce) and can be measured by the
camera bouncing of the diffuse wall (2nd bounce).
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scene is modeled as a diffuse height field, which in turn is represented as a collection

of differential patches dx with orientation nx inside a volume V . We assume that

the camera points at a section of the diffuse wall, and is in focus. Light is emitted

as a laser ray from position l0 and illuminates a single point l on the diffuse wall,

outside the field of view of the camera. Radiometrically, we treat this point as a

single, isotropic point light emitting a radiance Le(l). From l, the light illuminates

the scene, and after a single bounce returns to the diffuse wall. Patches dw on the

wall are chosen such that there is a one-to-one correspondence between patches and

camera pixels. Finally, we ignore occulusions in the height field.

5.2.2 Stationary Light Transport

With these assumptions, starting from the diffuse version of the Rendering Equation

introduced in Section 2.2.2, we can model the stationary (i.e. time independent)

light transport as follows.

L(l) = Le(l)

L(x) = Le(l)ρ(x)R(l,x)

L(w) =

∫
V
Le(l)ρ(x)R(l,x)ρ(w)R(x,w) dx

(5.1)

with ρ(.) denoting the diffuse albedo of a patch, and the unoccluded geometry term

R(x,y) =
cos](y − x,nx) · cos](x− y,ny)

|y − x|2
. (5.2)

between the patch at x and another patch at y. We re-write the radiance at a wall

patch (Eq. (5.1)) as

L(w) = Le(l)ρ(w)

∫
V
r(x)v(x) dx, (5.3)

where the geometry term

r(x) =
cos](x− l,nl) · cos](x−w,nw)

|x− l|2 · |x−w|2
(5.4)
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is independent of both the albedo and orientation of the patch dx, while

v(x) = ρ(x) · cos](l− x,nx) · cos](w − x,nx) (5.5)

is a term that isolates both of these unknown quantities. We can interpret v(x) either

as a generalized albedo term or as a continuous volume occupancy that indicates

whether or not a given voxel location is occupied by the surface to be reconstructed.

Note that in this parametrization, the image formation is linear in v(x).

5.2.3 Transient Light Transport

Following the approach from the previous chapter, the transient version of Eq. (5.3)

is obtained by adding a time coordinate t and counting only light contributions such

that t is the sum of emission time t0 and the travel time τ for a given light path from

the laser l0 to a camera pixel c. In our image formation model, the relevant light

paths only differ in the position of the surface element dx, i.e. t = t0 + τ(x).

Recalling that we assume a one-to-one correspondence between wall patches w

and camera pixels c, we obtain the transient image formation model

L(c, t)=

∫ t

0
Le(l, to)ρ(w)

∫
V
δ(t0 + τ(x)− t)r(x)v(x) dx dt0, (5.6)

where the travel time τ(x) is the total path length divided by the speed of light c:

τ(x) = (|l0 − l|+ |l− x|+ |x−w|+ |w − c|)/c (5.7)

We note that this transient image formation model is independent of the way the

transient image has been acquired. It therefore applies to all known approaches

for generating transient images, including femtosecond imaging [149] as well as

correlation-based measurements from the previous Chapter 3.

5.2.4 Discretization

The problem of reconstructing geometry from indirect light amounts to recovering

the diffuse height field represented as the continuous voxel densities v(x). To this

end, we discretize the volume v(x) from Eq. (5.6) into a Euclidean voxel grid, and
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represent it as a vector v of size m. The transient image (radiance) is represented as

a vector i ∈ Rnt, where n is the number of camera pixels/wall patches, and t is the

number of time steps. The discrete version of Equation 5.6 is then given as

i = Pv (5.8)

with the light transport tensor P ∈ Rnt×m.

5.2.5 Transient CIS Image Formation

Unlike Velten et al. [149], in our implementation we do not measure the transient

image directly. Instead, we build on-top of our work from the previous Chapter 3:

using a standard CIS TOF sensor with a modulated illumination source, we obtain a

sequence of modulated exposure measurements b for different modulation frequen-

cies and phases. Recalling Eq. (3.9), the transient image can then be recovered from

b = Ci + n, where the correlation matrix C is obtained through a straightforward

calibration step, and n represents sensor noise. Substituting Eq. (5.8) for i, we

arrive at our full image formation model:

b = CPv + n (5.9)

5.3 Reconstruction from Diffuse Indirect Illumination
The image formation model from Eq. (5.9) cannot be inverted directly, due to noise,

and since the light transport matrix P is poorly conditioned, as is the correlation

matrix C; see Section 3.3. We follow the Bayesian MAP approach from Section 2.8.3

to estimate the voxel grid. In particular, we use spatial priors on the voxel grid, and

a likelihood approximating the noise distribution. Our approach is described in the

following.

5.3.1 Inverse Problem

We solve the following MAP estimation problem

vopt = argmin
v

1

2
‖CPv − b‖22 + Γ(v), (5.10)

108



where the first term is the Data Fidelity term. As in the previous chapter, this term

results from a Gaussian likelihood, that is we assume n to be Gaussian distributed.

Priors The second term implements the statistical priors on v in our MAP frame-

work. It is

Γ(v) = λ
∑
z

‖∇xvz‖1 + θ ‖Wv‖1 +
∑
x,y

indC(vx,y) (5.11)

We assume a sparse Laplacian distribution on the spatial gradients height field,

leading to the first `1 penalty term on the spatial gradients for all volume depths

z. Furthermore, we assume that the volume v is sparsely populated, justified by

our assumption of height field geometry. This second term is implemented as a

weighted `1 norm of the volume itself. The weight matrix W will be obtained using

an iteratively reweighted `1 scheme (IRL1, see Section 5.3.3). Finally, the last term

in Eq. (5.11) encodes the knowledge of the height field, by constraining the volume

to have at most one non-zero entry for each 2D (x, y) coordinate. We encode this

prior using a projection onto an indicator set of possible depth values for each (x, y)

coordinate:

indC(p) =

{
0 if p ∈ C
∞ else

with

C = {d ∈ Rz | card (d) = 1 ∧ 1Td = 1Tp}

(5.12)

We note that the second and third term of the regularizer both have the purpose of

encouraging a single surface reflection along the z-dimension of the reconstruction

volume. The term from Eq (5.12) is stronger than the `1 regularization, since it

prefers exactly a single-non-zero solutions (in contrast to just sparse solutions). On

the other hand, it makes the overall optimization non-convex as C is a non-convex

set. So having both terms enables us to trade the convexity of our objective function

for the sparsity of our model by adjusting the weight θ from Equation 5.11.
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5.3.2 Optimization

The optimization problem from Eq. (5.10) is of the form discussed in Section 2.8.3.

In particular, we choose

Φ = I, G(p) =
1

2
‖CPp− b‖22 ,

Ω =
[
DT
x ,D

T
y ,WIT , IT

]T
, F (p) = λ ‖p1,2‖1 + θ ‖p3‖1 + indC(p4),

(5.13)

where Dx,Dy are derivative operators for the x, y dimensions for all z coordinates

(stacked on-top of each other) and I is the identity matrix. We have chosen F (·):

Γ(v) = F (Ωv). The index identifies here the component stacked on-top of

each other in Ωv. Note that the minimum of Γ(v) is obtained by independently

minimizing F for each component of Ωv.

Eq. (5.13) represents our specific MAP estimation problem from Eq. (5.10) in the

general linear MAP form from Eq. (2.40). Hence, it can be solved with a proximal

algorithm as discussed in Section 2.8.4. We use a linearized version of ADMM [175].

Using v as primal variable, the augmented Lagrangian from Eq. (2.42) becomes

Lρ(v,y, λ) = G(Φv) + F (y) + λT (Ωv − y) +
ρ

2
‖Ωv − y‖22, (5.14)

The ADMM method from Algorithm 1 performs three steps per iteration, each

updating v,y, λ alternately. The individual steps are as follows:

v-step The update of the volume v proceeds as follows:

vk+1 = argmin
v

Lρ
(
v,yk, λk

)
= argmin

v

1

2
‖CPv − b‖22 + (λk)T

(
Ωv − yk

)
+
ρ

2

∥∥∥Ωv − yk
∥∥∥2

2

≈ argmin
v

1

2
‖CPv − b‖22 + (λk)T

(
Ωv − yk

)
+

ρ
(

ΩTΩvk − ΩTyk
)T

v +
µ

2

∥∥∥v − vk
∥∥∥2

2

=
(
PTCTCP + µI

)−1
(
PTCTb + µvk − ρ

(
ΩTΩvk − ΩTyk

)
+ ΩTλk

)
.

(5.15)
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Note that in the third step we have made an approximation that linearizes the

quadratic term from the second line in the proximity of the previous solution vk.

This linearization approach is known under several different names, including

Linearized ADMM or inexact Uzawa method (e.g. [175, 227, 228]). The additional

parameter µ satisfies the relationship 0 < µ ≤ 1/
(
ρ‖Ω‖22

)
.

y-step The slack variable y is updated as follows:

yk+1 =argmin
y

Lρ
(
vk+1,y, λk

)
=argmin

y
F (y) + (λk)T

(
Ωvk+1 − y

)
+
ρ

2

∥∥∥Ωvk+1 − y
∥∥∥2

2

=argmin
y

F (y) +
ρ

2

∥∥∥∥(Ωvk+1 − λk

ρ

)
− y

∥∥∥∥2

2

(5.16)

Both F (.) and the least square term can be minimized independently for each

component in y. Using the slack variable y, the minimization involving the difficult

function F has now been turned into a sequence of much simpler problems in just a

few variables. To derive the specific solutions to these problems, we note that the

last line in Eq. (5.16) can be interpreted as a proximal operator:

yk+1 = prox(1/ρ)F

(
Ωvk+1 − λk

ρ

)
(5.17)

using the standard definition from Section 2.8.4. For our problem, we require the

proximal operators for the `1 norm and for the indicator set. These are given as

proxγ|·|(p) = (p− γ)+ − (−p− γ)+

proxγ indC(·)(p) = ΠC(p)
(5.18)

The first term is the well-known point-wise shrinkage [175] and the second is the

projection on the set C.

λ-step The final step of the ADMM algorithm 1 is to update the Lagrange multiplier

by adding the (scaled) error, that is λk+1 := λk + ρ
(
Ωvk+1 − yk+1

)
.
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5.3.3 Enhancing Volume Sparsity

To further enhance the sparsity of the convex `1-regularized part of our objective,

we have placed a weight W on the individual components of the `1 volume penalty

(second term in Eq. (5.11)).

This approach has been proposed by [229]. The idea is that the weights W

capture the support of our sparse solution. This support is estimated iteratively from

the last solution, which allows for improved recovery of the sparse non-negative

components. As proposed in [229], we use the update rule

Wj+1 := diag

(
1

|vj |+ ε

)
, (5.19)

where the division is here point-wise, and diag (·) denotes the diagonal matrix

with the diagonal from the argument. The iteration variable j from above is for

an outer iteration on top of our original iteration from Algorithm 1 with the steps

from the previous paragraphs.

5.4 Implementation and Parameter Selection

Parameters For our specific Algorithm 1 with the steps from the previous para-

graphs, we use the parameters ρ = 1.1 and µ = 0.5 · 1/
(
ρ‖Ω‖22

)
, which produced

good results for all of our tested datasets. Note that Ω changes for every outer IRL1

iteration, and thus µ has to be recomputed for every iteration. We estimate ‖Ω‖22
by running the power method for ΩTΩ with random initialization. We use 3 outer

IRL1 iterations and an update weight of ε = 0.1.

Implementation of the v-step For a very high resolution sensor and reconstruction

volume, storing P would be infeasible. In this scenario one can implement P as the

procedural operator performing the transient light transport exactly as described in

Section 5.2.3. The transient rendering operation parallelizes very well over each

input pixel. One can implement its transpose PT similarly as the dot product of each

transient image for a considered voxel accumulated over the whole voxel volume.

Thus again only transient rendering and some additional dot-products are required.
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Finally, the v-step from the presented linearized ADMM can be implemented using

Conjugate Gradient (CG). Instead of applying explicit matrix multiplication inside

CG, we replace each of the products with P or PT with the operations defined

above.

We implemented this version first. However, since our sensor only has a

very low resolution of 120 × 160, we were actually able to fully precompute

and efficiently store P (in < 8GB RAM) as a sparse matrix which speeds up the

reconstruction dramatically. Note that this approach would not be possible if the

sensor or reconstruction resolution were significantly higher.

Pre-factorization for Speedup Instead of minimizing ‖CPv − b‖22 as a data term

one can also pre-factor the optimization and first solve for a transient image C−1j

and then use this as an observation in the changed data term ‖Pv −C−1b‖22. We

have used the i-subproblem from Section 3.3.3 to pre-factor the optimization and

did not notice a strong difference in reconstruction quality in comparison to using

the not pre-factored version. The advantage of pre-factoring is that the method gets

sped up even more since all matrix application of C have been handled before and

C itself can be inverted more efficiently than the full CP.

5.5 Results

5.5.1 Setup

Our instrumentation comprises a modulated light source and a CIS detector, as used

for the purpose of transient imaging in Chapter 3.

The detector is based on a filterless version of the TOF development kit Cam-

Board Nano by PMD Technologies, and extended with an external frequency-

controllable modulation source (a workaround in lack of access to the FPGA config-

uration for the CamBoard). We determined that for our setup an integration time of

10 milliseconds delivers the optimal SNR, which we further improve by averaging

over multiple measurements; see Section A.4 for details.

The light source consists of six 650 nm, 250 mW laser diodes with collimation

optics and custom driving hardware to emit pulses of approximately 2-3 nanoseconds
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Figure 5.3: Left: Photo of our capture setup facing the diffuse wall (light
source covered with black photo board). To the left, behind an occluder,
lies the reconstruction volume. Right: Close-up on the light source
without cover.

duration at variable repetition rate. The primary difference to the hardware setup

from the previous chapter is that in the proposed setup, the diodes are not diffused

to act as a spot light. Instead, we focus each laser diode with individual optics onto

a single spot l on the wall (Figure 5.2, Figure 5.3). Their overall duty cycle during

capture is less than 1%, allowing operation with only the lens holders doubling as

heat sinks.

Our reconstruction volume has a size of 1.5 m×1.5 m×2.0 m and is distanced

1.5 m from the flat, diffuse wall. The camera and illumination are about 2 m from

the wall; please see Figure 5.2 for the exact spatial arrangement.

5.5.2 Qualitative Results

Geometry Our first test is to reconstruct the geometry of two letters cut out

of cardboard that were painted with white color, and placed at different depths

(Figure 5.1). We show two visualizations of the recovered depth information in the

volume. In the center image we treat the voxels as an occupancy probability and we

show the expected value of the distribution for each pixel, i.e. the sum of distances

weighted by the occupancy probability.

Since the expected value is not robust to outliers, we show in the right image

the depth value with the strongest peak for each (x, y) pixel. This amounts to the

voxel with the highest probability of occupancy in our reconstruction. Note, that
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Figure 5.4: Albedo reconstruction example: Reconstruction of scene image
with a flat surface but varying albedo (right). Center: the color-coded
depth map of strongest peak along z-coordinate shows a flat geometry.
Left: Albedo image at the depth map’s depth.

here we threshold the volume, with very low albedo/occupancy probability as grey.

Albedo The next experiment Figure 5.4 shows the recovery of a spatially varying

albedo on a flat surface. The color-coded depth map shows the depth of the strongest

density in the reconstructed volume for each pixel (x, y) as before. The left of the

figure shows the albedo v(x) sampled exactly at the depth map positions (the

position of the strongest peak).

Figure 5.5: Simultaneous albedo and geometry: Reconstruction of scene im-
age with varying albedo (letter on plane in the front) and varying depth
for the letter in back (right). Albedo image, reconstruction value exactly
at the depth position from the depth map (center). Color-coded depth
map of strongest peak along z-coordinate (left).
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Albedo and Geometry Figure 5.5 shows an example of variation in both geometry

and albedo. In this case, the planar surface in the front could not be reconstructed in

the depth map due to the low albedo limiting the reflected light.

Different Materials In Section A.4 we show several examples of reconstructions

with non-Lambertian surfaces. We find that Lambertian scenes result in very

sparse volume reconstructions that clearly represent a height field structure. With

increasingly non-Lambertian surfaces the energy is spread out more and more

throughout the volume (as our model is violated).

Effects of Ambient Light and Frame Averaging One of the advantages of the

method from the previous Chapter 3, is that it is rather insensitive to ambient

illumination. We tested whether this robustness also applies to our approach for

reconstructing geometry and albedo. Section A.4 presents results with strong

ambient illumination which has only a minor effect on reconstruction quality.

5.5.3 Quantitative Results

To evaluate our reconstruction results, we compared the distance maps with manually

measured scene geometry. Figure 5.6 shows a quantitative evaluation for the

geometry reconstruction example shown above.
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Figure 5.6: Quantitative evaluation: Reconstruction of scene image with letter
”L” and ”F” cut out of white painted cardboard (right). Color-coded
depth map of strongest peak along z-coordinate visualized with color bar
for depth in m (left). (x, y) ground truth geometry acquired from scene
measurements (middle).
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Lateral Resolution In order to evaluate the spatial resolution, we show an image

of the measured scene geometry of the flat targets. The same discretization as for

the shown depth map has been used. Having in mind that our reconstruction volume

for all shown results had a size of 1.5 m × 1.5 m × 2.0 m (x × y × z), we see

that we can achieve an (x, y) resolution of approximately ±5 cm. The accuracy of

the reconstruction varies with different materials. Materials that have little or no

overlap in the space-time profile (e.g. mirror example in Section A.4), allow for

high reconstruction precision (around ±2 cm for the mirror example). The precision

for more complex materials degraded to around ±15 cm tolerance. Overall the

spatial resolution is limited by the low resolution of our sensor (which was only

120×160 pixels).

Note that due to our robust measurement and reconstruction procedure we are

able to achieve the shown results for significantly larger scenes than previously

possible with the femtosecond laser approach demonstrated in [149]. Velten et al.

report distances of up to 25 cm from object to the wall and a reconstruction volume

of (40 cm)3 due to the low SNR for large distance bounces, whereas we demonstrate

for the first time much larger room-sized environments.

Depth Resolution For the temporal resolution achieved in the above example of

Figure 5.6, we see from the given color bar a depth distance of approximately 0.6m,

where the measured distance was 0.75m. For all similarly diffuse materials we

reach also roughly a tolerance of ±15cm. For simple strong reflectors like the

mirror we have less temporal superposition, so for the mirror example we obtain

a high temporal resolution of below 5 cm error in our 2 m depth range, with more

complex materials producing a precision of around ±20 cm.

As shown above the resolution of our approach depends on the scene content.

The achievable resolution should in the future scale linearly with the availability of

higher resolution TOF cameras, such as the upcoming Kinect® 2 as mentioned in

Section 3.7. We have shown that our method degrades somewhat gracefully with

using different materials, although a certain scene dependence is inherent in the

non-linear nature of the inverse problem we solve.
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5.6 Discussion
In this chapter, we have presented a method for reconstructing hidden, i.e. Non-Line-

of-Sight, geometry and albedo values from transient images of diffuse reflections.

This approach involves hard inverse problems that can only be solved using sta-

tistical priors such as sparsity in the geometry, and our primary contribution is

to identify a linearized image formation model, regularization terms, and corre-

sponding numerical solvers to recover geometry and albedo under this difficult

scenario.

Despite these numerical challenges, we show that our method can be combined

with the work from the previous Chapter 3 on transient imaging using inexpensive

CIS cameras, which itself involves a hard inverse problem. We demonstrate that it is

possible to combine these two inverse problems and solve them jointly in a single

optimization method. As a result our approach has several advantages over previous

methods employing femtosecond lasers and streak cameras [149]. These include

a) low hardware cost, b) no moving parts and simplified calibration, c) capture

times that are reduced from hours to minutes, and d) robustness under ambient

illumination in large room-sized environments. We believe that, as a result, our

method shows great promise for applications of indirect geometry reconstruction

outside the lab.
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Chapter 6

Convolutional Sparse Coding

Convolutional Sparse Coding (CSC) has enabled exciting applications in computer

vision and machine learning. The previous Chapters 3, 4 and 5 have demonstrated

that physically-motivated convolutional codes allow the recovery of high-quality

transient images from CIS measurements, enabling imaging of objects outside of

the line of sight and imaging in scattering and turbid media. Going beyond recon-

struction tasks, CSC can even serve as a strategy for unsupervised features learning,

when a simple physical model cannot explain the data. In particular, it allows

learning features of natural images, that subsequently are used for classification

and reconstruction tasks. As opposed to patch-based methods, convolutional sparse

coding operates on whole images, thereby seamlessly capturing the correlation

between local neighborhoods.

In this chapter, we propose a new approach to solving CSC problems, both for

learning and reconstruction, and show that our method converges significantly faster

and also finds better solutions than the state of the art. In addition, the proposed

method is the first efficient approach to allow for proper boundary conditions to

be imposed and it also supports feature learning from incomplete data as well as

general reconstruction problems.

6.1 Introduction
An increasing number of computer vision tasks rely on image statistics as a key

prior in Bayesian inference Section 2.8. Low-level problems that benefit from
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Figure 6.1: Patchwise Sparse Coding (left) divides the data into small patches
of a given size (blue). Every patch is modeled as the superposition of
a sparse set of learned dictionary atoms. The patchwise representation,
however, contains shifted version of the same feature (third and last
atom here). Convolutional Sparse Coding (right) finds a more compact
representation by exploiting this convolutional structure in the data, and
models it as a sum of sparsely-distributed convolutional features.

good priors include inpainting, denoising, deblurring, and super-resolution, while

recognition, classification and other higher-level tasks often use learned features

as priors for natural images. In this chapter, we revisit one strategy for unsuper-

vised learning of image features: Convolutional Sparse Coding (CSC). CSC was

introduced in the context of modeling receptive fields in human vision [230], but it

has recently been demonstrated to have important applications in a wide range of

computer vision problems such as low/mid-level feature learning, low-level recon-

struction [231, 232], as part of more complex hierarchical structures or networks in

high-level computer vision challenges [220, 233, 234], and in physically-motivated

computational imaging problems as the one from the Chapter 4. Beyond these

applications, CSC could find applications in many other reconstruction tasks and

feature-based methods, including deblurring, denoising, inpaiting, classification,

localization, and tracking. While we focus on 2D image features in this chapter, our

method straightforwardly generalizes to higher dimensional data, such as videos,

and directly applies to 1D signals, such as the transient profiles discussed in the

previous chapters.

CSC is closely related to popular patch-based learning and reconstruction meth-

ods [163, 235, 236]. However, features learned with patch-based methods often

contain shifted versions of the same features and latent structures of the underlying

signal may be lost when dividing it into small patches. See Figure 6.1 on the left for
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an illustration. A more elegant way to model many of these problems is to use a sum

of sparsely-distributed convolutional features; see Figure 6.1 on the right. The main

drawback of convolutional models, however, is their computational complexity. Not

only is it very challenging to find a solution to convolutional sparse coding problems

in a reasonable amount of time, but finding a good local minimum is difficult as well.

Generally, CSC for feature learning is a non-convex problem and many existing

methods provide little to no guarantees for global convergence. Seminal advances in

fast convolutional sparse coding have recently shown that feature learning via CSC

can be efficiently solved in the frequency domain. Grosse et al. [237] were the first

to propose a frequency domain method for 1D audio signals, while [238–240] later

demonstrate efficient frequency domain approaches for 2D image data. While this is

the first step towards making CSC practical, these frequency methods can introduce

boundary artifacts for both learning and reconstruction [233] and, as inherently

global approaches, make it difficult to work with incomplete data.

Building on recent advances in optimization [174, 175, 241–243], we propose

a new splitting-based approach to convolutional sparse coding. We not only show

that our formulation allows us to easily incorporate proper boundary conditions and

learn from sparse observations, but we also demonstrate that the proposed method

is faster and converges to better solutions than the state of the art.

In the following, we first derive a flexible formulation of the convolutional

sparse coding problem, and an efficient solution by splitting the objective into a

sum of simple, convex functions. This formulation fits into most recent proximal

optimization frameworks. Following, we demonstrate that the proposed method

allows for proper boundary conditions to be imposed without sacrificing perfor-

mance; it converges faster than alternative methods and finds better solutions. The

latter is verified using several low-level reconstruction problems. Finally, we show

that our flexible formulation allows feature learning from incomplete observations,

and yields an efficient solver when working with known features, such as the

exponentially modified Gaussians from Chapter 4.
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6.2 Mathematical Framework
Traditionally, convolutional sparse coding problems are expressed in the form of

the following Eq. (6.1). See again Figure 6.1 on the right for an illustration.

argmin
d,x

1

2
‖j−

K∑
k=1

dk ⊗ xk‖22 + β

K∑
k=1

‖xk‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K},

(6.1)

where xk are sparse feature maps that approximate the data term j when convolved

with the corresponding filters dk of fixed spatial support. Here j ∈ RD,xk ∈ RD

are vectorized images, dk ∈ RM are the vectorized 2D filters, k = 1 . . .K, and ⊗
is the 2D convolution operator defined on the vectorized inputs. While the above

equation is strictly only valid for a single target image, it can easily be generalized

to multiple images j.

Bristow et al. [238, 239] have shown remarkable improvements in efficiency by

exploiting Parseval’s theorem for solving Eq. (6.1), which states that the energy of a

signal is equivalent — up to a constant — to that of its Fourier transform. We will

neglect this constant in the following. Eq. (6.1) can therefore be reformulated [238–

240] as

argmin
d,x

1

2
‖ĵ−

K∑
k=1

d̂k � x̂k‖22 + β
K∑
k=1

‖tk‖1

subject to ‖sk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}

sk = SΦT d̂k ∀k ∈ {1, . . . ,K}

tk = xk ∀k ∈ {1, . . . ,K},

(6.2)

which expresses the computationally expensive convolution operations as more

efficient multiplications in the frequency domain. Here,ˆdenotes the frequency

representation of a signal,� is the component-wise product, Φ is the discrete Fourier

transform (DFT) matrix, and S projects a filter onto its (small) spatial support. The

slack variables sk and tk allow Eq. (6.2) to be solved by splitting the objective into

multiple subproblems that each can be solved efficiently.

It is important to note that Eqs. (6.1) and (6.2) are actually only equivalent under

the assumption of circular boundary conditions [220]. Kavukcuoglu et al. [233]
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point out that boundary conditions are one essential hurdle in the convolutional

model that affects the optimization even for non-circular boundary conditions,

because pixels close to the boundary are, in general, covered by fewer filters than

center pixels. While heuristics [238] might be acceptable for learning filters with

very small spatial support, this assumption does not necessarily hold for larger

filters or for general reconstruction problems. We propose the following, general

formulation for convolutional sparse coding:

argmin
d,x

1

2
‖j−M

K∑
k=1

dk ⊗ xk‖22 + β

K∑
k=1

‖xk‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}.

(6.3)

Here, M is a diagonal or block-diagonal matrix, such that it decouples linear systems

of the form (MTM + I)x = b into many small and independent systems that are

efficiently solved. For example, for boundary handling M can be a binary diagonal

matrix that masks out the boundaries of the padded estimation
∑K

k=1 dk ⊗ xk. This

allows us to use unmodified filters in boundary regions, without requiring circular

boundaries or other conditions. Furthermore, we show that M allows for efficient

learning and reconstruction from incomplete data.

Unfortunately, Eq. (6.3) cannot be solved directly with the “Fourier trick” dis-

cussed in the literature (Eq. (6.2)). In the following, we derive a formulation that

is not only flexible in allowing us to solve Eq. (6.3) efficiently, but we also show

that our formulation solves the conventional convolutional sparse coding problem

(Eq. (6.1)) faster than previous methods and converges to better solutions.

6.2.1 Efficient Splitting of the Objective

To efficiently solve Eq. (6.3), we reformulate it such that the constraints are included

in the objective via an indicator function indC(·). This indicator function is defined

on the convex set of the constraints C = {v | ‖Sv‖22 ≤ 1}. With the constraints

encoded in the indicator penalty, we get the following unconstrained objective:

argmin
d,x

1

2
‖j−M

K∑
k=1

dk ⊗ xk‖22 + β
K∑
k=1

‖xk‖1 +
K∑
k=1

indC(dk), (6.4)
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which can be expressed as the following sum of functions

argmin
d,x

f1(Dx) +

K∑
k=1

(f2(xk) + f3(dk)) , with (6.5)

f1(v) =
1

2
‖j−Mv‖22, f2(v) = β‖v‖1, f3(v) = indC(v).

Here, x = [xT1 . . .x
T
K ]T and D = [D1 . . .DK ] is a concatenation of Toeplitz

matrices, each one representing a convolution with the respective filter dk. Eq. (6.5)

consists of a sum of functions fi, which are all simple to optimize individually,

whereas their sum is challenging. Following [242], we define f1 with M included

because that splits the data term into two different subproblems involving M and D

separately but never jointly.

6.2.2 Generalization of the Objective

To derive this result more intuitively, we consider the general objective from (6.5)

argmin
x

I∑
i=1

fi (Kix) , (6.6)

where Ki : Rbi×ai are arbitrary matrices, fi : Rbi → R are closed, proper, convex

functions, and i ∈ {1, . . . , I}, such that fi(Kj · ) : Rai → R; I is the number of

functions in the sum.

Eq. (6.6) is motivated by recent work in image deconvolution [8, 242], which

have a similar objective that consists of a sum of simple convex functions. The

problem in Eq. (6.6) can be reformulated as

argmin
x

I∑
i=1

fi (Kix) = f (Kx) , with

K =


K1

...

KI

 and f(v) =

I∑
i=1

fi(vi),

(6.7)

where vi selects the i-th support of v. Using a formulation with the stacked matrix
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K allows us to remap Eq. (6.6) to existing proximal algorithms, such as ADMM,

which have been discussed in detail in Section 2.8.4.

Optimization

Eq. (6.7) is an optimization problem of the form presented in Section 2.8.3. We set

G = 0, Ω = K and F = f to express our problem in the general form. This setting

may seem unintuitive, but will become clear after deriving our solver method below.

In particular, the general ADMM method 1 becomes now Algorithm. 3, with x as

primal variable. We observe that the resulting minimization becomes separable in

Algorithm 3 ADMM for a sum of functions in Eq. (6.7)

1: for k = 1 to V do
2: xk+1 = argmin

x
‖Kx− y + λk‖22

3: yk+1
i = prox fi

ρ

(Kix
k+1
i + λki )

4: λk+1 = λk + (Kxk+1 − yk+1)
5: end for

all the fi. Since M is included in f1, we can solve the update in line 2 of Algorithm 3

efficiently in the Fourier domain. Note that the combination of splitting M from

the filter generation Dx via f1(Dx) leads to a non-standard application of ADMM;

the standard approach from Section 2.8.4 would set G(x) = 1
2‖j−MDv‖22 as the

data fidelty, with MD as a single operator.

In the following, we will describe each subproblem of Algorithm 3. Note,

that although we derive an ADMM method for solving Eq. (6.7), this is equally

possible for other proximal algorithms, that have been listed in Section 2.8.4. In

Chapter 10, we rely on a general formulation for image optimization problems,

similar to Eq. (6.6), as the basis for a corresponding domain-specific language,

that allows to “compile” our optimization problem into proximal algorithms with

different splittings of the objective into G,F .

x-step Solving the first quadratic subproblem from Algorithm 3 (line 2) gives

xopt = argmin
x

‖Kx− ξ‖22 = (KTK)−1(KT ξ) (6.8)
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Here, we have set ξ = y − λk as a notational shortcut. Depending on whether we

solve for the filters (i.e. x = d) or for the feature maps (i.e. x = x), we get:

dopt = (X†X + 2I)−1(X†ξ1 + ξ2 + ξ3) for x = d

xopt = (D†D + I)−1(D†ξ1 + ξ2) for x = x
(6.9)

Here X is a concatenation of Toeplitz matrices for the respective sparse codes xk
and ξi selects again the i-th support of τ as defined for Eq. (6.7). The operator ·†

defines here the conjugate transpose, with notation borrowed from [240]. In both

cases, one can find a variable reordering for the equations systems in Eq. (6.9), that

makes (X†X + 2I) and (D†D + I) block-diagonal [238, 240], which makes the

inversion efficient by parallelization over the j ∈ {1 . . . D} different blocks. The

inverse can be efficiently computed for each block j using the Woodbury formula,

giving

(X†jXj + 2I)−1 =
1

2
I− 1

2
X†j(2I + XjX

†
j)
−1Xj

(D†jDj + I)−1 = I−
D†jDj

1 + DjD
†
j

,
(6.10)

where the second equation holds, since a block in Dj is just a row-vector. We

compute the first inverse (2I + XjX
†
j)
−1 by computing its Cholesky factorization.

In contrast to the direct inversion in [239] (due to the code update, this has to be done

in each iteration of their method), caching this factorization leads to a significantly

decreased running time as described below.

y-step The proximal operators for Algorithm 3 (line 3) are simple to derive and

well known in literature [175]:

proxθf1(v) = (I + θMTM)−1(v + θMT j) Quadratic

proxθf2(v) = max

(
1− θβ

|v|
, 0

)
� v Shrinkage

proxθf3(v) =

{
Sv
‖Sv‖2 : ‖Sv‖22 ≥ 1

Sv : else
Projection

where the inverse in proxθf1 is cheap to evaluate as M is usually (block-)diagonal.
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6.2.3 Biconvex Minimization via Coordinate Descent

Above, we have described Algorithm 3, which can solve the bi-convex problem (6.3)

for x or d when the respective other variable is fixed. To jointly solve for both, we

follow the standard approach of alternating between them, yielding Algorithm 4.

Algorithm 4 CSC learning using coordinate descent

1: Algorithm penalty parameters: ρd ∈ R+, ρx ∈ R+

2: Initialize variables: d0,x0, λ0
d, λ

0
x

3: repeat {Outer iterations}
4: Kernel update: Solve Eq. (6.5) w.r.t. d:

di, λid ← argmind f1(Xd) +
∑K

k=1 f3(dk) using
Alg. 3 with ρ = ρd, λ = λi−1

d

5: Code update: Solve Eq. (6.5) w.r.t. x:
xi, λix ← argminx f1(Dx) +

∑K
k=1 f2(xk) using

Alg. 3 with ρ = ρx, λ = λi−1
x

6: until No more progress in both directions.

With this alternating approach, we have constructed a coordinate descent for x

and d. The individual Lagrange multipliers are initialized with the ones from the

previous iteration. In practice, we run each of the two sub-routines until sufficient

progress has been made. The step-size of the coordinate descent is defined by the

progress each local optimization makes. Using a constant number of P iterations for

each substep gave us a sufficiently good performance. We stop the algorithm when

none of the two optimizations can further decrease the objective; a local minimum

is found. It also follows that our algorithm monotonically decreases the objective

for its iteration sequence di,xi.

6.2.4 Implementation details

For the objective in Eq. (6.3), we found that the parameter β = 1 delivers a good

tradeoff between sparsity and data fit. All results in this chapter are computed with

this setting. We have verified that other settings of β lead to quantitatively similar

results. For Algorithm 4, we have chosen the heuristic values ρd = 1/(100·max(j))

and ρx = 1/(10 ·max(j)). This choice dampens variations in the optimization path

of the filters more than for the codes.
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6.3 Analysis

6.3.1 Complexity Analysis

This section analyzes the complexity of the proposed optimization approach and

compares the theoretical runtime with alternative methods. For D being the number

of pixels for a single image in j,N being the number of images,K being the number

of kernels to learn, M being the size of the filter support, and P inner iterations (of

the substeps in Algorithm 4), the computation cost is shown in Table 6.1.

Method Cost (in flops)
Zeiler et al. [220] PN · ( KD︸︷︷︸

Conjugate gradient

· KDM︸ ︷︷ ︸
Spatial convolutions

+ KD︸︷︷︸
Shrinkage

)

Bristow et al. [238, 239] PN · ( K3D︸ ︷︷ ︸
Linear systems

+KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Ours (K > N) KN2D + (P − 1)KND︸ ︷︷ ︸
Linear systems

+ PN · (KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Ours (K ≤ N) K3D + (P − 1)K2D︸ ︷︷ ︸
Linear systems

+ PN · (KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Table 6.1: Time complexity of our approach compared to other methods.

We observe immediately that Bristow’s method has significantly better perfor-

mance than Zeiler et al. when K < DM . Its dominating cost is the inversion of

the D linear systems. Note that in contrast to spatial methods, Bristow’s method, as

well as ours, is independent of the filter size M .

For the proposed method, we consider two cases: K > N and K ≤ N . In the

first case (K > N ), we exploit the inversion trick as explained in Eq. (6.10). Here,

each of the D matrices Xj is an N × K matrix. Thus, by using Eq. (6.10), we

reduce the cost of the inverse from K3 to KN2. Since we cache the factorizations,

this cost is only for one of the P local iterations. For the other (P − 1) iterations,

the back-solves cost only KN (instead of K2 for the naive inversion).

In the second case, when K ≤ N , we have the full cost of the Cholesky

factorization K3 of the D matrices Xj once per P iterations, but again for all other

(P − 1) iterations, only the back-solve cost K2. Thus, by caching the factorizations,

we are able to achieve a speedup of the linear systems by P
1+(P−1)/K in this case.
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For our setting of P = 10, even a moderate number of K = 100 filters leads to a

speedup of 9×. In the following, we show that not only the complexity per iteration

decreases, but the convergence improves as well.

6.3.2 Convergence

For two datasets of different size, we plot the empirical convergence of the proposed

algorithm and compare it to the state of the art in Figure 6.2. In both cases we learn

K = 100 filters. The first dataset is the fruit datasets [220] with N = 10 images.

In this case, we have K > N . The proposed algorithm converges in 13 iterations

whereas [238, 239] has a slowly decreasing objective and was fully converged after

about 300 iterations. To be able to compare objective values, all compared methods

here are implemented using circular convolution, with edge-tapering applied to

make the convolution circular. Only the central part of the convolution without
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Figure 6.2: Convergence for two datasets (top N = 10 images, bottom N =
100). The proposed algorithm converges to a better solution in less time
than competing methods.
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a padding of kernel size M is included in the objective values. Note that the

solution of our algorithm is not only found in fewer iterations, but it also converges

to a solution that has a lower objective. The objective combines the data fitting

term as well as the sparsity term. We used the same sparsity weighting (from

[238, 239]) for the comparison, although the same qualitative convergence was

measured for different weights. We also plot the convergence in an absolute time

scale demonstrating the achieved speedup. We have further compared our method

to [238, 239] with our factorization strategy from the first line in Eq (6.10). While

this strategy improves the speed of their method since the inverses in each iteration

are done more efficiently, the performance does not reach that of our method.

For the second dataset, we have randomly sampled N = 100 images of size

100× 100 from a city scene. In this case K ≤ N and N,K are large. Thus, solving

the linear systems becomes the dominating cost (see Table 6.1) and the benefit of

caching (which cannot be done in [238, 239]) becomes even more apparent. Hence,

especially for large datasets, our method converges faster and usually finds a better

optimum. Note that we are already comparing to [238, 239] with our improved

factorization strategy from the first line in Eq (6.10).

We also compare convolutional coding to patch-based sparse coding. One

of the main challenges are large datasets, for which most patch-based methods

become infeasible. Consider learning from 10 images with 1000 × 1000 pixels

each. Incorporating all patches into the learning requires 10 million training patches.

K-SVD, for example, could not handle that much data on our computer, so we ran a

comparison for 10 100× 100 pixel images. Using all patches in the training set and

100 iterations, K-SVD took 13.1 hours to converge whereas our method only took

about 4.5 minutes (both on an Intel Xeon E5/Core i7 machine with 132 GB RAM).

In addition to the convergence analysis above, we also show the evolution of the

filters throughout the learning process in Figure 6.3 for the fruit dataset. Initially,

the filters seem random and then turn into Gaussian blob-like structures after a few

iterations. After about 8 iterations, the observed structures are very similar to those

frequently occurring in patch-based dictionary learning methods, whereas the filters

eventually converge to Gabor-like shapes.

130



Figure 6.3: Visualization of filters learned from fruit dataset after 1, 7, 8, and
13 iterations. The evolution goes from random patterns over Gaussian
blob-like structures and eventually converges to filters that bear similarity
to Gabor patches.

6.4 Learning
We trained our filters on the fruit and city datasets [220] with local contrast normal-

ization applied. Figure 6.4 shows the resulting filters after convergence (ours after

13 iterations, Bristow after 300 iterations). Although the filters look similar at first

glance, our results contain fewer dataset-specific features, which makes them more

general as we demonstrate in Section 6.5.1.

6.4.1 Boundary Conditions

Eq. 6.3 is an elegant formulation that allows for general boundary conditions to be

integrated into the learning and also the reconstruction steps. Usually, we mask

out the boundary so that it does not contribute to the objective function. As seen in

Figure 6.5, the boundary is still reconstructed via extrapolated data fitting — lines

and other high-frequency structures continue across the image boundary but quickly

fall off thereafter.

6.4.2 Learning from Sparse Data

The mixing matrix M in Eq. 6.3 not only allows for general boundary constraints

but for any type of linear operator to be applied. In Figure 6.6, we demonstrate

that this can be used for learning filters from incomplete data. We subsequently

use the filters learned from incomplete measurements of an image to predict the

missing parts of that image and evaluate the achieved peak signal-to-noise ratio for
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Figure 6.4: Filters learned on the city and fruit datasets [220]. We show
thumbnails of the datasets along with filters learned with the proposed
method (left) and with that described in [238, 239]. In both cases, our
method finds a local optimum with an objective that is 3 − 4× lower
than comparable methods.

varying levels of incompleteness. As is expected, the quality of the reconstructions

drops with a decreasing amount of observations. Nevertheless, learning filters from

incomplete measurements may be interesting for many applications (e.g. adaptive

filter learning for demosaicking), but is currently not supported by any existing

(efficient) method for convolutional sparse coding. Figure 6.6 shows that even for

subsampling rates of up to 50%, the learned filters and quality of the inpainted

reconstructions are reasonably good.
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Figure 6.5: The proposed formulation allows us to use non-circular boundary
conditions, as demonstrated for three examples. In practice, the regions
outside the image boundary (red) are extrapolated but do not affect the
objective.

6.5 Reconstruction
In this section, we evaluate the proposed algorithm for reconstructing signals when

the filters are either already learned or known a priori. Reconstruction problems are

solved for all filters with the code update step from Algorithm 4.

6.5.1 Validation of Reconstruction

Figure 6.7 shows an example image reconstructed from incomplete measurements.

This is an inpainting problem, which we test with filters learned from the fruit

database. We compare reconstruction quality using filters learned with the proposed

method and filters learned with the method described in [238, 239]. Not only do our

filters lead to a better reconstruction around edges and sharp features, but our frame-

work allows us to solve this inpainting problem without sacrificing performance

in the CSC solver, which was not possible in previous work due to the “Fourier

trick”. See Section A.5 for an evaluation using dataset of 22 images. With a single

exception, our method outperforms previous work for all test images.

6.5.2 Non-Normalized Data

In most results, we show contrast-normalized examples. However, non-normalized

data can be intuitively handled in two ways. Either the filters are directly learned

from non-normalized training data or a low-frequency term for the DC offset is
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Subsampling 90 % 70 % 50 % 30 % 10 %
PSNR 23.2 dB 21.3 dB 19.2 dB 16.5 dB 14.8 dB

Figure 6.6: Learning from sparse observations. The top two rows show exam-
ples for 50% sampling. The original images are shown in the left column,
randomly subsampled observations in the center, and reconstructions
of the entire image using filters learned from these sparse observations
on the right. Bottom table and filters: evaluation of the learned filters
for different subsampling rate of the data. We show 16 out of the total
100 learned filters for each sampling rate above the table. One can see
that for less than 50% sampling, the reconstruction quality significantly
drops due decreasing filter quality.

added to the set of filter after learning. Typical Gabor-like filters with different DC

offsets are observed for the former approach. The latter approach can be interpreted

as adding a smoothness prior in the form of the low-frequency term rather than

rigorously enforcing sparsity. A reconstruction then has to jointly solve for the

filter coefficients as well as the low-frequency term, which is shown in Figure 6.8.

We have also compared this approach with a state-of-the-art compressive sensing

method from Dong et al. [244]. Using the image dataset from Section A.6 (50%
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Figure 6.7: Inpainting example showing: original image (left), randomly
sampled incomplete observations (center left), reconstruction with fil-
ters learned with the proposed algorithm (center right), and filters
from [238, 239] (right). In addition to this example, we evaluate the
reconstruction quality for a larger dataset in Section A.6.

Figure 6.8: Inpainting non-normalized data: randomly-subsampled, incom-
plete observations (left and center right), reconstruction with the pro-
posed filters (center left and right).

random sampling with non-normalized data) their method achieves a mean PSNR

of 23.5 dB while ours achieves 29.0 dB. This preliminary result suggests that further

investigation of sparse convolutional coding might lead to many fruitful applications

even outside of the low-level feature learning.

6.5.3 Reconstruction with Known Basis

We also evaluate the proposed method for fitting convolutional models to sparse and

noisy measurements when the filters are known a priori, such as the physically moti-
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vated filters presented in Chapter 4. In general, physically-motivated convolutional

sparse coding may have a wide range of applications in radar, sonar, ultrasound

and seismic imaging. Figure 6.9 demonstrates reconstructions of sparsely-sampled

data in 1D and 2D. Filters are sampled from a Gaussian distribution and the mea-

surements of the 2D example are further corrupted by i.i.d. Gaussian noise with a

standard deviation of σ = 0.01. This experiment demonstrates the utility of CSC to

non-feature-learning-type applications, such as general Gaussian mixture models.

The proposed method is capable of recovering the latent signal with a high quality

from only 6.25% of the samples.
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Figure 6.9: Reconstructions for known convolutional basis. The filters in
this example are sampled from 1D Gaussians (top left) and used to fit
a convolution model to a sparse set of samples (top right). The same
experiment is performed in 2D, where a target signal is corrupted by
noise (bottom left), subsampled (bottom center), and then reconstructed
from only 6.25% of the noisy measurements (bottom right).
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6.6 Discussion
In this chapter, we have described a method for learning and reconstruction using

convolutional sparse codes. By exploiting convolutional structure in the unknowns,

Convolutional Sparse Coding has the potential to replace or supplement popular

patch-based learning and reconstruction methods. The proposed method is applica-

ble to a wide range of computer vision problems, such as feature learning, denoising,

inpainting, and demosaicking.

At its core, the method relies on a generalized formulation of CSC, which

allows to tackle a variety of different problems with convolutional structure in the

unknowns. This general formulation enables proper handling of boundary conditions

by treating boundaries as unknowns. It allows for feature learning from incomplete

observations, or any type of linear operator applied to the estimation. Based on the

general CSC formulation, an efficient proximal algorithm is derived, which solves

for both the convolutional codes and sparse feature maps in an alternating coordinate

descent scheme. The resulting method is faster than the state-of-the-art and finds

better solutions.

Although already faster than existing methods, our formulation is inherently

parallel and the runtime could further be significantly improved by an efficient

GPU implementation. An interesting avenue for future research is to evaluate

learning and reconstructing features in higher-dimensional problems, such as 3D

hyperspectral image data [245] or 4D light fields [246]. For higher-dimensional

problems the proposed approach is limited by its memory needs. Full resolution

feature maps and kernels in the frequency domain are required. Hence, the memory

requirements scale linear with the number of filters K, but exponentially with the

dimensionality. Besides higher-dimensional problems, it would be interesting to

apply the proposed framework to more complex hierarchical convolutional structures

and networks [220, 233] that could be particularly useful for high-level computer

vision applications, such as recognition.
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Chapter 7

Doppler Velocity Imaging

In the previous chapters, we have demonstrated that the temporal dimension of light

transport, i.e. transient images, can be extracted from CIS TOF measurements. This

new temporal dimension has enabled us to image non directly visible objects from

indirect reflections, and imaging in scattering media.

This chapter demonstrates that we can extract a further novel imaging modality

from CIS TOF measurements: per-pixel radial velocity measurement. The proposed

technique exploits the Doppler effect of objects in motion, which shifts the temporal

illumination frequency before it reaches the camera. Relying again on the temporally

convolutional imaging formation of CIS, it is possible to code illumination and

modulation frequencies of the TOF camera, such that object velocities directly map

to measured pixel intensities.

Furthermore, we show that a slight modification of our imaging system allows

for color, depth, and velocity information to be captured simultaneously. Combining

the optical flow computed on the RGB frames with the measured metric radial

velocity allows us to further estimate the full 3D metric velocity field of the scene.

7.1 Introduction
Pioneers of photography, including Eadweard Muybridge and Harold “Doc” Edger-

ton, advanced imaging technology to reveal otherwise invisible motions of high-

speed events. Today, understanding the motion of objects in complex scenes is at
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Figure 7.1: A new computational imaging system (left) that allows for met-
ric radial velocity information to be captured instantaneously for each
pixel (center row). The Doppler effect of objects in motion is detected
as a frequency shift of temporally modulated illumination. By captur-
ing a few coded CIS measurements and conventional RGB frames, we
demonstrate that color, velocity, and depth information can be recorded
simultaneously. For the captured example, the left-most frame shows
a static object (velocity map is constant), which is then moved towards
(positive radial velocity) or away from (negative velocity) the camera.

the core of computer vision, with a wide range of applications in object tracking,

segmentation, recognition, motion deblurring, navigation of autonomous vehicles,

and defense. Usually, object motion or motion parallax are estimated via optical

flow [247]: recognizable features are tracked across multiple video frames. The

computed flow field provides the basis for many computer vision algorithms, in-

cluding depth estimation. Unfortunately, optical flow is computationally expensive,

fails for untextured scenes that do not contain good features to track, and it only

measures 2D lateral motion perpendicular to the camera’s line of sight. Further, the

unit of optical flow is pixels; metric velocities cannot be estimated unless depth

information of the scene is also available. For the particular application of depth

estimation, many limitations of optical flow estimation can be overcome using

active illumination, as done by most structured illumination and TOF cameras. With

the emergence of RGB-D imaging, for example facilitated by Microsoft® Kinect®,

complex and untextured 3D scenes can be tracked by analyzing both color and

depth, resulting in richer visual data that is useful for many applications.
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In this chapter, we introduce a new approach to directly imaging radial object

velocity. Our approach analyzes the Doppler effect in CIS TOF cameras: object

motion towards or away from the camera shifts the temporal illumination frequency

before it is recorded. The Doppler effect has been reviewed in detail in Section 2.6.6.

While conventional TOF cameras encode phase information into intensity, instead,

we propose here Doppler Time-of-Flight (D-TOF) as a new imaging mode, whereby

the change of illumination frequency (corresponding to radial object velocity) is

directly encoded into the measured intensity. The required camera hardware is the

same as for conventional TOF imaging, but illumination and modulation frequencies

are carefully designed. Our approach is a full-field imaging method, meaning that it

does not require the scene to be sequentially scanned unlike most existing Doppler

radar or Lidar systems that only capture a single scene point at a time. Furthermore,

we can combine depth and velocity imaging using either two TOF cameras or using

the same device by alternating the modulation frequencies between successive video

frames; color images can be obtained with a conventional camera.

The proposed technique offers a new imaging modality that is ideally suited

for fast motion. Note that our method is fundamentally different from Optical flow,

which is traditionally used to estimate apparent motion in dynamic scenes; see

Section 2.6.6. Optical flow from a single camera is restricted to estimating lateral

motion whereas the Doppler is observed only for radial motion towards or away

from the camera. In fact, it is a complementary technique: together, optical flow

on RGB frames and D-TOF allow for the metric 3D velocity field to be estimated,

which is otherwise not easily possible. In general, however, D-TOF is independent of

the RGB flow and works robustly for cases where optical flow often fails, including

untextured scenes and extremely high object velocities. We also discuss a mode

for simultaneous range and velocity imaging. As with standard TOF imaging, our

method requires a few subframes to be captured with different modulation signals.

In our prototype system, we use rapid time-sequential acquisition of the required

subframes for simplicity, which is a common strategy for regular TOF imaging.

However, appropriate hardware, such as the multi-camera extension which we will

discuss in Section 7.7, the method can be implemented as a true snapshot imaging

approach.

In the following, we first derive a mathematical framework for velocity esti-
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mation with CIS TOF cameras, implement a prototype CIS imaging system, and

validate the proposed model extensively in simulation and with the prototype. The

imaging system is evaluated using a range of different types of motion, for textured

and untextured surfaces as well as indoors and under strong outdoor ambient illumi-

nation. Finally, we demonstrate that the velocities measured with our system can be

combined with RGB flow, allowing for the metric 3D velocity field to be estimated

on a per-pixel basis.

7.2 Dynamic CIS Image Formation
In Section 2.6, we have explained the working principle of CIS TOF imaging for

static scenes. In this section, we analyze how the image formation behaves for

objects in motion.

In fact, the conventional CIS image formation model breaks down when objects

of interest move with a non-negligible radial velocity. In this case, the illumination

frequency undergoes a Doppler shift when reflected from an object in motion; see

again Section 2.6.6.

The illumination arriving at the sensor is now frequency-shifted to ωs = ωg +

∆ω, where the change in temporal frequency ∆ω depends on the radial object

velocity and the illumination frequency, as defined in the definition of the Doppler

shift in Eq. (2.29) from Section 2.6.6. For intuition, we consider the case of an

approximately constant velocity v throughout the exposure time. If we continue to

assume a homodyne setting with ωf = ωg = ω, our measurement is still heterodyne

(due to the frequency shift ∆ω). In particular, Eq. (2.28) from the related work

Section 2.6.1 on CIS heterodyning now becomes:

bθ(ρ) ≈ a

2
cos(−∆ωρ− φ+ θ). (7.1)

Note that this equation is now dependent on the time of measurement. Unfortunately,

the introduced temporal intensity variation makes it more difficult to estimate phase

and therefore also depth. In audio signal processing, this time-dependent low-

frequency artifact is known as a beating pattern. We illustrate this in Figure 7.2.

The phase estimate from Eq. (2.27) becomes then Eq. (7.2). For simplicity, we
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Figure 7.2: Depth imaging. For static scenes, measurements are unambiguous:
different phase shifts result in unique intensity measurements (left). For
dynamic scenes, the Doppler shift results in a low-frequency beating
pattern that makes measured intensities ambiguous, and hence prevents
reliable depth estimation (right).

sample here only N = 2 phases with θi = i · 2π/N for i ∈ {0, . . . , N − 1}.

φest(ρ) = − atan

(
bπ/2(ρ)

b0(ρ)

)
+ ∆ωρ, (7.2)

where the distortion ∆ωρ linearly depends on the (unknown) object velocity. Note

that, in practice, the estimated phase for moving objects corresponds to its average

throughout the exposure.

To summarize, in the homodyne setup, where the frequency of the light source

and the frequency of the camera reference signal are identical, the Doppler shift

introduced by moving objects results in mismatched frequencies on the image

sensor. This situation is a heterodyne measurement. However, in heterodyne range

imaging, as described in Section 2.6.1, the frequency mismatch is deliberately

introduced in the sensor modulation. A major limitation of heterodyne ranging is

that multiple (> 2) measurements have to be captured to reliably estimate phase and

depth. Since only low frequency beats can be detected reliably, a significant amount

of time needs to pass between the two measurements for robust phase estimation.
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For moving objects, the necessity to capture multiple images would place severe

constraints on the velocity. To facilitate reliable velocity estimation, we derive a new

computational TOF imaging methodology in the following section. Inspired by the

general concept of Orthogonal Frequency-Division Multiplexing (OFDM) e.g. [248],

D-TOF uses illumination and on-sensor modulation frequencies that are orthogonal

within the exposure time of the camera. Using this choice of frequencies along

with a newly-devised reconstruction method, we demonstrate the first approach to

per-pixel radial velocity estimation.

7.3 Doppler Velocity Imaging
As illustrated in Figure 7.2 (right), the low-frequency beating pattern created by the

Doppler effect makes it difficult or impossible to capture reliable Doppler frequency

and phase information. Consider the following example: a road cyclist travels at a

speed of v = 10ms towards the camera. For an illumination frequency of 50 MHz

(i.e. ωg = 50 · 106 · 2π/s), the observed Doppler shift is only

∆ω =
v

c
ωg =

10ms
300 · 106m

s

· 50 · 106 2π

s
≈ 1.67

2π

s
(7.3)

A frequency shift of only 1.67 Hz may seem small enough to be safely ignored.

However, we show in the following that even such a minute change contains valuable

information that can be used for velocity estimation.

7.3.1 Velocity Imaging via Orthogonal Frequencies

Inspired by multiplexing techniques in digital communication, we devise an uncon-

ventional way to extract velocity information from the small Doppler shift observed

by a TOF camera. We can interpret the camera system as a communication channel

and consider the illumination a carrier signal. The carrier is optically modified by

moving objects — we observe a change in carrier amplitude, phase, and frequency.

The secondary modulation in the sensor followed by a low-pass filter of the exposure

time corresponds to the demodulation process in communication. Conventional

communication channels use orthogonal frequencies; any inter-carrier interference

(which could be caused by a frequency drift) is a polluting signal (see e.g. [248]).
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Figure 7.3: Velocity imaging. Illumination ωg and modulation ωf frequencies
are designed to be orthogonal within the exposure time T . For static
scenes (left), this particular choice of frequencies will integrate to zero.
The Doppler shift of moving scenes destroys the orthogonality and
results in an approximately linear relationship between radial velocity
and recorded intensity (right).

For Doppler TOF, we deliberately design the frequencies in the receiver and trans-

mitter to be orthogonal, such that the (usually polluting) inter-carrier interference

carries the desired velocity information.

An illustration of our orthogonal frequency Doppler TOF is shown in Figure 7.3.

For the application of direct velocity imaging, we would like to ensure that the

measured signal for a stationary object is zero (or a constant intensity offset); see

left of Figure 7.3. We can achieve this by operating the TOF camera in heterodyne

mode with two orthogonal frequencies ωg and ωf . While any two sine waves with

frequencies ωg 6= ωf will be orthogonal for sufficiently long integration times, this

is not the case for finite integrals (exposures) in the presence of low frequency

beating patterns. Designing both frequencies to be orthogonal is done by setting

ωg = k
2π

T
and ωf = l

2π

T
with k, l ∈ N, k 6= l, (7.4)

i.e. having the exposure time T be an integer multiple of the period of both signals.
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It is then easy to show from Eq. (2.25) that

bθ(ρ) =

∫ ρ+T

ρ
p(t) dt = 0 (7.5)

for stationary objects (ωs = ωg). In practice, we set l = k + 1 and we set

k = ωgT/2π, which depends on T and the desired frequency ωg.

Given these two orthogonal frequencies we now use the inter-carrier interfer-

ence to extract valuable information about the Doppler shift. We achieve this by

computing the ratio of a heterodyne measurement and a homodyne measurement.

Using only the low-frequency terms from Eq. (2.25), this ratio can be expressed as

Eq. (7.6). Without loss of generality, we assume an exposure interval of [0 . . . T ].

r =

∫ T
0 cos(ωf t+ θ) · (a cos((ωg + ∆ω)t+ φ) + s0) dt∫ T
0 cos(ωgt+ θ) · (a cos((ωg + ∆ω)t+ φ) + s0) dt

≈
∫ T

0
a
2 cos((ωf − ωg −∆ω)t+ θ − φ) dt∫ T

0
a
2 cos(−∆ωt+ θ − φ) dt

=

a
2(ωf−ωg−∆ω) [sin((ωf − ωg)t−∆ωt+ θ − φ)]T0

a
−2∆ω [−∆ωt+ θ − φ)]T0

=
−∆ω

ωf − ωg −∆ω
·

sin((ωf − ωg)T −∆ωT + θ − φ)− sin(θ − φ)

sin(−∆ωT + θ − φ)− sin(θ − φ)︸ ︷︷ ︸
=1

≈ −∆ω

ωf − ωg

(7.6)

since (ωf −ωg)T = (k− l) 2π, and ∆ω � ωf −ωg. Note that we are only varying

the sensor modulation frequency ωf here for the two measurements. Hence, the

phases φ in numerator and denominator are identical, and the same offsets θ are

selected in the homodyne and heterodyne measurement.

Figure 7.4 shows the model derived here. On the left side, we see the full model

without any approximations (i.e. without neglecting high frequency components

in Eq. (7.6)). Although the image formation is nonlinear, for a relative large

range of metric velocities it is very well approximated (Figure 7.4, top right)

by our linear model (Eq. (7.6)). We experimentally verify the model using our
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Figure 7.4: Simulated and measured intensities for a range of different veloci-
ties. Although the mapping from radial velocity to measured intensity
is generally nonlinear (top left), throughout a large range of velocities
the conversion is approximately linear (top right). We verify the pre-
dicted mapping using our prototype camera (bottom). These particular
measurements were captured with a static scene, and acquired with a
modulation frequency of ωf = 60 MHz and an illumination frequency
of ωg = 60 MHz + 1 KHz + ∆ω. Thus, the Doppler shift for an object
moving at a specific velocity was programmed into the illumination
frequency for this particular experiment.

camera prototype (Figure 7.4, bottom). With known, orthogonal illumination

and modulation frequencies ωg, ωf , it is therefore straightforward to compute the

Doppler shift ∆ω from Eq. (7.6). The ratio image r can be interpreted as a direct

measurement of the instantaneous per-pixel radial velocity.

We note that this approach still requires two measurements: one heterodyne

image and one homodyne image. There are several possible solutions for either

acquiring these truly simultaneously, or they can be acquired in quick succession.
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For instantaneous measurements, two synchronized TOF sensors can be mounted in

a co-axial setup; one of the sensors is modulated with the same frequency as the light

source (ωg), while the other uses a slightly different frequency ωf 6= ωg. However,

this approach requires accurate synchronization and control over the modulation

waveforms of each camera, which is challenging for off-the-shelf camera systems.

Nonetheless, we describe such a hardware system as an extension at the end of this

chapter in Section 7.7.

Instead of using two distinct sensors, it would also be possible to multiplex

pixels with two different modulation frequencies onto the same image sensor, either

in alternating scanlines or in a checkerboard pattern. This concept is similar in spirit

to techniques that have been proposed for HDR cameras [249, 250].

A third possibility is to rapidly alternate between two modulation frequencies

using a single TOF camera. In this case, the measurements are not truly instanta-

neous, and alignment problems may occur for very fast motions. However, the

two measurements can be taken immediately after each other, as fast as the camera

hardware allows, e.g. at 30 or 60 Hz. We follow this approach as it only requires a

single TOF camera and is therefore easy to realize. Note that, similar to heterodyne

depth estimation [114], the Doppler shift can also be estimated directly from the low-

frequency beating pattern, but at the cost of requiring multiple measurements that

are much more widely spaced in time (hence not suitable for velocity estimation).

Finally, we note that the model from Eq. 7.6 only holds for sinusoidal modulation

functions. If other periodic signals are being used, additional harmonic frequency

components are introduced, which distort the measurements for both stationary and

moving targets. However, these offsets are systematic and can be calibrated for a

specific TOF camera/lights source combination (see Section 7.4 and Section A.7).

7.3.2 Simultaneous Range and Velocity

In many applications it may be useful to obtain both velocity and range measure-

ments at the same time. As in standard TOF imaging, this can be achieved by

capturing a second homodyne measurement with the phase offset by π/2. Simulta-

neous range and velocity imaging therefore requires a total of three measurements:

a heterodyne image with θ = 0, a homodyne image with θ = 0, and a homodyne
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image with θ = π/2.

As discussed in Section 7.2, motion introduces a velocity-dependent distortion

∆ωρ of the depth measurement (Eq. (7.2)). However, since the distortion linearly

depends on the Doppler shift ∆ω, which is known from the velocity estimation

step (Eq. (7.6)), we can now correctly estimate the phase delay (and hence the

depth) from Eq. Equation 7.2. This only requires an additional calibration step to

obtain ∆ωρ for a specific velocity, which corresponds to estimating the time offset

ρ between the start of the exposure time and the reference time for signal generation

in the camera and light source.

As mentioned, simultaneous velocity and range imaging requires three distinct

measurements. We note that the illumination signal is the same for all three mea-

surements, only the reference signal for the camera changes. As in the case of

velocity-only imaging, this means that all three measurements can potentially be

acquired at the same time using either multiple sensors with a shared optical axis, or

a special sensor design with interleaved pixels. If neither option is available, rapid

frame-sequential imaging is also possible.

7.4 Implementation

Hardware For all physical experiments, we use the experimental TOF CIS camera

system from Chapter 4 and Chapter 5. As described in these chapters, our system

comprises a custom RF modulated light source and a demodulation camera based

on the PMD Technologies PhotonICs 19k-S3 sensor. The light source is again an

array of 650 nm laser diodes.

We run all of the presented results with 30 MHz. The modulation signals are

nearly sinusoidal, but contain multiple low-amplitude harmonic components. To

avoid systematic errors in depth and velocity estimation, these components must be

calibrated as described in the following.

Correcting for Higher-order Harmonics Our camera prototype has the drawback

that the periodic modulation functions are not perfectly sinusoidal, although they are

very close. In addition to the fundamental frequency, this introduces higher-order
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Figure 7.5: Depth-dependent offset introduced by higher-order frequency com-
ponents for a range of modulation frequencies. These offsets are cal-
ibrated in a one-time offline process and then used to correct the raw
phase measurements on a per-pixel basis.

harmonic components to the modulation signal. Please refer to Section A.2 and

Section A.7 for a detailed derivation of the image formation in these conditions.

Unfortunately, the higher-order components are generally not orthogonal, thus they

can cause a phase-dependent offset. We calibrate this offset for different modulation

frequencies and phase shifts θ using a static target. The depth-dependent offsets are

plotted for different modulation frequencies in Figure 7.5.

This offset is calibrated in an offline process and raw phase measurements can

be corrected digitally using a lookup table. Note that for relatively low modulation

frequencies, such as 30 MHz, we find a fairly large depth range (around 1 m) to

be almost independent of this offset. In practice, it is therefore relatively easy to

remove the higher-order frequency components.

Calibrating Phase Response As is standard practice in time-of-flight cameras, we

calibrate the physical intensity response for different phase shifts φ in an offline

calibration. Following [115], we measure the physical intensity response for a

phase sweep of the illumination frequency and fit a fifth-order polynomial to the

measurements. This is used as a lookup table for converting phase to depth rather

than solving Eq. (2.27) directly. With our prototype, we measure a notable zeroth-

order component of the fitted polynomial, corresponding to fixed pattern phase

noise. This is easily corrected with the lookup table. Any other illumination-specific

terms, for example introduced by the baseline between camera and light source, are
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automatically calibrated with the described procedure and do not require additional

processing.

Verification of Calibration Procedure The two calibration procedures described

above are performed for all spatial locations on the sensor independently. To

verify our calibration routines, we image a static target and apply a frequency and

phase sweep to the modulation function, simulating objects at different velocities

and depths. The results shown in Figure 7.4 (left) demonstrate that the measured

intensities for a constant phase but varying Doppler shift follow the model derived

in the Section 7.3. Other than a small amount of noise, which is mostly due to a

relatively low signal-to-noise ratio, the curve is linear and behaves as predicted.

In Figure 7.6 (left), we verify experimental measurements for a range of different

phase offsets in the modulation frequency. This simulates objects at various depths,

as indicated in the legend. Finally, we also test the velocity-dependent behavior for

a range of different pixels over the sensor location and show results in Figure 7.6
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Figure 7.6: Experimental verification of the imaging system for varying object
velocities and depths (left) as well as velocity-dependent behavior for
a range of different pixel locations on the sensor (right). All of this
data is captured using a large planar target perpendicular to the camera
and sweeping the illumination frequency (to simulate different Doppler
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Figure 7.7: Experimental validation of velocity estimation using a fan with
adjustable rotation speed (three settings). We measure the ground truth
velocity of the rotating blades (top left) by analyzing audio recordings
(top, lower left). The top right plot shows the velocity measured by
D-TOF compared to the ground truth for a varying rotation speed. As the
speed becomes larger, estimation errors increase to a maximum of about
0.2 m/s. The bottom row shows the unprocessed full-field measurements
of the homodyne (left) and the heterodyne (right) frequency setting with
the pixel indicated for which we plotted the velocities on the top right.

(right). The remaining variance over pixel locations and phases is minimal.

Figure 7.7 shows another experiment that we used to verify the accuracy of

our prototype D-TOF camera. In this example, we adjusted the speed of a rotating

fan and imaged its blades such that, throughout the time it takes for a single blade

to move across a pixel, forward motion is observed by that pixel. The exposure

time of the TOF camera was set to 1.5 ms and the fan was captured from a frontal

perspective (raw homodyne and heterodyne measurements shown in Figure 7.7

bottom). We manually measured the slope of the fan blades, which is constant over
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the entire blades. The radius of the plotted position was measured, allowing us to

calculate the “ground truth” velocity when the rotation speed of the fan is known.

Since the exact rotation speed is not actually known, we measure it by mounting

a small pin on one of the blades and mounting a piece of flexible plastic in front

of the fan, such that the rotating pin strikes the plastic exactly once per revolution,

creating a distinct sound. We record the sound (sampled at 44 KHz) of this setup to

estimate the ground truth velocity of the fan blades, observed by one pixel, which is

compared with the corresponding D-TOF estimate (Figure 7.7, top right). For this

experiment, the estimation error is always below 0.2 m/s. Errors are mainly due to

the low SNR of the measured Doppler-shifted signal.

Subframe Alignment Although the required heterodyne and homodyne shots can

be captured simultaneously as shown later in Section 7.7, the hardware modifications

for an alternating capture using a single-sensor require significantly less effort. In

this case, since we are dealing with moving objects, the individual shots cannot

be assumed to be perfectly aligned. This results in velocity artifacts around edges

in the scene. We can mitigate, although not completely remove, these artifacts by

computing a SIFT flow on the raw data and warping them to a reference frame.

While not perfect, the SIFT flow delivered sufficiently good warps for most captures.

Denoising With our system, we capture an extremely small frequency shift (in

the Hz range) relative to the modulation frequency (the MHz range). Additionally,

the quantum efficiency of emerging time-of-flight sensors is still far from that of

modern solid state sensors [251]. Therefore, the slight Doppler shift in our prototype

is only measured by a very low photon count in the measured signal. For such

low photon counts the heteroskedastic normal approximation for the Poisson noise

from Section 2.4.3 is not accurate anymore. Standard denoising methods assuming

Gaussian noise fail therefore in such low-light scenarios. We apply a binning-based

non-local means denoising strategy to all captured velocity maps (see Figure 7.8).

Please see the Section A.8 for more details and denoising comparisons.
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Figure 7.8: Velocity maps color-coded in grayscale. The maps computed from
raw measurements (top) are corrupted by Poisson noise. To account
for this, we apply a binning-based non-local means-type denoiser to the
reconstructed velocity images (bottom).

7.5 Results
We show results captured with our prototype imaging system in Figures 7.1, 7.9,

7.10, 7.12, 7.11, 7.13, 7.14. The results validate the proposed imaging system for a

variety of challenging indoor and outdoor scenes. Color images are recorded with

the same exposure time as the time-of-flight camera. Most of the scenes have a slight

red tint, because we work with eye-safe red illumination in the visible spectrum.

Like current commercial TOF cameras, future implementations of this system would

most likely use invisible, near infrared wavelengths to encode velocity and depth

Figure 7.9: Complex scene with ambient illumination and a large depth range.
The velocity is robustly estimated within the range of the illumination
(approx. 5m inside), even in outdoor settings.
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Figure 7.10: This result shows a periodic motion of a hand along the optical
axis. The static scene on the left results in no response of the sensor,
whereas forward (center) and backward (right) movement result in
positive and negative responses, respectively.

information. The reconstructed velocity maps are color-coded; absolute units are

indicated in the color bars. As expected, static scenes result in a constant velocity

map whereas velocity is directly encoded in the measurements and subsequently

reconstructed for each sensor pixel independently. In addition to the velocity maps,

Figures 7.1, 7.12, 7.13, 7.14 also show the corresponding depth maps that can be

estimated from an additional capture as well as the velocity maps (see Section 7.3.2).

Figure 7.11: Even extremely fast motion, such as a bullets shot with a spring
airsoft gun, can be captured with our system. The airsoft gun is being
advertised as shooting bullets with 99 m/s; we measure a radial velocity
of 98.2 m/s (average of the peak pixels).
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Figure 7.12: This result shows periodic motions in z for a textured object.
Although the estimated velocity is mostly correct, shadows and dark
scene parts are challenging for robust velocity estimation.

The selection of scenes shows a wide range of motion types that can be re-

constructed with the proposed method, but it also highlights several challenges of

D-TOF and TOF in general. D-TOF requires two frames to be captured, and they

must be aligned if recorded with a single camera. In some instances, such as the

results from Figure 7.10 and Figure 7.11, the alignment is challenging and any

errors will propagate into the velocity maps, especially around depth-discontinuities.

These artifacts can be mitigated by optimizing the camera firmware to minimize

switching time between the subframes or by using two co-axial TOF cameras, as

demonstrated below in Section 7.7. Objects with dark albedos, as for example

observed in Figure 7.12, are challenging for any TOF method because only a small

amount of the coded illumination is reflected back to the camera. Similarly, shadows

are very challenging and often result in either no depth/velocity estimation or errors

(sweater in Figure 7.9 and regions between fingers in Fig. 7.13). Whereas some of
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Figure 7.13: We envision a wide range of applications for our technique,
including gaming and human-computer interaction.

these limitations can be overcome with better hardware, others are inherent to the

time-of-flight approach. Please see Section 7.8 for a more detailed discussion.

7.6 Toward the 3D Velocity Field
Optical flow computed from conventional video sequences estimates the 2D projec-

tion of the 3D flow field onto the image plane. The radial component is usually lost.

Furthermore, optical flow is an ill-posed problem and may fail in many scenarios.

Doppler TOF addresses two problems of optical flow: first, it can help in cases

where optical flow fails either due to large displacements or missing scene struc-

tures. Second, our technique also helps in cases where the optical flow estimation

is successful; in this case, we can recover the 3D metric flow by combining metric

radial velocity and the 2D optical pixel flow.
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Figure 7.14: Physical props for gaming, such as ping pong balls fired with
this toy gun, could be tracked and enable new HCI techniques.

Figure 7.15 shows an example scene where regular optical flow [252] as well as

SIFT-flow [253] fail due to limited structure in the scene. Our method can success-

fully capture the velocity of the objects and could also lead to a proper segmentation

Figure 7.15: Failure case of optical flow for a moving, but untextured scene
(left). Optical flow [252] and SIFT flow [253] for two succeeding color
frames are shown in the second and third column; the 2D flow vectors
are color-coded with the shown color wheel (insets). Both methods
cannot recover the true 2D motion of the fan and wrongly segment the
scene. Our orthogonal velocity estimate can resolve this problem and
properly segment the scene.
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Figure 7.16: Towards 3D flow: when optical flow succeeds, the full 3D metric
flow is uniquely estimated from both 2D pixel flow and the radial veloc-
ity maps. The top images show a frame where optical flow computed
reasonable estimates. The bottom shows full 3D velocity estimate for
different views. Note that the optical flow helps us to determine that
fan’s velocity is slightly rotated to the upper right, where the center of
rotation is located (bottom left).

of the scene. Note that having additional depth estimates for conventional flow

would also only be of limited help since flat surfaces also do not deliver enough

features for correspondence matching.

Figure 7.16 shows a scene where the optical flow estimate is reasonable. In

this case, the orthogonal component that our method captures completes the 2D

spatial flow estimates and uniquely determines the full metric 3D flow. Given the

optical flow estimates fx, fy for the horizontal and vertical image coordinates, one

can compute the metric velocity vectors vx = fx·Z
F , fy = fx·Z

F , where F is the

focal length of the lens and Z the corresponding depth estimate (see [254]). In

conjunction with the velocity estimate vz in the orthogonal direction along the

optical axis, the full 3D metric flow is V = (vx, vy, vz). An example is shown in

Figure 7.16. Please note that the 3D flow field is only as reliable as the estimated

radial velocity and the RGB 2D flow. If one of them fails, so will the 3D flow.
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7.7 Multi-Camera System
Previously, we have mentioned multi-camera CIS systems a few times as an ex-

tension to the proposed method that could remove remaining artifacts and extend

the capabilities of our approach. In particular, two CIS cameras which share the

same optical path allow for simultaneous capture of the two required captures per

frame, thus eliminating the need for alignment. Furthermore, three cameras, each

representing a stereo-pair with both other cameras, would allow for the capture of

full 3D metric flow without needing to solve the ill-posed optical flow estimation

problem. Stereo and multi-camera ToF arrays also have been shown to provide

benefits for regular depth estimation [255–257].

However, systems for dynamic scenes have not been demonstrated before since

synchronizing the exposures as well as the modulation waveforms is not straight-

forward. In this section, we present an extendable multi-camera TOF system that

allows for synchronization, custom waveforms for each light source and camera.

We also show that the orthogonal frequency modulation from this chapter can be

used to eliminate multi-camera interference for depth imaging. An overview of

the entire system is illustrated in Figure 7.17. We build on the Texas Instruments’
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Figure 7.17: System overview. The proposed multi-camera time-of-flight
system is built around the TI OPT8241 camera developer kit (left).
All connected cameras are driven in slave mode, such that an external
microcontroller (MCU) manages and synchronizes the sensor exposures
of all cameras. The DDS generates analog waveforms that are digitized
before being fed into the cameras. An additional exposure gating circuit
guarantees that no residual signals are received unless exposing.
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TOF camera development kit (CDK) OPT8241-CDK-EVM, or Tin Tin, and develop

external control electronics for signal generation and synchronization. Tin Tin is a

state-of-the-art TOF camera with sensor resolution of 320× 240, providing external

signal control as well as synchronization. In contrast to the previously discussed

system from Chapters 3 and 5, which required complicated modifications to access

modulation lines, this system has connections for external modulation signals. Tin

Tin has a built-in laser light engine. At 850 nm, the diffused laser diodes offer a

frequency of 12-80 MHz at 50% duty cycle. The on-board light engine can also be

disabled and replaced by a custom light source, such as a projector which could

provided spatio-temporally illumination as in Section 3.6.

The waveform-generation circuitry in our system is built around Direct Digital

Synthesis (DDS), which allows for precise waveform control in contrast to FPGA-

based signal synthesis. We use an Analog Devices AD9959 four-channel DDS

to generate sinusoidal waveforms with independent control over frequency, phase,

and amplitude. Each of these four channels can control either a camera or light

source. To digitize the analog DDS waveform, a clock fan-out buffer (Analog

Devices AD9513) is used as a high-speed comparator. An additional high speed

buffer chip (TI SNB8LVCFO0A) acts as an exposure gating mechanism, ensuring

that no residual signal is received by the sensor unless exposing. We use an ARM

Cortex M4 STM32F407VGT6 microcontroller to synchronize the exposures of all

cameras and control the waveforms on the DDS. The microcontroller acts as the

master for all connected devices. The frequency and phase settings of each frame in

every channel can be controlled individually. Finally, the camera SDK allows to

read out raw frames through the USB interface.

Figure 7.18 shows different configurations of our setup. For example, we can

run the cameras in light field mode, where each sensor observes the scene from

different perspectives or we can optically align them using a beam splitter so that

they share the same perspective. Figure 7.19 shows a captured bullet in flight

captured by the beam splitter setup. This is the same experiment as in Figure 7.11.

We show the raw frames here to demonstrate our hardware setup. The homodyne

and heterodyne frames showing the flying bullet are captured simultaneously and

do not contain displacements, which caused the streak artifact in Figure 7.11.
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Figure 7.18: Multi-camera prototype setup. The left shows an array of sensors
observing the scene from different perspectives. On the right two
cameras are optically aligned with a beam splitter. They both share
the same perspective and single light source, but each of the sensors
is modulated at different frequencies. In this mode, we can capture
homodyne and heterodyne frames simultaneously.

Figure 7.19: Example from Figure 7.11, but using the beam splitter setup
shown on the right of Figure 7.18. Homodyne and heterodyne frames
of a static scene are shown on the (left) and of the same scene with a
bullet flying at about 99 m/s (center).
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7.7.1 Multi-Source Interference Cancelling

The proposed hardware system also allows to eliminate multi-source interference for

classical depth imaging. When multiple cameras illuminate the same scene, such as

in Figure 7.18 on the left, then the temporally-coded illumination waveforms of each

camera interfere with one another. Note, that this case differs significantly from the

multi-path interference discussed in Section 2.6.5. Due to unsynchronized exposures

and slight variation in the illumination frequencies, the multi-source interference

results in a temporally beating measurement error. The frequency variation between

different light sources is an inherent property of using independent sources which all

have their own crystal oscillator. Using only a single light source would eliminate

this problem (assuming synchronized exposures). In that case, however, parts of the

imaged scene would never be illuminated, which defies the purpose of the different

perspectives captured by the sensor array.

Previously, Castaneda et al. [255] proposed to capture all possible combinations

of activated light sources, Li et al. [256] proposed to capture and average more than

100 frames to statistically mitigate multi-device interference. Neither option seems

feasible for dynamic scenes. However, since the proposed hardware system allows

to synchronize all exposures, simply changing the modulation frequencies of each

camera/source pair by a large enough amount removes multi-source interference;

see also Figure 7.20 on the right.

Figure 7.20: Multi-device interference. The left shows the reference phase
and frequency sweep response of a single camera. Two CIS cameras,
each running in homodyne mode, interfere at one particular frequency
with one another (center left). Choosing an closely spaced orthogonal
frequency pair with a difference of a few hundred Hz eliminates multi-
device interference (center right), achieving the same effect as choosing
two frequencies with MHz difference (right).

162



This is easy to see recalling Eq. (2.25) from Section 2.6: If we consider a

camera/source pair with large enough difference in the modulation frequency, the

continuous signal p(t) at the sensor only becomes high frequency and averages

out in the integration. The smallest frequency component is exactly the difference

between the light source and camera pair. Hence, selecting a large frequency

difference between all camera/source pairs ensures low interference, but uses the

available modulation spectrum very inefficiently, thus limiting the number of devices.

The orthogonal frequency selection that we have used previously to amplify the

tiny Doppler shift, allows for an efficient usage of the modulation spectrum while

completely eliminating interference. In particular, we pick a frequency ωf =

p2π
T for sensor demodulation, as well as mutually orthogonal frequencies l =

1 . . .M as ωl = (p+ l − 1) 2π
T for each light source. For this particular choice of

illumination frequencies, the camera operates in homodyne mode with respect to

the first light source, but in (orthogonal) heterodyne mode with respect to all the

other lights. The orthogonality eliminates interference for a given integration time

T , while allowing for closely spaced modulation frequencies. Figure 7.20 shows a

calibration result for a modulation frequency of 22 MHz and 2 ms exposure time.

The orthogonal frequencies are only separated by 508 Hz, but allow for perfect

interference canceling, as achieved by MHz shifts.

We refer the reader to our publication [7] for a more detailed description of the

presented multi-camera system and further applications of it which goes beyond

the scope of this dissertation, such as high-speed range imaging, de-scattering of

dynamic scenes and by non-line-of-sight motion detection via frequency gating.

7.8 Discussion
In this chapter, we propose a new computational imaging modality that directly

captures radial object velocity via Doppler Time-of-Flight Imaging. We demonstrate

a variety of experimental results for different types of settings. We have validated

our model in simulation and experimentally. We have also demonstrated the optional

combination of footage captured using an RGB camera with the depth and velocity

output of our coded TOF camera. Together, this data represents simultaneous per-

pixel RGB, depth, and velocity estimates of a scene and allows for the 3D velocity
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field to be estimated. Finally, we have presented a hardware extension to our system

enabling multi-camera/source capture.

Note that D-TOF is complimentary to optical flow. It allows for the depth bias

of xz-flow to be removed and enables recording of the metric 3D velocity field of

the scene. However, if only radial velocity is required, our technique can also be

used stand-alone, independent of optical flow.

As a fundamentally new imaging modality, D-TOF implemented with our ex-

perimental hardware has several limitations. Foremost, the resolution of the PMD

sensor in our prototype is limited to 160× 120 pixels and the SNR of the measured,

Doppler-shifted signal is low. Together, these limitations result in low-resolution

and noisy footage. We apply state-of-the-art denoising strategies which filter out

most of the noise but do produce artifacts in some cases. Furthermore, D-TOF

requires two frames to be acquired with different modulation frequencies. Currently,

we capture these frames in sequence, which results in slight misalignment between

the frames observed as velocity artifacts around depth discontinuities. However,

as already mentioned in Section 3.7, there is a clear path to addressing all of these

challenges: low-cost TOF sensors higher resolutions and significantly improved

noise characteristics are already on the market. The multi-camera extension from

Section 7.7 uses sensors with QVGA resolution. Some consumer cameras, such

as the Microsoft® Kinect® 2, provide almost VGA resolution and also use higher

modulation frequencies to increase the achievable depth resolution for range imag-

ing. Note that increased sensor and illumination frequency would directly improve

the signal-to-noise ratio in our setup, because the Doppler effect is proportional to

the source frequency. With access to signal control of illumination and on-sensor

modulation, D-TOF could be readily implemented on high-quality consumer TOF

cameras. Nevertheless, D-TOF shares other limitations with TOF, including the need

for active illumination, limited range, and problematic processing in the presence of

strong ambient illumination or objects with dark albedos, and global illumination

effects.

However, TOF cameras have entered the consumer market only a few years ago,

but already transformed the way machines perceive the world. Human-computer

interaction, robotics and machine vision, navigation for autonomous vehicles, and

many other fundamental computer vision tasks have seen dramatic improvements
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using these devices. With Doppler Time-of-Flight, we contribute a fundamentally

new imaging modality that could impact all of these applications. By amplifying

the tiny Doppler shift through carefully coded illumination and sensor modulation,

our approach, much like Chapter 3, “makes the invisible visible”.
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Chapter 8

Simple Lens Imaging

Up until now, the methods presented in this dissertation have exploited the tempo-

rally convolutional structure of the CIS measurements. In this chapter we investigate

the spatially convolutional structure of aberrations in imaging optics. Optical sys-

tems and aberration theory, describing their imperfections, have been introduced in

Section 2.3. Modern imaging optics are highly complex systems consisting of up

to two dozen individual optical elements. This complexity is required in order to

compensate for all geometric and chromatic aberrations of a single lens, including

geometric distortion, field curvature, wavelength-dependent blur, and color fringing.

While traditional optical design attempts to minimize all of these aberrations

equally, we demonstrate in the following that chromatic aberrations, in fact, effi-

ciently encode scene information. Exploiting the specific structure of chromatic

aberrations allows us to realize radically simplified optical designs, using cheap,

simple, and compact optics.

We propose a Bayesian approach to color image deconvolution, which at its

core relies on a novel statistical prior for the correlation between different spectral

bands. For chromatic aberrations that allow to focus in at least one channel, this

approach allows to efficiently correct images captured through uncompensated,

simple optics. Finally, we present a method for the calibration of all aberrations of

an optical system as a per-channel, spatially-varying PSF.
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Figure 8.1: High-quality imagery through poorly performing lenses: Relying
on the specific structure of chromatic aberrations, we present a Bayesian
reconstruction method for the removal of aberrations post-capture. This
enables imaging using simple lenses that suffer from severe aberrations.
From left to right: Camera with our lens system containing only a
single glass element (the plano-convex lens lying next to the camera),
unprocessed input image, result estimated using the proposed approach.

8.1 Introduction
Over the past decades, camera optics have become increasingly complex. The

lenses of modern single lens reflex (SLR) cameras may contain a dozen or more

individual lens elements, which are used to optimize light efficiency of the optical

system while minimizing aberrations, i.e., non-linear deviations from an idealized

thin lens model. Optical systems and their aberrations have been described in detail

in the related work part of this thesis. Recalling Section 2.3, aberrations include

effects such as geometric distortions, chromatic aberration (wavelength-dependent

focal length), spherical aberration (focal length depends on the distance from the

optical axis), and coma (angular dependence on focus); see again Figure 2.5. All

single lens elements with spherical surfaces suffer from these artifacts, and as a

result cannot be used in high-resolution, high-quality photography. Instead, modern

optical systems feature a combination of different lens elements with the intent

of canceling out aberrations. For example, an achromatic doublet is a compound

lens made from two glass types of different dispersion, i.e., their refractive indices

depend on the wavelength of light differently. The result is a lens that is (in the

first order) compensated for chromatic aberration, but still suffers from the other

artifacts mentioned above.

Despite their better geometric imaging properties, modern lens designs are not
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Figure 8.2: Patch-wise estimated PSFs for a single plano-convex lens at f/4.5.
See Figure 2.6 for a single biconvex lens. The PSF estimation and non-
blind deblurring in our method is done in patches to account for the PSFs’
spatial variance.

without disadvantages, including a significant impact on the cost and weight of

camera objectives, as well as increased lens flare. In this chapter, we investigate

a radically different approach to high-quality photography: instead of ever more

complex optics, we propose to revisit much simpler optics, such as plano-convex

lenses, used for hundreds of years (see, e.g., [258]), while correcting for the ensuing

aberrations computationally.

The aberrations introduces by these simple lens designs follow a specific struc-

ture. Figure 2.6 and Figure 8.2 shows the variation of the PSF over the image plane

for two simple lens elements. We can make several observations: The blur is highly

spatially varying, ranging from disc-like structures (spherical aberration) with di-

ameters of 50 pixels and more to elongated streaks (coma and astigmatism). We

can address this problem by subdividing the image into tiles over which we assume

a constant PSF, as discussed in Section 2.3.3. The blur is also highly wavelength-

dependent (chromatic aberration). This results in objectionable color fringing in

the image. Note that these chromatic aberrations are much more severe than for

partially corrected optics. For example, Kang [259] proposes a method specifically
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for removing color fringing in images. However, this method is based on edge

detection, which is feasible for images taken with partially corrected optics, but is

impossible in the presence of very large blurs that result from the use of uncorrected

optics.

Although the aberrations are severe, at the same time, the PSF of at least one of

the color channels often contains more energy in high spatial frequencies than the

others (one channel is usually focused significantly better than the others); note here

that we do not require it to be perfectly in focus. This suggests that we can exploit

cross-channel correlation and reconstruct spatial frequencies that are preserved in at

least one of the channels.

In our approach we rely on a novel cross-channel prior that encodes this cor-

relation between different spectral channels. Following our Bayesian approach

from the related work Section 2.8.1, we formulate a deconvolution method which

efficiently incorporates this prior in a convex optimization problem. We derive

a proximal algorithm to solve this problem which is guaranteed to converge to a

global optimum. The proposed approach is therefore able to handle much larger

and more dense PSFs than previous methods (see, e.g., [165]), such as disk-shaped

kernels with diameters of 50 pixels and more, which occur frequently in uncorrected

optics unless the apertures are stopped down to an impractical size. To calibrate

the kernels for a given optical system, we present a method for robust per-channel

spatially-varying PSF estimation based following the same Bayesian approach as

for the deconvolution problem, but treating the PSF as an unknown. Our novel

cross-channel prior, which is at the core of our proposed method, can also be com-

bined with patch-based priors, and in fact improves the robustness of patch-based

reconstruction methods, which will be described in Chapter 9.

In the following, we first review the image formation model including spatially

varying aberrations. Subsequently our novel cross-channel prior for color images is

derived. Next, the robust Bayesian approach, and solver method for the resulting

optimization problem are described. We demonstrate that our method enables high-

quality photographs on modern 12 megapixel digital SLRs using only single lens

elements such as plano convex or biconvex lenses, and achromatic doublets. We

show high quality results comparable to conventional lenses, with apertures around

f/4.5. Furthermore, we present an extension of our method that allows for color
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imaging even with highly chromatic diffractive elements, such as ultra-thin Fresnel

phase plates. Finally, we demonstrate that our formulation outperforms compet-

ing deconvolution approaches in terms quality and runtime. Using our method,

simplified optics become viable alternatives to conventional camera objectives.

8.2 Image Formation Model
The color image formation in the presence of spatially varying aberrations has

been described in detail in Section 2.3.3. Recalling Eq. (2.12), we can assume

aberrations to be spatially invariant in a small n × m tile on the sensor. Using

j ∈ Rnm and i ∈ Rnm as the vectorized observed blurred image and latent sharp

image, respectively, the image formation can be formulate in the matrix-vector form

j = Bi + n, (8.1)

where B ∈ Rnm×nm is the matrix corresponding to the convolution with the PSF

B in the tile, and n represents sensor noise. As discussed in Section 2.3.3, the full

image will be composed of many tiles, each with a corresponding PSF.

8.3 Deconvolution Using Cross-Channel Correlation

8.3.1 Cross-Channel Correlation

Real optical systems suffer from dispersion in the lens elements, leading to a

wavelength dependency of the PSF known as chromatic aberration.

While complex modern lens assemblies are designed to minimize these arti-

facts through the use of multiple lens elements that compensate for each others’

aberrations, it is worth pointing out that even very good lenses still have a residual

amount of chromatic aberration. For the simple lenses we aim to use, the chromatic

aberrations are very severe – one color channel is focused significantly better (al-

though never perfectly in focus) than the other channels, which are blurred beyond

recognition (of course excluding achromatic lenses which compensate for chromatic

aberrations).

Given individual PSFs B{1...3} for each color channel J{1...3} of an image J
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PSNR = 29.2 dBPSNR = 20.7 dB
Blurry observation Cross-channel reconstructionIndependent per-channel reconstruction

[Krishnan and Fergus, 2009]

Figure 8.3: Effect of using the cross-channel prior for a simulation using a
strongly chromatic blur (in the very top left) Left: Blurred and noisy
observation. Middle: Independently deconvolved results for each channel
using [160]. Right: Deconvolution with our cross channel prior.

one might attempt to independently deconvolve each color channel. As Figure 8.3

demonstrates, this approach does not in general produce acceptable results, since

frequencies in some of the channels may be distorted beyond recovery, leading to

the severe red fringing and residual blur in this case.

We propose to share information between the deconvolution processes of the

different channels, so that frequencies preserved in one channel can be used to help

the reconstruction in another channel. The key observation of our cross-channel

prior is that for a latent (sharp) image, changes in chroma and luma are sparsely

distributed in natural images. That means, in most areas the gradients of different

channels are close, except for few large changes in chroma and luma (e.g. commonly

at object or material boundaries); see the left of Figure 8.4. In other words, for a

pair of channels l, k we assume

∇ik/ik ≈ ∇il/il
⇔ ∇ik · il ≈ ∇il · ik,

(8.2)

where the errors in the approximation are sparsely distributed around edges in the

image. Note that the division and multiplication /, · are pixel-wise operators. Hence,

we model the difference in the normalized gradients with a heavy-tailed prior:

p(ic|γ, il) ∝ exp

−γ∑
l 6=c

∑
a

‖Haic · il −Hail · ic‖1

 , (8.3)
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Figure 8.4: Blurred scanline on the top left with different PSFs in each channel
and a sharp green channel. Reconstructed scanline on the bottom left.
Our cross-channel prior enforces gradient consistency between the color
channels (green shaded regions) and allows sparse hue changes (red
shaded regions). The right shows the cross-channel gradient statistics
from 10,000 randomly selected images from the Imagenet data set [260].
The empirical distribution is heavy-tailed.

for a considered channel x. The matrices Ha are different gradient operators, which

will be described in detail below.

Note that the proposed prior places stronger assumptions (normalized consistent

gradients) on the color-channel coupling compared to methods that assume only

consistent gradients, such as [261]. This stronger assumption is verified empirically

using of 10,000 images from the Imagenet data set [260]. The right of Figure 8.4

shows the empirical distribution of the accumulated cross-channel gradients, that

is c̃ = Haic · il −Hail · ic for all images, channels and gradient filters, where ic

is here the red or blue channel and ir is the green channel. The plot also shows

a Gaussian fit p(c̃) ∝ e−γ|c̃|
2
, Laplacian fit p(c̃) ∝ e−γ|c̃| and Hyper-Laplacian

p(c̃) ∝ e−γ|c̃|
2
3 . We can see that the empirical cross-channel gradient distibution

is heavy-tailed and thus not well approximated by a normal distribution. While a

Hyper-Laplacian fit best models the underlying distribution, the Laplacian is the

best convex relaxation of the fitted distribution. We therefore chose in Eq. (8.3) the

Laplacian distribution as the best convex fit.
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8.3.2 Inverse Problem

To invert the image formation model from Eq. (8.2) using the described prior and

including noise, we follow again the Bayesian MAP approach from Section 2.8.3, as

for all inverse problems discussed in this dissertation. Assuming n to be Gaussian

distributed, we formulate the problem of jointly deconvolving all channels as

(i1...3)opt = argmin
i1...3

3∑
c=1

‖Bcic − jc‖22 + λc

5∑
a=1

‖Haic‖1

+
∑
l 6=c

βcl

2∑
a=1

‖Haic · il −Hail · ic‖1,
(8.4)

with the first term being the Data Fidelity term, which results from the Gaussian

likelihood. The second term enforces a heavy-tailed distribution for both gradients

and curvatures of all channels. The gradient matrices H{1,2}, implement the first

derivatives, while H{3...5} correspond to the second derivatives. We use the same

kernels as Levin et al. [161] but employ an `1 norm in our method rather than a

fractional norm. This ensures that our problem is convex. The last term of Eq. (8.4)

implements our cross-channel prior, resulting from the prior distribution Eq. (8.3).

λc, βcl ∈ R with c, l ∈ {1 . . . 3} are weights for the image prior and cross channel

prior terms, respectively.

8.3.3 Optimization

The joint objective from Eq. (8.4) for all channels is a hard non-convex problem. To

make it feasible and efficient to solve, we minimize it by coordinate descent over the

channels. That means, we alternately minimize with respect to one channel while

fixing all the other channels. Similar to the optimization for CSC from Section 6.2.3,

the resulting objective in each step becomes then convex.

Note that for the specific case of a given sharp channel, the objective Eq. (8.4)

is separable per channel. In this case, all channels can be solved jointly leading

to a complexity of our method growing linearly with the number of channels. All

considered simple optics in this chapter offer an almost sharp channel for a given

channel. The coordinate descent approach discussed above can be applied for
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general reconstruction problems. Minimizing Eq. (8.4) with regard to a single

channel c can be formulated as the problem:

(ic)opt

= argmin
x

‖Bcx− jc‖22 + λc

5∑
a=1

‖Hax‖1 +
∑
l 6=c

βcl

2∑
a=1

‖Hax · il −Hail · x‖1

= argmin
x

‖Bcx− jc‖22 + λc

5∑
a=1

‖Hax‖1 +
∑
l 6=c

βcl

2∑
a=1

‖(DilHa −DHail)x‖1

= argmin
x

‖Bcx− jc‖22 + ‖Sx‖1 with

S =



λcH1

...

λcH5

βcl (DilH1 −DH1il)
...

βcl (DilH2 −DH2il)
...


,

(8.5)

where D denotes the diagonal matrix with the diagonal taken from the subscript. S

is the matrix consisting of the sequence of all t = 5 + 2(3− 1) matrices coming

from the `1 minimization terms in Eq. (8.4). In Eq. (8.5) it becomes clear that our

deconvolution problem is of the form discussed in Section 2.8.3. In particular, we

use
Φ = I, G(v) = ‖Bcv − jc‖22,

Ω = S, F (v) = ‖v‖1 ,
(8.6)

So, since our problem is expressible as Eq. (2.40), we can solve it using a proximal

algorithm as described in Section 2.8.4. We use the Chambolle-Pock method,

as in Chapter 3. This method is equivalent to a linearized version of ADMM,

which has been described in Chapter 6. We discuss proximal algorithms, including

the Chambolle-Pock method in detail in Chapter 10. To solve our problem with

Chambolle-Pock’s method, the proximal operators for F ∗ and G have to be given.
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These operators are

proxτF ∗(v) =
v

max (1, |v|)
(8.7)

proxτG (v) = x̃ = argmin
x

‖Bcx− jc‖22 +
1

2τ
‖x− v‖22

⇔ 1

τ
(x̃− v) + 2

(
BT
c Bcx̃−BT

c j
)

= 0

⇔ x̃ = F−1

(
τ2F (Bc)

∗ F (jc) + F (v)

τ2 |F (Bc)|2 + 1

)
, (8.8)

The first proximal operator is a projection on the `1-norm ball and described in

detail in [178]. Note that the division is here point-wise. The second proximal

operator is the solution to a linear system as shown in the second line. Since the

system matrix is composed of convolution matrices with a large support we can

efficiently solve this linear system in the Fourier domain (last line).

Parameters Adopting the notation from [178], we use θ = 1, σ = 10 and τ =

0.9/(σL2) for our specific Chambolle-Pock method with Eq. (8.7),(8.8). That only

leaves the operator norm L = ‖Ω‖ which is required for the method. We find the

value L by using the power iteration where all matrix-vector-multiplications with

STS can be decomposed into filtering operations (other eigenvalue methods like

the Arnoldi iteration are consequently also suited for computing L).

8.3.4 Low-Light Imaging

For image regions with very low intensity values, the method described above fails.

This is since the cross-channel prior from Eq. (8.3) is not effective due to the hue

normalization, which reduces the term near to zero. As a result, significant color

artifacts (such as color ringing) can remain in very dark regions, see Figure 8.5.

Note that by allowing luma gradients in the prior from Eq. (8.3) this is an inherent

design problem of this prior and not an optimization issue.

In this scenario, we therefore propose to match absolute (rather than relative)

gradient strengths between color channels using a Gaussian distribution. The

additional prior can be expressed as a modification of operator G from (8.6), which
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Figure 8.5: Chromatic artifacts in low-light areas. Left: Original blurred
patch captured with a plano-convex lens. Center: Reconstruction using
Eq. (8.4). Notice the chromatic artifacts in all low-intensity areas and
the correct reconstruction in the other areas. Right: Regularization for
low-intensity areas added as discussed below.

becomes now

G(v) = ‖Bcv − jc‖22 + λb
∑

l 6=c
∑2

a=1 ‖Dw (Hav −Hail)‖22 (8.9)

where diag (w) is a spatial mask that selects dark regions below a threshold ε. The

mask is blurred slightly with a Gaussian kernel Bσ with standard deviation σ = 3

to avoid discontinuities at border regions affected by the additional prior:

w =

(
1−

∑
l βclT (il)∑

l βcl

)
⊗ Bσ with T (i)k =

{
1 ; ik ≤ ε
0 ; else

, (8.10)

where T is here a simple thresholding operator with threshold ε = 0.05 and in our

implementation. The proximal operator from Eq. (8.8) becomes then

proxτG (v) = x̃ = argmin
x

‖Bcx− jc‖22 +
1

2τ
‖x− v‖22+

λb
∑
l 6=c

2∑
a=1

‖Dw (Hav −Hail)‖22

⇔

2τBT
c Bc + I + 2τλb

∑
l 6=c

2∑
a=1

HT
aD

2
wHa

 x̃

= 2τBT
c jc + v + 2τλb

∑
l 6=c

2∑
a=1

HT
aD

2
wHail.

(8.11)
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The linear system from the last row cannot be solved efficiently in the Frequency

domain anymore, since the spatially diagonal operator D2
w does not diagonalize

in the Frequency domain. Since blur kernel sizes of the order of magnitude of

102 × 102 can be expected for practical applications, the linear system is not sparse,

nor separable and therefore impractical to invert explicitly. We solve the system

using the Conjugate Gradient (CG) algorithm. This allows us to express the matrix-

vector multiplication in CG-algorithm as a sequence of filtering operations as before.

Residual and Scale-Space Deconvolution The deconvolution approach described

above is used in a residual framework which we adopt from [262]. By adapting

the prior weights in sequential passes of our deconvolution method, residual de-

convolution makes our basic deconvolution approach more robust to the parameter

selection. This reduces artifacts in regions with strong gradients. Furthermore,

we accelerate our method using a scale-space approach as in [263]. The residual

and scale-space deconvolution technique is described in detail in the Appendix

Section A.9, including a discussion on how we handle saturated regions in the

residual deconvolution.

8.4 Results
In this section we present a number of results captured with different optical systems.

Specifically, we show captures using simple lens elements as well as standard

consumer lens systems, and finally present an extension of our method to ultra-

thin diffractive optical elements. We demonstrate full-spectrum color results and

investigate multi-spectral imaging with our approach. The spatially varying PSFs

of the simple lens elements are estimated using two captures of a planar target at

different aperture settings. Note that any PSF estimation method can be used here

and the whole estimation process is a calibration procedure, which only needs to be

performed once for each lens. Our PSF estimation technique, which only requires

targets printed on consumer laser-printers, is described in Section A.10. Note also

that PSFs from Figure 2.6 and Figure 8.2 have been calibrated using our method.

177



Figure 8.6: Images captured with a simple plano-convex lens (left) and re-
stored with our method (right). Note recovered spatial detail and the
absence of color fringing. Also note the bokeh and graceful handling of
out-of-focus blur in the top three images.

Simple Lens Elements Figure 8.1, Figure 8.6 and Figure 8.7 show several results

from the most basic refractive optical system, a single plano-convex lens (focal

length 130 mm, f/4.5) shown lying on the side in Figure 8.1. These resulst are

captured with a Canon EOS D40 camera, using standard ISO100 and autoexposure

settings. The corresponding PSFs are the ones from Figure 8.2. We note that all

results show good detail down to the native sensor resolution, demonstrating that our
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Figure 8.7: Additional scenes captured using the simple plano-convex lens as
in Figure 8.6.

method is indeed capable of producing high quality digital photographs with very

simple lens designs. The parking meter image and the twigs show that deconvolving

with the PSF for one particular scene depth preserves the deliberate defocus blur

(bokeh) for objects at different depths without introducing artifacts. The manhole

cover image at the top shows focus change over a tilted plane. Saturated regions as

shown in the second inset of this image are handled properly by our method. It also

includes a result under low-light conditions.

Figure 8.8 test the limits of our method using lenses with a larger aperture of

f/2. The top of Figure 8.8 shows the results for a 100 mm biconvex lens, with PSFs

from Figure 2.6. The larger aperture increases the depth dependency of the PSF.

Therefore our deconvolution method produces very sharp reconstructions in-plane
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Figure 8.8: Limitations of our approach. The left shows captured image, and
the right shows the deblurred result. Top: Results from biconvex lens
at f/2. A very low cross-prior weight has been used here to illustrate
the depth-dependency of the PSF. Bottom: Cropped central region of the
image from achromatic lens with f/2.0.

(see color checker), but suffers from some ringing out-of-plane (see text on the

foreground object). The bottom result of Figure 8.8 shows results for a 100 mm

achromatic doublet, which does not contain spectrally varying blur. Considering

that the PSFs exhibit disk-like structures in all channels, our deconvolution method

still achieves reasonable quality, however cannot rely on the cross-channel prior.

Commercial Lens Systems Results for a commercial camera lens, a Canon 28–105

mm zoom lens at 105 mm and f/4.5, are shown in Figure 8.9 and Figure A.18 from

the Appendix Section A.11. We use the Canon EOS D40 with the same settings as

before. While this commercial lens shows much reduced aberrations compared to
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Figure 8.9: Test scene captured with a commercial Canon lens (105 mm, f/4.5).
Left: Captured input image. Right: Deblurred result.

the uncorrected optics used above, there still are some residual blurs that can be

removed with our method. In particular, the vertical edges of the calibration pattern

in Figure A.18 reveal a small amount of chromatic aberration that is removed by

our method. The PSFs for this lens are around 11× 11 pixels in diameter.

Multi-Spectrum Imaging Our aberration correction method cannot only be used

for RGB imaging but also for multi-spectral imagers. In this case, the cross-

channel prior is applied between all frequency bands pairs. Results are shown in

Section A.11.

Considering the wavelength-dependent PSFs, it is important to note that the

assumption of fixed PSFs for each color-channel of an RGB-sensor is often violated.

This assumption is made for all the RGB sensor results in this chapter and is a

classical assumption in deconvolution literature. However, one cannot tell from a

tri-chromatic sensor the exact wavelength distribution. Metamers (different spectra

that produce the same tri-stimulus response) will have different blur kernels, so

there can always be situations where the assumption of fixed per-channel PSFs will

fail, such as for example light sources with multiple narrow spectra or albedos with
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very narrow color tuning. This will introduce errors in the data-fitting term of our

objective function, which to a certain extent our cross-channel prior can account for.

In addition to the simulated result from Figure 8.3, we have compared our method

to state-of-the-art deconvolution methods for measured data in Section A.11. The

additional results demonstrate that even for incorrectly estimated PSFs our method

can still provide plausible estimates.

Diffractive Optical Elements However, for even further increased chromatic aber-

rations this approach fails. Diffractive optical elements (DOEs) introduce highly

wavelength-dependent aberrations due to the inherent dispersion. Only relying on

diffraction, such elements can be fabricated on ultra-thin planes, and hence represent

a promising avenue for reducing the size and complexity of conventional lenses

even further (compared to the simple refractive lenses from above). Furthermore,

diffractive optics allow for a very flexible optical design since complex phase plates

can be fabricated using photo lithograph, while, in contrast, high-quality refrac-

tive optics rely on spherical optics (recall Section 2.3). Recent examples include

cubic phase plates for extended depth of field imaging [264], DOEs producing

double-helix PSFs [20] for single-molecule microscopy beyond the diffraction limit,

and anti-symmetric gratings integrated with a CMOS sensor to produce an ultra-

miniature lens-less imager PicoCam [265]. Figure 8.10 shows captures acquired

using a diffractive optical element which implements a Fresnel lens that is designed

for the wavelength of 555 nm (center of green band). No other optical elements are

used, and the results are captured with a 4 megapixel Canon 70D DSLR sensor with

the same settings as before. For this optical system any incident wavelength except

the single design wavelength will not be focused, depending on the spectral distribu-

tions of objects and illumination. Hence, the captures in Figure 8.10 exhibit extreme

chromatic aberrations with blur kernels of diameters well over 100 pixels. Note

that the PSFs are also highly spatially varying due to varying material/illumination

properties.

In order to handle such aberrations, we cannot rely on pre-calibration, but

estimate the spatially varying PSFs in a blind deconvolution approach only from

the captured image. Using cross-channel information in the blind estimation turns

out to be key for achieving good PSF estimation results, as classical methods such

182



Figure 8.10: Results capture with an ultra-thin diffractive optical element (top
left inset), implementing a Fresnel phase plate optimized for the single
wavelength 555 nm (green). A set of representable scenes under indoor
lighting conditions are shown here. For each individual result, we com-
pare the aberrated observation (top) and a cross-channel reconstruction
(bottom). Small insets below each image highlight details and illustrate
how our method removes the severe chromatic aberrations.

as [266–268] fail for the large kernels. Reconstruction results using the blind

estimation are shown in Figure 8.10. To increase efficiency, we use here a slight

reformulation of the prior from Eq.(8.3) without the luma normalization. While

reaching almost similar reconstruction quality, the reformulation leads to 5 orders

of magnitude reduced runtime, which is a critical aspect to make blind estimation

methods practical. We refer the reader to our publication [9] for further details on

full-spectrum imaging with diffractive optics, including an in-depth discussion of

the blind extension to our cross-channel reconstruction from this chapter, which

goes beyond the scope of this dissertation.
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8.5 Discussion
In this chapter, we have exploited the structure of aberrations in imaging optics. In

particular, we have presented a Bayesian method for color image deconvolution

relying on the specific structure of chromatic aberrations that focus well in at least

one channel. We exploit statistical correlation between the focused and the other

channels to recover severely degraded color channels, even with disk-like blur

kernels of diameters of 50 pixels and more. This enables high-quality imaging using

very simple, uncompensated lens elements instead of complex lens systems. Going

a step further, we have demonstrate that our approach can even be extended for

broadband imaging with ultra-thin diffractive optics.

Overall our method produces image quality comparable to that of commercial

point-and-shoot cameras even with the most basic refractive and diffractive elements:

a single plano-convex lens and a Fresnel phase plate. However, for large apertures

of f/2 and more, the quality degrades due to the depth dependency of the PSF and

significantly larger blur kernels, which destroy much of the frequency content.

Furthermore, the scene and illumination determine the incident spectrum and hence

make the PSF estimation challenging. While a blind extension of our approach (as

discussed for the diffractive experiments) mitigates these issues, our method does

still achieve the quality level of a high-end lens in combination with a good SLR

camera. We conclude that in order to achieve that level of image quality it may still

be necessary to optimize the lens design to partially compensate for aberrations. In

particular the combination of thin refractive and diffractive elements is a promising

direction for very flexible, new hybrid optical designs. Our work demonstrates that

future lenses can be simpler than they are today, thus paving the road for lighter,

cheaper, and more compact camera lenses.

Our method removes aberrations post-capture assuming that the optics are

designed in a separate process to the best possible quality. I believe that joint

optimization of the optics together with the image reconstruction can lead to exciting

new areas in the optical design space, going far beyond first attempts such as [269],

since the the freedom in the optical design is inherently limited by the achievable

quality of the reconstruction method. Note also that this is in strong contrast to

classical optics design which solely aims at minimizing the spot-size.
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Chapter 9

Flexible Camera Image
Processing

While the previous chapter has demonstrated that computation enables new optical

designs by removing chromatic aberrations, we generalize this idea in the following

and show that it enables a variety of new computational camera designs which

outperform classical color imaging systems.

Color image processing is traditionally organized as a series of cascaded mod-

ules, each responsible for addressing a particular problem. Demosaicking, denoising,

deconvolution and tone-mapping represent a subset of these problems, which are

usually treated by independent pipeline stages; see Section 2.4.4. While this divide-

and-conquer approach offers many benefits, it also introduces a cumulative error,

as each step in the pipeline only considers the output of the previous step, not the

original sensor data.

We propose to completely replace such pipelines by Bayesian inference. In

particular, building on Section 2.8.1, we propose an end-to-end system that is

aware of the camera and image model, enforces natural-image priors, while jointly

accounting for common image processing steps like demosaicking, denoising,

deconvolution, and so forth, all directly in a given output representation (e.g., YUV,

DCT). Our system is flexible and we demonstrate it on regular Bayer images as well

as emerging array sensors, such as interleaved HDR, and low-light burst imaging. In

all cases, we achieve large improvements in image quality and signal reconstruction
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Figure 9.1: Our end-to-end method jointly accounts for demosaicking, de-
noising, deconvolution, and missing data reconstruction. Following a
Bayesian approach, image formation and priors are separated, which al-
lows us to support both conventional and unconventional sensor designs.
Examples (our results at lower right): (a) Demosaicking+denoising
of Bayer data (top: regular pipeline). (b) Demosaicking+denoising
of a burst stack (top: first frame). (c) Demosaicking+denoising+HDR

from interlaced exposure (top: normalized exposure). (d) Denois-
ing+reconstruction of a color camera array (top: naı̈ve reconstruction).

compared to state-of-the-art techniques, even on very classical problems such as

demosaicking. This demonstrates that treating color image processing as an inverse

problem in a Bayesian framework, is, in fact, a change of paradigm, enabling

advances for well understood problems as well as completely new camera designs.

9.1 Introduction
Modern camera systems rely heavily on computation to produce high-quality digital

images. See Section 2.4.4 for a review of color image processing, including non-

traditional sensor designs. Even relatively simple camera designs reconstruct a

photograph using a complicated process consisting of tasks such as dead-pixel

elimination, noise removal, spatial upsampling of subsampled color information

(e.g., demosaicking of Bayer color filter arrays), sharpening, and image compression.

More specialized camera architectures may require additional processing, such as

multi-exposure fusion for high-dynamic-range imaging or parallax compensation in

camera arrays.

The complexity of this process is traditionally tackled by splitting the image

processing into several independent pipeline stages [63]. Splitting image reconstruc-

tion into smaller, seemingly independent tasks has the potential benefit of making
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Figure 9.2: The traditional camera processing pipeline consists of many cas-
caded modules, introducing cumulative errors. We propose to replace this
pipeline with a unified and flexible camera processing system, leveraging
natural-image priors in a Bayesian approach.

the whole process more manageable, but this approach also has severe shortcomings.

First, most of the individual stages are mathematically ill-posed and rely heavily on

heuristics and prior information to produce good results. The following stages then

treat the results of these heuristics as ground truth input, aggregating the mistakes

through the pipeline. Secondly, the individual stages of the pipeline are in fact not

truly independent, and there often exists no natural order in which the stages should

be processed. For example, if noise removal follows demosaicking in the pipeline,

the demosaicking step must be able to deal with noisy input data when performing

edge detection and other such tasks required for upsampling the color channels, and

denoising is complicated as the noise statistics change due to the interpolation in

demosaicking.

We present a framework that replaces the traditional pipeline with a single,

integrated inverse problem; see Figure 9.2. We solve this inverse problem using our

Bayesian approach from Section 2.8, relying again on efficient proximal algorithms

to solve the resulting optimization problem. We separate image formation from

natural image priors in our Bayesian framework, preserving the modularity of the

image formation process. Instead of applying different heuristics in each stage of

the traditional pipeline, our system provides a single point to inject image priors in

a principled and theoretically well-founded fashion.

Despite the integration of the individual tasks into a single inverse problem,

our system is flexible and we can easily extend it to include new image formation

models and camera types, by simply providing a procedural implementation of the
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forward image formation model. Recalling Sections 2.3.3, 2.4.4 and 2.4.3 this image

formation is typically composed of a sequence of independent linear transformations

(e.g., lens blur followed by spatial sampling of the color information, followed by

additive noise). Hence, we generalize it to a form that many imaging systems

can be represented in. To illustrate the flexibility of our system, we apply it to a

number of specific image formation models, see Figure 9.1, including joint Bayer

demosaicking and denoising, deconvolution of camera shake and out-of-focus blur,

interlaced HDR reconstruction and motion blur reduction, image fusion from color

camera arrays, joint image stack denoising and demosaicking, and optimization all

the way to the output representation.

All these image formation models are combined with a set of state-of-the-art

image priors, following the Bayesian approach from Section 2.8. The priors can

be implemented independent of each other. This enables sharing and re-using

high-performance implementations of both the image formation process stages and

the image priors for different applications. We analyzed a variety of image priors

and determined a single set that we use for all applications, and which consistently

outperforms the best specialized algorithms for well-researched problems such as

demosaicking, denoising, and deconvolution, sometimes by a significant margin.

Since the optimization of the forward model and the image priors is highly paral-

lelizable, we also provide a very efficient GPU implementation. This allows us to

process high-resolution images even on mobile devices (such as modern tablets

with integrated mobile GPUs). We call this flexible image signal processing system

FlexISP.

In the following, we first introduce our flexible end-to-end camera image pro-

cessing system. In particular, we formulate the generalized image formation and

corresponding inverse problem for color imaging systems. Next, we describe how

the inverse problem is solved in our Bayesian framework from the related work,

using an efficient proximal algorithm for the resulting optimization problem. Hav-

ing explained our method, we demonstrate different applications, sensor types,

and priors, with minimal code changes; an in-depth analysis of the design choices

made to create our system—in particular of the priors used in our approach; and an

evaluation of our framework against many state-of-the-art methods, demonstrating

the high image quality we achieve.
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9.2 Image Formation Model
We adopt the linear image formation model from Section 2.8.3. A large class of

imaging systems can be represented by the factorization Φ = SB. That means the

observed image j is modeled as

j = Φi + n = SBWi + n, (9.1)

Depending on the camera lens, sensor, and scene motion, the latent image undergoes

various transformations, as discussed in detail in the related work Sections 2.3.3,

2.4.4 and 2.4.3. The operator W represents the registration component of the image

transform as a warping matrix, resulting for example from physical camera or scene

motion. The transform B models the convolutional part of this transform, which

models aberrations as in Section 2.3.3 or blurring due to the camera’s anti-aliasing

filter. The last transform S models sub-sampling on the sensor, which may occur due

to the color filter array on the sensor for color imaging as discussed in Section 2.4.4.

We assume the sensor noise n to be Gaussian distributed in our setting. Note that

the specific definition of matrix Φ changes based on the exact application shown

later in this chapter.

9.3 Flexible Image Reconstruction
The image formation model from Eq. (9.1) is inverted following the Bayesian MAP

approach from Section 2.8.3 again, resulting in a solver very similar to the one from

the previous chapter Chapter 8. However, in contrast, we do not only rely here on

(cross-channel) gradient statistics, but add a patch-based image prior, which makes

our method generalize across a wide variety of image reconstruction tasks.

9.3.1 Inverse Problem

Following Section 2.8.3, we solve the MAP estimation problem

iopt = argmin
i

1

2
‖Φi− j‖2M + Γ(i), (9.2)
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where Γ(i) is our specific prior, and the data fidelity term results from the Gaussian

likelihood. The operator M is here a diagonal weighting matrix that allows to mask

out different observations, e.g. saturated ones. While the data term is a standard

choice, we note that finding appropriate priors F is key for yielding high-quality

image reconstructions. We use the following prior

Γ(i) = φ0 ‖∇i‖1 + φ1 ‖∇ir · i−∇i · ir‖1 + φ2 Λ(i). (9.3)

The first term is a standard TV prior [178, 188]. As in Chapter 5, this prior term is

based on the assumption of a sparse Laplacian distribution on the spatial gradients.

In contrast to Chapter 8, we do not penalize curvature here. The second term

is our cross-channel prior from Eq. (8.4) in Section 8.3.2, with ir as the current

considered cross-channel as a notational shortcut. The last term represents a prior

on patch statistics in natural images, as often used in image denoising methods; see

Section 2.4.4. We explain this in the following.

9.3.2 Denoising Prior

Recalling Eq. (2.33) from the related work Section 2.8.2, the term Λ(i) in the MAP

estimate (9.2) can be interpreted as the result of the exponential image prior

p(i) ∝ exp ( −Λ(i) ) , (9.4)

where intuitively Λ assigns a cost to unknowns that are less likely, independent of

any observations being made. However, following our approach from the related

work Section 2.8.4, note that a proximal algorithm to solve Eq. (9.2) does not

need to evaluate Λ, but just the proximal operator for Λ. This means, even if Λ is

unknown, we solve for the Eq. (9.2) as long as its proximal operator is known.

In particular, we can show that any Gaussian denoiser can be expressed as a

proximal operator. This allows us to use the implicit natural priors used in many

complex denoising approaches, such as BM3D discussed in Section 2.4.4, without

needing to evaluate Eq. (9.4). Consider now a Gaussian likelihood p(x|v)

p(x|v) ∝ exp

(
−‖x− v‖22

2σ2

)
.
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With the exponential image prior from Eq. (9.4) we get the following MAP estimate,

that is a proximal operator

proxσ2Λ(v) = argmin
x

(
Λ(x) +

1

2σ2
‖x− v‖22

)
(9.5)

Consider a family of Gaussian denoising algorithms {DΛ
σ : σ > 0} using the prior

from above, which estimate x0 from x0 + σz with z ∼ N (0, I). We can then

formulate

proxτΛ(v) = DΛ√
τ (v), (9.6)

It becomes clear now, that it is not necessary to derive Λ in order to evaluate

the proximal operator, only DΛ
σ has to be known. Note that depending on Λ this

operator can be non-convex. If Λ is the indicator function of a convex set, DΛ√
τ

becomes the projection onto this set. For the method in this chapter we use the

patch-based BM3D denoiser [70], which achieves high-quality results across the

range of applications demonstrated in this chapter. We have experimented with

various denoisers: Sliding DCT which uses collaborative filtering, NLM which

uses self-similarity, and patch-based NLM and BM3D which use both. The choice

depends on the application and on the desired reconstruction speed and quality,

which we evaluate in detail in the appendix Section A.12.

9.3.3 Optimization

Having defined the proximal operator for Λ above, the optimization problem from

Eq. (9.2) can be solved again following our approach from Section 2.8. We formulate

the objective in the form of Section 2.8.3 by choosing

Φ = ?, G(v) = ‖v − j‖2M,

Ω =
[
ST , IT

]T
, F (v) = ‖v1‖1 + φ2 Λ(v2)

(9.7)

Φ is set based on the application. The indices in the second line identify the

component stacked on-top of each other in Ωi. Note that the minimum of Γ(i) is

obtained by independently minimizing F for each component of Ωi.

As in the previous Chapter 8, we use the Chambolle-Pock proximal algorithm
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to solve our problem. The proximal operators for F and G are

proxτF (v) =
[
proxτ |·|

(
vT1
)
,prox τ

φ2
Λ

(
vT2
)]T

(9.8)

proxτG(v) = x̃ = argmin
x

1

2
‖Φx− j‖2M +

1

2τ
‖x− v‖22

⇔ 1

τ
(x̃− v) + 2

(
ΦTM2Φx̃− ΦTMj

)
= 0

⇔
(
τΦTM2Φ + I

)
x̃ =

(
τΦTMj + v

)
. (9.9)

The proximal operator for F is separable, decoupling into the shrinkage operator

from Eq. (5.18) and the denoising proximal operator. Note that we have defined

the proximal operator for F here, while the Chambolle-Pock method requires the

evaluation of the proximal operator of the convex conjugate F ∗ as also defined in

the previous chapter. However, using the Moreau decomposition [175, 270], this

operator can be expressed in term of the proximal operator for F

proxτF ∗(v) = v − τ · prox 1
τ
F

(v
τ

)
. (9.10)

The proximal operator for G from Eq. (9.9) is a linear least-squares problem. In

contrast to Chapter 8, this subproblem does not only contain convolutional operators

and hence cannot be solved efficiently in the Frequency domain anymore. We use

the CG algorithm. The advantage of CG in our setting is that the image formation

model Φ and its transpose can be represented algorithmically, without explicitly

generating the system matrix. However, on the downside, CG does not further

exploit the specific structure of Φ from Eq. (9.1). We present a drastically more

efficient approach that exploits this structure in the next Chapter 10.

Parameters Using the notation from [178], we use θ = 1, σ = 40 and τ =

0.9/(σL2) for our implementation of the Chambolle-Pock method using Eqs. (9.8)

and (9.9). Following Section 8.3.3, we estimate L = ‖Ω‖ using the power iteration

where all matrix-vector-multiplications are implemented as filtering operations.
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9.4 Applications
Next we describe our applications and their individual data fidelity terms, that is the

specific choice of G from Eq. (9.7). In addition to the four applications shown in

the following paragraphs, Section A.13 discusses two further camera designs for

which our our method enables high-quality imaging.

Demosaicking Our first application performs demosaicking of a Bayer raw image

and simultaneous denoising, if required. The data model is quite simple: we set

Φ = S as the Bayer array decimation matrix which discretizes Eq. (2.23) from

Section 2.4.4 (and set the other operators B = W = I). The data fidelty term then

becomes

G(Φi) = ‖Si− j‖22 . (9.11)

Deblurring We next demonstrate non-blind deconvolution, i.e., assuming a known

(calibrated) PSF. As in Section 2.3.3, we model blur with a convolution matrix

Φ = B and get

G(Φi) = ‖Bi− j‖22 . (9.12)

As demonstrated by Schuler et al. [165], one can also incorporate Bayer array

sensing into deconvolution by setting Φ = SB.

Interlaced HDR Our third application focuses on HDR imaging. Some recent

sensors (e.g., Aptina AR1331CP and Sony IMX135) can record two exposures in a

single frame by allowing the exposure time to be set independently for even and

odd macro-rows (a pair of consecutive rows that cover all the color samples) of

an otherwise normal Bayer sensor. Figure 9.1(c) depicts the exposure pattern; odd

macro-rows integrate light for a longer time than the even ones. The advantage is

that two exposures, together covering a wider dynamic range than a single shot, are

captured essentially at the same time, while traditional stack-based HDR allows time

to pass and objects to move between the shots. However, samples are more sparse:

odd macro-rows may saturate in bright regions and even macro-rows may be too

noisy to be useful in dark regions. We easily adapt our framework to reconstruct
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high-quality HDR images from such sensors.

We use a binary diagonal indicator as M for masking bad pixels, where 0

indicates a useless pixel (either saturated or too noisy), and 1 means that the pixel

has useful data. The blur matrix B models the optics and sensor anti-aliasing filter

by measuring the camera’s PSF; all applications model blur in this fashion, unless

otherwise noted. We measure the blur like Xu and Jia [271]. Other calibration-

target-based methods, such as the one mentioned in the previous Chapter 8, are also

possible choices.

Finally, we set Φ = SB for the blurred, decimated, and saturated observation

matrix, i.e.,

G(Φi) = ‖SBi− j‖2M . (9.13)

Burst Denoising and Demosaicking Many compact cameras produce very noisy

results in low-light situations due to their small sensor size. Instead of a single

photograph, one can take a rapid burst of multiple exposures and then combine

them to reduce noise. This idea has been discussed at the end of the related work

Section 2.4.3. However, the previous techniques mentioned in this section demosaic

each image first and then denoise the stack of images. This is not ideal since

demosaicking will modify and possibly even amplify noise. Furthermore, additional

frames can aid the demosaicking process [272, 273]. We demonstrate that our

framework can jointly demosaic and denoise a stack of burst images, yielding

results that are superior to methods that pipeline these two processes.

The image stack is likely to be slightly misaligned due to small camera and

object motion. We handle this by aligning all k observations ji to the reference

frame (e.g., the first one) by computing a brute-force 1/8th sub-pixel-accurate

nearest-neighbor search (`1-norm on 15× 15 patches). We represent it as a warp

matrix Wi. Note that we also bake the resampling filter into this matrix. While our

captures did not contain any motion blur, one could easily incorporate and calibrate

the blur as described for interlaced HDR above. Finally, we set Φi = SWi to get

G(Φi) =

k∑
i=1

‖SWii− ji‖2Mi
. (9.14)
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The masking matrix Mi is included here since it may be used to mask out pixels for

which no good alignment is found. However, in our tests this was not required.

Applying Our Framework to New Applications We have described a large number

of different applications. In addition, Section A.13 demonstrates that our approach

achieves high-quality results for color array imaging and even non-linear image

formation models for JPEG deblocking. The wide variety of applications is possible

due to the flexibility of our system; adapting it to a new image formation model is

very easy and only requires changing the matrices Φ and M.

9.5 Results
In the following, we first show empirical convergence results and next present

results for each of the applications described previously. The color array camera

and non-linear deblocking application are covered in the appendix Section A.13.

Finally, we discuss the performance of our approach.

Convergence We make use of non-convex regularization terms in the prior term

Λ, so theoretical convergence guarantees are not available. That said, we always

combine both convex and non-convex terms in Γ from Eq. (9.3) which locally

convexify the objective as discussed in the appendix Section A.12. This enables us to

achieve convergence in practice for all initial iterates we tried (even for x0 = 0). We

present convergence plots for two different examples in Figure 9.3. The first example

is demosaicking of a Bayer image, where we initialize our optimization with:

x0 = 0, x0 = average of neighboring pixels, x0 = Malvar [274] demosaicking.

The second example is reconstructing an image from the interlaced HDR sensor.

We use three different initializations: x0 = 0, x0 = long exposure, x0 = short

exposure, x0 = mean of long and short exposure. Notice how in all cases, we

converge to the same low final error, no matter how we initialized the optimization.

This indicates, that in practice our optimization converges.
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Figure 9.3: Effects of different initial iterate x0 on the convergence for a
simple demosaicking example (left) and an interlaced HDR example
(right). We compare here the convergence plots for different initial
iterates (which are described in the text in detail). All cases converge to
the same solution; with a good starting point, 5 iterations suffice.

Demosaicking of Conventional Bayer Images First, we demonstrate that our sys-

tem outperforms state-of-the-art demosaicking methods. Zhang et al. [64] compared

several algorithms on the McMaster color image dataset. We follow their proce-

dure and additionally run our method, DCRaw, and Adobe Photoshop on the same

dataset. Figure 9.4 lists the results of the comparison. Representative examples are

shown in Figure 9.5. Our framework shows a gain of 2.23 dB over the best existing

demosaicking methods. Note that this is a very significant improvement, given
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Figure 9.4: Demosaicking results for the McMaster color image dataset. We
show average PSNR over all images and color channels.
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Figure 9.5: We compare our demosaicking method with commonly state-of-
the-art demosaicking methods on two patches of the McMaster dataset
(selected regions shown enlarged in the last row). Note how our method
produces results virtually indistinguishable from ground truth.

that demosaicking is a mature problem with hundreds of publications over the past

decade. In Figure 9.6, we compare joint demosaicking and denoising against other

state-of-the-art methods, following Jeon and Dubois [275]. Our method outperforms

all competing methods by at least 0.68 dB. A real-world example can be found in

Figure 9.7.

Deblurring of Out-of-focus and Camera-shake Blur Before diving into the more

complex use cases with the three new camera technologies below, we show that

our approach outperforms the state-of-the-art in non-blind deconvolution. Two

examples are shown in Figure 9.8. Deconvolution methods differ mostly by the

image priors used. We adopt the comparison of Schuler et al. [276] with five state-

of-the-art priors: EPLL (Gaussian mixture models) [163], heavy-tailed gradient

197



JD
D

Zhan
g1

LASIP

Zhan
g2

Condat
13

x1
3

GT15
x1

5
Ours

28

30

32

3
1
.1

7

3
1
.5

3

30
.0

7 3
0.

8
5

31
.5

6 3
2
.1 32
.7

8

P
S

N
R

[d
B

]

Figure 9.6: Joint demosaicking and denoising results for the Kodak dataset.
We show average PSNR over all images, color channels, and sigmas.
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Figure 9.7: Demosaicking comparison as in Figure 9.5, but on two real-world
example captures. Note again the artifacts which are visible for the other
methods.

distributions [160, 161], self-similarity [166, 277], Field-of-Experts [278], and

neural networks [276].

Table 9.1 shows a quantitative comparison for five different blur and noise

scenarios (a)–(e) averaged over a test-set of 11 images (see Schuler et al. [276],

Table 1). We outperform MLP (and others more clearly), with the highest margin

in the motion blur case (e), which probably is the most common application of

deconvolution. Our mixed BM3D + TV (+ cross-channel) prior outperforms both

BM3D-based and gradient-based methods. Both internal and external priors are
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Original Blurred Krishnan and Fergus [160]

IDD-BM3D [166] MLP [276] Ours

Figure 9.8: The color image example shows simulation results for a synthet-
ically blurred image (blur and noise scenario (e) from [276]). As can
be seen, our method produces the least artifacts (e.g., see smooth back-
grounds). The single channel example shows results for a real-world
capture from [161]. Similarly, our method produces the least artifacts.
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Deconvolution method
Reconstruction PSNR [dB]

(a) (b) (c) (d) (e)
EPLL [163] 24.04 26.64 21.36 21.04 29.25
Levin et al. [161] 24.09 26.51 21.72 21.91 28.33
Krishnan and Fergus [160] 24.17 26.60 21.73 22.07 28.17
DEB-BM3D [277] 24.19 26.30 21.48 22.20 28.26
IDD-BM3D [166] 24.68 27.13 21.99 22.69 29.41
FoE [278] 24.07 26.56 21.61 22.04 28.83
MLP [276] 24.76 27.23 22.20 22.75 29.42
Ours 24.83 27.31 22.24 22.89 29.78

Table 9.1: Reconstruction quality for five non-blind deconvolution scenarios.
We have adopted the evaluation from Schuler et al. [276]. Average results
for the same representative test-set of 11 images are shown here.

needed for peak performance in image reconstruction, only one is usually not

enough [71]. The images in this dataset were grayscale, so the cross-channel prior

could not be used. For visual comparisons including color images, see again the

two examples shown in Figure 9.8.

HDR Image Reconstruction The interlaced HDR sensor poses a challenging re-

construction problem, as shown in Figure 9.9. For scenes with a wide dynamic

range, we use an exposure time ratio as high as 16:1, so that odd macro-rows are

exposed for 16 times longer than the even macro-rows. Now the short exposure

has a better chance to catch highlights and the long exposure can capture shadows;

unfortunately, short exposure may be too noisy in shadows and long exposure may

saturate in bright areas. While the reduced number of valid input observations

increases the difficulty of the reconstruction task, our approach addresses this case

efficiently. The self-similarity prior of BM3D or NLM is now crucial to meaning-

fully filling in the missing data. We demonstrate this in Figure 9.9 (a), where we

compare our method to the standard image processing pipeline of demosaicking

(DCRaw) plus HDR de-interlacing of Gu et al. [77], which is based on upsampling.

We also compare against the Magic Lantern firmware, which provides an efficient

method by Hajisharif et al. [78] for fusing interlaced HDR images (some Canon
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Figure 9.9: Image reconstruction for interlaced HDR sensor data. The
upsampling-based reconstruction [77] in (a) improves the dynamic range,
but fails to recover highly structured details. The Magic Lantern method
provides higher quality, but still loses resolution and produces artifacts.
Our method generates an artifact-free result and provides the best overall
reconstruction quality. (b, c) In addition to extending the dynamic range
(bottom row), we account for local scene motion and simultaneously
denoise and reduce interlacing artifacts (see insets).
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EOS sensors can capture interlaced dual-ISO images)—followed by demosaicking

with DCRaw, since Magic Lantern only outputs mosaicked data. Note how Magic

Lantern produces some artifacts, whereas our reconstruction is virtually artifact-free.

In Figure 9.9 (b, c top) we show the sparse input observations, with pixels

marked black when indicated by the matrix M as too noisy or saturated (simple

thresholding on intensities). Even though a significant portion of the input data is

missing, our unified optimization successfully reconstructs geometric structures,

including detailed textures (grass) and thin edges. Also, in Figure 9.9 (c) we

demonstrate its performance on scenes with local motion (a runner), where different

amounts of motion blur in short- and long-exposure rows create a challenging

interpolation problem. By default, our optimizer prefers the longer blur of the

longer exposure, avoiding noise from the short exposure, and producing a visually

consistent result.

Burst Denoising and Demosaicking We demonstrate joint denoising and demo-

saicking on a real-world and a simulated dataset in Figure 9.10. We used here 8

images taken at ISO 12800 on a Canon EOS 650D; the ground-truth was taken

at ISO 100. To account for multiplicative and Poisson noise in this application,

we perform the generalized Anscombe transform to stabilize variance [279]. It is

applied to the observation j, transforming the observations to fulfill our additive

Gaussian model assumption in the data term.

We compare our technique (column (f) ) to a number of standard processing

pipelines for burst denoising. Demosaicking the first frame (a) [64] is the simplest

approach, but also produces the worst results. Demosaicking followed by the state-

of-the-art BM3D denoising method (b) significantly improves the image quality but

is still inferior to our approach, which is not surprising, as the full stack contains a

lot more information than a single image. We then compare against VBM3D [280]

on the (aligned) stack of 8/16 demosaicked images, which yields good but still

slightly inferior results (c). Just blending the aligned, demosaicked images together

using exponential weights (as used in NLM [67]) computed from a 15× 15 patch

around each pixel produces surprisingly good, albeit still slightly noisy images (d).

Applying BM3D to the NLM-weighted, demosaicked stack achieves good PSNR

numbers (e), but is still inferior to our proposed framework (column (f) ) which
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(a) First Frame of Stack    (b) VBM3D (Stack) (c) NLM-weighted Stack

(e) Ours (f) Ground Truth(d) NLM Stack + BM3D
Figure 9.10: Burst Image Comparison. We show results for real-world cap-

tures taken in low light (paintcans), and a simulated example (doll).
Please see the text for a detailed description.

203



jointly optimizes for the best latent image given the noisy stack of images.

Performance We have implemented FlexISP system in both Matlab (CPU) and

CUDA (on desktop and tablet GPUs). We give the run times for several dif-

ferent applications and denoising priors in Table 9.2. Unsurprisingly, the CPU-

implementation is slow, with a single iteration of BM3D (using the implementation

from authors’ web-page) taking 149.4 seconds for a 13 MPix image. Apart from a

BM3D step, each iteration of our solver runs a conjugate gradient step and enforces

the other priors. Full numerical convergence is usually reached in about 30 iterations

as shown in Figure 9.3 (note that the vertical scale is logarithmic). The overall

computation cost seems high, however, in practice running 4–5 iterations from a

good starting point gets close enough to the converged result and produces images

with sufficient quality.

Demosaic HDR Color Array Burst
Resolution (MPix) 5 13 0.6×3 0.4×16
Iterations 4 5 5 5
CPU BM3D 312.4 s 1471.6 s 74.2 s 303.2 s
CPU NLM 196.5 s 1094.8 s 52.4 s 291.4 s
CPU Patchwise NLM 198.7 s 1102.2 s 52.8 s 291.8 s
CPU Sliding DCT 89.6 s 747.7 s 32.3 s 280.9 s
CPU Averaging 194.2 s 1087.5 s 52.0 s 291.4 s
GTX Titan BM3D 2.1 s 7.5 s 0.9 s 0.8 s
GTX Titan NLM 0.7 s 2.8 s 0.2 s 0.3 s
GTX Titan Patchwise NLM 0.8 s 2.9 s 0.2 s 0.3 s
GTX Titan Sliding DCT 0.3 s 1.2 s 0.1 s 0.3 s
GTX Titan Averaging 0.5 s 1.9 s 0.1 s 0.3 s
Tegra K1 BM3D 40.5 s 147.4 s 18.1 s 16.7 s
Tegra K1 NLM 26.5 s 56.1 s 3.8 s 7.3 s
Tegra K1 Patchwise NLM 28.0 s 59.2 s 4.0 s 7.7 s
Tegra K1 Sliding DCT 7.0 s 30.9 s 2.8 s 7.0 s
Tegra K1 Averaging 6.7 s 33.2 s 2.2 s 6.6 s

Table 9.2: Running times for: desktop CPU (Core i7 2.4 Ghz), desktop GPU
(NVIDIA GTX TITAN), and mobile GPU (NVIDIA Tegra K1). Results
have been averaged over 10 repeated runs.
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Our GPU-version is optimized for speed and memory usage. The self-similarity

based denoising priors (BM3D, NLM, etc.) are accelerated with an approximate-

nearest-neighbor (ANN) method [281]. Furthermore, we split large images into

tiles and process these tiles separately to save memory. We found that a small

overlap of only four pixels is usually sufficient to prevent visible boundaries at tile

borders. Now all intermediate buffers, even combined, consume less memory than

the output image, enabling a memory-friendly image reconstruction. As a result,

we can process high-resolution images in a matter of seconds on a recent desktop

GPU (NVIDIA GTX TITAN) and can even enable interactive previews (1.5 sec)

on a recent NVIDIA Tegra K1 tablet for 1 MPix images. As expected, the use of

ANN leads to a slightly reduced quality compared to the Matlab implementation (of

about -0.6 dB to -1.0 dB depending on the application). We have also experimented

with a GPU-based accurate nearest neighbor search. While this increases the GPU

run-time, e.g., when using BM3D as a prior it increases by a factor of 4, it achieves

full accuracy and is still magnitudes faster than the CPU implementation.

9.6 Discussion
We have presented FlexISP, a framework and a system that replaces the traditional

image processing pipeline for reconstructing photographs from raw sensor data

by a single, integrated, and flexible system that is based on a Bayesian approach.

By defining an image formation model and statistical image priors, this approach

represents a change in paradigm compared to classical pipeline processing, which

consider reconstruction sub-problems isolated, but not jointly. Our method general-

izes due to a strong prior for natural images exploiting self-similarity and gradient

statistics. In particular we show that the implicit image prior of any Gaussian

denoiser can be used in our Bayesian approach, which is a key result and enables

using self-similarity-based denoising priors. We demonstrate that the proposed

method allows for image reconstruction for a wide variety of novel camera designs,

and it outperforms the state-of-the-art for classical camera image processing tasks.

However, while our priors are expressive, there are situations where they do not

provide enough information. For instance, in the interlaced HDR application, if two

consecutive rows are missing a nearly horizontal thin line, it may be difficult for the
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priors to connect the segments. Future priors that take content-aware information

into account could help in such situation.

Our system is fast considering the wide range of applications and problem

sizes, however, on a mobile device it cannot match the processing times of an

embedded ISP with a specialized ASIC. In a practical camera, a traditional ISP

could preprocess the image for immediate viewing, and a higher-quality image could

be processed in background, or by a cloud service. Using the ISP-processed image

as initialization would also give a better starting point, requiring fewer iterations for

the optimizer to converge.

While we demonstrate significant improvements in quality and simplicity for

traditional camera designs, we believe that our approach will achieve its full potential

with future computational cameras that have significantly more complex image

formation models.
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Chapter 10

Proximal Image Optimization

All the previous chapters in this dissertation have expressed imaging tasks as

optimization problems using Bayesian inference. For each of the presented tasks,

we have formulated an image formation model and image priors which model the

observations, given the latent image, and prior knowledge of that image, without

observations. Together, this leads to an optimization problem to find the most

likely latent image given the observations and priors. As demonstrated in this

dissertation, this technique generalizes across a wide range of applications, is

a principled approach, and often outperforms the state-of-the-art, even on well-

researched imaging problems as shown in the previous chapter.

However, while having many benefits compared to hand-engineered pipeline-

based approaches, developing an image formation model into an efficient solver is

not a straight-forward task. Different combinations of image priors and optimization

algorithms may lead to significantly different computational cost and quality for

different problems, as also demonstrated in this thesis, and implementing and testing

each combination is currently a time-consuming and error-prone process.

In this chapter, we present ProxImaL, a domain-specific language and com-

piler for image optimization problems that makes it easy to explore this vast space

of choices in the problem formulation and algorithm design. The language uses

proximal operators as the fundamental building blocks of a variety of linear and

nonlinear image formation models and cost functions, advanced image priors, and

noise models. Relying on a generalized mathematical representation for image
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Figure 10.1: As a domain-specific language and compiler, ProxImaL makes it
easy to prototype a range of inverse problems in imaging. For example,
we show ProxImaL code for deconvolution in the presence of Poisson-
distributed shot noise and the corresponding directed acyclic graph
(DAG, left, directionality from bottom to top) as well as the results
generated by the compiled optimization algorithm (center left). We
demonstrate state-of-the-art results for the applications shown here and
other imaging problems.

optimization problems, a mathematical compiler identifies structure in the objective.

The compiler intelligently chooses the best way to translate a problem formulation

and choice of optimization algorithm into an efficient solver implementation, ex-

ploiting the problem structure. For a large variety of applications, we show that

a few lines of ProxImaL code can generate solvers with drastically increased ac-

curacy, convergence, and computational efficiency compared to a naive black-box

optimization approach. In many cases, we can achieve multiple orders of magnitude

reduction in run-time.

10.1 Introduction
Computational Imaging is a research area with a wide variety of applications in pho-

tography, computer vision, robotics, scientific imaging, remote sensing, microscopy,

and computer graphics. Traditionally, image processing algorithms have been tai-

lored independently to each of these applications. For example, classical image

processing pipelines, discussed in Chapter 9, have to be adapted even for simple

208



modifications of the camera, such as changing the color filter array. In this disser-

tation, we have demonstrated that solving imaging tasks using optimization in a

Bayesian framework is a much more principled approach. Optimization-based imag-

ing generalizes across a wide range application areas, where the problems considered

in this dissertation only represent a small subset. Furthermore, it outperforms the

state-of-the-art in many classical applications. Thus, in theory, optimization-based

imaging makes it easy to develop image processing techniques for new domains,

that outperform hand-engineered algorithms.

In practice, however, developing image optimization methods can be difficult,

because there are many choices in the Bayesian approach from Section 2.8 and it is

hard to predict which framing will yield the best results. Different types of latent

images may be reconstructed, which each follow different prior distributions. For

example, the transient image recovery from Chapter 3 uses different priors than

the color image reconstruction from Chapter 9. However, even for the same latent

unknowns, different prior choices lead to varying performance. For example, the

chromatic aberration removal from Chapter 8 mostly relies on the cross-channel

prior and hence can achieve fast results without an additional costly patch-based

prior used in Chapter 9. A similar observation can be made for the likelihood

function. While an accurate noise model can improve the reconstruction quality

it may also lead to a significantly more costly optimization problem than with a

simple noise model. This is why we approximated noise as Gaussian distributed

in Chapters 3, 5, 4, 6, 8 and 9. Note, that a more accurate prior or likelihood does

not necessarily lead to better reconstruction quality, since the resulting optimization

problem may be hard to solve, e.g. an unstructured and large-scale non-convex prob-

lem. Even once prior and likelihood are defined, there is ambiguity in choosing the

operators and penalty functions from Section 2.8.3, which all yield equivalent objec-

tives, but significantly different solver implementations. In each of the Chapters 3,

5, 4, 6, 8 and 9 we have chosen one of many possible translations of the respective

problem into the form of Section 2.8.3. Finally, a specific proximal algorithm has

to be chosen for the solver. In Chapters 4 and 6 we have used the ADMM method,

Chapter 5 uses linearized ADMM, and Chapters 3, 8 and 9 implement Chambolle

and Pock’s method [178].

To further illustrate the various choices along the way to a solver implementation,
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consider the classic problem of deconvolution: we are given measurements j that

satisfy j = Bx + n, where B is a linear operator representing convolution with

a known kernel and x is an unknown image. Our goal is to recover x given j.

Following the Bayesian approach from Section 2.8 eventually leads to the MAP

estimate

minimize g(Bx− j) + Γ(x), (10.1)

where in general g is an error metric, and Γ is a penalty function that expresses prior

knowledge about the image x.

There are many reasonable choices for g and Γ. For instance, we might define g

as a sum-of-squares error, a Huber loss, or a Poisson penalty, based on the noise

n and expected efficiency of the solver with one of these penalties. The penalty

function Γ could be a constraint on the range of the values of x, a sparsity-inducing

gradient penalty such as total-variation, a non-local patch prior as in the BM3D-

based reconstruction shown in [166], or a combination of all these penalties. Each

of these choices have different reconstruction qualities and computational costs

associated. Furthermore, the non-local patch-based priors lead to a non-convex

optimization problem.

Once we have chosen g and Γ, we must choose an algorithm to use for solving

the optimization problem, each of them leading to different solvers subproblems.

Depending on g and Γ these subproblems can be computationally cheap to solve,

e.g. in the Frequency domain for this deconvolution example. Moreover, for each

algorithm there may be many ways to translate Problem (10.1) into that algorithm’s

standard form. The only way to know which algorithm and translation into standard

form works best for a problem is to try all of them.

In summary, finding an effective image optimization method thus requires ex-

ploring a large space of problem formulations, algorithms, and translations between

standard forms. Currently, researchers must develop a new solver implementation

for each point they explore in the space, which is a time-consuming and error-prone

process. Developing implementations is particularly challenging for image opti-

mization problems since these problems typically involve millions of variables and

can only be solved efficiently by exploiting problem structure.

In this chapter, we address these challenges by introducing ProxImaL, a Domain-
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Specific Language (DSL) for image optimization. The ProxImaL language allows

users to describe image optimization problems in a few lines of code using an

intuitive syntax that follows the math. Users write their problem using a fixed set of

mathematical functions, whose structure can be exploited to generate an efficient

solver. Most functions that occur in image optimization problems are included in

the language, and it is easy to add support for more. Compositions of functions are

limited by a set of simple rules that ensure the problems constructed by the user

match our standard mathematical representation.

DSLs for optimization have a long history, going back to GAMS [282] in the

1970s, and including DSLs specialized for convex optimization, such as CVX

[283], YALMIP [284], CVXPY [285], and Convex.jl [286]. However, in contrast

to ProxImaL, these approaches reliably solve modest size problems, with on the

order of 10, 000s of variables, but for image optimization problems with millions

of variables these solvers become completely infeasible due to their memory and

computational cost. ProxImaL overcomes the limitations of these approaches by

exploiting the domain-specific problem structure as described above.

The ProxImaL compiler takes the user’s problem description and choice of

algorithm and automatically generates a solver implementation. The compiler

considers a wide range of possible solver implementations and selects one based

on expert knowledge about how to best formulate problems for the chosen solver

algorithm. The user can also easily override the compiler’s default choice to try

out more implementations. The solver implementations generated by the compiler

are highly efficient because we created optimized code for the core mathematical

operations using Halide [287].

We demonstrate the utility of ProxImaL through applications to the image

processing pipeline, burst photography and denoising, deconvolution, and phase

retrieval. In many cases a few lines of ProxImaL code and the default solver im-

plementation generated by the ProxImaL compiler achieves state-of-the-art results,

often with a runtime under ten seconds.

In the following, we start by developing a simple language and mathematical

representation for image optimization problems that captures the problem structure

needed to generate an efficient solver. Next, we present a compiler that takes

the user’s problem description and choice of solver algorithm and automatically
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generates an efficient solver, intelligently choosing from the many translations

possible. Finally, we show that our framework can achieve state-of-the-art results

on a variety of image optimization problems while also producing highly efficient

solver implementations.

10.2 Representing Image Optimization Problems
We represent image optimization problems with the generalized objective from

Section 6.2.2. This objective generalizes well across different imaging problems

and proximal algorithms, as will be demonstrated in the following. To make this

chapter self-contained, we discuss the generalized objective here again. We define

an image optimization problem as a sum of penalties fi on linear transforms Kix

with x ∈ Rn being the unknown:

argmin
x

I∑
i=1

fi (Kix) with K =


K1

...

KI

 , (10.2)

where here K ∈ Rm×n is one large matrix that is composed of stacked linear

operators K1, . . . ,KI . The linear operator Ki ∈ Rmi×n selects a subset of mi

rows of Kx. This subset of rows is then the input to the penalties fi : Rmi → R.

We consider the class of linear image MAP problems. A discussed in Sec-

tion 2.8.3 such image optimization problems generally contain four components:

variables representing the latent image(s) to be reconstructed, a forward model of im-

age formation in terms of linear operators, a penalty based on the noise model, and

priors applied on linear transforms of the image(s). For example, consider a slightly

more complex version of the deconvolution problem (10.1) where the convolved

image Bx is subsampled by a known demosaicking pattern, which we represent

with the linear operator M. We formulate our problem using a sum-of-squares error

metric, g(x) = ‖MBx− j‖22, and the penalty function:

Γ(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x),
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where µ ∈ [0, 1], ∇ is the gradient operator, and:

I[0,∞)(x) =

0, if x ≥ 0

∞, otherwise.

The penalty function encodes a sparse gradient prior and the pixel values are

nonnegative. Problem (10.3) shows the full optimization problem and how we

represent it in the form of Problem (10.2).

xopt = argmin
x

‖MBx− j‖22 + Γ(x) (10.3)

Γ(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x) (10.4)

model:

f1(v) = ‖v − j‖22, K1 = MB

f2(v) = µ‖v‖1, K2 = ∇

f3(v) = (1− µ)‖v‖22, K3 = ∇

f4(v) = I[0,∞)(v), K4 = I

(10.5)

Note that there are other ways to represent the problem in our standard form.

For example, we could use:

f1(v) = ‖Mv − j‖22, K1 = B.

Note, that this ambiguity also existed in Chapters 3, 5, 4, 6, 8 and 9 where we

reformulated the respective objectives into the form of Section 2.8.3 is one of many.

For example, the choice of the operators from Eq. (9.7) in Chapter 9. A key insight

is that the choice of representation can drastically affect the performance of the

solver algorithms. We take advantage of this fact and provide strategies to find an

optimal reformulation.

The only assumption we make about the penalty functions f1, . . . , fI is that

they provide a black box for evaluating the function’s proximal operator; recall

Eq. (2.43) from Section 2.8.4. Many algorithms can be carried out using proximal

operators that cannot be carried out using the traditional approach of interacting

with functions by computing their gradients and Hessians [175].
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Similarly, the only assumption we make about each linear operator Ki is that it

provides a black box for evaluating the forward operator x→ Kix and the adjoint

operator z→ KT
i z. This is a useful abstraction because many linear operators that

arise in optimization problems from image processing are fast transforms, i.e., they

have methods for evaluating the forward and adjoint operator that are more efficient

than standard multiplication by the operator represented as a dense or sparse matrix.

Common fast transforms in image processing include the discrete Fourier transform

(DFT), convolution, and wavelet transforms; see [288] for many more examples.

For simplicity, we assume that all linear operators are maps from a multidimensional

real space Rn1×···×nk to another multidimensional real space Rm1×···×m` . Complex-

valued linear operators such as the DFT are represented as real valued operators

using the standard embedding of a complex vector in Cn1×···×nk as a real vector in

R2n1×···×nk .

All solver algorithms in ProxImaL are proximal, matrix-free solvers which only

use these black boxes for the linear operators and penalty functions. ProxImaL

currently supports the Chambolle-Pock algorithm, ADMM, linearized ADMM,

and half-quadratic splitting. These algorithms can solve Problem (10.2) when the

functions f1, . . . , fI are convex.

Much state-of-the-art image optimization makes use of nonconvex penalty func-

tions; however, in applications ranging from denoising and deconvolution to burst

reconstruction and registration. Patch-based approaches and hard thresholding in

particular have been very successful for image reconstruction problems. Surpris-

ingly, the same proximal, matrix-free solvers that work for convex problems yield

good results for certain problems that include nonconvex penalty functions, as

shown in the previous Chapter 9 and [166, 289]. There is often no guarantee that

the algorithms will converge (see conditions in [183] for exceptions). Furthermore,

there is no guarantee that they find the optimal x, but empirically for many problems

with nonconvex penalties the algorithms do produce good results in a reasonable

number of iterations. We therefore allow the penalty functions f1, . . . , fI to be

nonconvex, even though by doing so we sacrifice guarantees of optimality. For

convex problems, we run the solver until convergence criteria are satisfied, but for

nonconvex problems we follow the same approach as [289] and return the iteration

with the lowest objective value after a fixed number of iterations.
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Problem(ProxFn, ...): Defines a ProxImaL problem as an objective made up of the sum
of a list of proxable functions.

ProxFn(LinOp): The base type of a proxable function, applied to a linear expression.
Table 10.2 shows examples from the set of predefined proxable
functions.

LinOp(...): The base type of a linear expression, each of which has zero or
more linear expressions as children. Table 10.3 shows examples
from the set of predefined proxable functions.

Variable(w,h,...): Defines a set of w × h× . . . unknowns as a single logical multi-
dimensional array variable. A problem may use multiple logical
variables of different size and shape, which together form its
complete set of unknowns x.

Table 10.1: Core primitives in the ProxImaL language.

10.3 The ProxImaL Language
ProxImaL asks users to describe image optimization problems using a simple DSL,

embedded in Python, which corresponds directly to the model in Problem (10.2).

The basic language primitives are listed in Table 10.1. At the highest level, the user

defines a Problem as a list of applications of proxable functions, or functions with a

known proximal operator, instantiated as ProxFn objects. Each ProxFn term applies

to a linear expression (LinOp), and each linear expression is an arbitrary sub-DAG

of linear expressions, ultimately terminating in variable references. Variables are

defined as multidimensional arrays (e.g., w × h× 3 for a color image). A problem

can use an arbitrary number of logical variables, each referenced arbitrarily within

the linear expression of any of the proximal terms. Each logical variable refers

to individual subcomponents of the vector of all stacked unknowns, i.e., x from

Problem (10.2). Variable references make up the leaves of the linear expression

DAG, referring to individual components of the unknowns.

Operator overloading translates alpha*expr and expr + expr into the LinOps

scale(alpha, expr) and sum(expr, expr), respectively. Here alpha is a scalar

constant and expr may be any ProxFn term or linear expression, though ProxFn

terms cannot be multiplied by negative constants.
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Figure 10.2: The DAG representation of Problem (10.3). Directionality from
bottom to top.

For example, Problem (10.3) can be written in ProxImaL as:

x = Variable(300, 300, 3)
data_term = sum_squares( subsample( conv(x, psf) ) - input )
grad_term = mu * norm1( grad(x) ) + (1-mu) * sum_squares( grad(x) )
objective = data_term + grad_term + nonneg(x)

p = Problem( objective )

Figure 10.2 shows how ProxImaL translates the above code into a DAG representa-

tion of the problem. The problem can be solved by calling p.solve(solver="ADMM"),

where the solver keyword specifies what solver algorithm to use, in this case ADMM.

10.3.1 Proxable Functions

ProxImaL provides a library of proxable functions that commonly occur in image

optimization problems. Table 10.2 lists several examples from the library.

Every proxable function f : Rn → R defined in ProxImaL can be parametrized

to express any function of the form:

ν(x) = αf(βQx− j) + 〈c,x〉+ γ〈x,x〉,

where x ∈ Rn is a variable, α > 0, β ∈ R, j ∈ Rn, c ∈ Rn and γ > 0 are constants,

and Q ∈ Rn×n is an orthogonal matrix.
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sum_squares(e): Defines the squared `2-norm ‖e‖22 for any linear expression e.

norm1(e): Defines an `1-norm ‖e‖1.

poisson_norm(e, b): Defines a maximum-likelihood denoiser that acts as a penalty
function. Not a “formal” norm.

patch_NLM(e, ...): Patch prior for image self-similarity.

group_norm1(e, dims): Flattens the dimensions dims of e with an `2-norm, then computes
an `1-norm of the result. Useful to describe sparse norms over
vector-valued quantities.

nonneg(e): Defines a constraint that e is non-negative (0 cost if so,∞ other-
wise).

Table 10.2: Example proxable functions provided by ProxImaL .

The proximal operator of ν can be evaluated using only the proximal operator of f .

It is straightforward to show that:

proxτν(v) = QT
(
proxτ̂ f (v̂) + j

)
/β,

where τ̂ = αβ2τ
1+2γτ and v̂ = β

1+2γτQ(v − τc)− j.

When f is separable, i.e., f(v) =
∑n

i=1 fi(vi) for proxable scalar functions

f1, . . . , fn, then we can replace β in the parametrization with a diagonal matrix

∆ ∈ Rn×n. Proxable functions may also accept multidimensional inputs, e.g.,

f : Rn1×···×nk → R. In that case the parametrized form of the function is defined

similarly, with j, c ∈ Rn1×···×nk and Q an orthogonal linear map. In the ProxImaL

language, each of these additional parameters is passed as an optional keyword

argument to the proxable function constructor (e.g., alpha=..., beta=...). The

ProxImaL compiler takes advantage of the parametrized form internally to rewrite

optimization problems.

10.3.2 Linear Operators

ProxImaL provides a library of linear operators that include standard operations

like addition and multiplication by a constant, as well as common image processing

operations. Table 10.3 lists several examples from the library. Including linear

operators for image processing operations like convolution and warp in the language,
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conv(e, k): Convolves the subexpression e with the kernel k.

subsample(e, steps): Extracts every stepsi pixel along axis i, starting with the pixel
stepsi-1.

mul_elemwise(weight, e): Element-wise multiplication with a fixed constant weight array.

scale(c,e): Scale e by fixed constant scalar c.

sum(e1,e2, ...): Sums input expressions into a single linear expression.

vstack(e1, e2, ...): Vectorizes and stacks a list of input expressions into a single
linear expression.

grad(e): Computes the gradients of e, by default across all n of its
dimensions.

warp(e, H): Interprets e as a 2D image and warps it using the homography
H with linear interpolation.

mul_color(e, C): Performs a blockwise 3 × 3 color transform using the color
matrix C, or the predefined opponent (opp) and YUV (yuv)
color spaces.

x: Variable references make up the leaves of the linear expr. DAG.

Table 10.3: Example linear operators provided by ProxImaL .

rather than having the user write these as multiplication by a dense or sparse matrix,

is crucial to generating efficient solver implementations. The high-level descriptions

of the linear operators can be exploited by a matrix-free solver to evaluate the

operators efficiently, as discussed in [290].

Compositions of linear operators are represented as expression DAGs. Fig-

ure 10.3 shows the DAG for the linear operators in Problem (10.3) stacked into

a single operator K, as in Problem (10.2). The DAG structure makes it easy to

evaluate the composition. We simply visit the nodes in topological order, reading

the input to each node’s linear operator from the node’s incoming edges, applying

the operator, and writing the outputs to the node’s outgoing edges. The overall input

for the composition is the input to the variable nodes, and the final output is the

output of the root node.

For example, to evaluate the composition in Figure 10.3 on an input x, we

first evaluate the variable node by reading x as input and writing x to the node’s

outgoing edges. Next, we evaluate the B and∇ nodes in any order. We can evaluate
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Figure 10.3: The DAG for the stacked linear operators in Problem (10.3).

the M node any time after we evaluate the B node. We finish by evaluating the

vstack node to get the final output.

We can evaluate the adjoint of the composition just as easily. We follow the

same algorithm as for forward evaluation, but visit the nodes in reverse topological

order (starting at the root and ending with the variable nodes), reading from the

node’s outgoing edges, evaluating the adjoint of the node’s linear operator, and

writing the result to the node’s incoming edges.

Even for the simple example in Figure 10.3, there are many possibilities for

making the forward and adjoint evaluation algorithms more efficient. The B and

∇ nodes could be evaluated in parallel, and the graph could be rewritten so the

∇ operator is only evaluated once. See [288] for a detailed discussion of possible

optimizations, which we are planning to add in our implementation.

Extensibility ProxImaL also supports extending the set of proxable functions

and linear operators beyond the built-ins provided. A linear operator extends the

LinOp interface and must define forward and adjoint methods, which consume

arrays of input values to produce arrays of output values. Linear operators may

extend additional optional methods that provide information about how to invert

the operator, as discussed in Section 10.6. A proxable function extends the ProxFn

interface and must define the proxable operator prox(tau, v).
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Figure 10.4: The ProxImaL compiler pipeline.

10.4 Compiling Problems to Efficient Solvers
One of the main contributions in ProxImaL is a compiler that takes a problem

specification and choice of algorithm and automatically generates an efficient solver

implementation. In this section, we describe the stages of the compiler. Figure 10.4

shows an overview of the compiler pipeline. We use Problem (10.3) as a running

example throughout our discussion.

10.4.1 Rewriting Problems

The first stage of the compiler attempts to rewrite the optimization problem in a

form better suited for the solver algorithm. The standard form in Problem (10.2) is

not unique. Any given optimization problem written in the form of Problem (10.2)

can be rewritten as many equivalent problems also in the same form. Our compiler

considers two kinds of rewrites: absorbing linear operators into proxable functions

and merging proxable functions.

Absorbing Linear Operators Concretely, given a proxable function f composed

with a composite linear operator K represented as an expression tree e, absorbing

a linear operator means removing the root linear operator K̃ of e and replacing f

with the composition f ◦ K̃. Absorbing a linear operator is only possible when the

root of the expression tree has exactly one child.

Whether absorbing a linear operator is a good idea depends on whether the
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Figure 10.5: Absorbing a linear operator. Directionality from bottom to top.

composition f ◦ K̃ has an efficient proximal operator. For example, consider the

proxable function f1(v) = ‖v − j‖22 and linear operator K1 = MB from Problem

(10.3). We can absorb a linear operator by replacing f1 with f̃ = f1 ◦M and K1

with K̃ = B Figure 10.5 shows the expression trees for f1 ◦K1 and f̃ ◦ K̃. In this

case, f̃ has the proximal operator

proxτ f̃ (v) =

(
1

2τ
I + MTM

)−1

(MT j + v/
√

2τ),

which can be computed efficiently because MTM is diagonal.

We could absorb a linear operator again by replacing f̃(v) = ‖Mv − j‖22 and

K̃ = B with f̂(v) = ‖MBv − j‖22 and K̂ = I. In this case, the proximal operator:

proxτ f̂ (v) =

(
1

2τ
I + MTBTBM

)−1

(BTMT j + v/
√

2τ),

is not as efficient. We could compute the proximal operator using an iterative

method such as the conjugate gradient method (CG) [291] or LSQR [292], which

only interact with B and M by evaluating the linear operators and their adjoints.

However, such iterative methods are more computationally expensive and less

accurate than the methods for computing the proximal operator of f1 or f̃ .

Merging Proxable Functions Merging proxable functions means replacing two

proxable functions fi and fj that are composed with the same linear operator (i.e.,
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Ki = Kj) with a new function g(v) = fi(v) + fj(v). In Problem (10.3), we can

merge the proxable functions f2(v) = µ‖v‖1 and f3(v) = (1− µ)‖v‖22 because

they are both composed with the linear operator K2 = K3 = ∇. As with absorbing

linear operators, merging proxable functions is only a good idea if the new function

still has an efficient proximal operator. Note that our conditions for merging

functions also include the common case when both functions are parametrized

forms of the same function. We exploit here the general formulation of a proxable

function from Section 10.3.1. For example, two functions fa(v) = µ‖v‖2 and

fb(v) = ρ‖Qv‖22, where µ, ρ > 0 and Q is an orthogonal matrix, turn out to

be parametrizations of the `2-norm using the general definition. In addition, this

example demonstrates that merging functions and absorbing operators work together

symbiotically: the operator Q can be absorbed to make Ka = Kb. In general the

parametrized form provides many opportunities to absorb linear operators and

merge proxable functions into efficient compound proxable functions. In our

example (10.3) the merged function g(v) = µ‖v‖1 + (1− µ)‖v‖22 has an efficient

proximal operator because it is a parametrized form of f̃(v) = ‖v‖1 discussed

previously in Section 10.3.1.

Default Choices Absorbing linear operators and merging proxable functions gener-

ally simplifies the optimization problem and makes it easier to solve. At a minimum,

absorbing linear operators makes multiplication by the overall linear operator K

from Problem (10.2) more efficient.

Our compiler by default iterates over the proxable functions, and for each one

repeatedly absorbs linear operators until doing so would substantially increase the

cost of the proximal operator. The compiler then considers all pairs of proxable

functions and greedily merges them whenever it can do so and still have an efficient

proximal operator. In the context of Problem (10.3), our compiler would absorb the

linear operator M but not the linear operator B and would merge the two functions

α‖∇x‖1 and (1− α)‖∇x‖22.
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10.4.2 Problem Splitting

The second step in the compilation is problem splitting. The optimization algorithms

in ProxImaL are operator splitting methods that solve problems in the standard

form:
minimize g(x) + h(z)

subject to Kx = z,
(10.6)

where x ∈ Rn and z ∈ Rm are variables, K ∈ Rm×n is a known linear operator,

and g : Rn → R and h : Rm → R have known proximal operators. Some of the

algorithms in fact allow a more general standard form with a linear constraint of

the form Kx + Bz = c, but our compiler does not currently take advantage of this,

though future, more sophisticated versions of the compiler will.

The compiler expresses g and h as:

g(x) =
∑
fi∈Ω

fi(x), h(z) =
∑
fi∈Ψ

fi(z),

where Ω and Ψ are a partition of the set of functions {f1, . . . , fI} from Problem

(10.2). Problem splitting means choosing Ω and Ψ.

The splitting Ψ = {f1, . . . , fI} is always valid for the algorithms in ProxImaL,

so the compiler always has at least one choice of splitting. The functions fi ∈ Ω

must have the identity as their linear operator, i.e., Ki = I. This may seem unduly

restrictive, but recall that the compiler tries to absorb linear operators, which means

that penalty functions that began with complex Ki may end up with Ki = I by the

problem splitting stage. Just because a function has the identity as its linear operator

does not mean including it in Ω is a good idea. Each algorithm has its own logic for

choosing when to include a function in Ω.

10.4.3 Problem Scaling

The third stage of the compiler is problem scaling. Problem scaling replaces Problem

(10.6) with the equivalent problem:

minimize g(Ax̂) + h(B−1ẑ)

subject to BKAx̂ = ẑ,
(10.7)
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where A ∈ Rn×n and B ∈ Rm×m are invertible and the new variables x̂ ∈ Rn and

ẑ ∈ Rm are related to x and z in Problem (10.6) via:

x = Ax̂, z = B−1ẑ.

Problem scaling can substantially affect the number of iterations our solver

algorithms take to converge [293, 294]. Our compiler by default sets:

A =
1√
‖K‖2

I, B =
1√
‖K‖2

I,

where ‖K‖2 is the spectral norm, or maximum singular value of K. We use the

implicitly restarted Arnoldi method to compute ‖K‖2 using only multiplication by

K and KT [295].

10.5 Proximal Algorithms
The final stage of our compiler is generating (or calling) an optimization algorithm.

This is a major task in the overall solver development; recall the derivations by

hand in Chapters 3, 5, 4, 6, 8 and 9. We provide a detailed description of the

optimization methods in this section. ProxImaL currently provides the Chambolle-

Pock method, ADMM, linearized ADMM, and half-quadratic splitting. We describe

the algorithms of these four methods, discuss convergence and stopping criteria,

and how our compiler chooses default problem splittings and hyper-parameters.

Chambolle-Pock Implementation The pseudo-code for the Chambolle-Pock algo-

rithm is given in Algorithm 5. Our compiler uses the default τ = σ = 1/‖K‖2,

θ = 1, x0 = 0, and z0 = 0. With default scaling, we have ‖K‖2 = 1.

Our compiler only allows at most one penalty function fi to be included in

Ω, and the operator Ki must be the identity. The restriction on Ω ensures that

the algorithm can be carried out using known proximal operators. The compiler’s

default problem splitting is to include one penalty function in Ω whenever possible.

For the example Problem (10.3), the penalty function f4(v) = I[0,∞)(v) would be

included in Ω and all other penalty functions would be in Ψ.
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Algorithm 5 Chambolle-Pock to solve Problem (10.2)

1: Initialization: στ‖K‖22 < 1, θ ∈ [0, 1], (x0, z0), x̄0 = x0.
2: for k = 1 to V do
3: z

k+1/2
j = zkj + σKjx̄

k ∀j ∈ Ψ

4: zk+1
j = z

k+1/2
j − σproxfj/σ

(
z
k+1/2
j /σ

)
∀j ∈ Ψ

5: if Ω = {fi} then
6: xk+1 = proxτfi

(
xk − τKT zk+1

)
7: else
8: xk+1 = xk − τKT zk+1

9: end if
10: x̄k+1 = xk+1 + θ

(
xk+1 − xk

)
11: end for

Line 4 of Algorithm 5 uses Moreau’s Identity [270]. We will show later that the

Chambolle-Pock algorithm and linearized ADMM from further below are equivalent

to an augmented/preconditioned version of ADMM [178, 296], described next.

ADMM Implementation The pseudo-code for ADMM is given in Algorithm 6.

Our compiler uses the default hyper-parameters ρ = 1, α = 1, x0 = 0, z0 = 0,

and λ0 = 0. The choice of problem splitting in ADMM is more complex than in

Chambolle-Pock, since computing step 3 requires more than the proximal operators

of the fi ∈ Ω. Our compiler only allows quadratic functions to be included in Ω

because then step 3 reduces to solving a least squares problem.

We can use iterative methods such as CG and LSQR to solve the least squares

problem using only multiplication by the linear operators and their adjoints. We use

Algorithm 6 ADMM to solve Problem (10.2)

1: Initialization: ρ > 0, α ∈ (0, 2), (x0, z0, λ0).
2: for k = 1 to V do
3: xk+1 = argmin

x

∑
i∈Ω fi(x) +

∑
j∈Ψ(ρ/2)‖Kjx− zkj + λkj ‖22

4: zk+1
j = prox fj

ρ

(Kj(αx
k+1
j + (1− α)xkj ) + λkj ) ∀j ∈ Ψ

5: λk+1
j = λkj + Kj

(
αxk+1

j + (1− α)xkj

)
− zk+1

j ∀j ∈ Ψ

6: end for
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several tricks to accelerate these iterative methods. First, we initialize the iterative

methods with the previous solution xk. Second, we initially solve the least squares

problem with low accuracy and increase the required accuracy each iteration. This

approach keeps the number of linear operator evaluations in the iterative methods

relatively constant across iterations, since the previous solution xk is increasingly

close to the next solution xk+1 [297].

Linearized ADMM Implementation The pseudo-code for linearized ADMM is

given in Algorithm 7. Our compiler uses the default hyper-parameters ρ = 1/‖K‖2,

µ = ‖K‖2, x0 = 0, z0 = 0, and λ0 = 0. With the default problem scaling, we have

‖K‖2 = 1. In linearized ADMM the terms fi of g =
∑

i∈Ω fi can be any function

with an efficient proximal operator. The default splitting into Ω and Ψ is to include

all quadratic functions in Ω.

Algorithm 7 Linearized ADMM to solve Problem (10.2)

1: Initialization: µ > ρ‖K‖22, (x0, z0, λ0).
2: for k = 1 to V do
3: xk+1 = prox g

µ
(xk − (ρ/µ)KT (Kxk − zk + λk))

4: zk+1
j = prox fj

ρ

(Kjx
k+1
j + λkj ) ∀j ∈ Ψ

5: λk+1
j = λkj + (Kjx

k+1 − zk+1
j ) ∀j ∈ Ψ

6: end for

Linearized ADMM is a natural variant of standard ADMM. Recall that ADMM

applied to Problem (10.2) solves the optimization problem

minimize g(x) + (ρ/2)‖Kx− zk + λk‖22

as a subroutine. In linearized ADMM we replace the term

(ρ/2)‖Kx− zk + λk‖22

with its linearization plus quadratic regularization:

ρKT (Kx− zk + λk) + (µ/2)‖v − vk‖22.
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The Chambolle-Pock algorithm is in fact linearized ADMM applied to the dual

of Problem (10.2) [178]. Chambolle-Pock could therefore be implemented in

ProxImaL as a symbolic transformation that converts the problem representation

into its dual, combined with the linearized ADMM implementation. The dual

problem involves the conjugates of f1, . . . , fI from Problem (10.2) (see Problem

(10.12)). The proximal operator for the conjugate f∗i can be evaluated using the

proximal operator for fi and Moreau’s Identity [270].

Half-Quadratic Splitting Implementation The pseudo-code for half-quadratic split-

ting is given in Algorithm 8. Our compiler uses the default hyper-parameters ρ0 = 1,

α = 2, ρmax = 28, x0 = 0, and z0 = 0. Our compiler only allows quadratic func-

tions to be included in Ω because then step 3 reduces to solving a least squares

problem. The default splitting into Ω and Ψ is the same as for ADMM.

Algorithm 8 Half-Quadratic Splitting to solve Problem (10.2)

1: Initialization: ρ0 > 0, ρmax > 0, α > 1, (x0, z0).
2: for k = 1 to V do
3: xk+1 = argmin

x

∑
i∈Ω fi(Kix) + ρk

∑
j∈Ψ ‖Kjx− zj‖22

4: zk+1
j = prox fj

ρk

(Kjx
k+1
j ) ∀j ∈ Ψ

5: ρk+1 = max{ρk ∗ α, ρmax}
6: end for

On the first glance, the half-quadratic splitting (HQS) implementation looks

similar to our ADMM implementation. However, the key difference is the Lagrange

multipliers in ADMM have been eliminated in HQS. The use of the Lagrange

multipliers in ADMM allows to have a fixed ρ. In HQS, by contrast, we need to

scale ρ → ∞. This scaling can cause both the quadratic step in line 3 and the

proximal operator step in line 4 to be unstable. Thus, for the HQS method to be

stable, it is crucial to minimize the number of splitting variables and find numerically

accurate solutions to both steps (which is not necessary for ADMM).

Direct Methods Often the least squares problem can be solved using a simple direct

method, which makes the solver implementation much faster and more reliable. For

227



example, recall that after the rewriting stage our example problem (10.3) has the

form:

xopt = argmin
x

‖MBx− j‖22 + Γ(x) (10.8)

Γ(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x) (10.9)

model:

f1(v) = ‖Mv − j‖22, K1 = B

f2(v) = µ‖v‖1 + (1− µ)‖v‖22, K2 = ∇

f3(v) = I[0,∞)(v), K3 = I

(10.10)

If we choose the problem splitting:

Ω = ∅, Ψ = {f1, f2, f3},

and consider solving it using ADMM, then step 3 of ADMM becomes:

xk+1 = argmin
x

∥∥∥∥∥∥∥
 B

∇
I

x− zk + λk

∥∥∥∥∥∥∥
2

2

= (BTB +∇T∇+ I)−1(BT +∇T + I)(zk − λk).

The linear operators B,∇, and I are convolutions and thus diagonal in the frequency

domain. Note that arbitrary boundary conditions can be supported by padding

and masking the observations [242]. Given the convolutional operations, we can

compute a diagonal matrix ∆ ∈ Cn×n for which:

(BTB +∇T∇+ I)−1 = Φ−1∆Φ,

where F ∈ Cn×n is the DFT matrix. The upshot is that we can solve the least

squares problem exactly in O(n log n) operations using the FFT.

Our compiler includes a system for automatically detecting when a linear

operator K has a Gram matrix KTK that is diagonal in the spatial or frequency

domain and obtaining the Gram matrix’s diagonal representation; see Section 10.6

for details. This allows the compiler to automatically exploit the fast direct method.
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Default Splitting The compiler uses the following procedure to choose the problem

splitting. We consider each subset S of quadratic penalty functions in the problem.

We check whether for Ω = S the least squares problem (step 3 for ADMM) has a

Gram matrix that is diagonal in the spatial or frequency domain, in which case we

can solve the problem with a fast direct method. We then set Ω to be a maximal

cardinality subset for which the Gram matrix is diagonal. If there is no subset for

which the Gram matrix is diagonal, we include all the quadratic penalty functions

in Ω and solve the least squares problem using CG.

One might be concerned about the runtime of this method since the number

of subsets is exponential in the number of quadratic penalty functions. However,

hardly any problems will have more than a few (often one or two) quadratic penalty

functions, and our method for checking whether the Gram matrix is diagonal is

linear time in the number of linear operators.

For the rewriting of the example Problem (10.3) chosen by our compiler, given

in Equation (10.10), our method would choose Ω = ∅ and solve the least squares

problem directly. For the original, naive formulation in Equation (10.5) our method

would choose Ω = {f1, f3} and use CG to solve the least squares problem. The

choices made by our compiler can thus dramatically improve the performance of the

solver implementation over a naive approach that always uses an iterative method or

does not consider rewrites. Problem (10.3) may seem contrived, but solving the least

squares problem with a direct method when possible is necessary for our system to

be competitive with specialized solvers, and in fact was sufficient for state-of-the-art

performance on a demosaicking problem; see Section 10.8 for details.

Manual Options We allow the user to override any of the default compiler choices.

The user can manually rewrite the problem by changing the problem definition,

choosing the problem splitting and least squares solver, and setting the problem

scaling and algorithm hyper-parameters. An important example of where manual

input is helpful is specifying the starting iterates in the solver algorithm (e.g.,

(x0, z0) for Chambolle-Pock). Starting from a good iterate can dramatically reduce

the number of solver iterations needed and the quality of the solution for nonconvex

problems as shown in the previous Chapter 9.
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Empirical Validation Figure 10.6 shows that the choices made by our compiler

can dramatically reduce the solver runtime. We list the average runtime for a decon-

volution problem regularized by total variation (TV) for each of the four algorithms

in ProxImaL: Chambolle-Pock (CP), ADMM, linearized ADMM (LADMM), and

half-quadratic splitting (HQS). Note that HQS does not have convergence guar-

antees for arbitrary convex problems fitting into Problem (10.2), but only for a

subset [298], however, including common problems such as the considered TV-

regularized deconvolution. Each of the four algorithms is tested with and without

the compiler’s intelligent rewritings and splitting, as well as with and without the

compiler automatically replacing CG with a fast direct method by detecting diagonal

matrices. Further, we evaluate implementations of the TV in the spatial domain

(Figure 10.6 left) and as a multiplication in the Fourier domain (Figure 10.6 right).

The latter case assumes circular boundary conditions but can sometimes be faster.

Assuming circular boundary conditions slightly modifies the optimization prob-

lem being solved, but we evaluate all our results using the original objective, with

non-circular boundary conditions. All algorithms are run until convergence to the

exact same objective function value. The results show that the choices made by the

compiler for all algorithms improve the runtime, often substantially. Please note that

the absolute runtime depends in general on the algorithm-specific implementation

and parameters, including effects of potentially adaptive parameter schedules as for

example discussed in [299]. However, Figure 10.6 shows that independent of the

algorithm choice, the choice made by our compiler significantly improves runtime.

10.5.1 Stopping Criteria

There are many possible ways to determine when the solver algorithms have con-

verged, and different choices may work better for different problems. A reasonable,

general purpose stopping criteria is that proposed in [174], in which the algorithm

terminates when the norms of the primal residual rk+1 = Kxk+1 − zk+1 and dual

residual sk+1 = ρKT (zk+1 − zk) fall below certain threshholds. The threshhold

for the norm of the primal residual is given by

εpri =
√
mεabs + εrel max{‖Kxk‖2, ‖zk‖2},
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Figure 10.6: Runtime (in seconds) of a TV-regularized deconvolution problem
in ProxImaL. When the direct parameter is on, the ProxImaL compiler
automatically replaces CG with a fast direct method. The split op-
tion further indicates whether the compiler’s intelligent rewriting and
splitting are used. We evaluate four different algorithms that are imple-
mented in ProxImaL. Note that independent of the algorithm choice,
our compiler choice improves runtime. We evaluate two implementa-
tions of the TV prior: a finite differences implementation in the spatial
domain (top) and convolutional implementation (bottom).
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where εabs and εrel are chosen by the user. By default ProxImaL uses εabs = εrel =

10−3. Similarly, the threshhold for the norm of the dual residual is given by

εpri =
√
nεabs + εrel‖KTλk‖2.

This criterion is used in our framework for ADMM, LADMM and PC. Note

that all of these methods are variants of the ADMM method [178]. HQS suffers

from instabilities for ρ→∞. Hence, in practice often a stopping criterion is used

that limits ρ, see [160]. In our implementation we use default value of ρmax = 28.

To add robustness for small values of α we add a progress-based stopping criterion

‖xk+1 − xk‖2 + ‖zk+1
j − zkj ‖2 < nεhq,

where our default value for εhq is 1e− 6. Finally, we allow the user to change

all parameters of the stopping criteria for each of the implemented methods. In

practice often an estimate of modest accuracy, but low computational cost, might be

desired.

10.5.2 Convergence Properties

Finally, we discuss the conditions under which the solver algorithms in ProxI-

maL converge. We assume that problem (10.2) has a global minimizer and observes

certain regularity conditions. Formally, we assume that the problem

minimize
∑I

i=1 fi (zi)

subject to Kix = zi, i = 1, . . . , I,
(10.11)

is feasible and bounded below, with optimal value equal to the optimal value of its

Lagrange dual
maximize −

∑I
i=1 f

∗
i (λi)

subject to KT
i λi = 0, i = 1, . . . , I.

(10.12)

Under our assumption on problem (10.2), our implementation of Chambolle-

Pock is guaranteed to converge to a global minimizer of problem (10.2) if the

functions f1, . . . , fI are proper, convex, and lower semicontinuous. The hyper-

parameters τ and σ must be chosen such that στ‖K‖22 < 1 [178].
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Our implementation of ADMM is guaranteed to converge to a global minimizer

of problem (10.2) if the functions f1, . . . , fI are closed, proper, and convex. Any

choice of ρ > 0 is valid [174]. Variations of ADMM where we use a relaxation

parameter α ∈ (0, 2) or compute the variable updates inexactly still guarantee

convergence to a global minimizer under reasonable conditions [300].

Our implementation of linearized ADMM (and hence also the Chambolle-Pock

method) is guaranteed to converge to a global minimizer of problem (10.2) if the

functions f1, . . . , fI are closed, proper, and convex. The hyper-parameters ρ and

µ must be chosen such that ρ > 0 and µ > ρ‖K‖22 [228]. The convergence

analysis for our implementation of half-quadratic splitting is more complex than for

the other algorithms in ProxImaL . When Ω = {f1, . . . , fI}, and the x-update is

computed exactly, convergence to a global minimizer is guaranteed for ρmax =∞
[301, Chap. 17]. If the functions f1, . . . , fI are closed, proper, and convex, and

K1, . . . ,KI are full rank, then for constant ρk (i.e., , α = 1), our implementation

converges to a global minimizer of the problem

minimize
∑I

i=1 fi (zi) + ρk‖Kix− zi‖22,

where the equality constraints have been relaxed [302]. In the fully general scenario

where f1, . . . , fI are convex but Ψ 6= ∅ and ρk increases, our implementation is

a heuristic, but one used successfully in applications, and strongly motivated by

theoretical analysis [303].

For our implementation of Half-Quadratic Splitting, convergence results for

a large class of objectives have been shown in [298]. However, in general con-

vergence can not be guaranteed (for objectives not in this class). Nevertheless, in

practice HQS can provide good results even for problems where convergence is not

guaranteed [160].

We have only discussed convergence when problem (10.2) is convex. Recent

work has shown, however, that for nonconvex problems under certain conditions

Chambolle-Pock, ADMM, linearized ADMM, and variants of half-quadratic split-

ting are guaranteed to converge to a stationary point [184–186, 298].

ProxImaL does not force the user to obey the restrictions on the functions

f1, . . . , fI and the algorithm hyper-parameters needed to guarantee convergence.
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Many state-of-the-art results in image optimization involve applying proximal

algorithms to nonconvex problems for which it is difficult to provide guarantees

about convergence (e.g., [10, 160]).

10.6 Analysis of Linear Systems
In this section, we explain our method for automatically detecting when a least

squares problem:

minimize ‖Kx− j‖22, (10.13)

can be solved using a fast direct method. Specifically, our system detects when the

Gram matrix KTK is diagonal in the spatial or frequency domain and computes its

diagonal representation.

Diagonal KTK We first explain how we determine when KTK is diagonal. We

use the subroutines is_diag and is_gram_diag. These subroutines take as argument

an expression DAG e of linear operators. The subroutine is_diag returns true if the

composite linear operator Ke defined by e is diagonal, and false otherwise. The

subroutine is_gram_diag returns true if KT
eKe is diagonal, which is always true if

Ke is diagonal, but is also true for non-diagonal Ke such as:

Ke =

[
I

0

]
,

which represents zero-padding. The output of the subroutines depends on the type

of e’s root node n and the results of applying the subroutines to the subDAGs rooted

at n’s children. Table 10.4 gives examples of the logic for various linear operator

types. Recall that leaves of an expression DAG are always variable nodes, so the

behavior for variables is the base case.

We simply apply is_gram_diag to the expression DAG representing K in Prob-

lem (10.13) to determine whether KTK is diagonal. To find the value of KTK,

we use the get_diag subroutine, which takes as argument a variable node v and

an expression DAG e for which is_gram_diag(e) returns true. The subroutine

returns the diagonal of (KT
e,vKe,v)

1/2, where Ke,v is the linear function of the
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type subroutine logic

x (variable) is_diag: Always true.

is_gram_diag: Always true.

mul_elemwise is_diag: True if is_diag is true for children.

is_gram_diag: True if is_diag is true for children.

subsample is_diag: Always false.

is_gram_diag: True if is_diag is true for children.

sum is_diag: True if is_diag is true for children.

is_gram_diag: True if is_diag is true for children.

vstack is_diag: Always false.

is_gram_diag: True if is_gram_diag is true for children.

Table 10.4: Logic for the is_diag and is_gram_diag subroutines.

variable v defined by e. The full diagonal of (KT
eKe)

1/2 is obtained by evaluating

get_diag(v, e) for all variable nodes v in e and stacking the results into a single

vector.

The output of get_diag depends on e’s root node n and the results of applying

get_diag to the subDAGs rooted at n’s children. The parent call passes its variable

node argument to the recursive calls. The output of get_diag(v, e) when e is a

variable node is a vector of ones if e = v and a vector of zeros otherwise. For other

linear operators the logic of get_diag is straightforward and does not depend on the

variable node argument.

Diagonal KTK in the Frequency Domain We take an analogous approach to deter-

mine whether KTK is diagonal in the frequency domain and, if so, get its diagonal

representation. We use the subroutines is_fdiag, is_gram_fdiag, and get_fdiag,

which are the same as is_diag, is_gram_diag, and get_diag, respectively, except

defined for the frequency domain.

Extensions Our approach easily generalizes to linear operators K for which KTK

is block diagonal in the spatial or frequency domain. For example, this includes

color transformations in the image formation model. We would simply extend
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is_diag, is_gram_diag, and their counterparts for the frequency domain to track the

dimensions of the blocks on the diagonal. When the blocks are small, it would be

worthwhile to factor the blocks and find the solution x? to Problem (10.13) directly

via x? = K†j. A further extension will determining whether KTK is banded.

10.7 Implementation
We implemented ProxImaL as a Python library with syntax inspired by CVXPY [285].

Each solver algorithm is implemented as a Python driver that schedules and eval-

uates the series of proximal and linear operators which make up the objective, as

split and scheduled by our compiler logic. Our implementation only evaluates

one operator at a time; a more sophisticated approach would evaluate multiple

operators simultaneously. The proximal and linear operators are evaluated using a

combination of NumPy and Halide-generated parallel and vectorized x86 code. We

are planning to extend our framework to compile into Halide-generated GPU code.

We applied traditional Halide scheduling techniques to optimize the proximal

and linear operators and other kernels. Table 10.5 gives an overview of timings for

several linear and proximal operators for NumPy and Halide implementations. Most

are simply parallelized, vectorized, unrolled, and occasionally with loops reordered.

A few (particularly those involving warp) also block and fuse one or two stages for

locality. We paid particular attention to the common `2-norm and dot product, which

we parallelized using two-phase reductions to expose both vector and multicore

parallelism in the main phase. This improved performance by at least an order of

magnitude over a basic serial implementation. The current implementation left some

`2-norm dot product subsample subsample* grad grad* convolution
Halide 41.6 15.6 72.6 72.6 94.8 237.4 121.4
NumPy 245.8 96.6 356.0 356.0 1188.0 713.1 7790.9

convolution* warp warp* norm1 group norm1 Poisson prox FFT inversion
Halide 121.4 153.1 367.8 27.1 67.8 44.7 9.4
NumPy 7790.9 457.6 474.4 201.8 1036.6 265.2 23.4

Table 10.5: Runtimes (in ms) for linear operators and some of the proximal
functions implemented with NumPy and Halide. subsample*, grad*
etc.are the adjoint operators.
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performance on the floor by conservatively generalizing all kernels to accept any

input with either row- or column-major order for compatibility with arbitrary BLAS

and Fortran code in NumPy. A number of kernels also still use simple NumPy

implementations, without any Halide-generated code. Above all, there is significant

opportunity to schedule and fuse the resulting pipelines across operators for each

solver, drastically improving on our separate scheduling.

10.8 Results
In this section, we evaluate ProxImaL for a range of inverse problems in imaging.

In particular, we show that ProxImaL exploits problem-specific structure to improve

quality and intuitiveness of camera image processing as presented in the previous

Chapter 9. In the following, first, the applications from Section 9.4 are demonstrated

using ProxImaL. Next, we show state-of-the-art results for deconvolution in the

presence of Poisson-distributed shot noise, which makes low-light photography

so difficult. Lastly, we show applications to nonlinear image formations for the

example of phase retrieval, which is an important problem in scientific imaging.

For all applications shown in this section, ProxImaL allows for a very compact

representation as shown in Table 10.6.

Reference ProxImaL
Burst 1020 (FlexISP) 6
Demosaicking 1020 (FlexISP) 6
IHdr 1020 (FlexISP) 6
Phase retrieval 300 (Matlab) 6
Poisson deconvolution 510 (Matlab) 6
`2 deconvolution 360 (Krishnan and Fergus [160]) 6

Table 10.6: Lines of code comparisons: We compare high-level (Matlab) code
of reference methods with splitting done by hand to ProxImaL. For all
example applications shown in this section, problems can be expressed
in a very compact way using ProxImaL. Different splitting approaches
that require large restructuring in the method can be expressed with just
a few changed lines of ProxImaL code.
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Demosaicking The ProxImaL code for the demosaicking application is:

x = Variable(300, 300, 3)
data_term = sum_squares( subsample(x, bayer) - input )

patch_similarity = patch_BM3D( tonemap(x) )
grad_sparsity = norm1( grad(x) )

objective = data_term + patch_similarity + grad_sparsity
p = Problem( objective )

ProxImaL automatically compiles this expression into the optimization routines

required to solve this problem and it also detects the diagonal matrix structure of

the subsampling operator, which can be inverted in closed form. As illustrated

in Table 10.7, a few lines of ProxImaL code are sufficient to generate the state-

Average PSNR Red Green Blue
FlexISP 38.50 41.84 36.50
ProxImaL 38.54 41.90 36.53

Table 10.7: Demosaicking. From only a few lines of code, ProxImaL auto-
matically compiles a solver that achieves qualitatively better results than
FlexISP (example on top), averaged over 12 test images quantitatively
better (table) and significantly faster (see text).
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of-the-art ISP. Due to the fact that FlexISP or any generic solver is oblivious to

problem-specific structure, we achieve faster runtimes because ProxImaL detects the

closed-form solution of the subsampling operator and generates the most efficient

solver. This makes the ProxImaL code faster and also slightly better, on average,

than using a proximal operator based on iterative conjugate gradient (e.g., FlexISP).

Other than the closed-form inverse of the subsampling step, both approaches are

equivalent.

The runtime of our splitting-based demosaicking is, for the most part, deter-

mined by two steps: the inversion of the subsampling and blur operators; and

the BM3D denoiser. We improve upon the inversion step, which was previously

implemented with the conjugate gradient method and takes 0.2 seconds per iteration

for a 512× 512 image and 9 seconds per iteration for a 16 megapixel image on our

test computer. The closed-form inverse discovered by ProxImaL basically makes

this step “free” and directly finds the optimal solution without any iterations. For

the BM3D step, we use a Matlab implementation of BM3D since the code is closed

source, which takes about 4 seconds per iteration for a 512× 512 image; we use 15

iterations in total. Relying on [281] the previous Chapter 9 demonstrated speedups

of up to 1000× using GPU-optimized implementations.

Interlaced HDR Next, we consider the interlaced HDR problem described in

Section 9.4. The only modification to the demosaicking code from above is a

change in the masking operator. The results in Figure 10.7 demonstrates that

ProxImaL achieves slightly sharper reconstructions than FlexISP while providing

similar performance benefits as for the deconvolution.

Burst Denoising High-quality photography in low-light conditions is one of the

most challenging problems in computational photography due to the observed noise.

Next, we consider the burst image denoising application for low-light imaging,

which has been described in Section 9.4. In our implementation we use an additional

non-local means (NLM) denoising prior on the reconstructed image, instead of the

BM3D prior which has been suggested in the previous Chapter 9. Recall again, that

the proximal operator corresponding to any denoising prior can be evaluated by
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Figure 10.7: Interlaced High Dynamic Range as in Section 9.4. Compared
to FlexISP, ProxImaL further improves recovered image sharpness,
runtime, and convenience.

calling the denoiser itself. In particular, we formulate the burst denoising problem

in ProxImaL as:
x = Variable(300, 300, 3)

data_term = sum_squares( vstack( warp(x, H_1),
...,
warp(x, H_n) ) - input )

patch_similarity = patch_NLM( tonemap(x) )
objective = data_term + patch_similarity

p = Problem( objective )

In addition to the denoiser and the NLM prior, we include the image alignment

as part of the optimization routine via the warp operator. This operator makes

ProxImaL ideally suited for a range of burst photography applications—we simply

specify that the global image alignment is part of the problem and the homography
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Figure 10.8: Comparison of image priors for burst denoising & demosaicking.
For this simulation, a non-local means (NLM) prior outperforms the
BM3D prior. The approximate NLM implemented in OpenCV is faster
than, but not quite as good as, a full implementation.

H is automatically estimated using [304]. Feature-based homography estimation

also produced results of equal quality.

As discussed before, ProxImaL makes it very easy to evaluate different image

priors for a particular reconstruction problem. For example, instead of NLM we can

use BM3D, total variation, or other priors. Figure 10.8 evaluates several different

priors for burst denoising in simulation. We compare BM3D, the fast approximation

of NLM implemented by the OpenCV library, and a full NLM implementation. The

latter is the slowest but also the best prior for this particular image. Some of the

insights made in the presented experiments include the fact that different priors lead

to vastly different results and implementing all of them separately takes a lot of time

and effort. ProxImaL makes it very easy to evaluate all of them or combinations of

them and it allows different priors to be combined with different solvers. We believe
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that this flexibility is one of the strongest benefits of a domain-specific language

like ProxImaL.

Poisson Deconvolution In low-light conditions, photographs are often not only

noisy but also blurry. Especially in cellphone cameras, blur due to hand motion is

almost unavoidable. In addition, the noise in images captured in low-light conditions

is dominated by Poisson-distributed shot noise. We have assumed this noise to be

Gaussian noise in Chapters 3, 5, 4, 6, 8 and 9, which simplified the derivation and

efficiency of the optimization method. Instead we can include a Poisson likelihood

in our model; see Figure 10.9. The corresponding proximal operator is implemented

as a maximum likelihood solution for Poisson noise, given in [305], [306], which

we discuss in detail in the appendix Section A.14. With this proximal operator in

Figure 10.9: Poisson deconvolution. We compare the deconvolution technique
described in the text with the hyper-Laplacian prior described by Krish-
nan and Fergus [160]. Although the latter method is efficient, it fails in
the presence of Poisson-distributed shot noise, which often dominates
image noise in low-light photography. An appropriate proximal opera-
tor for the noise term can mitigate ringing. This proximal operator is
easily compiled with ProxImaL. However, a Poisson-penalty cannot be
easily integrated into the approach from [160].
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Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5
[Krishnan and Fergus 2009] 21.68 21.08 22.70 23.10 25.19
[Figueiredo and Jose 2010] 22.15 22.02 23.59 24.08 26.43
ProxImaL 22.19 21.87 24.11 24.31 26.58

Table 10.8: Quantitative evaluation of Poisson deconvolution. We show av-
erage peak signal-to-noise-ratios (PSNRs) for 12 example images and
for 5 different blur kernels. In almost all cases, ProxImaL reconstructs a
higher-quality image compared to previous work.

hand, the deconvolution problem can additionally benefit from advanced image

priors, such as self-similarity. Usually, this would require the entire solver to be

rewritten. Using ProxImaL, we can simply add the appropriate proximal operator

to the problem formulation. The ProxImaL code for the Poisson Deconvolution

application is:

x = Variable(300, 300, 3)
data_term = poisson_norm( conv(x, psf) - input )

grad_sparsity = norm1( grad(x) )
objective = data_term + grad_sparsity + nonneg(x)

p = Problem( objective )

The method proposed by Krishnan and Fergus [160] is efficient, but it assumes

Gaussian noise. It is not easily possible to reformulate this reconstruction method

without proximal operators, which is precisely what ProxImaL does. The resulting

deconvolved images exhibit significantly less ringing. In Table 10.8, we also show

comparisons of peak signal-to-noise-ratios (PSNRs) averaged over 12 images and 5

different kernels. We include an additional comparison to the method proposed by

Figueiredo and Bioucas-Dias [307]. For most cases, ProxImaL produces superior

results. Note that the conceptual approach of Figueiredo and Jose is the same as

ours, but we replace the conjugate gradient updates with the closed-form inverse of

the diagonalized matrix. Yet again, exploiting problem-specific structure leads to

better and faster solutions.

Phase Retrieval All of the applications discussed above use a linear image for-

mation model. Some imaging problems, however, have to deal with nonlinear and

non-convex image formations. An example of such a problem is phase retrieval.
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As one of the most important problems in electron microscopy, wavefront sensing,

astronomy, crystallography, and other scientific imaging areas, it is interesting to

evaluate ProxImaL for this challenging problem. The phase retrieval problem is the

recovery of a real or complex-valued optical field or image x from measurements

of its Fourier amplitudes:

minimize f (|Φx| − j) + r(x), s.t. 0 ≤ x (10.14)

Here, Φ is the Fourier transform, f is the error metric, and r is an optional image

prior. The most common approach to solving Problem (10.14) is the iterative hybrid

input-output (HIO) algorithm [308]. In the spirit of HIO, we can approach this

problem by adding a simple total variation image prior as:

minimize ‖|Φx| − j‖22 + λ ‖∇x‖1 + I[0,∞) (x) , (10.15)

where λ > 0, ‖∇·‖1 is the total variation (`1-norm of the image gradients), and

I[0,∞) (·) is the indicator function that enforces the constraint that x ≥ 0. We

implement the proximal operator of the nonlinear data term as a simple iterative

nonlinear gradient descent update that is inspired by HIO. The corresponding

ProxImaL code is:

x = Variable(300, 300)
data_term = phase_ret(x, input)

grad_sparsity = norm1( grad(x) )
objective = data_term + patch_similarity + nonneg(x)

p = Problem( objective )

We show two phase retrieval results in Figure 10.10. Whereas the HIO solution

suffers from strong ringing artifacts, the TV-regularized solution computed by Prox-

ImaL is almost free of artifacts. ProxImaL makes it convenient to evaluate modern

image priors developed in the computer vision and computational photography

communities for scientific imaging applications.

10.9 Discussion
Using a domain-specific language and compiler for image optimization, ProxImaL

allows for rapid prototyping of inverse problems in imaging while providing high-

244



Figure 10.10: Phase retrieval. In this nonlinear and nonconvex problem, we
measure the Fourier magnitudes of the image (center left column).
ProxImaL solves this problem with a nonlinear gradient descent up-
date, which can be combined with any of the image priors previously
discussed.

performance execution. The presented mathematical compiler identifies structure in

the objective, which can be of the two following types: structure in the unknowns

and structure in the objective itself. ProxImaL exploits it in the generation of

the solver and also the implementation of the individual sub-problems. It is this

structure-driven problem translation that enables the high-performance execution

for a wide range of image optimization problems.

However, this strategy may not necessarily apply to other problem domains. For

example, Natural Language Processing exhibits structure that differs from imaging

problems. Even if the considered problem is an image optimization problem and fits

into the generalized objective from Problem (10.2), it may contain non-separable,

global penalties that cannot be decomposed into functions with efficient proximal

operators, e.g. parameter tuning for large-scale physical simulations. Furthermore,

for very simple objectives, such as unconstrained unstructured least-squares prob-

lems, ProxImaL does not yield worse solvers than traditional approaches, but also

does not improve on them (no structure in the image formation or objective can be
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exploited). The biggest limitation of the proposed framework is the selection of

objective and algorithm parameters. For the objective parameters, learning-based

approaches have been proposed for denoising problems [309], while adaptive sched-

ules have shown to be good recipes for the algorithm parameters [299]. Automatic

parameter estimation is an exciting area for future research.

A key extension that we plan to add is fully-automatic robust parameter esti-

mation and problem scaling, beginning with diagonal scaling methods [293, 294].

There are also a number of other directions that are interesting to explore. We plan to

extend the set of proximal operators that are currently implemented (e.g., separable

quasi-newton methods). We hope to extend both the set of image formation models,

and also the list of supported priors, including other patch-based methods and local

low-rank models.

Summarizing, ProxImaL allows to efficiently express and solve imaging opti-

mization problems. All of the previous chapter in this dissertation have expressed

the respective imaging task as an optimization problem using Bayesian inference.

ProxImaL provides an easy way to prototype efficient solver methods for this wide

range of applications, exploiting the specific structure of each problem. In essence,

it is ProxImaL that makes the principled, optimization-based approach from the

previous chapters truly practical and easy to adopt for a new applications.
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Chapter 11

Conclusion

In this dissertation, we have demonstrated that exploiting structure in the image

formation allows us to decode scene information that is commonly considered lost

in this process and thus regarded as noise. Specifically, relying on temporal and

spatial structure, in both the measurements and the unknowns, we have introduced

two completely new image modalities: a new temporal dimension of light as it

propagates, and a new per-pixel radial velocity dimension. We have shown that

these two novel types of images can make the inversion of light transport feasible in

certain scenarios. In particular, we have demonstrated Non-Line-of-Sight imaging

and imaging in scattering media, both of which have been traditionally considered

extremely hard inverse problems since an immense amount of light transport com-

ponents are mixed. Furthermore, we have shown that exploiting image structure

represents, in fact, a completely new approach to traditional color image process-

ing. We have replaced hand-crafted image processing pipelines with a principled,

optimization-based approach. The resulting method has been shown to outperform

the state-of-the-art solutions for well-researched image processing problems, such

as demosaicking, and we have illustrated that it enables new color camera designs by

showing selected examples. Finally, this dissertation has presented a mathematical

framework following a Bayesian approach, and a set of tools for the generation of

efficient optimization methods. We have shown that, together, both facilitate the

development of structure-exploiting methods for all of the previously described

imaging problems. In addition, we demonstrate the easy adoption of this approach

for solving new imaging problems using a variety of examples.
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In the following, we first re-iterate the key findings of each chapter. After that,

we highlight promising future directions of research which could build on this thesis.

Chapter 3 demonstrates that a new transient image dimension can be extracted

from consumer TOF camera measurements by adding computation in the form of

a Bayesian inference. This transient image is the temporal impulse response of

the linear light transport in a scene, and hence fully describes it. The temporally

convolutional structure of the global light transport make the recovery of high-

quality transient images from CIS measurements possible. In contrast to a brute-

force direct acquisition using ultra-short pulse lasers, this approach is shown to

require several orders of magnitude less capture time and setup cost, is robust to

ambient illumination, and allows for significantly increased scene sizes.

Chapter 5 and Chapter 4 have demonstrated that the challenging problem of

inverting light transport can be made feasible under certain conditions using this

additional temporal dimension. Specifically, Chapter 4 shows that it can enable

imaging in scattering and turbid media. Imaging in volumetric scattering is chal-

lenging since it mixes a large subset of transport components, leaving only the paths

of ballistic photons undisturbed. Our progress in solving this problem was made by

exploiting the convolutional structure in the transient images. Chapter 5 considers

diffuse reflections, which preserve the temporal dimension but not directionality

of the reflected light. We show that, by relying on the additional temporal dimen-

sion, we can recover geometry and albedo outside the direct line-of-sight from

second-order diffuse reflections, effectively turning walls into mirrors.

Chapter 6 generalizes this approach. While the convolutional structure was

previously given by the physical image formation, the proposed method allows us

to learn convolutional structure from data directly. Although being a general tool,

we demonstrate the approach for efficient feature learning and reconstruction for

low level vision tasks.

Chapter 7 demonstrates that a further novel image modality can be extracted

from CIS measurements using their convolutional image formation: per-pixel radial

velocity. In particular, we have shown that carefully designing illumination and

sensor modulation frequencies makes extracting the tiny Doppler shift caused by

objects in motion possible. Having just recently demonstrated that this is feasible,

we imagine that this new image dimension has many applications for high-level
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vision and dynamic reconstruction tasks.

Chapter 8 and Chapter 9 show that exploiting structure in imaging tasks also

allows us to rethink camera designs for classical color imaging. First, Chapter 8

considers optical systems for color imaging, which are highly complex systems that

eliminate the aberrations of simple optics using a large number of optical elements.

Relying on cross-channel structure in the aberrations, we are able to demonstrate

high-quality color imaging with a radical change in optical design, using only

uncompensated simple optics. Chapter 9 generalizes this co-design of optics and

sensing to universal color image processing. While traditional color image pro-

cessing is organized as a pipeline that causes a cumulative error, we demonstrate

that such pipelines can be completely replaced with a single optimization problem

using Bayesian inference. This approach represents, in fact, a change of paradigm,

outperforming state-of-the-art methods by a large margin, while being extremely

flexible and applicable to wide range of classical and novel camera designs, from

Bayer image demosaicking to ultra-low-light burst denoising.

Finally, Chapter 10 addresses the computational challenges of the Bayesian,

optimization-based approach that we adopted in all of the previous chapters. We

introduced a framework consisting of a domain-specific language and compiler that

enables the rapid development of efficient solvers for image optimization problems.

The compiler automatically identifies and exploits the structure of individual objec-

tives represented in our language. Our framework produces highly-efficient, tailored

solver with just a few lines of code for a wide range of imaging problems, the ones

presented in Chapters 3–9 being only a small subset.

This dissertation makes first promising steps toward the vision of inverting of

light transport under arbitrary conditions. However, to make this problem tractable

at all, we have made strong assumptions about the scene in all considered cases, and

we only analyzed part of the light transport. In the Non-Line-of-Sight scenario, we

assumed only diffuse second-order reflections, and we relied on paths corresponding

to ballistic photons for imaging in scattering media. Hence, a promising direction

for future research would be to investigate inverse methods that use a more accurate

forward model and include more complex light paths. While the resulting opti-

mization problems would become challenging non-convex problems, the methods

presented in this work offer good initializations and local convexifications that
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can be leveraged. In addition to expanding the forward model, a key argument

of this dissertation is to exploit the structure of an inverse problem. In the future,

this approach could be drastically extended. Only little of the rich spatio-temporal

structure from Section 3.6 and our work [310] has been exploited in the transient

model presented in this thesis. In addition to filtering out the direct component,

the structure of a specific scenario, e.g., for imaging in scattering media, may be

exploited. Over the last few decades, the computer graphics community has become

the leading scientific community in simulating light transport with ultra-compact

scene representations. In the future, even such representations may be used in

reconstruction methods, which illustrates that there is a tremendous amount of

structure that is not currently being used.

However, even with improved inverse methods, inverting light transport quality

is fundamentally limited by the resolution of the transient measurements, both in the

temporal and spatial domain. A big benefit of using TOF depth cameras, as suggested

in this thesis, is that they have already become widely adopted consumer products,

with emerging applications in gaming, virtual reality and robotics. These growing

markets have driven the cost of CIS sensors down and they have increased the reso-

lution and sensor characteristics. While we rely on sensors with only 10 kilopixels

in this dissertation, VGA-resolution depth cameras with an order of magnitude more

sensels are already commercially available, such as Microsoft’s® Kinect® 2. Once

control over the sensor modulation is made available for researchers, drastically

increased spatial resolution can be leveraged. However, higher temporal modulation

frequencies cannot be immediately expected in consumer products. Due to the CCD

charge transfer, at higher modulation frequencies power consumption drastically

increases and modulation contrast decreases [27]. While this represents a severe

limitation of the CIS sensor, it is important to note that this limitation does not exist

in the illumination; commercial laser diodes allow for amplitude modulation in

the gigahertz range. An interesting line of research could be the combination of

high-frequency modulated illumination with electro-absorption modulators that rely

on the Franz-Keldysh effect, which have been used in optical fiber communications

at gigahertz frequencies at low voltages [311]. Another promising direction for

future research is to rely on emerging SPAD technology and to perform the mod-

ulation digitally after the readout. Finally, we relied on amplitude modulation in
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this dissertation. Combining this modulation type with interference-based methods,

e.g., as shown in [312], could rely on the amplitude modulation for low frequency

samples and the carrier for high frequency sampling.

A core concept of this thesis is the Bayesian approach to inverse problems, that

has allowed for the statistical modeling of extremely flexible image formations,

both for the novel camera designs imagined above as well as classical designs. In

particular, the distinction between image formation models, sensor noise charac-

teristics, and the priors allows for the easy reuse of the same structure-exploiting

priors or noise models for completely new optical and sensor designs. In the future,

this Bayesian approach could be drastically expanded. The MAP estimation that we

propose in this thesis only recovers a point-estimate of the posterior distribution.

This distribution could be better characterized, which, depending on the distribution,

may reveal that other estimates are more robust. Credible intervals quantify the

uncertainty of the estimator, which should be computed along with the estimate in

the future. Furthermore, the variance of the estimator and the theoretical achievable

bounds can provide well-understood tools to compare the quality of different re-

construction techniques. Going beyond classical Bayesian methods, a key area of

future research would be hyper-parameters tuning for the likelihood, priors, and op-

timization algorithms. In order to achieve robust solvers, these parameters should be

treated as unknowns and estimated along with the latent image. In fact, without op-

timal hyper-parameter settings, comparisons between established methods are only

somewhat indicative of the achievable performance, and approaches that currently

achieve sub-par quality may, in fact, become the state-of-the-art using improved

parameters. A promising direction of research on hyper-parameter estimation would

be the investigation of empirical Bayes methods, which, however, are computation-

ally expensive. Recent bilevel optimization approaches [309],[313] have presented

an efficient approach to parameter estimation by solving a higher-level data fitting

problem that takes the result of a specific solver method as an input. Using a large set

of training data in this higher-level fitting problem, these methods then effectively

learn the parameters from the training data. This approach could also be directly

applied to the proximal algorithms from this work [313]. I believe that unrolled,

tuned proximal methods are a very promising architecture that will lead to improved

inverse methods whose computational costs can be bound, improving on recent
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efforts of adapting discriminative convolutional neural networks for reconstruction

tasks which fail to provide generative models and are not well understood. However,

it might still be fruitful to combine such discriminative models with the proposed

proximal methods. Replacing the generative convolutional network in [314] by

an unrolled proximal method with convolutional priors may enable learned priors

while still allowing for parametrized physical image formation models. The goal

of such a combined approach would be to exploit high-level scene classification in

the reconstruction process. This could be a feasible step along to full reliance on

rendered generative models which we discussed above as a long-term goal.

While computational methods are essential for making advances in imaging,

this thesis makes a stronger statement: rather than optimizing optics, sensors and

computation separately, they should be jointly optimized. In other words, this

dissertation demonstrates that an “optimal camera” should not be defined as a

camera that captures every dimension of the plenoptic function at the highest

possible resolution, but as an imaging system that recovers latent variables at the

highest possible resolution for the lowest total cost, a weighted combination of

the footprint, power-consumption, sensor, optical characteristics, capture time,

cost, etc. In general, solving this saddle-point problem is extremely challenging

since it contains many categorical variables for the different realizable hardware

and software components of the camera system, not to mention the large-scale

continuous design parameters. However, I believe that this joint optimization can

be made feasible by exploiting structure in the design of imaging systems. The

imaging systems in Chapters 3, 8 and 9 all rely on structure in the image formation,

outperform corresponding “brute force” imaging systems, and have a significantly

lower total cost with only slight loss in resolution. Using parametrized architectures,

e.g., fixing most of the optical parameters, some sensor characteristics, and algorithm

architecture, some of these systems could potentially be found as the solution to

a higher-level optimization problem. Exploring this objective, automatically or

by hand, could lead to fundamentally new imaging systems. As a local minimum

one might imagine application-specific imaging systems using fewer but drastically

better pixels in combination with custom optics. Co-designing optics and sensing for

a given application has already made a large impact in scientific imaging, specifically

in super-resolved fluorescence microscopy, which recently was awarded the Nobel
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Prize in Chemistry. Imaging systems optimized for specific tasks in vision, health,

virtual reality, gaming and consumer photography could be imagined. Furthermore,

an end-to-end optimized camera system would also take the scene into account.

We can think of the NLOS imaging in this thesis as an example, where the diffuse

reflector acts as a large sensor in the scene. This interpretation could go even

further, where every reflection in the scene at every surface essentially represents a

sensor. We imagine all of these imaging systems as potential local optima of the

higher-level camera design objective. Being able to solve this objective numerically

would essentially allow us to evolve cameras computationally, in contrast to the

natural evolution of the mammalian vision system. This also means that we will be

able to drastically outperform natural vision systems for a wide range of tasks. This

thesis has already demonstrated a small set of such tasks.
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[23] L. Seidel. Über die Theorie der Fehler, mit welchen die durch optische
Instrumente gesehenen Bilder behaftet sind, und über die mathematischen
Bedingungen ihrer Aufhebung. Abhandlungen der
Naturwissenschaftlich-Technischen Commission bei der Königl. Bayerischen
Akademie der Wissenschaften in München. Cotta, 2:4, 1857. → pages 2, 24

[24] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and Depth from a
Conventional Camera with a Coded Aperture. ACM Trans. Graph., 26(3),
July 2007. ISSN 0730-0301. → pages 2, 41

[25] J. A. Thomas, C. F. Moss, and M. Vater. Echolocation in bats and dolphins.
University of Chicago Press, 2004. → pages 2

[26] C. Weitkamp. Lidar: range-resolved optical remote sensing of the
atmosphere, volume 102. Springer Science & Business Media, 2005. →
pages 3, 42, 43

[27] R. Lange. 3D time-of-flight distance measurement with custom solid-state
image sensors in CMOS/CCD-technology. Diss., Department of Electrical
Engineering and Computer Science, University of Siegen, 2000. → pages 3,
31, 32, 33, 42, 43, 44, 45, 54, 250

[28] A. Payne, A. Daniel, A. Mehta, B. Thompson, C. S. Bamji, D. Snow,
H. Oshima, L. Prather, M. Fenton, L. Kordus, et al. 7.6 A 512× 424 CMOS
3D Time-of-Flight image sensor with multi-frequency photo-demodulation
up to 130MHz and 2GS/s ADC. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, pages 134–135. IEEE,
2014. → pages 3

256



[29] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight sensors in
computer graphics. In Proc. Eurographics (State-of-the-Art Report),
volume 6, 2009. → pages 3, 41, 48

[30] E. Hecht. Optics, 4th. International edition, Addison-Wesley, San Francisco,
3, 2002. → pages 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 27

[31] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on
Physics, Desktop Edition Volume I, volume 1. Basic books, 2013. → pages
12, 15, 17

[32] J. C. Maxwell. A treatise on electricity and magnetism, volume 1. Clarendon
press, 1881. → pages 12
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[42] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. CRC
Press, 2008. → pages 19

[43] T. Young. The Bakerian lecture: Experiments and calculations relative to
physical optics. Philosophical transactions of the Royal Society of London,
94:1–16, 1804. → pages 21

[44] E. Optics. Optics and Optical Instruments Catalogue. → pages 23

[45] M. Hirsch, S. Sra, B. Schlkopf, and S. Harmeling. Efficient filter flow for
space-variant multiframe blind deconvolution. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 607–614,
June 2010. → pages 28

[46] H. Hertz. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische
Entladung. Annalen der Physik, 267(8):983–1000, 1887. → pages 28

[47] S. M. Sze. Semiconductor devices: physics and technology. John Wiley &
Sons, 2008. → pages 29, 30, 31, 33

[48] W. S. Boyle and G. E. Smith. Charge coupled semiconductor devices. Bell
System Technical Journal, 49(4):587–593, 1970. → pages 32

[49] A. J. Theuwissen. Solid-state imaging with charge-coupled devices,
volume 1. Springer Science & Business Media, 2006. → pages 32
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Appendix A

Supporting Materials

A.1 Detailed Spectral Analysis of the CIS Image
Formation

In Section 2.6.3 we have derived and explained the image formation for CIS in

the spectral domain. Figure 2.11 illustrates this spectral analysis. The following

Eq. (A.1) provides the corresponding detailed mathematical derivation.

b(ρ, θ) =

∫ ρ+T

ρ
p(t) dt

=
(

rectT ⊗ (f · s)
)

(ρ)

= F−1
(

sincT · f̂ ⊗ ŝ
)

(ρ)

= F−1

(
sincT ·

(
e−2πiθξ δ(ξ −

ωf
2π ) + δ(ξ +
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2π )

2

)
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(
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ωg
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+ Iδ(ξ)
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(ρ)

= F−1

(
sincT ·
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2π ) + δ(ξ +

ωg+ωf
2π ) + δ(ξ − ωg−ωf

2π ) + δ(ξ +
ωg−ωf
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2
+ Ie−2πiθξ δ(ξ −

ωf
2π ) + δ(ξ +
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≈ F−1

(
a · e−2πi(φ+θ)ξ ·
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+ 0
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(ρ)

=

 F−1
(
a · e−2πi(φ+θ)ξ · δ(ξ)

)
(ρ) if ωf = ωg
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(A.1)

A.2 Harmonic CIS Image Formation
In this section we expand on the sinusoidal model derived in Section 2.6 to allow

for arbitrary periodic modulation functions for both the illumination and the camera

reference signal. As before, we assume periodically modulated illumination with an
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angular frequency ω. In the general case, this illumination signal can be described

as a superposition of all the harmonics of this frequency at different phases θk:

g(t) =
∞∑
k=0

gk cos(kωt+ θk)

Assuming a stationary object, the illumination arriving at the sensor can then be

expressed as
s(t) =

∞∑
k=0

sk cos(kωt+ φk)

where s0 includes ambient illumination, and sk for k > 0 includes geometric terms

and the surface albedo as before. The phase shifts are given as

φk = θk + kω
2d

c

Assuming a zero-mean modulation function f , the modulated signal at the sensor is

then
ĩθ(t) =fθ(t) · s(t)

=
∞∑
j=1

fj cos(jωt+ θj) ·
∞∑
k=0

sk cos(kωt+ φk)

=
1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k − j)ωt+ φk − θj)+

1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k + j)ωt+ φk + θj)

=
1

2

∞∑
k=0

fksk cos(φk − θk)+

1

2

∞∑
j=1

∑
k 6=j

fjsk cos((k − j)ωt+ φk − θj)+

1

2

∞∑
j=1

∞∑
k=0

fjsk cos((k + j)ωt+ φk + θj).

Low-pass filtering due to the finite exposure time T eliminates all but the first term,

resulting in Equation A.2.
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pθ(t) = ĩθ(t) ∗ rect(Tt) ≈ 1

2

∞∑
k=0

fksk cos(φk − θk). (A.2)

In order to recover depth and albedo from Eq. A.2, the camera needs to be calibrated

for different depths, either as a dense lookup table of depth, or by estimating the

coefficients fk and sk from sparser measurements.

A.3 Transient Imaging with Gaussian-Exponential
Priors

To handle the non-convexity of the inverse problem from Section 3.3, we propose

to solve the following problem using coordinate descent.

(uopt, iopt) = argmin
u,i

1

2
‖Ci− b‖22 +

λ
∑
x

‖∇zix‖H + θ
∑
τ

‖∇xiτ‖H +

1

2
‖Cm(u)− b‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22

s.t. ∀x, i : Kx = #maxima(ix) ∧

rx,i,ax,i,dx,i ∈ [0, 1]

(A.3)

Here maxima(ix) are the positions of the temporal maxima for a pixel x, and

#maxima(ix) is number of such local maxima. The additional constraints therefore

express that we prefer locations of Gaussians and exponentials close to the onset

positions, that we restrict the number Kx to be the number of onsets, and constrain

the numerical range of Gaussian and exponential amplitudes and decays. Hence,

solving this problem restricts the large parameter space of the model to a local

region around the fixed variables. Note that we have duplicated the data fidelity term

here for i and u. We found this to be benefitial for the convergence behavior of the

u-subproblem. Note that this does not affect the separability of u in the coordinate

descent. The proposed coordinate descent does not have convergence guarantees.
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However, we found it to perform well in practice. Figure A.1 shows iterations of

the coordinate descent method.
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Figure A.1: A single synthetic pixel signal (over time) reconstructed with the
proposed coordinate descent. Left: Solution obtained by solving for i
only. Notice that the solution is smooth in temporal and spatial domain
and contains the right number of modes. Center: solution after one
full iteration plus one extra i-step to reconstruct the transient image
from the mixed Gaussian and exponential model parameters u. Notice
the drastically improved reconstruction fidelity. Right: an additional
iteration does not improve the result significantly.

In the i-subproblem from Section 3.3, we can neglect the maxima terms. This is

justified by the fact that these terms will be dominated by ρ
2 ‖i−m(u)‖22 for large ρ

(recall that we only introduced the extra terms to account for the non-convexity of

the u-subproblem). The resulting problem then becomes a convex optimization

problem. It is discussed in Section 3.3. In the following we describe the second

subproblem, the u-subproblem.

Solving the u-subproblem

In the second subproblem, we fix i in Eq. (A.3) and solve u, leading to the following

problem:

uopt = argmin
u

1

2
‖Cm(u)− b‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22

s.t. ∀x, i : Kx = #maxima(ix) ∧

rx,i,ax,i,dx,i ∈ [0, 1]

(A.4)
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This is a regularized data-fitting problem that is globally still non-convex, so there

are no guarantees of obtaining a global optimum. However, by constraining the

parameters, and especially the onset p, we limit the search to regions where we

expect locally convex behavior.

We first determine Kx = #maxima(ix) by explicitly detecting the number of

peaks in time for each pixel signal ix. No noise suppression or further smoothing is

needed since we require only a good lower bound for Kx. Accurate fitting is then

handled by solving Eq. (A.4).

The resulting problem (with Kx now fixed) can be solved independently for

each pixel. To account for the non-convexity we perform a two-step optimization

per pixel signal: first, several steps of a global search in the constrained parameter

space are done using the derivative-free Mesh Adaptive Direct Search method for

non-linear constrained optimization (MADS) [315]. This direct search method

models the parameter space using a mesh. By adaptively probing the mesh and

also adaptively changing the mesh refinement this method makes good progress

in regions around local minimizers. We use the implementation in the MATLAB

generalized pattern search function ”patternsearch” in the Global Optimization

Toolbox, random polling and a maximum number of 1000 iterations.

We expect the parameters found by this derivative-free global optimization to lie

at least in a locally convex region. To effectively find the according minimum in this

region we now use the gradient and do local constrained gradient-descent iterations

using the spectral projected gradient method from the minConf package [316]. The

projection operator that encodes our constraints is straightforward to derive since in

our case we only have simple box constraints.

We use here analytic gradient information of the unconstrained version of

Eq. (A.4), i.e.,

uopt = argmin
u

1

2
‖Cm(u)− b‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22︸ ︷︷ ︸
Φ(u)

(A.5)

For this subproblem, all the components ux for a pixel x are independent of the
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components for other pixels. So, for a single component j of u, we obtain the

following gradient component:

∇jΦ(u) = 2

[
∂mx(u)

∂uj

]T
CT (Cmx(u)− b) (A.6)

Thus, with Eq. A.6, we have reduced the gradient computation for Φ(u) to the

evaluation of the partial derivatives of a pixel time sequence mτ (u) with respect to

its parameters (that is the Gaussian amplitude, exponential amplitude, exponential

decay and the position of the Gaussian and exponential). These partial derivatives

are straightforward to derive from Eq. (3.12).

Discussion

With optimization split into two stages as described above, the i-subproblem is

fast and convex, and provides a data term plus spatial and temporal regularization,

with the tendency to overly smoothen the results. The u-subproblem, on the other

hand, is a very expensive, non-convex fitting of the model parameters, that produces

higher temporal resolution, but may in turn introduce some visually objectionable

spatial artifacts. After the final u-step, we always perform another i-step to obtain a

final transient image from the model parameters.

Figure A.1 compares the time sequences obtained for a single pixel with ground

truth data for a synthetic example (more details on the dataset can be found in

Section 3.5). The left image shows the over-smooth reconstruction after solving

just the i subproblem. The center and right image show reconstructions after one

and two full iterations, respectively (each followed by a final i-step). We can see

that the method is converged after only a single iteration. This is consistent with

behavior we observe for the time sequences of other pixels and datasets.

Figure A.2 shows results for a simple scene where a wavefront travels along

a diffuse wall, captured using our PMD camera setup (Section 3.4). Using the

model, pixel time profiles (Figure A.3) show a similar sharpening effect as in the

synthetic data set. However, as the full-frame reconstructions show, this extra

sharpness comes at the cost of some spatial quantization artifacts. We refer to the

accompanying video to observe the full dataset. Because of the tradeoff between
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Figure A.2: Reconstructions for a simple real dataset of a wavefront traveling
along a wall. Top row: image reconstruction after only solving the i
subproblem. Bottom: the same images after one iteration of the full
optimization problem.
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Figure A.3: Pixel time sequences for two selected pixels of Figure A.2 after a
full iteration and after only solving the i subproblem.

temporal sharpness and spatial artifacts, it may in some cases be preferable to only

run the i subproblem, depending on whether the goal is to obtain the most detailed

measurements possible, or simply to produce visually pleasing results.
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A.4 Indirect Imaging of Specular Object, and with
Ambient Light

Here we show additional experiments that illustrate the performance of our method

from Chapter 5 for non-Lambertian surfaces. In addition, we examine the sensitivity

to ambient illumination, and the impact of the sparsity inducing priors.

Non-Lambertian Surfaces

Figures A.4 to A.7 show a progression of results for surfaces that violate the

assumption of diffuse Lambertian reflectors. In these images, we show both the

color-coded depth map as well as a cross-section through the volume densities v(x)

for one scan line.

Figure A.4 shows a single foam board. This material is quite diffuse, and as

a result the volume cross-section shows a good localization of the depth value,

revealing the board was slightly tilted in depth.

Figure A.4: Reconstruction of scene image with diffuse foamboard (right).
Smooth depth map, occluder-probability weighted depth along z-
coordinate visualized in jet color map (left). Slice through the recon-
struction volume along y-coordinate (middle).

Figure A.5 shows results for two small whiteboards, which are slightly more

shiny than the foam boards, but still very diffuse. We see that the sharpness of depth

values suffers a bit from the glossiness of the scene, although isolating the strongest

peak for each pixel still yields a good depth map.
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Figure A.5: Reconstruction of scene image with two whiteboards, that are
more reflective than the foam board (right). Color-coded depth map of
strongest peak along z-coordinate visualized (left) (left). Slice through
the reconstruction volume along y-coordinate (middle).

Figure A.6 shows an extreme example with two mirrors. The geometry of the

two surfaces can be recovered well, since the reflections from the mirrors do not

interfere with each other on the diffuse wall - they create two spatially separated

caustics. Our optimization procedure was adapted to handle this special case, where

everything stays as before except for the bounce in the volume which is then made

spectular.

Figure A.6: Reconstruction of scene image with two mirrors, that are the most
reflective objects tested (right). Color-coded depth map of strongest peak
along z-coordinate visualized (left). Slice through the reconstruction
volume along y-coordinate (middle).

Finally, Figure A.7 shows the result of mixing Lambertian and non-Lambertian

surfaces. The F-shape is made out of cardboard material painted with white fairly

diffuse paint, while the large rectangular surface is made out of brushed metal. The
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reflection from the brushed metal surface is extremely strong and glossy, and thus

overlaps with the one from the “F” in both space and time. This causes our method

to fail to reconstruct the dimmer “F”-shape.

Figure A.7: Reconstruction of challenging scene with a strong quite diffuse
reflector made from brushed metal and a letter made from painted
cardboard (right). Smooth depth map, occluder-probability weighted
depth (left). Color-coded depth map of strongest peak along z-coordinate
visualized (middle).

Effects of Ambient Light and Frame Averaging

Our method from Chapter 5 is robust to ambient illumination. We have tested the

sensitivity to strong ambient illumination for reconstructing geometry (Figure A.8)

and albedo (Figure A.9). In both cases we performed our capture once with the

ceiling lights in the room switched off, and once with them switched on. We can see

that there is only a minor effect on the overall sharpness and reconstruction quality

in both cases.

As already mentioned in Section 5.5.1, we average several measurements before

reconstruction. This improves SNR, since the measured indirect reflection results in

very low light levels. Figure A.10 shows different depth and albedo reconstructions,

where each measurement respectively is the average of 10 or 500 individual TOF

images with a specific modulation frequency and phase. We see that we still

get a reasonable reconstruction by averaging only 10 images. The corresponding

capture time of 4 minutes (200 minutes for averaging 500 measurements) could be

significantly improved by better synchronizing the PMD camera and light source

so that the camera can capture at video rates. Still, even with the current setup,
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Figure A.8: Effects of ambient illumination on geometry reconstruction: All
lights in room off (top) and lights on(bottom). We see that we still get a
reasonable reconstruction with strong ambient illumination

our capture times compare very favorably to those reported for femtosecond laser

setups [149].

Figure A.10: Effects of frame averaging on albedo (left) and geometry (right).
The left image in each pair is based on averaging 500 ToF images for
each measurement, while the right image in each pair uses only 10.
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Figure A.9: Effects of ambient illumination on albedo reconstruction: All
lights in room off (top) and lights on(bottom). We see that we still get a
reasonable reconstruction with strong ambient illumination

Sparsity Analysis

Figure A.11 shows the effect of the sparsity inducing terms in the optimization on

the mirror scene from above.

Figure A.11: Effect of our sparse optimization: Scene with two planar mirror
surfaces shown on the right. Slice through the reconstruction vol-
ume computed with simple backprojection along y-coordinate (middle)
shown on the left. Slice through the reconstruction volume computed
our whole sparsity preferring optimization shown in the middle.
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We show slices through the recovered volume without the sparsity terms (left) and

with the full objective function (center). We can see that our method nicely prefers a

very sparse solution and therefore finds good solutions that represent our assumption

of height field geometry well.

A.5 Imaging in Scattering Media of Various Densities
This section presents additional results demonstrating the robustness of our method

from Chapter 4 imaging in scattering and turbid media. Figure A.12 and Figure A.13

show qualitative results for imaging through scattering media of increasing density.

See Section 4.4.1 for a description of the experimental setup.
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Figure A.12: Larger sequence of the milk experiments shown in Figure 4.7.
Experiments in each row from top down: 0 ml, 10 ml, 20 ml, 40 ml, 80
ml, 160 ml, 300 ml of milk in water.
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Figure A.13: Larger sequence of the plaster experiments shown in Figure 4.8.
Experiments in each row from top down: 0 oz, 2 oz, 4 oz, 8 oz, 16 oz,
32 oz, 59 oz of plaster in water.
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A.6 Validation of Convolutional Sparse Coding
This section shows additional experiments which validate our Convolutional Sparse

Coding method from Chapter 6. As described in Section 6.5.1, we solve an in-

painting problem to verify if our approach can properly predict unknown data from

local context. We use the filters learned from the fruit and city database shown in

Section 6.4. The experiment in Figure A.14 evaluates reconstruction quality for a

dataset consisting of 22 image and, with a single exception, shows improved quality

for both filter sets learned on the city and fruit dataset compared to [238, 239].

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PSNR ours 23.46 25.60 24.64 24.66 30.13 28.10 24.42 24.97 22.07 26.15 25.90 20.76 24.20 24.06 23.60 24.28 22.26 26.03 21.26 28.36 22.89 21.52

PSNR [238, 239] 23.06 24.58 24.28 24.71 29.40 27.27 23.99 24.62 21.79 25.13 25.22 20.50 23.92 23.57 23.37 23.91 21.77 25.74 21.10 27.80 22.74 21.42

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PSNR ours 23.21 25.35 24.69 24.70 29.88 27.82 24.24 25.44 21.88 26.29 26.05 20.55 24.26 23.80 23.46 24.58 21.90 25.86 21.16 28.11 22.96 21.43

PSNR [238, 239] 22.91 24.68 24.44 24.72 29.33 27.28 23.81 25.21 21.60 25.72 25.58 20.33 23.92 23.44 23.03 24.32 21.55 25.70 21.00 27.72 22.62 21.35

Figure A.14: Reconstruction quality for filters learned with the proposed algo-
rithm (tables, center row) and the filters proposed in [238, 239] (tables,
bottom row). All reconstructions are performed for 50% subsampling.
The upper table shows the reconstruction results with the filters learned
from the fruit dataset from [220], the lower one shows the reconstruc-
tions with the filters from the city dataset. The dataset consists of 22
images, none of which are part of the training set for learning the filters.
With the exception of image 4, our algorithm results in higher-quality
reconstructions for both filter sets.

A.7 Non-Sinusoidal Doppler Time-of-Flight Imaging
In this section we expand on the harmonic model from Section A.2, which allows

arbitrary waveforms for the sensor and illumination modulation. For moving objects,

we can again analyze the Doppler shift, and obtain

s(t) =
∞∑
k=0

sk cos(k(ω + ∆ω)t+ φk)
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and

pθ(t) ≈
1

2

∞∑
k=0

fksk cos(∆ωt+ φk − θk). (A.7)

Finally, we can use Equation (A.7) to analyze inter-carrier interference in the

case of general periodic functions. As in Section 7.3.1, we define the ratio image of

a heterodyne and a homodyne image, and obtain:

r ≈
∫ T

0
1
2

∑∞
k=0 fksk cos((ωf − ωg −∆ω)t+ θ − φ) dt∫ T

0
1
2

∑∞
k=0 fksk cos(−∆ωt+ θ − φ) dt

(A.8)

Due to the multiple terms in both numerator and the denominator this equation

cannot be simplified such that the dependencies on the phases θ and φ cancel out.

Unlike the sinusoidal model, general periodic functions thus introduce a phase- or

depth-dependency to the velocity measurements. These need to be calibrated; see

Section 7.4.

A.8 Velocity Map Denoising
With our system from Chapter 7, we capture an extremely small frequency shift (in

the Hz range) relative to the modulation frequency (the MHz range). Additionally,

the quantum efficiency of emerging TOF sensors is still far from that of modern

solid state sensors [251], and the demodulation contrast drops significantly for

high frequencies [317]. Under these conditions, the few photons collected during a

measurement are strongly affected by Poisson noise. To account for this, we apply

a denoising strategy to all captured velocity maps.

We test several denoising strategies for a synthetic example in Figure A.15. The

ground truth test pattern (top left) is synthetically corrupted by Poisson noise (top

right). Standard denoising approaches, such as BM3D fail in these conditions, even

when variance-stabilizing transforms are applied (bottom left). As recently discussed

by Salmon et al. [318], a simple improvement of BM3D results in significant

improvements. First, one accumulates the photon counts locally in bins (for example

with a size of 3 × 3 pixels) that now have much higher photon counts (but lower

spatial resolution). The denoiser is subsequently applied to the binned counts.

Finally, the image is upsampled. We show simulated results using this method
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Figure A.15: Synthetic test pattern (top left) and simulated measurement that
is heavily corrupted by Poisson noise (top right). Various modern
denoising strategies applied, including BM3D (bottom left), BM3D
with binning (bottom center), and non-local means (NLM) with binning
(bottom right). To account for the high level of Poisson noise in the
measurements, we apply the latter denoising strategy to all captured
velocity data.

in Figure A.15 (bottom center). Unfortunately, we observe completely missing

structures in the image, which is undesirable. Using the binning strategy [318]

but replacing BM3D by a non-local means denoiser results in slightly blurrier but

overall favorable results (bottom right). We apply this denoising strategy to all

results presented in Chapter 7.

A.9 Residual and Scale-Space Deconvolution
In this section we describe the residual and scale-space deconvolution technique for

the basic deconvolution method presented in Section 8.3.2. The residual deconvo-

lution scheme is adopted from [262], and a scale-space implementation has been

proposed in [263].

The idea behind residual deconvolution is to iteratively deconvolve the residual

image starting with a large regularization weight which is progressively decreased.
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Since the residual image has a significantly reduced amplitude, its deconvolved

reconstruction contains less ringing which is proportional to the amplitude. The

iteration is shown in the center of Figure A.16.

I0 =

Iz−1
c ↑

I0 =

Izc ↑

k = 0

∆J = J− Ik ⊗B
Ik+1 = Ik + ∆J⊗−1

λk
B

λk+1 = 1
3 λk, k = k + 1 It

er
at

e

Izc = Ik

Scale zz−1 z+1

J = Jzc , B = Bz
c ,

λ0 = λc

Figure A.16: Iterative deconvolution of the residual image which eliminates
ringing artifacts, center. The operator ⊗−1

λk
is the deconvolution of the

image to the left using the kernel to the right and a regularizer-weight
λk. For performance reasons the algorithm is implemented in scale
space. This figure shows the deconvolution on a level z in the pyramid.
We set I−1

c = 0.

Our method handles saturation in the blurred image by removing the rows where

j is saturated from the data fitting term. This is done by pre-multiplying the residual

Bcx− jc with a diagonal weighting matrix whose diagonal is 0 for saturated rows

and 1 else; the derivation from Eq. (8.11) is changed straightforwardly.

To increase the performance of the algorithm by using good starting points for

Eq. (8.5), the method is performed in scale space. See again Figure A.16, where

↑ is an upsampling operator to the next finer scale. We use nearest neighbor since

it preserves edges. The pyramids {Jz}Zz=0, {Bz}Zz=0 of the blurred image/kernel

pairs are computed by bicubic downsampling of J,B with the scale factor 1
2 . The

reconstruction pyramid {Iz}Zz=0 is progressively recovered from coarse (scale 0) to

fine, where at each scale the initial iterate is the upsampled result of the next coarser

level. Note, that our scale space implementation purely serves as a performance

improvement. In particular we do not need to overcome local minima in our

302



minimization problem since it is convex.

Contrary to [262], we are also not using any information from coarser scales

in the deblurring at a considered scale. Since the reconstructions can contain

significantly less detail we found that guiding fine scale deblurring with coarser

scale information is problematic in many cases.

A.10 PSF Estimation using Calibration Targets
This section explains the PSF estimation method for our imaging system from

Chapter 8, which uses uncompensated simple optics instead of complex lens systems

for high-quality imaging. The aberrations for these simple optics are spatially

varying as shown in Figure 2.6 and Figure 8.2. However, for a small tile the

corresponding PSF can be assumed to be spatially invariant, see Section 8.2, and the

deconvolution method from Section 8.3 is formulated for small tiles.

While the PSF for a tile can be obtained by any existing technique, we use a

calibration-pattern-based approach. In contrast to methods that directly measure

the PSF like Schuler et al. [165], no pinhole-light source and a dark-room lab is

necessary. Instead we just use a consumer laser-printer to make our targets. To

estimate the PSFs from the target images, it is natural to apply the same optimization

framework that was used for deblurring in Chapter 8 also for the PSF estimation

step.

PSF Estimation as Deconvolution

The PSF estimation problem can be posed as a deconvolution problem, where both a

blurred image and a sharp image of the same scene are given. The blurred image is

simply the scene imaged through the simple lens, with the aperture open, while the

sharp image can be obtained by stopping the lens down to a small, almost pinhole

aperture, where the lens aberrations no longer have an effect. By acquiring a sharp

image this way (as opposed to a synthetic sharp image) we avoid both geometric

and radiometric calibration issues in the sharp reference image.

Let J be an image patch in a considered blurred channel, I the corresponding

sharp pinhole-aperture patch. We estimate a PSF Bopt describing the blur in J by
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solving the minimization problem

bopt = argmin
b

‖Ib− s · j‖22 + λ‖∇b‖1 + µ‖1Tb− 1‖22, (A.9)

where the first term is a linear least-squares data fitting term, and the scalar

s =
∑

k,l I(k, l)/
∑

k,l J(k, l) accounts for the difference in exposure between

the blurred and pinhole image. The second term represents a standard TV prior on

the gradients of the recovered PSF, and the third term smoothly penalizes deviations

from the energy conservation constraint, i.e.,
∑

k,l B(k, l) = 1.

Note that Eq. (A.9) is a convex optimization problem. To solve it we use a

proximal algorithm which is similar to the deconvolution method from Section 8.3.3.

Specifically, Eq. (A.9) is expressed in the form of Section 2.8.3, using:

Φ = I, G(v) =
1

λ
‖Iv − s · j‖22 +

µ

λ
‖1Tv − 1‖22,

Ω = ∇, F (v) = λ ‖v‖1 .
(A.10)

As in Section 8.3.3, we use Chambolle-Pock’s proximal algorithm to solve Eq. (2.40)

with the specific operators from Eq. (A.10). The proximal operators F ∗ has already

been defined in Eq. (8.7), and the proximal operator for G is

proxτG(v) = x̃ = argmin
x

1

2τ
‖x− v‖22 +

1

λ
‖Ix− s · j‖22 +

µ

λ

∥∥1Tx− 1
∥∥2

2

⇔ λ

2
x̃− λ

2
v + τ

(
IT Ix̃− s · IT j

)
+ τµ(Ox̃− 1) = 0

⇔ x̃ = F−1

(
τsF (I)∗ F (j) + λ

2F (v) + τµF (1)

τ |F (I)|2 + λ
2 + τµF (O)

)
(A.11)

The computation of L for Chambolle and Pock’s method has been described in

Section 8.3.3, and the same τ and σ can be used.

Calibration Pattern

To allow for robust PSF estimation, the scene used for this purpose should have a

broad spectrum. We therefore decide against both natural scenes and edge based

patters (e.g., [319, 320]), and instead adopt a white noise pattern. See [321] for
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a comparison of a white-noise pattern to different other calibration patterns. Our

specific pattern, shown in Figure A.17, is subdivided into several noise patches,

separated by a white border. Each noise tile will produce a PSF for a single image

tile, while the white frame helps suppress boundary effects in the PSF estimation

process. This is because it enables a physically correct constant boundary condition

around each patch if the frame width is rbnd ≥ blur-radius (see again Figure A.17).

rbnd

Figure A.17: Proposed PSF calibration target consisting of a grid of framed
white noise patches. If the frame width is rbnd ≥ blur-radius, a bound-
ary condition propagating the boundary pixels outside is a physically
correct model for the blurred and sharp noise patch.

Full PSF Estimation Framework

To increase the efficiency of the PSF estimation, we apply the algorithm introduced

above in scale space. We initialize our iterative minimization at each scale with the

upsampled results from the next coarser scale, which yields a good starting point for

the convex objective function from Eq. (A.9) and thus speeds up the minimization.

After the initial PSF estimation, we perform an additional step of smoothing by

computing weighted averages of PSFs for a 3× 3 set of neighboring tiles. Although

the PSFs may contain high frequency features, these tend to change smoothly over

the image plane. Combined with the relatively small tile size, we found that this

spatial filtering does not cause feature loss, but reduces noise significantly.
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A.11 Cross-Channel Deconvolution for Various Optical
Systems

This section presents additional results that evaluate our method from Chapter 8 for

various optical systems, and in comparison to other deconvolution algorithms.

Complex Lens Systems

Figure A.18 shows an additional result for commercial camera lens, a Canon 28–105

mm zoom lens at f/4.5, which has been discussed in Section 8.4.

Figure A.18: Patches from an image captured with a commercial Canon lens
(105 mm, f/4.5). First and third column: Captured input patches.
Second and last column: reconstructed sharp result.

Multispectral Camera

Figure A.19 shows results for a multi-spectral camera with custom multi-element

optics. The camera prototype is described in [322]. Using the Liquid crystal tunable

filter (LCTF) we capture narrow spectral bands whose center wavelength can be

electronically tuned. See [323] for a review of LCTF-based multi-spectral cameras.

The prototype system allows for 20 nm wavelength increments in the spectral range

from 420 to 720 nm.

The results shown in Figure A.19 demonstrate that, as for conventional cameras,
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Figure A.19: Results for a multispectral camera with custom optics. The top
row shows PSF estimation results for 20 nm wavelength increments in
the spectral range from 420 to 720 nm (blue: image center, red: upper
left corner). The bottom set of images and insets shows the captured
image (left) and the deconvolved result (right) after mapping to sRGB
space.

our method successfully removes chromatic aberration and restores lost image detail

in the blurred channels over the full range of the visible spectrum.

Comparisons

We have compared our method against several state-of-the-art deconvolution algo-

rithms, including the one from Levin et al. [161]. Figure A.20 shows a comparison.

Compared to our result, it shows more prevalent ringing artifacts, which are particu-

larly noticeable because they also have chromatic component. Our cross-channel

prior successfully suppresses chromatic artifacts, but also helps to transfer infor-

mation between channels for reduced ringing and increased detail overall. For the
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Figure A.20: Top row from left to right: Captured image, deconvolved result
from [161] independently on each channel, IRLS method from [161]
extended with our prior, our result. Bottom row: Patches in same order
of the methods.

result in Figure A.20 we also implemented our cross-channel prior as an additional

regularization term for Levin et al.’s method. While this improves the result, it does

not match the quality of our method. The IRLS solver is unstable, not guaranteed to

converge, does not minimize the sparse norm close to its non differentiable origin,

and thus cannot achieve the results of our method. We especially found robustness to

be a general issue once the cross-channel prior was added to IRLS, with the resulting

method being very sensitive to parameter selection and often failing completely. We

have also compared our method to Schuler et al. [165]. First, in Figure A.21 we

show results using their datasets (images and estimated PSFs). We show results

with two different weights for the regularizer. Note that in both cases, our method

recovers more fine-scale structure than their approach. Since Schuler et al. use a

Hyper-Laplacian non-convex objective, their method is not guaranteed to converge

to the desired accuracy. However, the results for this dataset do not match the quality

we can achieve with our own datasets – for varying regularization weight always

a strong residual blur remains, especially around the leaves and window edges.

These are due to PSF estimation errors rather than issues in the actual deconvolution

method. We note that the PSFs lack a very low-frequency component, which we

have observed with every single lens element we have tested in our setup. Instead,

their blur kernels exhibit very thin structures akin to motion blur kernels and contain
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Figure A.21: Top row from left to right: Captured image, our deconvolved
result, result from [165]. Patch matrix below from top left to bottom
right: Captured image, result from [165], our result with strong regu-
larization (smoother reconstruction), our result with low regularization
(more detailed reconstruction).

very little chromatic variation. A missing low-frequency component in the kernels

explains the poor quality of the deconvolved results. Unfortunately, Schuler et al.

do not specify details about the lens, so we are unable to obtain similar images using

our setup.

We note that Schuler et al.’s YUV-cross-channel regularization breaks down

when the chromatic aberrations increase. It completely fails for many of the large

aberrations that we can handle. In Figure A.21 and Figure A.22 we compare our

cross-channel prior against their YUV-cross-channel regularization. In this case we

did not have access to their original implementation, so we reimplemented their

method. To solve Eq.(5) from their paper, we have adapted the code from the Hyper-

Laplacian solver [160] as suggested by the authors. All parameters documented

in their paper have been used. Note that our prior removes nearly all chromatic

aberrations, while Schuler’s YUV regularization fails with the large aberrations that

we can handle.
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Figure A.22: Images from Figure 8.6,Figure 8.1 reconstructed using our cross-
channel prior (left) and restored with the YUV-regularization from
[165] (right).
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A.12 Natural Image Prior Design Choices
This section discusses the design choices for the natural image priors from Eq. (9.3)

used in our Bayesian approach to camera image processing from Chapter 9.

Choice and Importance of Priors

The choice and combination of priors is crucial for high-quality results [324]. The

priors can be divided into two main categories: internal priors use intra-image

information, while external priors use external knowledge about natural images.

While most priors fall in one or the other category, a few have mixed characteristics,

so the boundary is somewhat vague. We have experimented with many internal and

external priors to yield a combination that achieves the highest quality but remains

efficient to compute. We next analyze the internal and external priors separately.

Choice of External Priors

We considered three different external priors (in addition to the complementary

cross-channel prior which has been analyzed in the previous Chapter 8): the simple

TV prior [188], a curvelet prior [325], and the EPLL prior [163]. We explore their

use for reconstructing interlaced HDR (Section 9.4) images with a simulated lens

blur (Gaussian, varying σ) using a synthetic dataset consisting of 12 different images.

This dataset provides ground truth and helps to determine which priors are adequate.

We set the internal prior to BM3D and reconstruct the 12 images by varying the

weights between the internal (BM3D) and the three investigated external priors. The

reconstruction quality is listed in Table A.1.

The complex EPLL prior can give a slight image quality increase (f) in the

case of a large blur (σ = 1.83), but its computational cost is prohibitive (60 times

higher than TV). Just using TV gives a similar boost. For a smaller lens blur

(σ = 0.14), EPLL also only yields a minor increase in image quality, but larger

gains are achieved by the much cheaper TV prior. The curvelet prior does not

provide any benefit for σ = 1.83; on the contrary, the quality decreases slightly with

its use. For σ = 0.14, the curvelet prior can achieve gains, but is quite sensitive to

the chosen weighting. Furthermore, using the curvelet prior is about 15% slower

than using TV.
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(a) (b) (c) (d) (e) (f) (g)
φext.

0 0 1/32 1/16 1/4 1/2 1/2 1
φBM3D

2 1 1 1 1 1 1/2 0

EPLL (σ = 1.83) 0.00 +0.01 0.00 0.00 -0.03 +0.07 -0.34
Curvelets (σ = 1.83) 0.00 -0.02 -0.01 -0.41 -1.03 -0.90 -1.78
TV (σ = 1.83) 0.00 +0.03 +0.04 +0.05 -0.02 -0.19 -0.61

EPLL (σ = 0.14) 0.00 0.00 +0.03 +0.04 +0.07 +0.05 -0.82
Curvelets (σ = 0.14) 0.00 -0.02 -0.02 -0.25 +0.12 -0.05 -0.40
TV (σ = 0.14) 0.00 +0.04 +0.13 +0.16 +0.02 -0.39 -0.95

TV (σ = 1.83) 0.00 +0.03 +0.04 +0.05 -0.02 -0.19 -0.61
TV (σ = 1.38) 0.00 +0.05 +0.10 +0.12 +0.03 -0.18 -0.79
TV (σ = 1.00) 0.00 +0.05 +0.12 +0.14 +0.05 -0.21 -1.12
TV (σ = 0.55) 0.00 +0.02 +0.05 +0.10 0.00 -0.40 -1.23
TV (σ = 0.14) 0.00 +0.04 +0.13 +0.16 +0.02 -0.39 -0.95

Table A.1: Different weighting between internal and external prior and the
resulting change in SNR. To analyze the effect isolated from the cross-
channel prior we set φ1 = 0.

We note that the benefit of using TV in addition to BM3D lies in making the

problem more convex. To further illustrate this, we show results for five different

Gaussian blurs (bottom of Table A.1). Smaller blurs make the data term less convex,

thus making the problem successively more difficult to solve by only using BM3D.

Adding TV convexifies the problem, and image quality increases.

Figure A.23 demonstrates the complementary benefits of using BM3D and TV.

The top row illustrates that by exploiting structural self-similarity (BM3D) we can

reconstruct significantly more detail than just by using a TV prior. The bottom

row illustrates that the BM3D prior may fail for correlated noise or reconstruction

artifacts, but those problems can be fixed by the external TV prior.

We conclude that TV is the most cost-effective external prior giving similar

performance as much more computationally complex priors and can help to increase

convexity. In all our applications, a small amount of TV has improved the resulting

reconstruction quality.
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Figure A.23: Illustration of using both the TV and BM3D priors for recon-
structing images from the interlaced HDR sensor (Section 9.4).

Choice of Internal Priors

We showed in Section 9.3.2 that we can incorporate any Gaussian denoiser into

our framework. We are particularly interested in internal denoising priors that

exploit self-similarity within the image [67, 70]. We experimented with the most-

commonly-used non-local operators: BM3D [70], NLM [67], patchwise NLM [326],

Sliding DCT [69], and simple averaging of similar patches, which we compared for

demosaicking, interlaced HDR, and burst image stack processing in Figure A.24.

All denoisers except Sliding DCT operate on a stack of similar patches. For

this experiment, we configured all of them to search for the 16 most-similar 8×8

patches in a 15×15 pixel vicinity. BM3D performs a 3D transform (DCT on xy

and Haar on z) on this stack and thresholds all coefficients followed by Wiener

filtering; NLM computes a weighted average of the patch centers based on patch

similarity; patchwise NLM computes the weighted average for all 8×8 pixels;

simple averaging assigns a uniform weight to all patches. Sliding DCT simply
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Figure A.24: The impact of selected natural-image priors on the reconstruc-
tion quality of various image models.

thresholds DCT-transformed patches for each pixel and aggregates the results. We

only use the denoising prior for this comparison.

Figure A.24 shows the resulting PSNR values for each denoiser. Overall, BM3D

and patchwise NLM achieve very similar results, with BM3D being slightly better

in all applications. Hence, all results in this paper were generated using BM3D.

Simple averaging works well for reconstructing interlaced HDR images and burst

denoising, but not for Bayer demosaicking. Pure NLM achieves reasonable PSNR

values in all applications, but is always worse than BM3D and patchwise NLM.

Sliding DCT achieves fairly good PSNR for demosaicking and burst denoising, but

not when applied to interlaced HDR with a significant number of pixels being either

too dark or bright. Since significant information is missing in interlaced HDR, a

self-similarity prior is needed to recover it.

BM3D modifications One can expect improved results by modifying the BM3D

parameters for a given application, and we experimented with this for demosaicking.

Note that we only varied the prior parameters (just like the data-term weights for

different applications), but not the prior itself. We found that two changes to the

standard BM3D parameters both improve the running time and increase the result

image quality. The first parameter is the size of the patch to be matched. Instead

of using the standard 8× 8 patch, we use much smaller 4× 4 patches. Obviously,
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smaller patches are faster to compare, but more importantly, it is likely that we

can find more patches that are similar. This is particularly important in areas with

irregular textures, such as foliage or grass.

The second parameter relates to the color spaces that we operate in, and the 2D

transformations we use. In the first stage, when patches are matched, the modified

version uses the YUV color space, and matches patches based on the luminance

component only; we use DCT as the 2D spatial transform to sparsify the signal,

and 1D Haar for thresholding. For the second stage, Wiener filtering, we use the

3-point DCT to decorrelate colors and then use DST (Discrete Sine Transform) as

the 2D spatial transformation, and again Haar for thresholding. Use of different

color spaces and transformations decorrelates the two processing steps, yielding

improved results. The average improvement is +1.73 dB in pure demosaicking and

+0.6 dB in joint demosaicking and denoising over the default BM3D. Please note

that, even with the default settings, our technique still beats the competing methods.

Choice of Weights

We found that a single setting for the prior weights is sufficient for each application—

no image-dependent modifications are necessary. Furthermore, we need to find

the right overall weighting between the data term and the priors, as illustrated in

Figure A.25. We experimented with different weights, and again found that a single

setting per application works well for any given image. User preferences such as

sharp but grainy vs. smooth with less noise, do influence the settings.

A.13 Bayesian Color Arrays Imaging and Deblocking
This section presents further application of our Bayesian approach to camera image

processing from Chapter 9 to color array cameras. In particular, we demonstrate

color array cameras and JPEG deblocking.

Color Array Camera

Single-chip array cameras provide thin camera designs and a potential for depth-

map-based applications [73]. The color filters are per lens and not per pixel, and

each lens can be optimized for the wavelength passed by the respective filter. Since
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Figure A.25: Impact of the regularizer weights (relative to the data term) on
the solution. The weights are γi = γ φi: γ is shown in the images,
while φi are φ0 = 0.1 (TV), φ2 = 1.0 (BM3D), and φ1 = 0.1 (cross-
channel). High γ-values impair the reconstruction process by enforcing
too much sparsity in the output. On the other hand, a too small γ
ignores the priors, leading to sharp but aliased results.

each sub-image has only one color, no demosaicking is required. Instead, the images

have to be registered, but this is challenging since each sub-image has a different

color and viewpoint, leading to parallax and occlusions.

We use our framework to fuse images from a 2 × 2 single-chip color array

camera, shown in Figure 9.1(d). This prototype uses R, G, and B sensors, with a

1.4mm baseline. Additionally, we use a second 2×2 camera array. We first estimate

the registration between the sub-images, which we encode in the matrix Φ, and use

the matrix M as a confidence mask modeling the uncertainty in this registration.

This uncertainty occurs both in flow-based or depth-based registration. We have

opted for a novel cross-channel optical flow for registration across different color

channels, as it avoids any geometric calibration. Each channel is replaced with a
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Figure A.26: R, G, and B color planes, and corresponding normalized images.
The normalized gradient magnitude images look similar, apart from
noise. Prominent edges show up on all channels, helping the optical
flow algorithm to converge on a good motion estimate.

normalized image j̃ = ‖∇j‖
j+ε (A.26), and we solve for the cross-channel optical flow

∆v between the color channels jC (for C = {R,B}) and the fixed green channel

jG with

argmin
∆v

∥∥∥j̃C + (∇j̃C)T∆v − j̃G

∥∥∥2

2
+ ‖∆v‖1 (A.12)

using a standard optical flow algorithm [327].

We detect the reliable flow estimates through forward-backward consistency

check and mark them in the indicator matrix M. Having computed the flows

∆vR and ∆vB , we form flow matrices Wi for each capture i. We also account

for the optical blur in the 2 × 2 camera and recover some of the sharpness in the

reconstructed image. The blur is encoded in the matrix B as before. The mosaicking

matrix is not needed for this camera.

We set Φi = MiBWi for each capture i (out of k), and get

G(i) =

k∑
i=1

‖BWii− ji‖2Mi
. (A.13)

Results

We perform the experiment on both a large and a small baseline design for a

2× 2 color camera array. In Figure A.27 we show the large-baseline (top) and the

small-baseline results (bottom). The first column shows an overlay of the different

channels to illustrate the extent of chromatic aberration due to the parallax. The

second column shows the images warped by the computed cross-channel flow.

Note that there are still color artifacts in the occluded and poorly-estimated flow

regions. In the third column we show the result by a method adapted from Joulin and
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Figure A.27: Image reconstruction for color-array camera. (a) Raw input
red, green, and blue images overlaid. (b) Naı̈ve registration of color
channels via optical-flow produces color leaks. (c) Anaglyph-based re-
construction [328] partially reduces the color leakage. (d) Our method
reconstructs the image without such artifacts.
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Kang [328], which was originally proposed to reconstruct full color stereo images

from anaglyph (red/cyan) images. This method works by iteratively computing

SIFTFlow [329] between the channels, detecting poorly matching regions through

flow consistency check, and then colorizing these regions. But the method does not

enforce the cross-channel edge consistency illustrated in Figure A.27, and produces

visible artifacts. In the fourth column we show that our combination of priors

manages to maintain the consistency of R and B channels with the G channel in

just a single pass and avoids color fringing. While some small artifacts remain,

this problem is hard and we believe we have made a large step towards a robust

solution. Note that we do not require a perfect registration, but rely on our image

priors to refine the effective registration. This is an important advantage, because

registration errors are unavoidable—whether images are registered via optical flow

or via depth estimates [73]—and may lead to very visible color bleeding at occlusion

edges (Figure A.27). Our conclusion is that the proposed framework is suitable for

processing color camera images, even without first extracting per-pixel depths.

Beyond Linear RGB

We next demonstrate that we do not need to stop at linear RGB, or YUV, but that

we can extend our processing all the way to the JPEG-compressed image.

JPEG compression works by taking an RGB image i, converting it to YUV

space with a linear color transform E, downsampling the chroma components (SJ ),

performing a block-based DCT on the individual channels (Φ), and reweighting

the individual frequencies according to a quantization matrix Q [330]. Finally, the

integer JPEG coefficients are obtained through rounding:

[c] = round(QΦSJE︸ ︷︷ ︸
R

i). (A.14)

We can see that all steps except for the final quantization can be expressed as

a linear operator. Likewise, JPEG decompression can be expressed as a linear

operator R−1 = E−1UJΦ−1Q−1, where the upsampling operator UJ = S†J is a

pseudo-inverse of the chroma subsampling.

With this observation it becomes possible to directly perform image reconstruc-
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tion in the JPEG transform space, by setting Φ = MSBR−1, as below:

argmin
c

∥∥SBR−1c− j
∥∥2

M
+ Γ(R−1c), (A.15)

where Γ(R−1c) is simply F (ΩR−1c).

Hence, we can add this compression-space optimization to any image-formation

model and priors, directly optimizing for the best JPEG DCT coefficients c. If we

do not want to optimize all the way to the JPEG coefficients, but only to a YUV or

other color space representation, we can set Φ = MSBE−1UJ .

Note that we can use a similar approach for JPEG image decompression in an

image viewer. Depending on the quantization matrix Q, JPEG-compressed images

may exhibit severe artifacts, including blocking, ringing, and loss of texture. We

can use our usual image priors to alleviate these artifacts by using Φ = R to get

G(i) = ‖Ri− c‖22 , (A.16)

where c are the JPEG coefficients, and i the reconstructed image. Intuitively, using

Eq. (A.16) as the data term in our minimization scheme determines the image that

best matches the image priors while still compressing to the given JPEG coefficients

c. In effect, we are deblocking the displayed JPEG image [331].

Results

To evaluate our joint optimization with JPEG’s DCT encoding, we have recon-

structed 12 images from the interlaced HDR camera application. We first compare

our joint optimization by directly reconstructing these images in YUV420 vs. first

reconstructing them as full RGB and then subsampling and converting to YUV420.

On these 12 images, our method achieves an average PSNR of 28.83 dB, in contrast

to the pipeline approach, which only achieves 28.45 dB.

We also compare JPEG images reconstructed directly from the interlaced HDR

inputs by our framework (quality 50) to the standard pipeline approach of first

reconstructing in full RGB, followed by regular JPEG encoding (using the quality

factor that best matches the file size of the first JPEG). PSNR values of the decoded

JPEG images are then computed w.r.t. the ground-truth image. On average, we
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Figure A.28: Extending the reconstruction pipeline to the receiver. We com-
pare the JPEG (quality = 30), Adobe Photoshop deblocking, SA-DCT,
and our reconstruction on the display side (PSNR in images).

achieve an improvement of 0.1 dB over the sequential approach.

The improvement is modest, as the JPEG coefficients do not couple much with

the rest of the pipeline. However, strong JPEG compression inevitably creates

blocking and quantization artifacts, which this approach cannot address. To over-

come such issues, we can extend the image pipeline all the way to decompression

and solve Eq. A.16 on the receiver side, in essence deblocking the JPEG image

[331]. We compare our method to Adobe Photoshop CC’s deblocking algorithm and

SA-DCT [331] in Figure A.28. Our method removes most of the blocking artifacts

and ringing, and yields a significant PSNR improvement (∼1.0 dB). Photoshop

removes some artifacts, but does not reconstruct the original image as faithfully as

our method does. SA-DCT achieves good quality, but 0.3–0.6 dB worse than ours.

A.14 Poisson Data Fidelity
This section describes the data fidelity term resulting from a Poisson likelihood

which models Poisson distributed additive noise. In particular, we model the

observed image j as a sample of a random variable j̃:

p(̃j = j | λ) =

n∏
l=1

λjll e
−λl

jl!
, (A.17)
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where here the notation (·)l denotes the selection of the l-th component of the image

vector given as argument. Following the Bayesian MAP approach from Section 2.8.1,

which is also proposed in [305] and [306], the quadratic dataterm ‖Φi− j‖22 then

becomes the negative log-likelihood of p(̃j = j | i), that is

− log
(
p(̃j = j | i)

)
=

n∑
l=1

Γ ((Φi)l , jl) with

Γ(a, b) = a− b log(a) + indR+(a),

(A.18)

where indR+(a) is the indicator function for the positive orthant. Setting now the

negative log-likelihood as

fPoisson(x) = x− j log(x) + indR+(x), (A.19)

then, the corresponding proximal operator for the changed f1 is

proxθfPoisson(·)(v) =
v − θ

2
+

√
θj +

(θ − v)2

4
, Poisson Prox

(A.20)

This analytic solution for the proximal operator of f1 results in a root-finding

problem of a second-order polynomial as shown in Eq. (A.21). Due to the positivity

constraint in f1 the minimum is uniquely defined by the positive root

proxθf1(·)(v) = xopt = argmin
x

f1(x) +
1

2θ
‖x− v‖22

= argmin
x∈R+

x− j log(x) +
1

2θ
‖x− v‖22︸ ︷︷ ︸

Υ(x)

⇔
∂Υ(xopt)

∂x
= 1− j

xopt
+

1

θ
xopt −

1

θ
v

!
= 0 s.t. xopt ∈ R+

⇔ x2
opt + (θ − v) · xopt − θj = 0 s.t. xopt ∈ R+

⇔ xopt =
v − θ

2
+

√
θj +

(θ − v)2

4
.
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