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Abstract. An ad hoc data source is any semi-structured, non-standard
data source. The format of such data sources is often evolving and fre-
quently lacking documentation. Consequently, off-the-shelf tools for pro-
cessing such data often do not exist, forcing analysts to develop their own
tools, a costly and time-consuming process. In this paper, we present an
incremental algorithm that automatically infers the format of large-scale
data sources. From the resulting format descriptions, we can generate
a suite of data processing tools automatically. The system can handle
large-scale or streaming data sources whose formats evolve over time.
Furthermore, it allows analysts to modify inferred descriptions as de-
sired and incorporates those changes in future revisions. 4

1 Introduction

Ad hoc data is any non-standard, semi-structured data source for which pro-
cessing tools and libraries are not readily available. HTML, XML, and data in
relational databases are not ad hoc because many tools exist to manage such
data. Despite efforts to standardize data formats, ad hoc data persists in many
domains ranging from computer system administration to financial transactions
to health care to computational biology. Figure 1 shows an example of a piece
of ad hoc data source.

People continue to produce and use ad hoc data because such formats are
expedient and compact. Typical uses of these data sources include system fault
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207.136.97.49 - - [05/May/2009:16:37:20 -0400] "GET /README.txt HTTP/1.1" 404 216
ks38.kms.com - kim [10/May/2009:18:38:35 -0400] "GET /doc/prev.gif HTTP/1.1" 304 576

Fig. 1. A Fragment of a Simple Web Server Log wl

monitoring by tracking vital system health parameters in the system logs, intru-
sion detection by matching access patterns to intrusion models and data mining
of scientific and financial data.

Despite the expediency of producing ad hoc data, these data formats become
very difficult to deal with because of missing documentation, the lack of tools,
and corruptions caused by repeated redesign and re-engineering over time. In
the past, ad hoc data analysis usually involved writing a shell script or one-
off wrapper program to parse each data format, a practice which is expensive,
error-prone and brittle.

The pads project [11] aims to solve the above problems. The central tech-
nology is a declarative, type-based, data description language that allows the
user to specify the physical layout of data sources as well as semantic properties
of the data. pads specifications can be compiled into a suite of processing tools
such as a statistical reporting tool, an XML converter and a query engine, and
programming libraries including parser, printer and traversal functions. Figure
2 shows the pads description for the wl data source, and Figure 3 demonstrates
the XML translator output automatically generated from the pads description.

Punion client_t {
Pip ip; // 207.136.97.49
Phostname host; // ks38.kms.com

};

Punion auth_id_t {
Pchar unauthorized : unauthorized == ’-’;
Pstring(:’ ’:) id;

};

Pstruct request_t {
"GET "; Ppath path;
" HTTP/"; Pfloat http_ver;
’"’;

};

Precord Pstruct entry_t {
client_t client;

’ ’; auth_id_t remoteID;
’ ’; auth_id_t auth;
" ["; Pdate date;
’:’; Ptime time;
"] "; request_t request;
’ ’; Pint response;
’ ’; Pint length;

};

Fig. 2. pads/c description for the wl format

<entry_t>
<client>

<ip>
<elt><val>207</val></elt>
<elt><val>136</val></elt>
<elt><val>97</val></elt>
<elt><val>49</val></elt>
<length>4</length>

</ip>
</client>

<remoteID>
<unauthorized><val>-</val></unauthorized>

</remoteID>
<auth>

<unauthorized><val>-</val></unauthorized>
</auth>
<date><val>2009-05-05</val></date>
<time><val>16:37:20</val></time>
<timezone><val>-0400</val></timezone>
...

</entry_t>

Fig. 3. Fragment of XML translator output from a wl record



The large scale as well as the streaming and evolving nature of many ad
hoc sources led us to believe that a system which automatically learns a pads
description of a given data source and incrementally updates that description as
the source evolves could significantly improve the productivity of ad hoc data
users. As a first step, we developed an unsupervised algorithm learnpads [7,
8] that automatically infers a pads description of a data source by computing
frequency statistics for the tokens in the data and using an information theoretic
score to guide description optimization.

This algorithm, however, has three important limitations: first, it requires
that all data fit into main memory and contains procedures that are quadratic
to the size of data, and therefore cannot scale to very large sources; second,
when the data format evolves over time, the description has to be learned from
scratch; and finally, machine learned description, while optimized for both pre-
cision and conciseness at the same time, may not be very user-friendly in terms
of readability.

In this paper, we propose a new algorithm that incrementally infers descrip-
tions of large scale or evolving ad hoc data sources. 5 The system takes as input
an initial description and a new batch of data. It returns a modified descrip-
tion that extends the initial description and covers the new data. The initial
description may be supplied by the user or automatically generated using the
original learnpads system. This iterative architecture enables the learning of
a very large data source by partitioning it into smaller batches and updating
the description from one batch to the next. It also allows the user to modify the
description output at the end of an iteration (e.g., renaming the automatically
generated variable names), and insert the revised description back into the loop.

The main contributions of this paper are:

1. The design of a new system for generation of data descriptions and end-to-
end ad hoc data processing tools from example data. The system is incre-
mental and interactive, allowing it to process streaming data a chunk at a
time, and allowing users to intercede to correct, adapt or modify intermedi-
ate results.

2. The engineering and optimization of algorithms that allow the system to
handle large, industrial data sources of 30GB or more in a matter of a few
hours.

3. The evaluation and analysis of the system on 16 different examples drawn
from various industrial data sources.

In the rest of the paper, we describe the new incremental inference algorithm
(Section 2) and give a comprehensive experimental evaluation of the system
(Section 3). We then compare this system with some related work (Section 4)
and finally conclude the paper (Section 5).
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Fig. 4. An Overview of the Incremental Learning Framework

2 Main Algorithm

Our main algorithm can be characterized as a user-assisted bootstrapping pro-
cessing, depicted in Figure 4. Given a candidate description D, the algorithm
uses D to parse the records in the data source. It discards records that parse
successfully, since these records are already covered by D, but it collects records
that fail to parse. Specifically, if a portion of a record fails to parse, that failure
will be detected at a particular node in D. These failed portions are collected in
an aggregation data structure A that mirrors the structure of D. When the algo-
rithm accumulates M such records, where M is a parameter of the algorithm, it
transforms D to accommodate the places where differences were found (i.e., by
introducing options where a piece of data was missing or unions where a new
type of data was discovered). It then uses the original learnpads algorithm
to infer descriptions for the aggregated portions of bad data, and merge these
new sub-descriptions into the transformed description to produce a new, refined
description D’. This refined description subsumes D and describes the M new
records. In addition, the algorithm attempts to preserve as much of the structure
of D as possible, so users supplying initial descriptions can recognize the resulting
descriptions. This is so because the updates are localized to only parts of D that
incur parsing errors. At this point, the user can optionally get into the loop and
makes modification to the description to create D’’. The algorithm then makes
D’’ the new candidate description and repeats the process until it has consumed
all the input data. We call the main loop in Figure 4 the incremental learning
step. The initial description D can either be supplied by a user or be inferred
automatically by applying the original algorithm to N records selected from the
data source, where N is another parameter.

In the following, we present the algorithm in more detail.

2.1 Preliminaries

Figure 5 defines the data structures for descriptions D, data representations R,
and aggregate structures A. Some data types, such as the switched union, are
omitted for the succinctness of the presentation. In these definitions, variable re

5 A preliminary version of this paper appeared in an informal workshop [14].



Basic notation:
c (a string character)
s1.s2 (concatenation of strings)
first(s) (first character of s)
prefix(s) (set of prefixes of s)
sprefix(s) (set of strict prefixes of s)
len(s) (length of s)

Descriptions:
Base ::= Pint | PstringME(re) | PstringFW(e)
D ::=

Base (Base token)
| Sync s (Synchronizing token)
| Pair (x:D1, D2) (Pair with dependency)
| Union (D1, D2) (Union)
| Array(D, s, t) (Array)
| Option D (Option)

Data representation:
BaseR ::= Str s | Int i | Error
SyncR ::= Good | Fail | Recovered s
R ::=

BaseR
| SyncR
| PairR (R1, R2)
| Union1R R | Union2R R
| ArrayR (R list, SyncR list, SyncR)
| OptionR (R option)

Aggregation structure:
A :: =

BaseA Base
| SyncA s
| PairA(A1, A2)
| UnionA(Al, Ar)
| ArrayA (A_elem, A_sep, A_term)
| OptionA A
| Opt A
| Learn [s]

Fig. 5. Preliminary data structures used in incremental inference

ranges over regular expressions, e over host language expressions, s and t over
strings, and i over integers. For simplicity of presentation, we assume just three
base types: integers, strings that match a regular expression and strings with a
fixed width specified by an expression. Synchronizing tokens, or sync tokens for
short, correspond to string literals in pads descriptions. Such tokens, which are
often white spaces or punctuation, serve as delimiters in the data and are useful
for detecting errors. The binary dependent pairs Pair (x:D1, D2) are a simpli-
fication of pads more general Pstructs. The variable x refers to the data parsed
by D1 and may be used in D2. The union Union (D1, D2) provides a choice
between descriptions D1 and D2. An array description Array(D, s, t) has an
element type described by D, a separator string s that appears between array
elements, and a terminator string t. Finally, Option D indicates D is optional. To
resolve ambiguities, unions are biased towards their first element, arrays are bi-
ased towards a longest match semantics and options are biased towards matching
as opposed to not matching.

A term R is a parse tree obtained from parsing data using a description D.
Parsing a base type can result in a string, an integer or an error. Parsing a sync
token Sync s can give three different results: Good, meaning the parser found s

at the beginning of the input; Fail, meaning s is not a substring of the current
input; or Recovered s’, meaning s is not found at the beginning of the input,
but can be recovered after “skipping” string s’. The parse of a pair is a pair of
representations, and the parse of a union is either the parse of the first branch
or the parse of the second branch. The parse of an option is either the parse of
its body or empty. The parse of an array includes a list of parses for the element
type, a list of parses for the separator and a parse for the terminator which
appears at the end of the array.

An aggregation structure accumulates the set of currently unparseable data
fragments whose form must be learned for inclusion in the grammar. The aggre-
gation structure mirrors the structure of the description D with two additional
nodes: an Opt node and a Learn node. The Learn nodes accumulate extra data



whose structure must be learned. The Opt nodes do the opposite: they mark
where data were missing. An invariant of the aggregation structure is that newly
inserted Opt nodes always wrap either a BaseA or a SyncA node.

2.2 Incremental Learning Step

Figure 6 gives pseudo-code for the incremental learning step. The input is the
current description D and a batch of data records xs. The init aggregate func-
tion initializes an empty aggregate according to description D. During parsing,
the algorithm iteratively updates a list of possible aggregates As, seeded with
the initial aggregate of D. For each data record x, the algorithm uses the parse

function to produce a list Rs of possible parses. It then calls the aggregate

function to merge each parse R in the current list of parses with each aggregate
A in the current list of aggregates. (We use ‘::’ to denote prepending an element
onto the front of a list.) Note that the potentially large number of parses and
the growing list of aggregates in the inner loop are the performance bottleneck.
We will show in Section 2.6 some strategies to alleviate this complexity.

incremental_step(D, xs) =
As = [init_aggregate(D)];
foreach x in xs {

Rs = parse(D, x);
As’ = [];
foreach R in Rs {

foreach A in As {
A’ = aggregate(A, R);
As’ = A’ :: As’

}
}
As = As’

}
best_a = select_best(As);
D’ = update_desc(D, best_A);
return D’

Fig. 6. Pseudo-code for the incremental learning step

When the system finishes parsing all the input data, the algorithm uses the
select best function to select the best aggregate from the list of candidate
aggregates As. The select best function counts the total number of Opt and
Learn nodes in each of the aggregates, and returns the one with the smallest
number. The idea is that the aggregate with the smallest number of added nodes
is more likely to represent a description that is closest to the original description.

Finally, the update desc function uses the structure of the best aggregate to
update the previous description D to produce the new current description D’. The
update desc function works by doing two things. First, it converts the aggregate
structure back to a pads description with Opt nodes translated to Poption types.
In addition, it invokes the learnpads format inference algorithm to learn a sub-
description for the data collected at each of the Learn nodes and replaces these
Learn nodes with these new sub-descriptions. Second, it uses rewriting rules to
improve the overall description.



2.3 Parsing

Our parser is a top-down recursive descent parser that performs error detection
and recovery using synchronizing tokens. Figure 7 describes the most important
elements of the parsing algorithm. For simplicity and brevity, we describe the
algorithm abstractly using a relation of the form (R,m) ∈ L(D,E,s,s’). This re-
lation may be read “using description D and operating within the environment E,
parsing the input I = s.s’ will consume input prefix s and leave s’ as the resid-
ual input, returning the parse tree R and correctness metric m.” The environment
E is a mapping from variable names x to parse trees R. This environment stores
the binding of variables to parse trees that the pads dependent pair construct
introduces. We use the symbol ‘ϵ’ to denote the empty environment.

Base:
(Int (atoi s), m) ∈ L(Pint,E,s,s’)

if re = (+|-)?[0-9]+
and s ∈ L(re)
and s’’ ∈ prefix(s’) and s.s’’ ̸∈ L(re)
and m = (0,1,0,len(s))

(Error, (1,0,0,0)) ∈ L(Pint,E,"",s’),
if x ∈ prefix(s’) then x ̸∈ L((+|-)?[0-9]+)

(Str s, m) ∈ L(PstringME(re),E,s,s’),
if s ∈ L(re)
and s’’ ∈ prefix(s’) and s.s’’ ̸∈ L(re)
and m = (0,1,0,len(s))

(Error, (1,0,0,0)) ∈ L(PstringME(re),E,"",s’),
if x ∈ prefix(s’) then x ̸∈ L(re)

(Str s, m) ∈ L(PstringFW(e),E,s,s’)
if E(e) = Int k and k >= 0
and s = c1...ck and m = (0,1,0,k)

(Error, (1,0,0,0)) ∈ L(PstringFW(e),E,"",s’)
if E(e) ̸= Int k for any k > 0

(Error, (1,0,0,0)) ∈ L(PstringFW(e),E,"",s’)
if E(e) = Int k and k > 0 and len(s’) < k

Sync:
(Good, (0,1,0,len(s))) ∈ L(Sync(s),E,s,s’)
(Recovered s1, m) ∈ L(Sync(s2),E,s,s’)

if s = s1.s2
and s3.s2 ̸∈ sprefix(s1.s2) for any s3
and m = (1,0,len(s1),len(s2))

(Fail, (1,0,0,0)) ∈ L(Sync(s),E,"",s’)
if s ̸∈ prefix(s’)

Pair:
(PairR (R1,R2), (m1 + m2))

∈ L(Pair(x:D1, D2),E,s1.s2,s’)
if (R1, m1) ∈ L(D1,E,s1,s2.s’)
and (R2, m2) ∈ L(D2,E[x → R1],s2,s’)

Union:
(Union1R R, m) ∈ L(Union(D1, D2),E,s,s’)

if (R, m) ∈ L(D1, E, s, s’)
(Union2R R, m) ∈ L(Union(D1, D2),E,s,s’)

if (R, m) ∈ L(D2, E, s, s’)

Main parse function:
parse(D, s) = {R | (R, m) ∈ L(D,ϵ,s,"")}

Fig. 7. Definition of parse function (excerpts)

The parse metric m measures the quality of a parse. It is a 4-tuple: (e, g,
s, c), where the e is the number of tokens with parse errors, g is the number
of tokens parsed correctly, s is the number of characters skipped during Sync

token recovery, and c is the number of characters correctly parsed. To sum two
parse metrics, we sum their components: (e1, g1, s1, c1) + (e2, g2, s2, c2) = (e1 +
e2, g1+g2, s1+s2, c1+c2). We compare parse metrics by comparing the ratios of
correctly parsed characters against erroneous tokens and the estimated number
of skipped tokens. We estimate the number of skipped tokens by computing the
fraction of the number of skipped characters over the estimated token length.
Hence, (e1, g1, s1, c1) ≥ (e2, g2, s2, c2) iff

c1
e1 +

s1
max((s1+c1)/(e1+g1),1)

≥ c2
e2 +

s2
max((s2+c2)/(e2+g2),1)
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2.4 An Example of Parsing and Aggregation

To illustrate the parsing and aggregation phases of the algorithm, we introduce
a simple example. Suppose we have a description d, comprised of a pair of an
integer and a sync token “*”, and we are given the following three lines of new
input: “5*” and “abc*” and “8$”. Figure 8 shows the three data representations
that result from parsing the lines, which we call R1, R2 and R3, respectively.
Notice the first line parsed without errors, the second line contains an error for
Pint and some unparseable data “abc”, and the third contains a Fail node
because the sync token * was missing. Figure 9 shows the aggregation of R1
to R3 starting from an empty aggregate. In general, Error and Fail nodes in
the data representation trigger the creation of Opt nodes in the aggregate, while
unparseable data is collected in Learn nodes.

2.5 Description Rewriting

Once we have successfully parsed, aggregated and relearned a new chunk of
data, we optimize the new description using rewriting rules. Our original non-
incremental algorithm already had such an optimization phase; we have modified
and tuned the algorithm for use in the incremental system.

Description rewriting optimizes an information-theoretic Minimum Descrip-
tion Length (MDL) score [9], which is defined over descriptions D as:

MDL(D) = TC(D) + w ×ADC(x1, . . . , xk | D),

where TC(D) is called the type complexity of D and ADC(x1, . . . , xk | D) is called
the atomic data complexity. The type complexity is a measure of the size of
the abstract syntax of D. The atomic data complexity of data records x1, . . . , xk

relative to D is the number of bits required to transmit an average data record
given the description D. The MDL score of D is the weighted sum of these two
components. Our experiments indicate a weight w of approximately 10 is effective



in our domain. Given a rewriting rule that rewrites D to D’, the rule fires if and
only if MDL(D) ≤ MDL(D’). Rewriting continues until no further rule can fire.
Hence, our rewriting strategy is a greedy local search.

The original learning system contains many MDL-based rewriting rules, for
example, to flatten nested structs and unions and to refine ranged types. BlobFind-
ing is an important new rewriting rule which takes a given sub-description D

and uses a heuristic to determine if the type complexity of D is too high w.r.t.
the amount of data it covers. If this is true, and there is an identifiable con-
stant string or pattern re that immediately follows D, then we rewrite D to
Pstring_SE(:re:). This rule is tremendously helpful in controlling the size and
complexity of learned descriptions. Without it, descriptions can grow in com-
plexity to the point where parsing is slow and the algorithm fails to scale.

We also introduced a new data dependent rewriting rule called MergeOpts
to optimize a pattern that occurs frequently in descriptions during incremental
learning. Recall that the aggregate function introduces Opt nodes above a BaseA

or SyncA node whenever the corresponding Base or Sync token in the description
failed to parse. When faced with an entirely new form of data, the algorithm is
likely to introduce a series of Opt nodes as each type in the original description
fails in succession. The MergeOpts rule collapses these consecutive Opt nodes if
they are correlated, i.e., either they are all always present or all always absent.

2.6 Optimizations

The pseudo-code in Figure 6 suggests the number of aggregates is of the order
O(pn), where p is the maximum number of parses for a line of input and n is
the number of lines to aggregate. Clearly, this algorithm will not scale unless
p and n are bounded. To deal with this problem, we have implemented several
optimizations to limit the number of parses and aggregates.

The first key optimization culls parses based on the parse metric m. To be
more precise, we instrument the implementation of the parse function to return
a list of parse triples (r,m,j), where r is the data representation of the parse, m
is the metric associated with r, and j is the position in the input after the parse
rather than just representations. We define a clean function that retains all
perfect parses or, if no perfect parse exists, the best k non-perfect parses within
the same span. This idea is similar to the dynamic programming techniques used
in Earley Parsers [6].

A second optimization, the parse cut-off optimization, terminates a candidate
parse when parsing a struct with multiple fields f1, f2, ..., fn if the algorithm
encounters a threshold number of errors in succession. This may result in no
possible parses for the top-level description, in which case we restart the process
with this optimization turned off.

A third optimization is memoization. The program keeps a global memo table
indexed by the pair of a description D and the beginning position for parsing D.
This table stores the result for parsing according to D at the specific position.



Table 1. The data sources

Name (Large) Size Lines Description
redstorm 34.18 GB 219096168 Supercomputer log from Sandia National Lab
liberty 30.833 GB 265569231 Supercomputer log from Sandia National Lab
dalpiv.dat 15.41 GB 25867260 Yellow pages web server log
vshkap2.log 10.33 GB 89662433 Syslog format
cosmosLog csm.exe.log 6.09 GB 22143288 Microsoft Cosmos service manager log
free impression.dat 2.60 GB 27644006 Impression data of yellow pages for Free users

Name (Small) Size Lines Description
free clickthroughs.dat 24 MB 285332 Yellow pages click through stream data
thirdpartycontent.log 40 MB 281519 Third party content stream data
eventstream.current 500 MB 1579920 Event streams on Cosmos
strace jaccn.dat 80 MB 896490 NERSC application traces
LA-UR-EVENTS.csv 30 MB 433490 Comma separated LANL disk replacement data
messages.sdb 520 MB 5047341 /var/log/messages from CRAY
HALO have2impression.log 360 MB 210034 Server side impression records of iPhone apps
LA-UR-NODE-NOZ.TXT 32 MB 1630479 Space separated LANL disk replacement data
searchevents.dat 90 MB 2035348 Yellow pages search event log
4046.xls 7 MB 24193 DNA Microarray data

3 Experimental Results

To evaluate the performance of our prototype system and to understand the
trade-offs in setting the various parameters in the algorithm, we ran a number
of experiments using 16 data sources. These sources are divided into two groups:
six large files, each more than 1GB, and ten smaller files, each under 1GB. Table
1 lists the names of these data sources, the file sizes, the number of lines, and
brief descriptions. We conducted our experiments on a 2.4GHz machine with 24
GBs of memory and two 64-bit quad-core Intel Xeon Processors running Linux
version 2.6.18. Our system is single-threaded, so we effectively used only one of
the eight available cores.

Benchmark data sources. We are interested in two kinds of performance mea-
sures: time to learn a description and quality of the learned description. The
time to learn can be further broken down into two components: time to learn
the initial description and time to learn with an initial description in hand.

The quality of the description can be measured in three ways: the MDL
score [9] of the description, the edit distance [4] between the learned description
and a “gold description” written by human expert, and the accuracy of the
learned description. The MDL score provides a fully automated way to quantify
both the precision and the compactness of a description, with smaller MDL scores
corresponding to better descriptions. However, while MDL is useful, it is best
seen as a proxy measure, since humans may prefer a description with a higher
MDL score if that description better captures the human being’s intuitions.

To address this concern, we use edit distance to measure how close the learned
description is to something a human being might write. This metric counts the
number of edits necessary to convert the learned description into a “gold de-
scription” written by a human being, where an edit can be either an insertion
or deletion of a node in the description. More precisely, the distance measure is
a relative edit distance score: rel dist(D) = edit dist(D,Dgold)/|Dgold|, where



Table 2. Large data sources

Data MDL Dist Accuracy Learn time parse time pads time wc time Blob time
(secs) (secs) (secs) (secs) (secs)

cosmosLog csm.exe.log 21301.34 0.805 100% 1040 1225 430 34 89
dalpiv.dat 45785.72 0.865 100% 4012 2196 767 82 278

free impressions.dat 6062.39 0.89 100% 2701 4032 493 15 46
liberty 8790.85 0.722 100% 21144 20851 8036 175 677

redstorm 13837.73 0.707 100% 35548 24736 9791 191 719
vshkap2.log 10063.71 1.750 100% 23337 14651 2163 57 174

|D| denotes the total number of nodes in D. We have empirically determined
that a relative edit distance of less than 1 indicates a relatively good descrip-
tion. Of course, the edit distance measure may also be imperfect as there can
be a number of different but equally “good” ways to craft a gold description.
Nevertheless, we have found it a useful measure.

Finally, our system would not be very useful if the learned description was
not correct. Therefore, we also use an accuracy measure, which reports the per-
centage of original data source that the learned description parses without errors.

Large data sources. Our first experiment learns a description for each of the
six large data sources in the benchmark. We set the initial batch size N to be
2000 and the incremental batch size M to be 100. Table 2 reports the MDL
and distance scores, the accuracy, and the total learning time. In addition, it
report various times to parse the data. The parse time is the time it takes the
algorithm’s parse function to parse the source data using the learned description.
The pads time is the time it takes the generated pads parser to parse the same
data. To put these parsing times in perspective, we list the time to count the total
number of lines using the Unix wc -l command and the time to parse the data
using the simple pads type Pstring(:Peor:), a.k.a blob, which parses each line
as a newline-terminated string. The result shows that the incremental learning
algorithm can learn the format of a 30GB file in a few hours. Importantly, the
learned descriptions are all correct with respect to their original raw data.

Scaling performance. In the next experiment, we evaluate how the algorithm
scales with increasing data size by running the system on increasingly large
fractions of each of the small data files, starting with 20% and ending with 100%.
For a given data source, we empirically determined which values of the batch-
size parameters N and M give the best result when learning the entire source,
and then used those values for this experiment. Figure 10 plots the resulting
total learning time versus the percentage of the data file used in learning. The
graph shows the algorithm enjoys near linear scale-up for all sources except
4046.xls, which flattens after 40% of data. The BlobFinding rule is the cause
of this anomaly: learning the initial description takes a relatively long time, but
after the algorithm sees the first 40% of the data, the BlobFinding rule simplifies
the description to one that parses much more quickly.
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Fig. 10. Learning time vs. percentage of data sources

Initial and incremental batch size. We study the interplay of parameters N and
M next. For each of the 10 small files, we repeatedly doubled N from 500 to
32000. For each N , we repeatedly quadrupled M from 25 to 6400. For each
resulting pair of N and M , we ran the learning system on each data file and
recorded the learning time, the MDL score and the relative distance score. All the
learned descriptions parse the original data without error and therefore achieve
100% accuracy. We show only the results for messages.sdb in Table 3, while
the remaining results are available on the web [1]. Table 3 represents a two-
dimensional array, in which the N increases downward and the M increases to
the right. Each table cell contains three numbers: the distance score, the MDL
score and the total learning time in seconds. The number in parenthesis in the
first column is the time to learn the initial batch in seconds, which is the same
across all M ’s. As a baseline, we add a “Manual” row in which the time for
the expert to produce an initial description is estimated to be 1 hour and the
subsequent learning starts from that description. We highlight the best result in
the table. The best description for message.sdb is learned with N = 16000 and
M = 400 which are the parameters used for the scaling test of this source.

In general, as M goes up, the total learning time increases. With smaller
batch sizes, the system updates descriptions more frequently, often simplifying
them. These simplified descriptions parse more efficiently and hence require less
time. When N is large, this phenomenon is not as prominent because the initial
description learned from large initial batches is often good enough to cover most
of the remaining data, and thus no incremental updates are needed.

Our main conclusion is that the end results of our algorithm are sensitive
to the quality of the initial description, and that the quality of the initial de-



Table 3. N vs. M - messages.sdb

N\M 25 100 400 1600 6400

0.62 0.62 0.62 0.52 0.52
Manual 8316.77 8355.71 8313.52 8297.47 8297.04
(3600) 337.44 438.29 292.88 295.68 292.05

0.67 0.67 0.67 0.67 0.67
500 8098.46 8098.46 8098.46 8098.46 8098.46

(2.13) 123.88 127.76 130.17 125.52 124.45
1.10 1.10 1.24 1.24 1.24

1000 9346.35 8443.28 8549.67 8544.63 8541.95
(5.75) 432.61 418.64 425.35 442.23 444.56

2.48 2.48 2.48 2.48 2.48
2000 10881.17 10881.17 10881.17 10881.17 10881.17
(6.55) 3935.54 3640.04 3983.46 3695.27 3643.84

0.57 0.57 0.57 0.57 0.57
4000 7936.66 7936.66 7936.66 7936.66 7936.66

(16.26) 868.20 881.52 885.64 910.99 925.19
0.48 0.48 0.48 0.48 0.48

8000 7932.71 7932.71 7932.71 7932.71 7932.71
(74.20) 245.05 242.79 249.90 244.78 248.62

0.57 0.48 0.48 0.48 0.48
16000 7995.88 7932.65 7932.65 7932.65 7932.65

(585.03) 717.57 758.57 696.82 760.00 698.15

scription is dependent upon the initial batch of data. This is to be expected
since our rewriting system is an incomplete, greedy local search, and therefore
is sensitive to the initial candidate grammar it starts with. But given that the
user can examine the intermediate descriptions during any iteration, necessary
adjustments can be made to influence the final description.

To illustrate the quality of learned description and the difference between
it and the gold description, we show the gold description and the best learned
description of messages.sdb in Figure 11 and Figure 12. The learned description
maintains a top-level structure almost identical to the gold description, except
the gold description has slightly more refined details about the message t type,
which was represented by Popt Struct 6113 and the blob at the end. The gold
and learned descriptions for the other files are available on the web [1].

4 Related Work

There is a long history of research in grammar induction, the process of discov-
ering grammars from example data. Vidal [13] and De La Higuera [10] both give
surveys of research in the area. Readers are also referred to the extensive survey
in this area from our previous paper [7].

The adaptations of our algorithm to incremental processing are partly in-
spired by traditional compiler error detection and correction techniques. In par-
ticular, the idea of using synchronizing tokens as a means for accumulating
chunks of unknown/unparseable data has long been used in parsers from pro-
gramming languages (see Appel’s text [2] for an introduction to such techniques).
This heuristic appears to work well in our domain of systems logs as these logs
are usually structured around punctuation symbols (commas, semi-colons, ver-



Pstruct proc_id_t {
’[’;
Puint32 id;
’]’;

};

Pstruct daemon_t {
Pstring_SE (:"/[:\[]/":) name;
Popt proc_id_t v_proc_id;
’:’;

};

Pstruct msg_body_t {
daemon_t v_daemon_pri;
Pwhite v_space;
Pstring_SE(:Peor:) v_msg;

};

Punion message_t {
msg_body_t v_normal_msg;
Pstring_SE(:Peor:) v_other_msg;

};

Precord Pstruct entry_t {
Pdate v_date;
’ ’;
Ptime v_time;
’ ’;
Pstring(:’ ’:) v_id;
’ ’;
message_t v_message;

};
Psource Parray entries_t {

entry_t[];
};

Fig. 11. Gold description of messages.sdb

Pstruct Struct_6113 {
Pstring(:’:’:) v_blob_5869;
’:’;

};

Precord Pstruct Struct_5671 {
Pdate v_date_1;
’ ’;
Ptime v_time_6;
’ ’;
Pstring (:’ ’:) v_string_33;
’ ’;
Popt Struct_6113 v_opt_6096;
Pstring_SE(:Peor:) v_blob_6095;

};

Psource Parray entries_t {
Struct_5671[];

};

Fig. 12. Best learned description of messages.sdb

tical bars, parens, newlines, etc.) that act as field-terminators and hence work
well as synchronizing tokens.

Other incremental algorithms for learning grammars from example data have
been developed in the past. For example, Parekh and Honavar [12] have devel-
oped and proven correct an incremental interactive algorithm for inferring reg-
ular grammars from positive examples and membership queries. This algorithm
works quite differently than ours: it operates over automata and it uses member-
ship queries, which ours does not. More broadly speaking, Parekh and Honavar
and many other related algorithms provide beautiful theoretical guarantees. In
contrast, we have focused on implementation, empirical evaluation and scaling
to support massive data sets.

Another place in which grammar induction is used is in information extrac-
tion from web pages. One example (amongst many others) is work by Chidlovskii
et al. [5], which seeks to learn wrappers (i.e., data extraction functions) by using
a modified edit distance algorithm. Our algorithm also uses edit distance in its
guts to measure similarity between chunks of data. However, the edit distance
metric we use is just one element of a larger induction algorithm related to
Arasu and Garcia-Molina’s recursive descent algorithm [3]. Chidlovskii et al.’s



algorithm is also incremental – it integrates one new record of data at a time
into a grammar. Our algorithm integrates batches of new data at a time. One
reason we chose a batch-oriented approach is that processing data in batches
helps disambiguate between various possibilities for both token definitions and
tree structure. The tagged tree-structure of XML or HTML documents elimi-
nates many of the ambiguities that appear in log files where the separators or
tags are not known a priori. Our ad hoc data sets also appear different from the
web-based data studied by Chidlovskii et al. in terms of their scale: our data is
about a million times larger.

5 Conclusion

Ad hoc data sources are extremely difficult to manage because of their large size,
evolving format, and lack of documentation. In this paper, we have presented
the design, implementation and evaluation of a system for incrementally learning
the structure of large or stream ad hoc data files. The output of the system is a
data description in pads language which can further generate end-to-end data
processing tools. The system allows the users to get into the iterative learning
process and make the description more accurate and readable.
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