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Abstract

Computer vision algorithms build on 2D images or 3D
videos that capture dynamic events at the millisecond time
scale. However, capturing and analyzing “transient im-
ages” at the picosecond scale—i.e., at one trillion frames
per second—reveals unprecedented information about a
scene and light transport within. This is not only crucial
for time-of-flight range imaging, but it also helps further
our understanding of light transport phenomena at a more
fundamental level and potentially allows to revisit many as-
sumptions made in different computer vision algorithms.

In this work, we design and evaluate an imaging system
that builds on single photon avalanche diode (SPAD) sen-
sors to capture multi-path responses with picosecond-scale
active illumination. We develop inverse methods that use
modern approaches to deconvolve and denoise measure-
ments in the presence of Poisson noise, and compute tran-
sient images at a higher quality than previously reported.
The small form factor, fast acquisition rates, and relatively
low cost of our system potentially makes transient imaging
more practical for a range of applications.

1. Introduction

In 1978, Abramson recorded the first holographic im-
age of a light pulse propagating through a scene [1]. Each
pixel in this so-called “transient image” is a time impulse
response function τ , representing the amount of light re-
ceived at time t in response to a pulse of light emitted into
the scene at time t = 0 (Figure 1). While the transient na-
ture of light is hidden in images captured by conventional
cameras or seen by the naked eye, these transient images
unveil the sequence of complex scattering events that occur
when light interacts with real-world environments.

Recent developments in sensing technologies have revi-
talized interest in transient imaging and, more importantly,
the use of transient information for scene analysis [18]. For
example, transient images provide a way to measure the 3D
shape and albedo of objects [20, 21], to distinguish between
objects composed of different scattering properties [29, 32],
or measure the reflectance and scattering properties of ma-

Figure 1. Row 1: Images of a scene captured with regular vision
camera under ambient lighting (left) and a single-photon sensitive
SPAD array under diffused laser illumination (right). Row 2: The
temporal response approximately 703 ps (left) and 1171 ps (right)
after emitting a pulse of light into the scene.

terials [13, 23]. Transient imaging has also enabled un-
precedented imaging capabilities such as looking-around-
corners [5, 30], seeing through diffusers and thick scatter-
ers [19, 26], or even lensless imaging [33].

While several imaging technologies now exist for cap-
turing transient images (e.g., holography [1], streak cam-
era [30, 31], photon mixer device (PMD) [15, 19], opti-
cal interferometry [12]), each approach has weighty prac-
tical limitations as outlined in Table 1. Although tran-
sient images record high-speed optical events, the physical
process to capture these transient images may require up-
wards of several hours. In addition, these devices are often
mounted onto vibration isolated tables (e.g., [12]), or are
prohibitively expensive (e.g., [30, 31])—factors that prevent
their use in everyday scenarios.

An emerging sensing technology known as single-
photon avalanche diodes (SPAD) is a silicon-based pho-
todetector capable of detecting and timestamping individ-
ual photon events (Figure 2). A SPAD pixel collects a his-
togram of photon arrival times (i.e., a discretized version
of the time impulse response τ [t]) by repeatedly measur-
ing the scene’s response to a sequence of light pulses being
emitted at MHz rates (Figure 3). SPAD pixels detect times-
tamped photon events at picosecond timescale resolutions,



Acquisition Temporal Processing Digital
time resolution requirements image

Holography [1] 12 s 800ps N/A 7

Streak camera [30] >1h 0.3-5.7ps Minimal 3

PMD sensor [15] 90 s 1000ps High 3
Optical

interferometry [12] >1h 0.033ps Moderate 3

SPAD (ours) 64 s 300ps High 3

Table 1. Comparison of select transient imaging technologies.
For a thorough review of available transient imaging technologies,
see [18]. Our RAW measurements have a temporal resolution of
300 ps; after processing, the resolution is approximately 100 ps.

corresponding to a light pulse length of a few centimeters.
A variety of SPAD architectures now exist, including 1D
SPAD arrays with 256 pixels [4] and 2D SPAD arrays with
32× 32 pixels [24].

Gariepy et al. [10] recently used this 2D SPAD array to
capture a transient image of a light pulse bouncing around
an environment. As transient imaging is an inherently noisy
procedure, Gariepy et al. proposed a three-stage Gaussian-
fitting procedure to denoise, temporally deconvolve, and in-
terpolate the measured histograms. This procedure makes
the strict assumption that the histograms contain a single
pulse (i.e., a single light path), and therefore ignores the
contribution of secondary pulses (e.g., the indirect path
shown in Figure 3). The experimental setup achieves a tem-
poral resolution of 500 ps and forms transient images over
a relatively-short 10 min acquisition period.

We present the first SPAD-based system for multi-path
transient imaging. Our reconstruction procedure denoises
and deconvolves histograms without assuming single-path
transport events. This enables our system to capture com-
plex multi-path transport effects like subsurface scattering
and interreflections—an important requirement for many
transient imaging applications. In comparison to Gariepy
et al. [10], our system also increases the acquisition speed,
spatial resolution, and temporal resolution of the transient
images.

Our aim is to make transient imaging more accessible to
the computer vision and graphics community by overcom-
ing the traditional cost, long acquisition times, and limited
spatio-temporal resolution of existing systems.

2. Related work
Transient Imaging Technologies Select methods for
capturing the transient image of a scene include those listed
in Table 1, and a detailed overview is provided by Jarabo et
al. [18]. These methods are all active, sending a light sig-
nal into an environment and computing the time required
for that light to return back to a sensor. Generally speaking,
all such devices interfere or couple two signals together to
recover the time-of-flight of light, using one of three inter-
ferometric approaches: the optical, optoelectronic, or elec-
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Figure 2. Simple readout circuit of a conventional photodiode (left)
and a single photon avalanche diode (SPAD, right). Instead of dig-
itizing collected photoelectrons with an analog-to-digital converter
(ADC), a SPAD digitizes the time-of-arrival of individual photons
with a time-to-digital converter (TDC). These events are detectable
because each photon creates an electron avalanche, which ampli-
fies the signal. While the two circuits are conceptually very simi-
lar, SPADs are operated well above their breakdown voltage to en-
able avalanching. The extreme voltages necessary for single pho-
ton detection require very different diode architectures in practice.

tronic interference of two signals.
Abramson’s holographic technique optically interferes

light from a scene with a reference beam [1]. This ana-
log holography technique, however, is a costly procedure
compared to digital sensing technologies. Inspired by an
imaging technique known as optical coherence tomography
(OCT), Gkioulekas et al. [12] digitally measured optical in-
terference to recover a transient imaging. Though the tem-
poral resolution achieved is extremely high, the acquisition
period is long and the system is sensitive to small vibrations.

A streak camera is an example of an optoelectronic tran-
sient imaging technology that couples an incident optical
signal with a time-modulated electronic one [30, 31]. The
streak camera uses the electronic signal to control an elec-
tric field that deflect photoelectrons (i.e., photons converted
into electrons) onto a digital sensor. By changing the elec-
tric field as a function of time, the deflection amount indi-
cates a photoelectron’s time of arrival. Unfortunately, streak
cameras remain prohibitively expensive and bulky.

More recently, solid-state sensing technologies have
used the electronic interference of two signals to capture
transient optical phenomena. Besides SPADs, photonic
mixer devices (PMDs) have recently emerged as a low-
cost alternative to measuring depth maps through time-of-
flight. These sensors work by continuously modulating a
light source, and electronically interfering the light signal
reflected back in response with the original reference sig-
nal. By performing multiple measurements using different
electronic signals, PMD sensors can recover a transient im-
age of a scene [15, 19]. PMD sensors overcome some of the
barriers to transient imaging, but are fundamentally limited
by their low temporal resolution.
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Figure 3. A short pulse g is emitted by a laser and scattered towards
a SPAD detector. This scene exhibits global illumination effects,
modeled by its time impulse response τ . Temporal jitter of the
SPAD adds further uncertainty to the time stamping process. A
time-to-digital converter (TDC) discretizes the time-of-arrival of
a detected event. Repeating the experiment N times allows for a
histogram h to be accumulated containing at mostN event counts.

Single-photon avalanche diode (SPAD) Although
avalanche diodes were first implemented in the
1960s [6, 14], SPADs have only recently become ac-
cessible through CMOS technology [25]. With only a
single photon detected per pixel, avalanche diodes can
recover the depth and albedo from the environment [21].
Other applications of SPADs include seeing through murky
water [22], and capturing the motion [11] or shape [5] of
objects hidden around a corner.

3. Single Photon Imaging
3.1. Single Photon Avalanche Diodes (SPADs)

Assume that a short laser pulse is emitted into a scene
and some of the light is scattered back towards the detector.
The laser pulse is described by a temporally-varying distri-
bution of photons g. Then, the photon flux r incident on
the detector during a discrete time interval t is the follow-
ing [27]:

r [t] = (τ ∗ g) [t] + a [t] , (1)

where ∗ is the 1D convolution operator, a [t] is the ambi-
ent photon flux and τ is the temporal impulse response of
the scene. The impulse response models photon travel time,
albedo, and any other light transport effect. For a scene
that exhibits only direct light transport, i.e., light bounces
off some object precisely once before returning to the de-

tector, τ is a discrete Dirac function. In the presence of
global light transport such as caustics, interreflections, or
subsurface scattering, τ models the scene’s response to an
infinitely short laser pulse. Note that t in this notation rep-
resents the relative time w.r.t. the emission time of the laser
pulse.

An ideal photon counter processing the stream of inci-
dent photons within a certain time window would sample
the rate function λ as

λ [t] = η (r ∗ f) [t] + d (2)

where η ∈ [0, 1] is the photon detection probability, which
is comprised of the quantum efficiency and the avalanche
probability of the SPAD. The dark count rate d [Hz] rep-
resents the number of false events that are detected in the
absence of photons. Finally, f is the detector jitter, mod-
eling uncertainty in the time-stamping mechanism. Jitter
on the order of tens to a few hundred of ps is common for
modern SPADs.

Photons that hit a SPAD create an electron avalanche that
is time-stamped by the time-to-digital converter (TDC). Af-
ter a detected event, however, the SPAD must be reset (or
quenched) before another event can be recorded. This dead
time is usually on the order of 100 ns. Assuming that the
length of the emitted laser pulse is significantly smaller than
the SPAD’s dead time, at most one of the photons in that
pulse can trigger an event. Note that this is not necessar-
ily the first photon that arrives. The presence or absence of
a detected event within a short window is thus a Bernoulli
trial.

Usually, the Bernoulli trial is repeated N times by fir-
ing N laser pulses at a rate that leaves sufficient time for
the SPAD to reset itself between pulses. A low-level count-
ing mechanism, for example implemented by a field pro-
grammable gate array (FPGA), accumulates events for a
certain “exposure time” and stores the number of detected
events per time bin in a histogram h. The probability of de-
tecting a certain number of events in a histogram bin can be
modeled as a Poisson distribution [27]:

h [t] ∼ P (Nλ [t]) . (3)

Note, however, that this is an approximation that models
individual photon events as being independent and which
assumes low photon flux, which is the case in our experi-
ments.

3.2. Capturing Spatio-temporal Volumes

Three categories of SPAD architectures exist: single
pixel, 1D array, and 2D array.

Transient imaging with a single pixel requires either op-
tical scanning or coding. Specifically, this involves raster
scanning the scene with a 2-axis galvo [21], or coding the



picosecond laser

1D SPAD array

relay lens 2

relay lens 1

objective lens

vision camera

2-axis scanning galvo

Figure 4. Transient imaging setup.
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Figure 5. An illustration of the imaging arm from Figure 4 (not
to scale). The components include an 8.5mm focal length ob-
jective lens (Computar M8513), two 75mm achromatic dou-
blet relay lenses (Thorlabs AC254-075-A-ML), a scanning galvo
system (Thorlabs GVS012), and a 1D SPAD array (Fastree3D
LinoSPAD). The objective lens focuses light from the scene to
an image plane, and the pair of relay lenses focuses the image
onto the SPAD sensor. The galvo is placed at the Fourier plane of
the system to control the scanline that the 1D SPAD images from
the scene. Note that our system uses a 2-axis galvo in practice
(one mirror scanning, and the second mirror fixed); the illustration
shows a 1-axis galvo for simplicity.

incident illumination or detection and then applying a re-
construction procedure to decode the measurements [20].
A 2D SPAD array completely eliminates the need for opti-
cal scanning or coding [11], though the large footprint re-
quired of today’s SPAD pixels severely limits resolution and
fill factors. Alternatively, the 2D SPAD array can also be
scanned to form a larger composite image [28].

We opt instead to scan scenes with a 1D SPAD array, as
illustrated in Figure 5.

3.3. Reconstructing Transient Images

The problem of recovering transient images from noisy
and blurry histograms is a deconvolution problem in the
presence of Poissonian noise. To formulate this, we rep-
resent the temporal impulse response (i.e., the transient im-
age), the measured histogram, and the dark count as discrete
column vectors τ ,h,d ∈ Rnxnynt×1. Using Equation (3),
we express h ∼ P (Aτ + d), where A ∈ Rnxnynt×nxnynt
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Figure 6. Part of a recorded histogram showing a temporal impulse
response function (g ∗ f) [t] captured with the proposed system.

encodes the convolution of the transient image with the laser
pulse and SPAD jitter (g ∗ f) [t] (see Figure 6) as well as
other scale factors. Each transient image has a resolution of
nx × ny pixels and each pixel has nt time bins. We formu-
late the reconstruction problem as a maximum likelihood
estimation with non-negativity constraints:

minimize
{τ}

− log (p (h|Aτ )) + Γ (τ ) , (4)

subject to 0 ≤ τ

where p (h|Aτ ) is the likelihood of observing measure-
ments h for a known transient image τ and Γ (τ ) is an
additional prior on the recovered signal. Possible choices
for this include total variation (TV) [28], sparsifying con-
volutional filters [16], or self-similarity priors such as video
block-matching and 3D filtering (VBM3D) [7].

Without loss of generality, we replace nonnegativity con-
straints by the indicator function IR+

(·) and apply a split-
ting approach that represents the objective as a sum of inde-
pendent penalty terms with a global consensus enforced by
the constraints:

minimize
{τ}

− log (p (h|z1)) + IR+
(z2) + Γ (z3)

subject to

 A
I
I


︸ ︷︷ ︸

K

τ −

 z1
z2
z3


︸ ︷︷ ︸

z

= 0 (5)

In this formulation, zi ∈ Rnxnynt×1 are slack variables.
Note that Equations (4) and (5) are equivalent. Using the
Augmented Lagrangian for Equation (5), we can derive
an iterative update scheme using the alternating direction
method of multipliers (ADMM) [3]. This scheme is out-
lined by Algorithm 1. In this formulation, M is the number
of iterations and u =

[
uT1 uT2 uT3

]T
is the scaled dual of

the Lagrange multiplier. In the following sections, we eval-
uate several different priors Γ (τ ), including an isotropic
transverse 2D total variation (TV) prior, an isotropic 3D TV
prior, and a video denoiser (VBM3D) [7]. We derive Al-
gorithm 1 as well as closed-form solutions for each of the
sub-problems and the priors in the Supplemental Material.



Algorithm 1 ADMM-based denoising and deconvolution
1: for k = 1 to M
2: τ ← arg min

{τ}

1
2 ‖Kτ − z + u‖22

3: z1←arg min
{z1}

−log (p (h|z1)) + ρ
2 ‖Aτ + u1 − z1‖22

4: z2←arg min
{z2}

IR+ (z2) + ρ
2 ‖τ + u2 − z2‖22

5: z3←arg min
{z3}

Γ (z3) + ρ
2 ‖τ + u3 − z3‖22

6: u←u + Kτ − z
7: end for

4. Implementation

LinoSPAD All experiments described in this work are
recorded with a 1D SPAD line sensor: LinoSPAD [4]. His-
tograms are recorded with 256 individual SPAD detectors
using 64 TDCs. Each SPAD pixel is 24 µm in diameter, has
a fill factor of 41%, and has a photon detection efficiency of
20% at 450 nm. The median value of the dark count rate is
2.5 kHz.

We combine this system with a picosecond laser (AL-
PHALAS PICOPOWER-LD-450-50) that has a wavelength
of 450 nm, peak power of 450 mW, and a repetition rate of
up to 50 MHz. The LinoSPAD is synchronized to the refer-
ence clock generated by the picosecond laser.

The TDCs and histogram accumulation in LinoSPAD
are all implemented on a Xilinx Spartan 6 FPGA. The his-
tograms accumulated in the FPGA have exactly 280 time
bins when operating the SPAD at 50 MHz (or a period of
20 000 ps between laser pulses). Each time bin has an av-
erage length of 20000

280 = 71.4 ps. The full-width at half-
maximum (FWHM) of a measured laser pulse is approxi-
mately 300 ps post jitter.

Histogram Calibration The LinoSPAD TDCs assign
timestamps to photons non-linearly. Specifically, the av-
erage number of photons detected in each histogram bin
is non-uniform under ambient lighting conditions. The
LinoSPAD provides a correction module on the FPGA that
redistributes photon counts such that the histogram appears
uniform under ambient light. This correction step brings the
280 bin histogram down to a 256 bin histogram, where each
bin has a time resolution of 20000

256 = 78.1 ps. The histogram
bins for the LinoSPAD are only approximately Poisson dis-
tributed as a result of this correction step.

Moreover, each pixel has a constant offset in the times-
tamps of incident photons. The arrival time of a laser pulse
therefore varies across LinoSPAD pixels. To compensate
for this per-pixel offset, we circularly shift the histograms
such that the centroid of each pulse are aligned temporally.

Because the dark count rate for certain LinoSPAD pixels

is high, we also capture a measurement under dark condi-
tions to recover the expected dark count rate per pixel, and
incorporate this information into the reconstruction proce-
dure.

Optomechanical Components To scan spatio-temporal
volumes, we integrate the line sensor into an optical as-
sembly that sequentially scans an image by sweeping the
line horizontally over the desired field of view. The proto-
type is shown in Figures 4 and 5. Our scanning prototype
consists of the LinoSPAD mounted onto a translation stage
to manually adjust focus. The scanning setup consists of
the following parts: an 8.5 mm objective lens, two 75 mm
Achromatic Doublets, and a 2-axis scanning galvo system.
The light from the scene is focused by the objective lens
onto the image plane, brought into the Fourier plane by the
first achromatic doublet, and focused onto the LinoSPAD
once again by the second achromatic doublet.

A National Instruments data acquisition device (NI-DAQ
USB-6343) controls the angle of one galvo mirror ±1.6◦

while keeping the second galvo mirror fixed. Each scan-
line takes approximately 0.2 s to capture. We scan 320 lines
to obtain a 2D image of size 320 × 256 in 64 s of acquisi-
tion time, and remove 16 SPAD pixel values with high dark
count rates to achieve a final resolution of 320× 240.

Computation The optimization procedure is imple-
mented in MATLAB, and uses the VBM3D toolbox pro-
vided by Dabov et al. [7, 8]. Running 200 iterations of
the reconstruction algorithm requires approximately 1 h per
transient image for 2D TV and 3D TV, and 5 h for VBM3D
on a machine with an Intel Xeon CPU E5-2650 processor
(2.60 GHz) and 24 GB of RAM.

5. Results
Simulations We evaluate the effectiveness of several re-
construction procedures (using different priors Γ (·) as ex-
plained in the Supplemental Material document) on a simu-
lated transient image in Figure 7. The ground truth data was
rendered using bidirectional path tracing [17]. We simulate
measured data by blurring the ground truth temporally and
adding Poisson noise to the result.

The Anscombe VBM3D result applies a variance-
stabilizing transform [2] to the measured data followed by
a denoising step via VBM3D [7]. Compared with the simu-
lated measurements, no change in the PSNR is observable.
The Poisson-TV (2D) and Poisson-TV (3D) approaches si-
multaneously denoise and deblur the result, producing a sig-
nificant increase in the PSNR. We include comparisons of
the transverse 2D and the 3D total variation (TV) priors,
because recent work on depth reconstruction from SPAD
measurements has also employed a 2D TV prior [28]. Here,



Ground truth Measured Anscombe VBM3D Poisson-TV (2D) Poisson-TV (3D) Poisson-VBM3D Gaussian Fit [10]
(22.9 dB) (22.9 dB) (29.5 dB) (33.0 dB) (34.9 dB) (22.2 dB)

Figure 7. Denoising & deblurring results from a simulated transient image. Row 1: Regular image of the scene, constructed by integrating
the transient images over the temporal dimension. Row 2-3: Each row corresponds to a frame of the corresponding transient image. Notice
the sharp wavefront constructed by the Poisson-TV (3D) and Poisson-VBM3D priors compared to the other reconstruction methods. The
2D-TV prior does not impose temporal consistency, which is even more apparent in the Supplemental Video. The Gaussian fit only
preserves the direct pulse from the original transient image.
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Figure 8. Evaluation of PSNR for the simulated results in Figure 7.
The photon flux corresponds to the intensity of the light source
used to generate the simulated measured image.

we show that for transient imaging, a 3D TV prior is su-
perior. However, the best simulated results were achieved
with a Poisson-VBM3D prior. In addition, we also imple-
ment the Gaussian fitting approach described by Gariepy et
al. [10]; although the reconstructed direct channel matches
the ground truth closely, the PSNR is worse than the original
measured data because the indirect component is removed
in this process. The PSNR for each reconstruction proce-
dure for different photon flux values (corresponding to light
source intensity) is shown in Figure 8.

Reconstructed Transient Images We captured 7 differ-
ent transient images using our 1D SPAD array and recon-
struction procedure. These images, shown in Figures 1, 9,
and 11, include the following: fruit, resolution chart, opti-

cal fiber, soda bottle, CVPR logo, foam box, and statue. The
size of each scene ranges from 25 cm wide for the soda bot-
tle to 60 cm for the CVPR logo. Figure 9 was reconstructed
with Poisson-VBM3D, and Figures 1 and 11 used Poisson-
TV (3D). The same scenes viewed with a regular computer
vision camera are shown in Figures 1 and 10.

Fruit: We place a diffuser in front of the laser to dif-
fusely illuminate the fruit in Figure 1. The sliced orange
shown on the left is translucent, and remains lit for a short
period of time after the initial wavefront passes due to sub-
surface scattering. The fruit shown on the right are plastic
and opaque, producing no subsurface scattering effect.

Resolution chart: The resolution chart demonstrates the
spatial resolution of our scanning system and reconstruction
procedure. The reconstructed frames show a sharp wave-
front moving from the left side of the scene to the right.

Optical fiber: The picosecond laser sends light through
an optical fiber of 2 mm in diameter. The fiber emits a small
amount of light from its side, lighting up the entire optical
fiber. In this scene, the length of the optical fiber is long
enough that two laser pulses (20 ns apart) can be seen in the
transient image at the same time. As the laser pulse prop-
agates through the fiber, it broadens due to the dispersion
property of multimode fibers.

Soda bottle: We filled a soda bottle with milky water to
reproduce the bottle example of Velten et al. [31]. The laser



Figure 9. Comparison between original unprocessed SPAD data (Row 1) and the output of our proposed reconstruction procedure with
the Poisson-VBM3D prior (Row 2). Column 1: Regular image of the scene under laser illumination. Column 2-4: Frames of the scene
at different instance in time in response to a pulse of light. Our reconstructed frames show a sharp wavefront and significantly less noise
when compared to the unprocessed frames.

Figure 10. Scenes from Figures 9 and 11 captured with a regular
vision camera under ambient lighting.

shines light at one end of the bottle, the light propagates to
the cap, and a small amount of light is reflected back to the
base of the bottle. Note the floor is lit indirectly by the light
pulse passing through the bottle as well.

CVPR logo: The optical fiber spells “CVPR 2017” and
each frame of the transient image lights up a single letter.

Foam box: This scene observes a variety of transport ef-
fects. The laser illuminates a point within the cube, pro-
ducing a strong direct reflection. The translucent nature of
the foam produces subsurface scattering around this direct
point. The box remains lit for a long period of time due to
significant interreflections occurring within the box. An ar-
tifact of the reconstruction procedure appears in one of the
frames as a large black spot at the point directly illuminated
by the laser.

Statue: A statue of David is positioned in front of a mir-
ror, and diffusely lit by the laser. Light first illuminates the
statue before propagating to the mirror.

6. Discussion
In summary, we demonstrate transient imaging of com-

plex light transport effects using single photon avalanche
diodes. To overcome the noise and temporal resolution lim-
its imposed by the SPAD measurements, we propose a de-
noising & deblurring algorithm that effectively increases the
PSNR of these transient images. We demonstrate the capa-
bilities of our system by capturing images with a 1D SPAD
array and a scanning galvo system for a variety of scenes
with complex transport effects.

Limitations Though our scanned system captures high-
quality data using an acquisition time of 64 s, the scene must
remain static during this acquisition period. This can be
impractical for many scenarios that require imaging at video
frame rates.

Although the resolution of our transient images re-
mains far below that of regular camera sensors, signifi-
cant progress is being made in developing higher-resolution
SPAD sesnsors (e.g., [9]).

Our system also currently requires a dark room, and only
captures monochromatic transient images. The availability
of lasers at other wavelengths (including NIR wavelengths)
offers the possibility of multi-spectral transient imaging.

Future Work Our reconstruction procedure currently as-
sumes a Poisson noise model. Though the detected times-
tamped events do follow a Poisson distribution for low flux
levels, one of the calibration steps of the LinoSPAD distorts
the noise model of our histograms. For future work, we
will revise the reconstruction procedure to better handle the
noise characteristics of the LinoSPAD, though this may not
be necessary for other SPAD implementations.



Figure 11. Reconstructed transient images using the Poisson-TV (3D) prior. Column 1: Images of the scene under laser illumination. Each
pixel value in this image is the result of integrating the number of photons in a histogram. Column 2-4: Frames from a transient image
appearing in chronological order.

Conclusion The ability to capture transient images en-
ables computer vision algorithms to exploit the finite speed
of light. Our proposed system is a first step towards mak-
ing time-resolved computational imaging practical for the
computer vision community, potentially allowing for fun-
damental assumptions in existing algorithms to be revisited.
Finally, unprecedented imaging capabilities, such as non-
line-of-sight imaging and descattering, may become feasi-
ble in practical scenarios with the proposed system.
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