
The Logical Approach to Stack Typing∗

Amal Ahmed David Walker

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08544

{amal,dpw}@cs.princeton.edu

ABSTRACT
We develop a logic for reasoning about adjacency and sepa-
ration of memory blocks, as well as aliasing of pointers. We
provide a memory model for our logic and present a sound
set of natural deduction-style inference rules. We deploy
the logic in a simple type system for a stack-based assembly
language. The connectives for the logic provide a flexible
yet concise mechanism for controlling allocation, dealloca-
tion and access to both heap-allocated and stack-allocated
data.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Reasoning about Programs; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages

General Terms
Reliability, Security, Languages, Verification

Keywords
stack, memory management, ordered logic, bunched logic,
linear logic, type systems, typed assembly language

1. INTRODUCTION
In a proof-carrying code system, a low-level program is

accompanied by a proof that the program will not perform
some “bad” action when executed. A host can verify that
the program will be well-behaved by checking the proof be-
fore running the code, without having to trust the program
or the compiler. Proof-carrying code technology not only
∗This work is supported in part by DARPA Grant F30602-
99-1-0519, NSF Trusted Computing grant CCR-0208601
and a generous gift from Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TLDI’03, January 18, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-649-8/03/0001 ...$5.00.

enables untrusting hosts to verify the safety of programs
they would like to use for their own purposes, but also al-
lows them to donate idle computational resources to super-
computing projects such as SETI@Home [33] without having
to be afraid that their system will be corrupted [4].

In order to develop proof-carrying code technology to the
point where PCC systems can enforce the complex security
policies required for applications such as grid computing,
researchers must invent convenient abstractions that help
structure proofs of common program properties. These ab-
stractions should be flexible yet concise and relatively easy
for the compiler implementor to understand and manipulate.
The most successful abstractions will make it easier to build
certifying compilers. They may also find their way from low-
level compiler intermediate languages into general-purpose
programming languages. In fact, we have already seen such
migration: Grossman et al.’s Cyclone [10] uses Tofte and
Talpin’s [37] region abstractions; DeLine and Fahndrich’s
Vault [7] incorporates Walker et al.’s capabilities [40]; and
O’Callahan [20] improves the JVML type system using mech-
anisms from Morrisett et al.’s STAL [16].

In this paper, we focus on reasoning about memory man-
agement as this domain tests our ability to encode a very
wide range of invariants. Moreover, many other safety prop-
erties rely directly on our ability to reason about memory
precisely. In order to be able to enforce higher-level security
policies and other program properties statically, we must be
able to provide an accurate picture of memory first.

Our main contribution is a logic for reasoning about ad-
jacency and separation of memory blocks as well as aliasing
of pointers. It is the first time that anyone has developed
a simple and concise theory for reasoning about all of these
concepts simultaneously. The logic was inspired by both the
work of Polakow and Pfenning on ordered linear logic [28,
29, 27] and recent work on logics and type systems for rea-
soning about aliasing [16, 35, 41, 40, 22, 32, 12]. It is also
related to Petersen et al.’s calculus for reasoning about data
layout [25].

We use the logic to reason about stack allocation in a
simple typed assembly language. Our presentation of typed
assembly language is also new. We encode the state of our
abstract machine entirely using our new substructural logic
and consequently, the language has the feel of Hoare logic.
However, we also wrap logical formulae up in higher-order
types, which provides us with a simple way to extend tradi-
tional first-order Hoare logic to the higher-order domain of
type theory.

In the next section, we introduce our state logic (SL). We

1

discuss the meaning of judgments and formulae in terms of
a concrete memory model. We also provide the logical infer-
ence rules and prove a few simple metatheoretic properties.
In section 3, we introduce our typed assembly language and
show how to use our logic to reason about the stack. A proof
of progress and preservation lemmas demonstrates that our
type system is sound. In section 4, we discuss related work
in greater detail and, in section 5, we suggest some directions
for future research.

2. SL: A STATE LOGIC
In this section, we describe SL, a logic for reasoning about

adjacency, separation and aliasing of memory blocks. The
power of the logic comes from the fact that adjacency and
separation properties are contained directly within the con-
nectives of the logic. Most previous work with similar power
has its roots in classical Hoare logic, where one reasons about
adjacency or separation by equating locations with integers
and reasoning about them using arithmetic. While reason-
ing exclusively with integers and arithmetic is possible, this
technique results in an overflow of auxiliary arithmetic equa-
tions to keep track of adjacency or aliasing information. SL
specifications can be much simpler since our rich logic allows
us to omit these auxiliary arithmetic equations.

Before introducing the logic itself, we will introduce the
values and memories that will serve as a model for the logic.

2.1 Values
We will be reasoning about several different sorts of values

including integers, code locations, which contain executable
code, proper memory locations (aka heap locations) and a
fixed, finite set of registers. We will also need to reason
about store values, the set of values that may be stored in a
register or in a proper memory location. Registers are not
included in the set of store values.

Integers i ∈ Int
Proper Locations ` ∈ Loc
Registers r ∈ Reg
Code Locations c ∈ Codeloc
Store Values h ∈ Sval = (Int ∪ Loc ∪ Codeloc)

In order to discuss adjacent locations, we take the further
step of organizing the set Loc in a total order given by the re-
lation ≤. We also assume a total function succ : Loc→ Loc,
which maps a location ` to the location that immediately
follows it. We write adj(`, `′) when `′ = succ(`). We write
`+ i as syntactic sugar for succi(`) and `− i for the location
`′ such that ` = succi(`′).

Types. Our subsequent semantics for formulae will incorpo-
rate a simple typing judgment for values. We give integers
and locations singleton types which identify them exactly.
Code locations will be given code types as described by a
code context. These code types have the form (F) → 0,
where F is a logical formula that describes requirements
that must be satisfied by the state of the abstract machine
before it is safe to jump to the code. Code can only “return”
by explicitly jumping to a continuation (a return address)
that it has been passed as an argument and therefore our
code types do not have proper return types. Abstract types
α arise through existential or universal quantification in for-

mulae.

Types τ : : = α | S(i) | S(`) | (F)→ 0
Code Contexts Ψ :: = · | Ψ, c : (F)→ 0

Store values are given types via a judgment of the form
`Ψ h : τ . Since the code context never changes in a typing
derivation, we normally omit it from the judgment form as
in the rules below.

` i : S(i)
(int) ` ` : S(`)

(loc)

Ψ(c) = (F)→ 0
` c : (F)→ 0

(code)

2.2 Memories
A memory is a partial map from generic locations g to

store values h.

Generic Loc’s g ∈ (Loc ∪ Reg)
Memories m ∈ (Loc ∪ Reg) ⇀ Sval

Registers are special (second-class) locations that may ap-
pear in the domain of a memory but may not appear stored
in other locations.

We use the following notation to manipulate memory.

• dom(m) denotes the domain of the memory m

• m(g) denotes the store value at location g

• m [g :=h] denotes a memory m′ in which g maps to h
but is otherwise the same as m. If g 6∈ dom(m) then
the update is undefined.

• Given a set of locations X ⊆ Loc,
�
X

�
is the greatest

member (the supremum) of the set and � X � is the
least member (the infimum) of the set according to
the total order ≤. We also let

�
X ∪ R �

=
�
X

�
and

� X ∪ R � = � X � when R ⊆ Reg.
� ∅ �

and � ∅ � (and
hence

�
R

�
and � R �) are undefined.

• m1#m2 indicates that the memories m1 and m2 have
disjoint domains

• m1]m2 denotes the union of disjoint memories; if the
domains of the two memories are not disjoint then this
operation is undefined.

• m1@m2 denotes the union of disjoint memories with
the additional caveat that either
adj(

�
dom(m1)

�
, � dom(m2) �) or one of m1 or m2 is

empty.

2.3 Formulae
Figure 1 presents the syntax of formulae. We use a no-

tation reminiscent of connectives from linear logic [9] and
Polakow and Pfenning’s ordered logic [28, 29, 27]. However,
these logics should only be used as an approximate guide to
the meaning of formulae. There are some differences as we
will see below.

In addition to multiplicative (linear and ordered) connec-
tives, the logic contains additive connectives and quantifica-
tion. The bindings in quantification formulae describe the
sort, (integer I, proper location L, type T, or formula F),
of the bound variable. We reuse the metavariable ` (for
concrete locations) as a location variable below. There is,

2

Predicates p : : = (g :τ) | more← | more→

Formulae F : : = p | 1 | F1 ⊗ F2 | F1 ◦ F2 |
F1

� F2 | F1
� F2 | F1

� F2 |
> | F1 &F2 | 0 | F1 ⊕ F2 |
φ | ∀b.F | ∃b.F

Bindings b : : = i:I | `:L | α:T | φ:F

Figure 1: SL Formulae

however, a reason to distinguish between them: if ` is a
concrete location, we can compute ` + i, which is not the
case if ` is a location variable. From now on, the reader
may assume that occurrences of ` denote a variable, unless
otherwise noted in the text. We use abbreviations for the
following common formulae.

• ∃i:I. (g :S(i)) is abbreviated g : int

• ∃α:T. (g :α) is abbreviated g :

• ∃`:L. ∃α:T. (` :α) is abbreviated ns

• We use metavariable R to range over formulae with
shape r1 :τ1 ⊗ · · · ⊗ rn :τn

Our logic contains quite a number of formulae, but one
need not be intimidated. Each formula is defined orthogo-
nally from all others and can be understood independently.
Moreover, the logic makes sense if we choose to use any sub-
set of the formulae. Consequently, a system designer need
not understand or implement all of the connectives but can
choose the subset that suits their application.

Semantics. We use formulae to describe memories and write
m

� Ψ F when the formula F describes the memory m. The
reader can safely ignore the superscript Ψ for now. The most
basic formulae are predicates with the form (g : τ). These
predicates describe memories that contain a single location
g that holds a value with type τ . There are two other basic
predicates more← and more→. They describe an infinite se-
quence of locations that increases to the left (right). Later,
we will use more← to indicate that the stack may be grown
to the left. Analogously, more→ may be used to indicate that
some region of memory may be grown to the right, although
we do not use it in this paper.

The key to reasoning about adjacent memories is a form of
ordered conjunction, which we will call fuse. Semantically,
m

� Ψ F1◦F2 if and only if m can be divided into two adjacent
parts, m1 and m2 such that m1

� Ψ F1 and m2
� Ψ F2. More

formally, we require m = m1@m2.
To get accustomed to some of the properties of fuse, we

will reason about the following memories, which contain lo-
cations in the set {`i | 0 ≤ i ≤ n} where each location in
this set is adjacent to the next in sequence (i.e., for all i,
adj(`i, `i+1)).

Memory Domain Describing Formula
m1 {`1, `3} F1

m2 {`4, `6} F2

m3 {`2} F3

m4 ∅ F4

First, notice that m1 ∪m2 may be described using the for-
mula F1 ◦ F2 since the supremum of m1 is adjacent to the

infimum of m2. This same memory cannot be described by
F2 ◦ F1 — fuse is not generally commutative. On the other
hand, m1 can be described by either F1 ◦F4 or F4 ◦F1 since
m1 = m1@ ∅ = ∅@m1. Since neither the supremum nor
the infimum of m3 is adjacent to the infimum or supremum,
respectively, of m1 or m2 we cannot readily use fuse to de-
scribe the relationship between these memories.

When we don’t know or don’t care about the ordering
relationship between two disjoint memories we will use the
unordered multiplicative conjunction F1⊗F2 (which we call
tensor). A memorym can be described by F1⊗F2 if and only
if there exist m1,m2, such that m1

� Ψ F1 and m2
� Ψ F2 and

m = m1]m2. This definition differs from the definition for
◦ only in that the disjoint union operator “]” makes none
of the ordering requirements of the adjacent disjoint union
operator “@ ”. To see the impact of the change, we consider
the following further memories.

Memory Domain Describing Formula
m1 {`1, `2} F1

m2 {`3, `4} F2

m3 {`5} F3

m4 ∅ F6

The memory m = m1 ∪m2 ∪ m3 can be described by the
formula (F1⊗F2)⊗F3 since m can be broken into two disjoint
parts, m1∪m2 and m3, which satisfy the subformulae (F1⊗
F2) and F3 respectively. The memory m also satisfies the
formulae F1⊗(F2⊗F3) and (F3⊗F2)⊗F1 since it is defined
in terms of the associative and commutative disjoint union
operator.

Our logic contains one more sort of conjunction, the addi-
tive F1&F2. A memory m can be described by this formula
if the memory (the whole thing!) can be described by both
subformulae. Meanwhile, the additive disjunction of two for-
mulae, F1⊕F2, describes a memory m if the entire memory
can be described either one of F1 or F2.

The multiplicative 1 describes the empty memory and
serves as the (right and left) unit for both fuse and ten-
sor. In other words, if m

� Ψ F then both m
� Ψ F ◦ 1 and

m
� Ψ F ⊗ 1. The unit for additive conjunction > describes

any memory, while the unit for additive disjunction 0 de-
scribes no memories. These properties can easily be verified
from the semantic definitions of the connectives.

The semantics of the other connectives are largely stan-
dard. In the semantics of quantifiers, we use the notation
X[a/b] to denote capture-avoiding substitution of a for the
variable in b in the object X. We extend this notation to
substitution for a sequence of bindings as in X[a1, . . . , an/~b]
or X[~b′/~b]. In either case, the objects substituted for vari-
ables must have the correct sort (type, formula, location or
integer) and the sequences must have the same length or else
the substitution is undefined. The semantics of all formulae
are collected in figure Figure 2. We include the semantics
of linear and ordered implications (� , � , �) but, in the
interest of space, we do not describe them here. The se-
mantics of these connectives follow the work of Ishtiaq and
O’Hearn [12].

An Extended Example. Recall that it is safe to jump to a
code location of type (F)→ 0 if the requirements described
by F are satisfied by the current state of the abstract ma-
chine. More specifically, we require that the current memory
m be described by F , that is, m

� Ψ F .

3

m
� Ψ F if and only if

• F = (g : τ) and dom(m) = {g} and m(g) = h and
`Ψ h : τ

• F = more← and dom(m) = {g | ∃g′. g ≤ g′}

• F = more→ and dom(m) = {g | ∃g′. g ≥ g′}

• F = 1 and dom(m) = ∅

• F = F1 ⊗ F2 and there exist m1,m2, such that
m = m1]m2 and m1

� Ψ F1 and m2
� Ψ F2

• F = F1 ◦ F2 and there exist m1,m2, such that
m = m1@m2 and m1

� Ψ F1 and m2
� Ψ F2

• F = F1
� F2 and for all memories m1 such that

m1
� Ψ F1 and m1#m, m1]m

� Ψ F2

• F = F1
� F2 and for all memories m1 such that

m1
� Ψ F1, m1#m and adj(

�
dom(m1)

�
, � dom(m) �),

m1@m
� Ψ F2

• F = F1
� F2 and for all memories m1 such that

m1
� Ψ F1, m1#m and adj(

�
dom(m)

�
, � dom(m1) �),

m@m1
� Ψ F2

• F = > (and no other conditions need be satisfied)

• F = F1 &F2 and m
� Ψ F1 and m

� Ψ F2

• F = 0 and false (this formula can never be satisfied)

• F = F1 ⊕ F2 and either

1. m
� Ψ F1, or

2. m
� Ψ F2.

• F = ∀x:K.F ′ and m
� Ψ F ′[a/x] for all a ∈ K

• F = ∃x:K.F ′ and there exists some a ∈ K such that
m

� Ψ F ′[a/x]

Figure 2: Semantics of Formulae

Consider the type of code location c which, among other
things, requires that registers r1 and r2 point to locations in
memory and that r3 contain the address of the continuation:

c : (∃ `:L, `′:L, mem:F.
(((` : int) ⊗ >) & ((`′ : int) ⊗ >) & mem)
⊗ (r1 :S(`))
⊗ (r2 :S(`′))
⊗ (r3 :τcont))→ 0

and τcont = (mem ⊗ (r1 :) ⊗ (r2 :) ⊗ (r3 :))→ 0

There are a number of things to note about the calling con-
vention described by the above type. First, the semantics
of & dictate that to jump to c the caller must pack the
variable mem with a formula that describes all the proper
(non-register) locations in memory. Second, since the for-
mula describing the proper locations is abstracted using the
variable mem, the code at c can only jump to the continua-
tion when the register-free subset of memory is in the same
state as it was upon jumping to c. Finally, a caller may

jump to code location c if there exists some location ` that
register r1 points to, and some location `′ that register r2

points to. The locations ` and `′ may or may not be the
same location, which we illustrate next by considering two
different scenarios.

Scenario 1. Consider the following memory where `i are
concrete locations such that adj(`1, `2) and adj(`2, `3):

m1 = {`1 7→ 5, `2 7→ 3, `3 7→ 9, r1 7→ `2, r2 7→ `2, r3 7→ c′}
where c′ : (((`1 : int) ◦ (`2 : int) ◦ (`3 : int))

⊗ (r1 :) ⊗ (r2 :) ⊗ (r3 :))→ 0

The three consecutive proper locations inm1 may be thought
of as a stack. The memory also consists of three registers,
two of which (r1 and r2) contain aliases of location `2 in
the stack. Register r3 contains a code location c′. We can
conclude that we may safely jump to code location c when
m1 is the current memory as follows.

• Since the formula (`2 : int) describes {`2 7→ 3} and
> describes {`1 7→ 5}] {`3 7→ 9}, the formula ((`2 :
int)⊗>) describes the memory {`2 7→ 3}] {`1 7→ 5}]
{`3 7→ 9}.

• Similarly, we can conclude that the formula ((`2 : int)⊗>)
describes {`1 7→ 5, `2 7→ 3, `3 7→ 9}.

• The formula (`1 : int) ◦ (`2 : int) ◦ (`3 : int) describes
{`1 7→ 5, `2 7→ 3, `3 7→ 9} since `1, `2 and `3 are consec-
utive locations.

• (r1 :S(`2)) describes {r1 7→ `2}.

• (r2 :S(`2)) describes {r2 7→ `2}.

• (r3 :τcont[((`1 : int) ◦ (`2 : int) ◦ (`3 : int))/mem]) describes
{r3 7→ c′}.

• Then, the formula

(((`2 : int) ⊗ >) & ((`2 : int) ⊗ >)
& ((`1 : int) ◦ (`2 : int) ◦ (`3 : int)))

⊗ (r1 :S(`2))
⊗ (r2 :S(`2))
⊗ (r3 :τcont))→ 0

describes

{`1 7→ 5, `2 7→ 3, `3 7→ 9}] {r1 7→ `2}] {r2 7→ `2} = m1.

• Using existential introduction, where location `2 serves
as a witness for both ` and `′, and ((`1 : int) ◦ (`2 :
int) ◦ (`3 : int)) serves as a witness for mem, we can
conclude the following.

m1
� Ψ ∃ `:L, `′:L, mem:F.

(((` : int) ⊗ >) & ((`′ : int) ⊗ >) & mem)
⊗ (r1 :S(`))
⊗ (r2 :S(`′))
⊗ (r3 :τcont)

Consequently, if m1 is our memory, we can jump to c.
Scenario 2. Consider the memory m2 which is identical

to m1 except that location `2 is no longer aliased by registers
r1 and r2:

m2 = {`1 7→ 5, `2 7→ 3, `3 7→ 9, r1 7→ `2, r2 7→ `3, r3 7→ c′}

4

Using reasoning similar to the above, we can conclude that
the formula

(((`2 : int) ⊗ >) & ((`3 : int) ⊗ >)
& ((`1 : int) ◦ (`2 : int) ◦ (`3 : int)))

⊗ (r1 :S(`2))
⊗ (r2 :S(`3))
⊗ (r3 :τcont))→ 0

describes

{`1 7→ 5, `2 7→ 3, `3 7→ 9}] {r1 7→ `2}] {r2 7→ `3} = m2.

Then, to conclude that it is safe to jump to c when the
current memory is m2 we use existential introduction with
locations `2 and `3 as witnesses for ` and `′ respectively.

It should be noted that the type ascribed to c is somewhat
simplistic. Normally we would like to abstract the formula
that describes the stack using the variable mem, but the
above type prohibits the code at c from allocating additional
space on the stack. We rectify the problem by using more←

to describe the part of memory where additional stack cells
may be allocated, and by requiring a register rsp that points
to the top of the stack as follows.

c : (∃ `hd:L, α:T, `:L, `′:L, tail :F.
(more← ◦ (`hd :α)
◦ (((` : int) ⊗ >) & ((`′ : int) ⊗ >) & tail))

⊗ (r1 :S(`))
⊗ (r2 :S(`′))
⊗ (r3 :τcont)
⊗ (rsp :S(`hd)))→ 0

and τcont = ((`hd :α) ◦ tail) ⊗ (r1 :)
⊗ (r2 :)
⊗ (r3 :))→ 0

2.4 Contexts
We may model separation and adjacency using judgments

of the form ∆ ` F . Following O’Hearn and Pym [22], our
logical contexts ∆ are bunches (trees) rather than simple
lists. The nodes in our bunches are labeled either with an
ordered separator “;” or an (unordered) linear separator “,”.
The leaves of our bunches are either empty or a single for-
mula labeled with a variable u. We write our contexts as
follows.

∆ :: = · | u:F | ∆1,∆2 | ∆1; ∆2

We will also frequently have reason to work with a context
containing a single hole that may be filled by another con-
text. We use the metavariable Γ to range over contexts with
a hole and write Γ(∆) to fill the hole in Γ with ∆.

Γ : : = () | Γ,∆ | ∆,Γ | Γ; ∆ | ∆; Γ

We require that no variables are repeated in a context and
consider Γ(∆) to be undefined if Γ and ∆ have any variables
in common. Again following O’Hearn and Pym, we define
an equivalence relation on contexts. It is the reflexive, sym-
metric and transitive closure of the following axioms.

1. · ,∆ ≡ ∆

2. · ; ∆ ≡ ∆

3. ∆; · ≡ ∆

4. (∆1,∆2),∆3 ≡ ∆1, (∆2,∆3)

5. (∆1; ∆2); ∆3 ≡ ∆1; (∆2; ∆3)

6. ∆1,∆2 ≡ ∆2,∆1

7. Γ(∆) ≡ Γ(∆′) if ∆ ≡ ∆′

Semantics. Like individual formulae, contexts can describe
memories. The semantics of contexts appears in Figure 3.
Notice that the semantics of the ordered separator “;” mir-
rors the semantics of fuse whereas the semantics of the linear
separator “,” mirrors the semantics of tensor.

Our proofs require that we also give semantics to contexts
with a hole (also in Figure 3). This semantic judgment has
the form (m,L)

� Ψ
C Γ which may be read as saying that the

memory m is described by Γ when the hole in Γ is filled in
by a context ∆ that describes the memory defined on the
locations in the set L.

m
� Ψ
C ∆ if and only if

• ∆ = · and dom(m) = ∅

• ∆ = u:F and m
� Ψ F

• ∆ = ∆1,∆2 and m = m1] m2 and m1
� Ψ
C ∆1 and

m2
� Ψ
C ∆2

• ∆ = ∆1; ∆2 and m = m1@m2 and m1
� Ψ
C ∆1 and

m2
� Ψ
C ∆2

(m,L)
� Ψ
C Γ if and only if

• Γ = () and dom(m) = ∅

• Γ = Γ′,∆′ and (m1, L)
� Ψ
C Γ′ and m2

� Ψ
C ∆′ and

m = m1]m2

• Γ = Γ′; ∆′ and (m1, L)
� Ψ
C Γ′ and m2

� Ψ
C ∆′ and m =

m1]m2 and one of adj(
�
dom(m1)] L �

, � dom(m2) �),
or (dom(m1)] L) = ∅, or dom(m2) = ∅.

• Γ = ∆′; Γ′ and m1
� Ψ
C ∆′ and (m2, L)

� Ψ
C Γ′ and m =

m1]m2 and one of adj(
�
dom(m1)

�
, � dom(m2)] L �)

or dom(m1) = ∅, or (dom(m2)] L) = ∅.

Figure 3: Semantics of Contexts

2.5 Basic Semantic Properties
In this section, we outline some simple, but necessary

properties of our semantics.
We will need to reason about the decomposition of a mem-

ory m described by the context Γ(∆) into two parts, the part
described by Γ and the part described by ∆. The following
lemma allows us to decompose and then recompose memo-
ries.

Lemma 1 (Semantic Decomposition)
• If m

� Ψ
C Γ(∆) then there exist m1 and m2, such that

m = m1]m2 and (m1, dom(m2))
� Ψ
C Γ and m2

� Ψ
C ∆.

• If (m1, dom(m2))
� Ψ
C Γ and m2

� Ψ
C ∆, then

m1]m2
� Ψ
C Γ(∆).

5

Proof. By induction on the structure of Γ.

Our semantics does not distinguish between equivalent
contexts.

Lemma 2 (Soundness of Context Equivalence)
• If m

� Ψ
C ∆ and ∆ ≡ ∆′ then m

� Ψ
C ∆′.

• If (m,L)
� Ψ
C Γ and Γ ≡ Γ′ then (m,L)

� Ψ
C Γ′.

Proof. By induction on the definition of context equiva-
lence. In the case for equivalence rule 7, we use Lemma 1.

Finally, since the append operator “@ ” makes more re-
quirements of a context than the disjoint union operator
“]” we may easily prove that whenever a memory can be
described by the context ∆1; ∆2 it can also be described by
the context ∆1,∆2. This notion is formalized by the follow-
ing lemma.

Lemma 3 (Semantic Disorder)
If m

� Ψ
C Γ(∆1; ∆2) then m

� Ψ
C Γ(∆1,∆2).

Proof. By induction on the structure of Γ.

2.6 Logical Deduction
To support universal and existential quantification we ex-

tend the judgments of our logic to additionally depend on
a variable context Θ. The basic judgment for the natural
deduction formulation of our logic has the form Θ ‖ ∆ ` F
where Θ consists of the set of variables that may appear free
in ∆ or F . These variables may be integer, location, type,
or formula variables. (The syntax of bindings b was given in
Figure 1.)

Variable Contexts Θ :: = · | Θ, b
The inference rules (see Figures 4, 5) are very similar to the
rules given by O’Hearn and Pym [22] so we only highlight
the central differences. The most important difference, of
course, is the presence of our ordered separator and linear
separator as opposed to the linear separator and additive
separator that is the focus of most of O’Hearn and Pym’s
work. Moreover, there is only a single unit for the two
contexts rather than two units as in O’Hearn and Pym’s
work. Finally, since we have no additive separator in the
context, our elimination form for the additive conjunction is
slightly different from the elimination form given by O’Hearn
and Pym. It seems likely that the additives suggested by
O’Hearn and Pym are compatible with this system, but we
have not investigated this possibility.

We do not have an explicit structural rule to mark the
movement between equivalent contexts. Instead, we treat
equivalence implicitly: the logical judgments and inference
rules operate over equivalence classes of contexts. For ex-
ample, when we write

Θ ‖ ∆1 ` F1 Θ ‖ ∆2 ` F2

Θ ‖ ∆1,∆2 ` F1 ⊗ F2
⊗I

we implicitly assume the presence of equivalence as in the
following more explicit rule.

∆ ≡ ∆1,∆2 Θ ‖ ∆1 ` F1 Θ ‖ ∆2 ` F2

Θ ‖ ∆ ` F1 ⊗ F2
⊗I

The rules of Figures 4,5 define a sound logical system. How-
ever, for our application, we would like one further property:
It should be possible to forget adjacency information. We
saw in the previous section (Lemma 3) that, if a memory
satisfies a context that imposes ordering conditions via “;”
then the same memory will satisfy a context that does not
impose these ordering conditions (in other words, it is sound
for “,” to replace “;”). In order to include this principle in
our deductive system, we allow any proof of a judgment
with the form Θ ‖ Γ(∆1,∆2) ` F to be considered a proof
of Θ ‖ Γ(∆1; ∆2) ` F . To mark the inclusion of one proof
for another in the premise of a rule, we put a asterisk beside
the name of that rule, as in the following derivation.

Θ ‖ u1:F1 ` F1

Θ ‖ u3:F3 ` F3 Θ ‖ u2:F2 ` F2

Θ ‖ u2:F2, u3:F3 ` F3 ⊗ F2
⊗I

Θ ‖ u1:F1;u2:F2;u3:F3 ` F1 ◦ (F3 ⊗ F2)
◦I∗

These inclusions give rise the following principle.

Principle 4 (Logical Disorder)
If Θ ‖ Γ(∆1,∆2) ` F then Θ ‖ Γ(∆1; ∆2) ` F .

We borrow the idea of including one sort of proof for an-
other from Pfenning and Davies’ judgmental reconstruction
of modal logic [26]. In that work, they include proofs of
truth directly as proofs of possibility. An alternative to this
approach would be to add an explicit structural rule, but we
prefer to avoid structural rules as every use of such a rule
changes the structure and height of a derivation.

Our logic obeys standard substitution principles and de-
duction is sound with respect to our semantic model.

Lemma 5 (Substitution)
If FV(∆) ∩ FV(Γ) = ∅ then

• If Γ(u:F) ≡ Γ′(u:F) then Γ(∆) ≡ Γ′(∆).

• If Θ ‖ ∆ ` F and Θ ‖ Γ(u:F) ` F ′ then Θ ‖ Γ(∆) `
F ′.

• If Θ, x : K ‖ ∆ ` F then for all a ∈ K, Θ ‖ ∆[a/x] `
F [a/x].

Proof. By induction on the appropriate derivation in
each case.

Lemma 6 (Soundness of Logical Deduction)
If m

� Ψ
C ∆ and · ‖ ∆ ` F , then m

� Ψ F .

Proof. By induction on the natural deduction deriva-
tion.

2.7 Operations on Formulae
Our typing rules will make extensive use of an operation

to look up the type of a location offset by an index (g[i]) in
a formula. To facilitate this operation we use the notation
F (g[i]) which is defined as follows.

Definition (Formula Lookup)

F (g0[i]) = τi if · ‖ u:F ` >⊗ ((g0 :τ0) ◦ · · · ◦ (gi :τi))

We update the type of a location g[i] in a formula F using
the notation F [g[i] := τ] which is defined as follows.

6

Θ ‖ ∆ ` F

Hypothesis

Θ ‖ u:F ` F Hyp (u)

Linear and Ordered Unit

Θ ‖ · ` 1
1I

Θ ‖ ∆ ` 1 Θ ‖ Γ(·) ` C
Θ ‖ Γ(∆) ` C 1E

Linear Conjunction

Θ ‖ ∆1 ` F1 Θ ‖ ∆2 ` F2

Θ ‖ ∆1,∆2 ` F1 ⊗ F2
⊗I

Θ ‖ ∆ ` F1 ⊗ F2 Θ ‖ Γ(u1:F1, u2:F2) ` C
Θ ‖ Γ(∆) ` C ⊗E

Ordered Conjunction

Θ ‖ ∆1 ` F1 Θ ‖ ∆2 ` F2

Θ ‖ ∆1; ∆2 ` F1 ◦ F2
◦I

Θ ‖ ∆ ` F1 ◦ F2 Θ ‖ Γ(u1:F1;u2:F2) ` C
Θ ‖ Γ(∆) ` C ◦E

Linear Implication

Θ ‖ ∆, u:F1 ` F2

Θ ‖ ∆ ` F1
� F2

� I

Θ ‖ ∆ ` F1
� F2 Θ ‖ ∆1 ` F1

Θ ‖ ∆,∆1 ` F2

� E

Ordered Implications

Θ ‖ u:F1; ∆ ` F2

Θ ‖ ∆ ` F1
� F2

� I

Θ ‖ ∆ ` F1
� F2 Θ ‖ ∆1 ` F1

Θ ‖ ∆1; ∆ ` F2

� E

Θ ‖ ∆;u:F1 ` F2

Θ ‖ ∆ ` F1
� F2

� I

Θ ‖ ∆ ` F1
� F2 Θ ‖ ∆1 ` F1

Θ ‖ ∆; ∆1 ` F2

� E

Figure 4: SL : Multiplicative Connectives

Definition (Formula Update)

F [g0[i] := τ] def= F1 ⊗ (F2 ◦ (g0 :τ0) ◦ · · · ◦ (gi :τ) ◦ F3)
if · ‖ u:F ` F1 ⊗ (F2 ◦ (g0 :τ0) ◦ · · · ◦ (gi :τi) ◦ F3)

The following lemma states that formula lookup and up-
date are sound with respect to the semantics. This lemma
is used extensively in the proof of soundness of our type
system.

Θ ‖ ∆ ` F

Additive Conjunction and Unit

Θ ‖ ∆ ` > >I

Θ ‖ ∆ ` F1 Θ ‖ ∆ ` F2

Θ ‖ ∆ ` F1 &F2
&I

Θ ‖ ∆ ` F1 &F2

Θ ‖ ∆ ` F1
&E1

Θ ‖ ∆ ` F1 &F2

Θ ‖ ∆ ` F2
&E2

Additive Disjunction and Unit

Θ ‖ ∆ ` 0
Θ ‖ ∆ ` F 0E

Θ ‖ ∆ ` F1

Θ ‖ ∆ ` F1 ⊕ F2
⊕I1

Θ ‖ ∆ ` F2

Θ ‖ ∆ ` F1 ⊕ F2
⊕I2

Θ ‖ ∆ ` F1 ⊕ F2 Θ ‖ Γ(u1:F1) ` C Θ ‖ Γ(u2:F2) ` C
Θ ‖ Γ(∆) ` C ⊕E

Universal Quantification

Θ, x:K ‖ ∆ ` F
Θ ‖ ∆ ` ∀x:K.F

∀I
Θ ‖ ∆ ` ∀x:K.F a ∈ K

Θ ‖ ∆ ` F [a/x]
∀E

Existential Quantification

Θ ‖ ∆ ` F [a/x] a ∈ K
Θ ‖ ∆ ` ∃x:K.F

∃I

Θ ‖ ∆ ` ∃x:K.F Θ, x:K ‖ Γ(u:F) ` C
Θ ‖ Γ(∆) ` C ∃E

Figure 5: SL : Additive Connectives and Quantifiers

Lemma 7
• If m

� Ψ F and F (g[i]) = τ , then m(g[i]) = h and
`Ψ h :τ .

• Ifm
� Ψ F and `Ψ h :τ , thenm [g[i] :=h]

� Ψ F [g[i] := τ].

Proof. By the soundness of logical deduction and the
semantics of formulae.

3. A SIMPLE ASSEMBLY LANGUAGE
In this section, we develop the simplest possible assembly

language that allows us to write stack-based programs.

3.1 Syntax
There are four main components of a program. A code

region C is a finite partial map from code values to blocks
of code B. Each block is a sequence of instructions ι ter-
minated by a jump instruction. Finally, the operands (v)
which appear in instructions are made up of the values that

7

we have seen before.

Operands v : : = h | r
Instructions ι : : = add rd, rs, v | sub rd, rs, v |

blte r, v | mov rd, v |
ld rd, rs[i] | st rd[i], rs

Blocks B : : = jmp v | ι;B
Code Region C : : = · | C, c 7→ B

3.2 Types and Typing Rules
The type system for our assembly language is defined by

the following judgments.

F `Ψ v : τ Operand v has type τ in F
Θ ‖ F `Ψ ι : F ′ Instruction ι requires a context Θ ‖ F

and yields F ′

Θ ‖ F `Ψ B ok Block B is well-formed in context Θ ‖ F
` C : Ψ Code region C has type Ψ assuming Ψ
` Σ ok State Σ is well-formed

Once again, although judgments for operands, instruc-
tions and blocks are formally parameterized by Ψ, we nor-
mally omit this annotation. The static semantics is given in
Figures 6 and 7.

We assume our type system will be used in the context
of proof-carrying code. More specifically, we assume a com-
plete derivation will be attached to any assembly language
program that needs to be checked for safety. To check that
a program is well formed one need only check that it cor-
responds to the attached derivation and that the deriva-
tion uses rules from our type system and associated logic.
The problem of inferring a derivation from an unannotated
program is surely undecidable, but not relevant to a proof-
carrying code application as a compiler can generate the ap-
propriate derivation from a more highly structured source-
level program.

Operand Typing. The rules for giving types to store values
are extended to allow us to give types to operands, which
include both store values and registers. The rule for regis-
ters requires that we look up the type of the register in the
formula that describes the current state.

Instruction Typing. Instruction typing is performed in a
context in which the free variables are described by Θ and
the current state of the memory is described by the input
formula F . An instruction will generally transform the state
of the memory and result in a new state described by the
formula F ′. For instance, if the initial state is described by
F , and we can verify that rs and v contain integers then
the instruction add rd, rs, v transforms the state so that the
result is described by F [rd := int]. This resulting formula
uses our formula update notation, which we defined in Sec-
tion 2.7. The simple rule for integer subtraction is identical.
To type check the conditional branch we must show that the
second operand has code type and that the formula describ-
ing the current state entails the requirements specified in the
function type. The rule for typing move is straightforward.

The rules for typing load and store instructions make use
of our formula lookup operations. The formula lookup op-
eration F (`[i]) = τ suffices to verify that the location ` + i
exists in memory and contains a value with type τ (recall
Lemma 7).

Finally, our type system allows simple pointer arithmetic,

F ` v : τ

` h : τ
F ` h : τ

(sval)
F ` r : F (r[0])

(reg)

Θ ‖ F ` ι : F ′

F ` rs : int F ` v : int
Θ ‖ F ` add rd, rs, v : F [rd := int]

(add)

F ` rs : int F ` v : int
Θ ‖ F ` sub rd, rs, v : F [rd := int]

(sub)

F ` r : int F ` v : (F ′)→ 0 Θ ‖ u:F ` F ′
Θ ‖ F ` blte r, v : F

(blte)

F ` v :τ
Θ ‖ F ` mov rd, v : F [rd := τ]

(mov)

F ` rs :S(`) F (`[i]) = τ

Θ ‖ F ` ld rd, rs[i] : F [rd := τ]
(ld)

F ` rd :S(`) F ` rs :τ F (`[i]) = τ ′

Θ ‖ F ` st rd[i], rs : F [`[i] := τ]
(st)

F ` rs : S(`0) F ` v : S(i)
Θ ‖ u:F ` >⊗ ((`0 :) ◦ (`1 :) ◦ · · · ◦ (`i :))

Θ ‖ F ` add rd, rs, v : F [rd := S(`i)]
(addr-add)

F ` rs :S(`i) F ` v :S(i)
Θ ‖ u:F ` >⊗ ((`0 :) ◦ · · · ◦ (`i :))

Θ ‖ F ` sub rd, rs, v : F [rd := S(`0)]
(addr-sub)

Figure 6: Static Semantics (Values and Instructions)

which can be used to bump up the stack pointer. The rules
addr-add and addr-sub provide alternate typing rules for ad-
dition and subtraction operations. If rs contains the (con-
stant or variable) location `0 and v is the constant integer i
and we can prove that the current memory can be described
as

>⊗ ((`0 :) ◦ (`1 :) ◦ · · · ◦ (`i :))

then the result of addition is the location `i. We can come to
this conclusion even though we do not know exactly which
locations `0 and `i that we’re dealing with. The fuse op-
erator allows us to reason that each of the locations in the
sequence in the formula are adjacent to one another and
therefore that `i is i locations from `0. We may reason
about the address subtraction typing rule analogously.

Block Typing. Block typing is described in Figure 7. The
basic block typing rules are b-instr, which processes one in-
struction in a block and then the rest of the block, and b-jmp
which types the jump instruction that ends a block.

Block typing also includes rules to extend our view of
memory (b-stackgrow) or retract our view of memory (b-
stackcut). Typically, when we wish to push more data on the
stack, we will first use the b-stackgrow rule (as many times

8

Θ ‖ F ` B ok

F ` v : (F ′)→ 0 Θ ‖ u:F ` F ′
Θ ‖ F ` jmp v ok

(b-jmp)

Θ ‖ F ` ι :F ′ Θ ‖ F ′ ` B ok

Θ ‖ F ` ι;B ok
(b-instr)

Θ ‖ (more← ◦ F2)⊗R ` B ok

Θ ‖ (more← ◦ F1 ◦ F2)⊗R ` B ok
(b-stackcut)

Θ ‖ (more← ◦ ns ◦ F2)⊗R ` B ok
Θ ‖ (more← ◦ F2)⊗R ` B ok

(b-stackgrow)

Θ, b ‖ F ′ ` B ok

Θ ‖ ∃b.F ′ ` B ok
(b-unpack)

Θ ‖ u:F ` F ′ Θ ‖ F ′ ` B ok

Θ ‖ F ` B ok
(b-weaken)

` C : Ψ

dom(C) = dom(Ψ)
∀c ∈ dom(C). Ψ(c) = (F)→ 0

implies · ‖ F `Ψ C(c) ok

` C : Ψ
(codergn)

` Σ ok

` C : Ψ m
� Ψ F · ‖ F `Ψ B ok

` (C,m,B) ok
(state)

Figure 7: Static Semantics (Blocks and States)

as necessary), then we will add the appropriate amount to
the stack pointer and finally we will store onto the stack
the data we wish to keep there. To pop the stack, we do
the reverse, first loading data off the stack into registers,
subtracting the appropriate amount from the stack pointer
and then using the b-stackcut rule.

State Typing. The rule for typing code is the standard rule
for a mutually recursive set of functions. The rule for typ-
ing an overall machine state requires that we type check our
program C and then check the code we are currently ex-
ecuting (B) under the assumption F , which describes the
current memory m.

An Example. The stack may be used to save temporary
values during the course of a computation. The code se-
quence in Figure 8 saves registers r1 through rn, which con-
tain values of types τ1 through τn, on the stack, performs a
computation A, and then restores the n values to their orig-
inal registers. The formulae to the right of each instruction
describe the state of the memory at each step.

3.3 Operational Semantics

Abstract Machine States. An abstract machine state Σ is
a 3-tuple containing a code region C, a complete memory m
and the block of code B that is currently being executed.
A complete memory is a total function from generic loca-
tions to store values (i.e., (Loc ∪Reg)→ Sval). We require
memories to be complete in order to justify the b-stackcut
rule.

Operational Semantics. We define execution of our ab-
stract machine using a small-step operational semantics
Σ 7−→ Σ′. The operational semantics is given in Figure 9.
In the semantics, we use �m to convert an operand to a value
that may be stored at a location.

�m(i) = i
�m(c) = c
�m(`) = `
�m(r) = m(r)

We also make use of the fact that “+” and “−” are over-
loaded so they operate both on integers and locations. This
allows us to write a single specification for the execution
of addition and subtraction operations. Aside from these
details, the operational semantics is quite intuitive.

(C,m,B) 7−→ Σ where
If B = then Σ =
add rd, rs, v;B′ (C,m [rd := (m(rs) + �m(v))], B′)
sub rd, rs, v;B′ (C,m [rd := (m(rs)− �m(v))], B′)
blte r, v;B′ (C,m,B′)

and m(r) > 0
blte r, v;B′ (C,m,B′′)

and m(r) ≤ 0 where C(�m(v)) = B′′

mov rd, v;B′ (C,m [rd := �m(v)], B′)
ld rd, rs[i];B′ (C,m [rd :=m(m(rs) + i)], B′)
st rd[i], rs;B′ (C,m [g :=m(rs)], B′)

where g = m(rd) + i
jmp v (C,m,B′′)

where C(�m(v)) = B′′

Figure 9: Operational Semantics

3.4 Progress & Preservation
To demonstrate that our language is sound, we have proven

progress and preservation lemmas. Preservation requires
the following lemma in the case for the b-stackcut and b-
stackgrow rules.

Lemma 8 (Stack Cut / Stack Grow Soundness)
• If m is a complete memory and
m

� Ψ (more←◦F1◦F2)⊗R thenm
� Ψ (more←◦F2)⊗R.

• If m
� Ψ (more← ◦ F2) ⊗ R then m

� Ψ (more← ◦ ns ◦
F2)⊗R.

Proof. By inspection of the semantics of formulae.

Theorem 9 (Progress & Preservation)
If ` (C,m,B) ok then

1. (C,m,B) 7−→ (C,m′, B′).

2. if (C,m,B) 7−→ (C,m′, B′) then ` (C,m′, B′) ok.

9

Code Describing Formula

(more← ◦ (` :τ) ◦ F1)⊗ (rsp :S(`))
(b-stackgrow) Repeat n times (more← ◦ ns ◦ · · · ◦ ns ◦ (` :τ) ◦ F1)⊗ (rsp :S(`))
(b-unpack) Repeat n times (more← ◦ (`1 :) ◦ · · · ◦ (`n :) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`))
sub rsp, rsp, n (more← ◦ (`1 :) ◦ (`2 :) ◦ · · · ◦ (`n :) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`1))
st rsp[0], r1 (more← ◦ (`1 :τ1) ◦ (`2 :) ◦ · · · ◦ (`n :) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`1))

...
...

st rsp[n− 1], rn (more← ◦ (`1 :τ1) ◦ (`2 :τ2) ◦ · · · ◦ (`n :τn) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`1))
Code for A
ld r1, rsp[0] (more← ◦ (`1 :τ1) ◦ (`2 :τ2) ◦ · · · ◦ (`n :τn) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`1))

...
...

ld rn, rsp[n− 1] (more← ◦ (`1 :τ1) ◦ (`2 :τ2) ◦ · · · ◦ (`n :τn) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`1))
add rsp, rsp, n (more← ◦ (`1 :τ1) ◦ (`2 :τ2) ◦ · · · ◦ (`n :τn) ◦ (` :τ) ◦ F1)⊗ (rsp :S(`))
(b-stackcut) (more← ◦ (` :τ) ◦ F1)⊗ (rsp :S(`))

Figure 8: Saving Temporaries on the Stack

4. RELATED WORK
Our logic and type system for assembly language grew out

of a number of previous efforts to handle explicit memory
management in a type-safe language. Our language incor-
porates the ability to reason about separation with the mul-
tiplicative connectives of the logic (⊗, �), adjacency with
the ordered connectives (◦, � , �), and aliasing with the
use of singleton types. Other systems have considered these
properties individually, but ours is the first to consider all
three together. We consider related work primarily in terms
of these three concepts.

Separation and Aliasing. Immediately after Girard devel-
oped linear logic [9], researchers rushed to investigate com-
putational interpretations of the logic that take advantage
of its separation properties to safely manage memory [13,
38, 5]. Each of these projects, and many others, use linear
logic or some variant as a type system for a lambda calculus
with explicit allocation and deallocation of memory. Early
researchers did not consider the problem of safe initializa-
tion of data because safe low-level programming languages
such as JVML [14] and typed assembly language [17] had
not yet been invented. However, it is straightforward to add
an extra “junk type” to these linear languages and reason
about initialization as well [11, 39].

More recently, a new approach was suggested by John
Reynolds [32] and Ishtiaq and O’Hearn [12]. Rather than
using a substructural logic to type lambda terms, they use a
logic to describe the shape of the store. They have focused
on using O’Hearn and Pym’s bunched logic [22], which con-
tains additive and linear separators, rather than linear and
ordered separators as we have done. Consequently, we are
aware of no simple encoding of stack-based memory man-
agement invariants in their system. O’Hearn briefly men-
tions adding an adjacency operator to the logic in his work
on bunched typing, but he does not investigate the idea in
detail [21].

Work on alias types by Smith, Walker and Morrisett [35,
41] is closely related to Reynolds, Ishtiaq and O’Hearn’s
Hoare logic. One key difference is that the former group
uses singleton types to encode aliasing relationships between
pointers. We borrow that technique in this work.

Adjacency. Any type system containing pairs τ1 × τ2 uses
juxtaposition in the type structure to reason about adja-
cent locations. However, the development of proof-carrying
code [19, 18] and typed assembly language [17, 15] pro-
vides motivation to consider sophisticated logics for reason-
ing about adjacency and its interaction with other spatial
concepts. Morrisett et al. [15] developed an algebra of lists to
reason about adjacent locations on the stack. However, this
discipline is quite inflexible when compared with our logic.
It is impossible to hide the relative order of objects on the
stack since they have no analogue of our tensor connective.
This deficiency often makes it impossible to store data deep
on the stack. They also have no analogue of our additive
connectives which allow us to specify different “views” of
the stack. Stack-based typed assembly language also has
quite a limited ability to handle aliasing.

Our research is also inspired by Polakow and Pfenning’s
ordered linear logic [28, 29, 27]. In fact, we initially at-
tempted to encode memory invariants using their logic di-
rectly. However, we found their particular linear, ordered
judgment ∆; Ω ` F was incompatible with the adjacency
property we desired. The formulae in ∆ are linear but mo-
bile and they may be placed in between formulae that are
juxtaposed in Ω. Therefore, Ω describes relative ordering,
but not necessarily adjacency.

Nevertheless, Polakow and Pfenning’s ordered logic works
well as a type system for an ordered lambda calculus. Po-
lakow and Pfenning have applied their logic to the prob-
lem of reasoning about continuations allocated and deallo-
cated on a stack [30]. Petersen et al. [25] further observed
that Polakow and Pfenning’s mobility modality could be in-
terpreted as pointer indirection and their fuse connective
could join two adjacent structs. They develop a calculus
based on these ideas and use it to reason about allocation
via “pointer-bumping,” as is commonly done in a copying
garbage collector. Petersen et al. do not consider aliasing,
separation, or deallocation of data.

Other Work. Among the first to investigate explicit mem-
ory management in a type-safe language were Tofte and
Talpin, who developed a provably sound system of region-
based memory management [37]. At approximately the same
time, Reynolds and O’Hearn [31, 24] were investigating the
semantics of Algol and its translation to low-level interme-

10

diate languages with explicit memory management. Later,
the development of proof-carrying code [19, 18] and typed
assembly language [17, 15] provided new motivation to study
safe memory management at a low-level of abstraction.

Recently, researchers have developed very rich logics that
are capable of expressing essentially any compile-time prop-
erty of programs. For instance, Appel et al. [2, 3] use higher-
order logic to code up the semantics of a flexible type system
and Shao et al. [34] and Crary and Vanderwaart [6] incor-
porate logical frameworks into their type systems. With
enough effort, implementors could surely code up our ab-
stractions in these systems. However, our logic and language
still serves a purpose in these settings: it may be used as
a convenient and concise logical intermediate language. No
matter how powerful the logic, it is still necessary to think
carefully about how to structure one’s proofs. Our research,
which defines a logic at just the right level of abstraction for
reasoning about the stack, provides that structure.

The bunched logic we have described here can be ex-
tended to allow reasoning about hierarchical memory man-
agement [1]. The extended logic can be used to describe
the layout of bits in a memory word, the layout of memory
words in a region [37], the layout of regions in an address
space, or even the layout of address spaces in a multiprocess-
ing environment. Ahmed et al. [1] use the logic to develop
a type system for a simplified version of the Kit Abstract
Machine [8], the intermediate language used in the ML Kit
with regions [36].

5. FUTURE WORK
There are several directions for future work. First, we

would like to continue to investigate substructural logics for
reasoning about explicit memory management. In particu-
lar, we would like to determine whether we can find a logic
in which deduction is complete for our memory model, or a
related model such as the store model used by Ishtiaq and
O’Hearn. Second, we would like to study certifying compi-
lation for stack allocation algorithms in more detail. What
are the limitations of our stack logic? Are there current opti-
mization techniques that we cannot capture? Third, we feel
confident that we will be able to use Walker and Morrisett’s
recursive formulae [41] or O’Hearn et al.’s inductive defini-
tions [23] to code up recursive data structures, which we do
not handle here, but the topic deserves deeper investigation.
Finally, we have not discussed arrays in this paper. They
would have to be handled either through a special macro
that does the bounds check, or the system would need to be
augmented with arithmetic formulae as in the work by Xi
and Pfenning [42].

Acknowledgments
We would like to thank Bob Harper and Leaf Petersen for
stimulating conversations early in the development of this
work, and Peter O’Hearn for comments on an earlier version
of this paper. Peter also helped explain some of the details
of bunched logic to us.

6. REFERENCES
[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about

hierarchical memory management. Unpublished
manuscript., Nov. 2002.

[2] A. W. Appel. Foundational proof-carrying code. In
Sixteenth Annual IEEE Symposium on Logic in
Computer Science, pages 247–258. IEEE, 2001.

[3] A. W. Appel and A. P. Felty. A semantic model of
types and machine instructions for proof-carrying
code. In Twenty-seventh ACM Symposium on
Principles of Programming Languages, pages 243–253.
ACM Press, Jan. 2000.

[4] B.-Y. E. Chang, K. Crary, M. DeLap, R. Harper,
J. Liszka, T. M. VII, and F. Pfenning. Trustless grid
computing in Concert. In GRID 2002 Workshop,
number 2536 in LNCS. Springer-Verlag, 2002.

[5] J. Chirimar, C. A. Gunter, and J. G. Riecke.
Reference counting as a computational interpretation
of linear logic. Journal of Functional Programming,
6(2):195–244, Mar. 1996.

[6] K. Crary and J. Vanderwaart. An expressive, scalable
type theory for certified code. In ACM International
Conference on Functional Programming, Pittsburgh,
Oct. 2002. ACM Press.

[7] R. Deline and M. Fähndrich. Enforcing high-level
protocols in low-level software. In ACM Conference on
Programming Language Design and Implementation,
pages 59–69, Snowbird, Utah, June 2001. ACM Press.

[8] M. Elsman and N. Hallenberg. A region-based
abstract machine for the ML Kit. Technical Report
TR-2002-18, Royal Veterinary and Agricultural
University of Denmark and IT University of
Copenhagen, August 2002. IT University Technical
Report Series.

[9] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[10] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in cyclone. In ACM Conference on
Programming Language Design and Implementation,
Berlin, June 2002. ACM Press.

[11] M. Hofmann. A type system for bounded space and
functional in-place update–extended abstract. In
G. Smolka, editor, European Symposium on
Programming, volume 1782 of Lecture Notes in
Computer Science, pages 165–179, Berlin, Mar. 2000.

[12] S. Ishtiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In Twenty-Eighth ACM
Symposium on Principles of Programming Languages,
pages 14–26, London, UK, Jan. 2001.

[13] Y. Lafont. The linear abstract machine. Theoretical
Computer Science, 59:157–180, 1988.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[15] G. Morrisett, K. Crary, N. Glew, and D. Walker.
Stack-based Typed Assembly Language. In Second
International Workshop on Types in Compilation,
pages 95–117, Kyoto, Mar. 1998. Published in Xavier
Leroy and Atsushi Ohori, editors, Lecture Notes in
Computer Science, volume 1473, pages 28-52.
Springer-Verlag, 1998.

[16] G. Morrisett, K. Crary, N. Glew, and D. Walker.
Stack-based Typed Assembly Language. Journal of
Functional Programming, 12(1):43–88, Jan. 2002.

[17] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to Typed Assembly Language. ACM

11

Transactions on Programming Languages and
Systems, 3(21):528–569, May 1999.

[18] G. Necula. Proof-carrying code. In Twenty-Fourth
ACM Symposium on Principles of Programming
Languages, pages 106–119, Paris, 1997.

[19] G. Necula and P. Lee. Safe kernel extensions without
run-time checking. In Proceedings of Operating System
Design and Implementation, pages 229–243, Seattle,
Oct. 1996.

[20] R. O’Callahan. A simple, comprehensive type system
for java bytecode subroutines. In Twenty-Sixth ACM
Symposium on Principles of Programming Languages,
pages 70–78, San Antonio, Jan. 1999.

[21] P. O’Hearn. On bunched typing. Journal of Functional
Programming, 2002. To appear.

[22] P. O’Hearn and D. Pym. The logic of bunched
implications. Bulletin of Symbolic Logic, 5(2):215–24,
1999.

[23] P. O’Hearn, J. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures.
In Computer Science Logic, number 2142 in LNCS,
pages 1–19, Paris, 2001.

[24] P. O’Hearn and J. C. Reynolds. From Algol to
polymorphic linear lambda-calculus. Journal of the
ACM, 47(1):167–223, 2000.

[25] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A
type theory for memory allocation and data layout. In
ACM Symposium on Principles of Programming
Languages, Jan. 2003. To appear.

[26] F. Pfenning and R. Davies. A judgment reconstruction
of modal logic. Mathematical Structures in Computer
Science, 2000. To appear.

[27] J. Polakow. Ordered Linear Logic and Applications.
PhD thesis, Carnegie Mellon University, 2001.
Available As Technical Report CMU-CS-01-152.

[28] J. Polakow and F. Pfenning. Natural deduction for
intuitionistic non-commutative linear logic. In J.-Y.
Girard, editor, Typed Lambda Calculi and
Applications, volume 1581 of Lecture Notes in
Computer Science, pages 295–309, Berlin, 1999.
Springer-Verlag.

[29] J. Polakow and F. Pfenning. Relating natural
deduction and sequent calculus for intuitionistic
non-commutative linear logic. Electronic Notes in
Theoretical Computer Science, 20, 1999.

[30] J. Polakow and F. Pfenning. Properties of terms in
continuation-passing style in an ordered logical
framework. In Workshop on Logical Frameworks and
Meta-Languages, Santa Barbara, June 2000.

[31] J. Reynolds. Using functor categories to generate
intermediate code. In Twenty-Second ACM
Symposium on Principles of Programming Languages,
pages 25–36, San Francisco, Jan. 1995.

[32] J. C. Reynolds. Intuitionistic reasoning about shared
mutable data structure. In Millennial perspectives in
computer science, Palgrove, 2000.

[33] SETI@Home. http://setiathome.ssl.berkeley.edu.
[34] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A

type system for certified binaries. In ACM Symposium
on Principles of Programming Languages, London,
Jan. 2002. ACM Press.

[35] F. Smith, D. Walker, and G. Morrisett. Alias types. In
European Symposium on Programming, pages
366–381, Berlin, Mar. 2000.

[36] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,
T. H. Olesen, P. Sestoft, and P. Bertelsen.
Programming with regions in the ML Kit (for version
3). Technical Report 98/25, Computer Science
Department, University of Copenhagen, 1998.

[37] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[38] P. Wadler. Linear types can change the world! In
M. Broy and C. Jones, editors, Progarmming Concepts
and Methods, Sea of Galilee, Israel, Apr. 1990. North
Holland. IFIP TC 2 Working Conference.

[39] D. Walker. Typed Memory Management. PhD thesis,
Cornell University, Jan. 2001.

[40] D. Walker, K. Crary, and G. Morrisett. Typed
memory management in a calculus of capabilities.
ACM Transactions on Programming Languages and
Systems, 22(4):701–771, May 2000.

[41] D. Walker and G. Morrisett. Alias types for recursive
data structures. In Workshop on Types in
Compilation, Montreal, Sept. 2000.

[42] H. Xi and F. Pfenning. Eliminating array bound
checking through dependent types. In ACM
Conference on Programming Language Design and
Implementation, pages 249–257, Montreal, June 1998.

12

