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Program verifiers for imperative languages such as C may be annotation-based, in which assertions and

invariants are put into source files and then checked, or tactic-based, where proof scripts separate from

programs are interactively developed in a proof assistant such as Coq. Annotation verifiers have been more

automated and convenient, but some interactive verifiers have richer assertion languages and formal proofs of

soundness. We present VST-A, an annotation verifier that uses the rich assertion language of VST, leverages

the formal soundness proof of VST, but allows users to describe functional correctness proofs intuitively by

inserting assertions.

VST-A analyzes control flow graphs, decomposes every C function into control flow paths between asser-

tions, and reduces program verification problems into corresponding straightline Hoare triples. Compared

to existing foundational program verification tools like VST and Iris, in VST-A such decompositions and

reductions can nonstructural, which makes VST-A more flexible to use.

VST-A’s decomposition and reduction is defined in Coq, proved sound in Coq, and computed call-by-value

in Coq. The soundness proof for reduction is totally logical, independent of the complicated semantic model

(and soundness proof) of VST’s Hoare triple. Because of the rich assertion language, not all reduced proof

goals can be automatically checked, but the system allows users to prove residual proof goals using the full

power of the Coq proof assistant.

CCS Concepts: • Security and privacy → Logic and verification; • Theory of computation → Program
verification; Hoare logic; Automated reasoning; Parsing.

Additional Key Words and Phrases: Annotated Programs, Foundational Verification, Coq

ACM Reference Format:
Litao Zhou, Jianxing Qin, Qinshi Wang, Andrew W. Appel, and Qinxiang Cao. 2024. VST-A: A Foundationally

Sound Annotation Verifier. Proc. ACM Program. Lang. 8, POPL, Article ? (January 2024), 30 pages.

1 INTRODUCTION
In the past 15 years, researchers have built several tools for program verification. These tools are

used in different ways and have their own advantages.

Interactive program verification tools, such as Iris [Jung et al. 2018; Krebbers et al. 2017b] and

VST [Appel 2011; Beringer 2021; Cao et al. 2018], are built in interactive theorem provers like Coq

or HOL4. Users write formal program correctness proofs in the same theorem prover, by using the

lemmas and tactics of the program verification tool.

Some of these interactive tools themselves are foundationally sound (i.e., have a formal proof

w.r.t. the language’s operational semantics in the proof assistant). This is especially meaningful

for verifying real-world programs and higher-level properties such as functional correctness. First,
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real-world programming languages are complicated. For example, it is very subtle to determine what

C programs may cause undefined behavior. Second, an advanced program logic for higher-order

properties usually has a nontrivial soundness proof. For example, VST and Iris use step-indexed

semantics to interpret impredicative assertion languages whose soundness proof is complicated.

Interactive program verification tools can also benefit from the rich logic language and the rich

proof language of theorem provers (like Coq and HOL). These tools can easily shallow-embed

higher-order functions and predicates in their assertion languages. They also make it convenient

(in specifying programs and program assertions) to introduce additional logical connectives. Ad-

ditionally, the tactic proof languages in proof assistants are very powerful when users need to

describe proof strategies such as proof-by-induction and proof-by-contradiction.

A different strain of program verification tools requires programmers to write annotations in

the source code. With sufficient annotations, tools like Dafny [Leino 2010], Hip/Sleek [Chin et al.

2012], VeriFast [Jacobs et al. 2011], Viper [Müller et al. 2017], Frama-C [Baudin et al. 2021] and

CN [Pulte et al. 2023] can verify program correctness automatically. By restricting the assertion

languages, tools like CBMC [Kroening and Tautschnig 2014], F-Soft [Ivančić et al. 2015, 2005], and

Infer [Calcagno and Distefano 2011] can reduce the annotation overhead for programmers while

preserving automation.

Compared with writing tactical proofs in a theorem prover, we believe that writing annotations is
a much more straightforward way of demonstrating that a program is correct. Even proofs in theory

papers and proofs written completely in an interactive prover are often presented in research

papers as annotated programs, e.g. Reynolds’s first paper about separation logic uses annotations

to describe separation logic proofs [Reynolds 2002, page 10], and recent verification papers like

Jung et al. [2020]’s work extending Iris to support prophercy variables also uses annotations to

describe their proofs [Jung et al. 2020, page 7]. Fig. 1 shows an implementation of an in-place

linked list reversal and its functional correctness proof.
1
The annotations on lines 3-5 describe the

specification this function should satisfy: for any list of integers 𝑙 (the With clause on line 3), if 𝑙 is

stored in a linked list and this linked list’s head pointer is passed to the function by the program

variable p (the Require clause on line 4), then the function reverses the linked list and returns the

new head pointer (the Ensure clause on line 5). The assertion on line 9 describes the main idea of a

functional correctness proof. It states the criteria that the program state should satisfy every time

the program enters the loop body. Assertion-annotated programs can present proofs succinctly;

by contrast, in interactive verifiers, key insights into program correctness easily get mixed with

structural tactics and become lengthy proof scripts.

In this paper, we demonstrate how to combine the benefits of interactive tools and annotation

verifiers. We present VST-A, a foundationally sound verification tool, that is implemented on top

of VST. VST-A enjoys rich assertion languages and flexible proof strategies, and it allows users to

write readable assertion annotations directly as comments exactly as in Fig. 1.

We illustrate the VST-A workflow in Fig. 2: (1) Users first provide a C program with assertion

annotations. (2a) Our front-end parser then converts the source code into ClightA, the Coq rep-

resentation of this annotated C language. (2b) Next, the C program’s functional correctness is

reduced to smaller proof goals using the annotations. Specifically, a split function accepts a ClightA

program and its pre-/post-conditions as input, and returns a set of straightline Hoare triples, each

of which consists of a sequence of primary statements (assignment statements, function calls)

and/or assume commands. For example, Fig. 3 shows the split result of the reverse function in

1
This is a separation logic [Reynolds 2002] proof. In other words, we use an assertion of form “𝑃 ∗𝑄” to say that the memory

can be split into two disjoint pieces of which one satisfies 𝑃 and the other satisfies𝑄 . ll(p, 𝑙 ) is a separation logic predicate

that asserts on the location referenced by variable 𝑝 stores a linked list of 𝑙 .
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1 struct list {unsigned head; struct list ∗tail;};
2 struct list ∗reverse (struct list ∗p) {
3 /∗@With 𝑙,

4 Require ll (p, 𝑙)
5 Ensure ll (ret, rev(𝑙)) ∗/
6 struct list ∗w, ∗t, ∗v;
7 w = NULL; v = p;

8 while (v) {
9 /∗@ Assert ∃ 𝑙1 𝑢 𝑥 𝑙2 . 𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧ v ↦→ (𝑥,𝑢) ∗ ll (w, 𝑙1) ∗ ll (𝑢, 𝑙2) ∗/
10 t = v−>tail; v−>tail = w; w = v; v = t; }

11 return w; }

Fig. 1. Annotations for verifying linked-list reversal
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(.c file)
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(in Coq)

Specifications

Straight line Hoare triples

...

（1）
（2）
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correctness proof

Step 1
(user's input)
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Step 3
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Step 4
(automated)

The split function The split function's
soundness proof

Fig. 2. Verification workflow in VST-A

Fig. 1: four triples are returned as verification goals. As illustrated by the control flow graph in

Fig. 4, the functionality of this split function is natural; it computes all of the control flow paths that

are separated by assertion annotations in the source program. (3) Finally, users are left to prove

each straightline Hoare triple in the split result. (4) The VST-A soundness theorem ensures the

correctness of the original program if all of the paths have been verified.

In summary, the contributions of this paper are:

(1) A new framework for program verification that combines the benefits of interactive

provers and the readability of annotated programs.

(2) A formal language for annotated programs: We define ClightA, a formal language for

annotated C programs, as a method of describing how the functional correctness proof for a

large program can be reduced.

(3) A control-flow-based verification splitting algorithm: The VST-A proof reduction frame-

work uses a split function that is implemented in Coq and proved sound w.r.t. the VST

program logic. We believe this split algorithm and its soundness proof are general and can be

applied to other Hoare-style imperative verification tools as well.
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(1) ∀ 𝑙,{
ll (p, 𝑙)

}
w = NULL; v = p; assume v;{
∃ 𝑙1 𝑐 𝑥 𝑙2 . 𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧
v ↦→ (𝑥, 𝑐) ∗ ll (w, 𝑙1) ∗ ll (𝑐, 𝑙2)

}
(2) ∀ 𝑙,{

ll (p, 𝑙)
}

w = NULL; v = p; assume !v; ret = w;{
ll (ret, rev(𝑙))

}
(3) ∀ 𝑙 𝑙1 𝑐 𝑥 𝑙2,{

𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧ v ↦→ (𝑥, 𝑐) ∗
ll (w, 𝑙1) ∗ ll (𝑐, 𝑙2)

}
t = v−>tail; v−>tail = w;

w = v; v = t; assume v;{
∃ 𝑙1 𝑐 𝑥 𝑙2 . 𝑙 = rev(𝑙1) 𝑥 𝑙2∧

v ↦→ (𝑥, 𝑐) ∗ ll (w, 𝑙1) ∗ ll (𝑐, 𝑙2)

}
(4) ∀ 𝑙 𝑙1 𝑐 𝑥 𝑙2,{

𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧ v ↦→ (𝑥, 𝑐) ∗
ll (w, 𝑙1) ∗ ll (𝑐, 𝑙2)

}
t = v−>tail; v−>tail = w;

w = v; v = t; assume !v;
ret = w;{

ll (ret, rev(𝑙))
}

Fig. 3. Split results for verifying linked-list reversal

{ Require }

struct list ∗w, ∗t, ∗v;
w = NULL; v = p;

v == NULL?

{ Assert }

t = v−>tail;

v−>tail = w;

w = v; v = t;

return w;

{ Ensure }

(1)

(3)

(2)

(4)

Fig. 4. Control flow graph of linked-list reversal

In the rest of this paper: We will introduce background information about VST-A in §2. We will

present our annotation-based proof language and analyze its expressiveness in §3. We will define

the split function and prove it sound in §4. We will discuss the connection between our soundness

proof and Hoare logic’s conjunction rule in §5. We put statistics of VST-A verification examples in

§6. Finally, we will discuss related works in §7 and conclude in §8.

2 BACKGROUND
We used Coq [Boutillier et al. 2014] and VST to implement our annotation verifier, VST-A. VST is

an interactive program verification tool that is built in Coq. Its primary components are

(1) Verifiable C (§2.2, §2.3), an impredicative higher-order concurrent separation logic that is

defined for an abstract C language called Clight (§2.1),

(2) VST-Floyd (§2.4) [Cao et al. 2018], a proof automation system for forward symbolic execution-

based verification that efficiently applies VST to real-world C program verification,

(3) A machine-checked soundness proof of Verifiable C in terms of CompCert Clight semantics.

Together with the correctness proof of the verified C compiler—CompCert [Leroy 2009], we

can obtain the foundational soundness of VST-A w.r.t. the assembly language.
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expression : 𝑒 := · · ·
primary statement : 𝑐𝑝 := 𝑒1 := 𝑒2 | 𝑒 := 𝑓 (®𝑒)
Clight statement : 𝑐 := 𝑐𝑝 | 𝑐1; 𝑐2 | if (𝑒) 𝑐1 else 𝑐2 | loop (𝑐2) 𝑐1

| skip | break | continue | return

Fig. 5. Clight: abstract C language

Semax-Seq

{𝑃} 𝑐1
{
𝑅, [ ®𝑄 ′]

}
{𝑅} 𝑐2

{
𝑄, [ ®𝑄 ′]

}
{𝑃} 𝑐1; 𝑐2

{
𝑄, [ ®𝑄 ′]

}
Semax-Loop

{𝐼 } 𝑐 {𝐼con, [𝑄, 𝐼con, 𝑄ret]} {𝐼con} 𝑐incr {𝐼 , [𝑄,⊥, 𝑄ret]}
{𝐼 } loop (𝑐incr) 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}

Fig. 6. Representative proof rules of C Hoare logic (Part I: compositional rules)

2.1 Clight: abstract C language
We reason about C programs using CompCert Clight’s syntax and semantics. Fig. 5 shows a simpli-

fied version of its syntax.
2
Clight expressions are side-effect free. CompCert Clight distinguishes

assignment statements and function call statements from other statements, and we refer to them as

primary statements, since they are the basic building blocks for our VST-A development.

CompCert Clight uses loop (𝑐incr) 𝑐 as a general way to describe loops, and it is equivalent to

for (; ; 𝑐incr) {𝑐}. Three kinds of loops in C language, namely for, while, and do-while loops, can be

expressed using this general loop statement (along with break and continue statements). In the

paper presentation, we assume that return statements do not return a value, but our implementation

does handle return statements with return values.
3

2.2 Hoare logic for C programs
VST-A reuses VST’s Hoare logic rules, which are known as Verifiable C. VST’s Hoare judgment

extends the postcondition into four parts to address control flow instructions such as break, continue
and return. A judgment

{𝑃} 𝑐 {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}
can be interpreted as starting from a program state that satisfies 𝑃 . After executing 𝑐 , if the statement

exits normally, the program state satisfies 𝑄 . Similarly, the program state should satisfy 𝑄brk, 𝑄con,

and 𝑄ret when the statement exits with break, continue, or return, respectively. We use

[
®𝑄
]
as an

abbreviation of the last three postconditions.

In Verifiable C, most of the compositional rules are standard. Fig. 6 shows some representative

ones.
4
To fit the general loop syntax of Clight, the Semax-Loop rule has two invariants, loop

invariant 𝐼 and continue invariant 𝐼con. The loop invariant 𝐼 is required to hold before each iteration,

2
VST-A does not support goto statements, since they are not supported by VST’s program logic. VST-A does not support

switch statements for now, but it will be easy to add that to VST-A in the future. VST-A does not yet support CompCert’s

special calls to built-in functions; these are rarely used in the source language.

3
VST handles return values by a reserved variable called ret, as we illustrated in Fig. 3. Supporting return statements with

return values does not cause significant difficulties in our development.

4
A full list of rules can be found in the extended version of the paper [?].
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and 𝐼con is required to hold at continue or before 𝑐incr statements. Verifiable C’s proof rules for

primary statements are less important to end users — VST provides verified forward symbolic

execution (§2.4), and thus VST’s users do not need to use those rules directly. All proof rules in

Verifiable C are proved sound foundationally w.r.t. the CompCert Clight semantics, and symbolic

execution applies the proof rules. VST also provides some useful derived rules, a few of which are

shown in Fig. 7. The Seq-Assoc rule reassociates sequential compositions, and rules Extract-

Exists and Extract-Pure introduce variables and propositions from precondition to context,

respectively.

Extract-Pure

pure(𝑃pure) 𝑃pure ⇒ {𝑃} 𝑐
{
𝑄, [ ®𝑄 ′]

}
{
𝑃pure ∧ 𝑃

}
𝑐

{
𝑄, [ ®𝑄 ′]

}
Extract-Exists

∀ (𝑥 : 𝐴). {𝑃} 𝑐
{
𝑄, [ ®𝑄 ′]

}
{∃𝑥 : 𝐴. 𝑃} 𝑐

{
𝑄, [ ®𝑄 ′]

} Seq-Assoc

{𝑃} 𝑐1; (𝑐2; 𝑐3)
{
𝑄, [ ®𝑄 ′]

}
{𝑃} (𝑐1; 𝑐2); 𝑐3

{
𝑄, [ ®𝑄 ′]

}
Fig. 7. Derived rules from C Hoare logic

2.3 Inversion rules and weakest preconditions
The VST program logic is higher-order, i.e., assertions can quantify over assertions, so that one can

state the following inversion lemmas, which have already been proven in VST.
5

Lemma 1 (Inversion on seqencing). If {𝑃} 𝑐1; 𝑐2
{
𝑄, [ ®𝑄 ′]

}
, then

{𝑃} 𝑐1
{
∃𝑅 : assert. 𝑅 ∧

(
{𝑅} 𝑐2

{
𝑄, [ ®𝑄 ′]

})
, [ ®𝑄 ′]

}
Lemma 2 (Inversion on if-branching). If {𝑃} if (𝑏) 𝑐1 else 𝑐2

{
𝑄, [ ®𝑄 ′]

}
, then

𝑃 ⊨ ∃𝑃 ′
: assert, 𝑃 ′ ∧

(
{𝑃 ′ ∧ 𝑏 ≠ 0} 𝑐1

{
𝑄, [ ®𝑄 ′]

})
∧
(
{𝑃 ′ ∧ 𝑏 = 0} 𝑐2

{
𝑄, [ ®𝑄 ′]

})
It is worth mentioning that the normal postcondition appearing in the inversion on sequencing

is VST’s representation of weakest precondition, i.e.

wp

(
𝑐,𝑄,

[
®𝑄 ′
] )
≜ ∃𝑅 : assert. 𝑅 ∧

(
{𝑅} 𝑐

{
𝑄, [ ®𝑄 ′]

})
.

This definition of weakest precondition satisfies basic properties like the following:

Theorem 3. 𝑃 ⊨ wp
(
𝑐,𝑄,

[
®𝑄 ′
] )

if and only if {𝑃} 𝑐
{
𝑄, [ ®𝑄 ′]

}
.

Thus, lemma 1 can be restated as:

{𝑃} 𝑐1; 𝑐2
{
𝑄, [ ®𝑄 ′]

}
iff. {𝑃} 𝑐1

{
wp

(
𝑐2, 𝑄,

[
®𝑄 ′
] )

, [ ®𝑄 ′]
}
.

We utilize higher-order assertions in our VST-A development.

5
Readers who knew that VST’s separation Hoare logic was proved sound with a semantic proof in a shallow-embedded

style may be surprised that it is possible to prove inversion lemmas. But in fact, several years ago the VST-Floyd developers

layered a deep-embedded Hoare logic over the shallow-embedded Hoare logic just so that useful lemmas of this kind can be

supported.
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2.4 Forward symbolic execution
VST’s forward verification tactics enable users to obtain the strongest postcondition of a sequence of

primary statements automatically. For example, in the verification of path (3) in Fig. 3, the symbolic

assignment executor ae(𝑃, 𝑐) for precondition 𝑃 and statement 𝑐 can compute the following (where

ll is the linked-list predicate):

𝑃 := 𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧ v ↦→ (𝑥,𝑢) ∗ ll (w, 𝑙1) ∗ ll (𝑢, 𝑙2)
𝑐 := t = v->tail

ae(𝑃, 𝑐) = 𝑙 = rev(𝑙1) 𝑥 𝑙2 ∧ t = 𝑢 ∧ v ↦→ (𝑥,𝑢) ∗ ll (w, 𝑙1) ∗ ll (𝑢, 𝑙2)
The assignment executor may fail, if the precondition 𝑃 cannot guarantee that 𝑐 will run safely

or 𝑃 is not in a good form
6
such that the symbolic executor can execute 𝑐 , but we have found if

users write assertions in their annotations, corresponding to correct proofs, the symbolic executor

can run through the entire straightline Hoare triple. Users are left to prove the entailment from the

inferred strongest postcondition (of the straight-line code) to the specified postcondition (arising

from the “next” annotation, according to the split function). VST-Floyd also provides useful tactics

for solving the entailment problem. Residual proof goals may be generated if some entailments

cannot be automatically proven, and users can write their own flexible Coq proof scripts to address

them. In summary, with the help of VST-Floyd, the back-end verification of the split results obtained

by VST-A can be largely automated.

3 VST-A FRONT END
3.1 Annotated C programs and internal representations
VST-A requires users to describe C function specifications and C programs’ functional correctness

proofs by writing annotations in C programs. Specifically, a function specification in VST-A is

always in a /*@ With ... Require ... Ensure ... */ form and

With [®𝑥 : ®𝐴] Require 𝑃 ( ®𝑥) Ensure 𝑄 ( ®𝑥)
represents a parameterized pre-/postcondition, i.e. it states that for any list of values ®𝑥 of type ®𝐴, if
the initial program state satisfies 𝑃 ( ®𝑥) then the C function can be safely executed (no C undefined

behavior will happen). If it terminates, the ending state satisfies 𝑄 ( ®𝑥).
For functional correctness proofs, users can describe the main proof skeleton by inserting

assertions (including loop invariants) and “given” annotations in the source program. We formally

define this annotated C language (Fig. 8), namely ClightA, and implement a front-end parser that

converts annotated C programs into the ClightA abstract syntax. Compared with the Clight syntax,

ClightA has two new components: assertions and ExGiven structures.

As for assertions, users can insert them anywhere by writing /*@ Assert ... */ in the source

program, which is directly converted into a leaf node in the ClightA syntax tree. Annotating loop

structures with invariants is not compulsory in VST-A,
7
but users can still write loop invariants

as /*@ Inv ... */ in C source files, to distinguish from assertions before loops. Our front-end

automatically converts such annotations into the general syntax of ClightA.

As for the ExGiven structures, users can use a combination of /*@ Assert ∃ x, ... */ and
/*@ Given x */ to represent logical variable introduction in a Hoare logic proof. In a typical

6
Generally speaking, to ensure that an assignment executor ae(𝑃, 𝑐 ) always succeeds, 𝑃 should be in the form of a symbolic

heap assertion. When 𝑐 is a load/store statement, there should be an explicit mapsto predicate for the manipulated variables

in the separating conjunction clauses. Otherwise, one might need to apply the rule of consequence (and prove an entailment)

to put 𝑃 into that form.

7
That is, instead of an invariant at the beginning of the loop body, it may be more convenient to write assertion(s) elsewhere

in the loop body, sufficient to break the control flow into straight-line segments; see §3.4.
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assertion : 𝑃 := · · ·
ClightA statements : 𝐶 := 𝑐𝑝 | 𝐶1;𝐶2 | if (𝑒) 𝐶1 else 𝐶2 | loop (𝐶2) 𝐶1

| skip | break | continue | return
| assert 𝑃 | ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶

Annotation erasing : 𝐶⇓ ∈ Clight statement

Fig. 8. ClightA: abstract C language for annotated programs

goal-directed proof strategy, one can extract existential variables from the precondition into the

proof context (see Extract-Exist in Fig. 7). Then assertions that appear later in the focused

proof can refer to the extracted variables as ordinary Coq assumptions. VST-A supports this proof

method by defining the “ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶” syntax. The syntax indicates that assertion

𝑃 is existentially quantified by logical variable 𝑥 . Moreover, the inner ClightA statement is also

quantified by 𝑥 , so within the (annotated) assertions of 𝐶 , one can mention 𝑥 .

Fig. 9 is a comparison between annotated C programs and ClightA syntax, showing how our

front-end parser translates annotations into AST constructions.

/∗@ Inv 𝑃1 ∗/
while (𝑏) {
𝑐1;

/∗@ Assert ∃ 𝑥 , 𝑃2 (𝑥)
Given 𝑥 ∗/

𝑐2;

/∗@ Assert 𝑃3 (𝑥) ∗/
𝑐3;

}

loop (skip) {

assert(𝑃1);

if (𝑏) { skip; } else { break; }
𝑐1;

ExGiven 𝑥 , 𝑃2 (𝑥) {
𝑐2;

assert(𝑃3 (𝑥));
𝑐3;

} }

Fig. 9. Annoated C program v.s. ClightA syntax

3.2 Expressiveness: describing Hoare logic proofs in VST-A
It is not surprising that the ClightA language is expressive enough to describe the main structures

of Hoare logic proofs. Hoare logic proof rules decompose the verification target into smaller ones

(e.g., as in Fig. 6 in §2). Describing such proofs in VST-A is natural. For example, to apply the

sequence rule Semax-Seq, we can insert the middle condition as an assertion annotation into the C

program.

3.3 Expressiveness: describing interactive proofs in VST-A
ClightA is also expressive enough to describe interactive proofs used by existing verification tools

like VST. In most cases, these tools try to find proof rules to apply using a goal-directed strategy.
For example:

• In order to verify a Hoare triple of form {𝑃}x = 𝑒; 𝑐
{
𝑄,

[
®𝑄 ′
]}

in VST, its forward symbolic

execution tactic applies the sequence rule Semax-Seq and uses the strongest postcondition

of 𝑃 and x = e as the middle condition. VST-A’s users do not need to write any annotation to

describe such proof strategy.
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• In order to verify a Hoare triple of form

{𝑃}while (𝑒) { 𝑐1 }; 𝑐2
{
𝑄,

[
®𝑄 ′
]}

in VST (suppose no break statements appear in 𝑐1), it asks users to provide a loop invariant 𝐼

and then 𝐼 ∧ 𝑒 = 0 will be used as the middle condition between the loop and 𝑐2. In VST-A,

the proof effort is similar. Users only need to provide such a loop invariant 𝐼 in annotated C

programs.

• In order to verify a Hoare triple whose precondition is existentially quantified, one will

typically extract that existential variable into the proof context. The “given” annotation in

VST-A describes this proof strategy.

Besides these goal-directed proof steps, users of interactive program-verification tools may use

the rule of consequence anywhere in the middle of a proof, to replace a precondition with a weaker

assertion (Fig. 10 shows an example). Correspondingly, users of VST-A can write an assertion

annotation to “invoke” the rule of consequence.

{ll (p, 𝑙) ∧ p ≠ NULL}
p -> head = 0
{∃𝑙 ′ .ll (p, 𝑙 ′)}

can be rewritten as

{∃ 𝑞 𝑥 𝑙 ′ .p ↦→ (𝑥, 𝑞) ∗ ll (𝑞, 𝑙 ′)}
p -> head = 0
{∃𝑙 ′ .ll (p, 𝑙 ′)}

Fig. 10. Example of replacing the precondition with an existentially quantified assertion. The predicate ll (p, 𝑙)
means that a linked list starts at address 𝑝 representing (in the heads of its cons cells) the sequence 𝑙 . The
two preconditions above are provably equivalent.

In summary, typical interactive proofs are structural, following the syntax tree of the C statements

(with local uses of existential variable extraction or the rule of consequence). The ClightA language

is able to describe such structural proofs.

3.4 Expressiveness: describing nonstructural proofs in VST-A
ClightA can also describe nonstructural proofs, those that do not follow the C syntax tree. Allowing

users to write nonstructural proofs is a considerable convenience. For example, in order to verify a

Hoare triple of form

{𝑃}if (𝑒) { 𝑐1 } else {𝑐2}; 𝑐3
{
𝑄,

[
®𝑄 ′
]}

in an interactive verification tool, users will probably be asked to provide a join condition after

the if-statetment (a precondition for 𝑐3). In some cases this is appropriate and convenient, but

sometimes it is both difficult and unnecessary. Here are some typical scenarios.

• The if-then branch 𝑐1 is the break statement. In this case, it suffices to prove

{𝑃 ∧ 𝑒 ≠ 0}𝑐1 {⊥, [𝑄brk,⊥,⊥]} and {𝑃 ∧ 𝑒 = 0}𝑐2; 𝑐3
{
𝑄,

[
®𝑄 ′
]}

,

and users may hope to symbolically execute 𝑐2 so that the middle condition between 𝑐2 and

𝑐3 can be generated instead of manually provided.
8

• The statement 𝑐3 is very short. In this case, verifying 𝑐3 twice can be less work than writing

down a join condition.

8
VST users do not need to provide a join condition in such cases since 2018. VST implemented this feature by adding a

built-in program transformation to its verification tactics.
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• Proving 𝑐3 functionally correct needs very different proof strategy when 𝑒 has a different

boolean value. In this case, a join condition does not help to reduce the workload: in effect,

one is case-splitting on 𝑒 and then proving 𝑐3 twice.

Similarly, in order to verify a Hoare triple of form

{𝑃}while (𝑒) { 𝑐1 }; 𝑐2
{
𝑄,

[
®𝑄 ′
]}

where break statements appear in some branches in the loop body 𝑐1, a join condition is needed

(in addition to a loop invariant) in an interactive proof, since an execution may leave the loop by

a break statement or by falsifying the loop condition 𝑒 . In VST-A, users can choose to provide a

join condition (the proof will be structural) or not to provide a join condition (the proof will be

nonstructural).

Certain kinds of generalized loop invariants lead to nonstructural proofs. Consider a red-black tree

(RBT) algorithm that reestablishes red-black invariants after insertion. Fig. 11 is a straightforward

textbook implementation of this algorithm [Cormen et al. 2022]. When the rotation on line 15 is

done, the loop exits immediately, since the assignment statement on line 14 ensures that the loop

condition will be evaluated to false in the next iteration. If we were to write a loop invariant on

line 3 before the loop condition is checked, we then need to both state the RBT bottom-up fixing

invariant and describe the case in which the RBT has been fixed by the final rotation and should

exit immediately. One may instead expect a single invariant on line 5, and reason separately about

the control flow where the loop exits after a rotation. Such proof strategy is unavailable in common

goal-directed verifiers, in which loop invariants are compulsory, but it is supported by VST-A.

1 void insert_balance(struct tree ∗p, struct tree ∗root) {
2 ... // pre−processing code omitted
3 /∗@ Inv: ... (RBT invariant) \/ ... (loop exit property) ∗/
4 while (p != root && p−>parent−>color != RED) {

5 /∗@ Assert: ... (RBT invariant) ∗/
6 struct tree ∗p_par = p−>parent, ∗p_gpar = p_par−>parent;

7 if (p_par == p_gpar−>left) { // p's parent is a left child
8 struct tree ∗p_uncle = p_gpar−>right;

9 if (p_uncle−>color == RED) {

10 p_par−>color = BLACK; p_uncle−>color = BLACK;

11 p_gpar−>color = RED; p = p_gpar;

12 } else {
13 if (p == p_par−>right) { p = p_par; left_rotate(p, root); }

14 p−>parent−>color = BLACK; p_gpar−>color = RED;

15 right_rotate(p−>parent−>parent, root);

16 } } else { ... } // dual case where p's parent is a right child, omitted
17 } }

Fig. 11. The fix-up function of red-black tree insertion

4 CONTROL FLOW SPLITTING AND SOUNDNESS
One of the most important components in VST-A is the verified split function which reduces an

entire C program’s functional correctness to a series of straightline Hoare triples, based on the
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annotations. Intuitively, this split function is a CFG-based computation (like our demonstration in

Fig. 4), and its soundness must ultimately relate to C’s small-step semantics—any execution trace

of the program statement can be decomposed into these separated paths. However, we choose to

prove this soundness theorem directly using VST’s program logic (Verifiable C), instead of proving

it indirectly by first showing the execution trace decomposition lemma that we mentioned above.

Our main consideration is: it is nontrivial to formally establish a theoretical connection between a

program logic and an operational semantics, especially when a complicated program logic for a

realistic programming language with a lot of subtleties are considered. VST has already done that

once—Verifiable C’s soundness proof takes 60K lines of Coq definitions and proofs. If we would

choose to prove the split function sound using small-step semantics as intermediate proof steps,

we might need to develop similar lengthy proofs.

Even in applications to other languages and other operational semantics, it will be useful to build

annotation verifiers on top of program logics in the way that we present here, rather than try to

prove soundness directly from operational semantics. Proved-sound verification tools tend to be

based on similar program logics (at least in terms of the core rules targeted by our split function:

the sequence rule, the consequence rule, etc.). But they may be based on quite different styles

of operational semantics (e.g. imperative HOL [Bulwahn et al. 2008] uses big step semantics and

CompCert Clight uses small step semantics), or they may (like VST [Appel et al. 2014] or Iris [Jung

et al. 2018]) incorporate modal impredicativity.

Since most Hoare logic proof rules are syntax-oriented, we implement our split function through

recursion on ClightA syntax tree (§4.2) and then we prove it sound by induction (§4.3). In the rest

part of this section, we will start from defining the Coq type of split results (§4.1).

4.1 The type of split result
As illustrated in Fig. 12, control flow paths between the assertions can be divided into four classes:

(1) head paths — control flow paths from the precondition to an internal assertion;

(2) tail paths — control flow paths from an internal assertion to the postcondition;

(3) full paths — control flow paths between two internal assertions;

(4) assertion-free paths — control flow paths from the precondition to the postcondition (we call

them assertion-free since they pass through no assertions inside the annotated program).

Formally, the split result is a record that consists of “head/tail paths”, “full paths” and “assertion-

free paths”, which are essentially a list of basic program statements ®𝑐𝑏 annotated with one single

assertion, two assertions, and no assertions, respectively. A basic statement can either be a primary

Clight statement, 𝑐𝑝 , or a special statement, assume 𝑒 , that represents an if-condition (positively or

negatively) in the control flow.

Recall that in the VST program logic, a Hoare triple has multiple postconditions for different kinds

of program exits (i.e., exit by break, by continue, by return,or normal fall-through). Correspondingly,

the split result also makes distinctions among the different exits. Thus, in the definition of our

intermediate split result, the record contains one set of “full paths” between the annotated assertions,

one set of “head paths” from the entry point to the internal assertions, four sets of “tail paths”

from the internal assertions to the four different kinds of exits, and four sets of “assertion-free

paths” from the entry point to the four different kinds of exits. To handle existential variables in

their scope, full paths can be universally quantified. With these fields, the split result record can

sufficiently reveal all control flow information in a ClightA program. Fig. 13 shows the definition.

By supplementing “head/tail paths” or “assertion-free paths” with the pre-/postconditions, we can

interpret the split result into a collection of closed Hoare triples as hypotheses of split’s soundness
theorem (these hypotheses are illustrated in Fig. 12 and formally defined in Fig. 14):
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c1

b

c2

c3

P1

P2

c4

P3

P5

true false

Precondition

Annotated
Program

Postcondition

(Assertion-free path) (Head path)

(Tail path) (Full path)

Fig. 12. Control flow graphs v.s. paths in split results

Basic statement : 𝑐𝑏 := 𝑐𝑝 | assume 𝑒
Assertion-free paths : 𝑝− := ®𝑐𝑏

Head paths : 𝑝⊣ := ®𝑐𝑏−{𝑃}
Tail paths : 𝑝⊢ := {𝑃}−®𝑐𝑏
Full paths : 𝑝⊢⊣ := {𝑃1}−®𝑐𝑏−{𝑃2} | ∀(𝑥 : 𝐴). 𝑝⊢⊣

split(𝐶) =


𝒑nor

− ,𝒑brk

− ,𝒑con

− ,𝒑ret

− ,

𝒑nor

⊢ ,𝒑brk

⊢ ,𝒑con

⊢ ,𝒑ret

⊢ ,

𝒑⊣,𝒑⊢⊣

 , where
𝒑nor

− ,𝒑brk

− ,𝒑con

− ,𝒑ret

− ⊆ Assertion-free paths,

𝒑nor

⊢ ,𝒑brk

⊢ ,𝒑con

⊢ ,𝒑ret

⊢ ⊆ Tail paths,

𝒑⊣ ⊆ Head paths, 𝒑⊢⊣ ⊆ Full paths

Fig. 13. The type of split results

Theorem 4 (Soundness). For any ClightA program 𝐶 and pre-/post-conditions 𝑃 , 𝑄 , 𝑄brk, 𝑄con

and 𝑄ret, if split(𝐶) =
{
𝒑nor
− ,𝒑brk

− ,𝒑con
− ,𝒑ret

− ,𝒑nor
⊢ ,𝒑brk

⊢ ,𝒑con
⊢ ,𝒑ret

⊢ ,𝒑⊣,𝒑⊢⊣
}
and

(a) all straightline Hoare triples from the precondition 𝑃 to internal assertions are provable,
(b) all straightline Hoare triples from internal assertions to the postconditions ®𝑄 are provable,
(c) all straightline Hoare triples between internal assertions are provable,
(d) all straightline Hoare triples from the precondition 𝑃 to the postconditions ®𝑄 are provable,

i.e. (defined in Fig. 14),
(a) HeadHypo(𝑃,𝒑⊣),
(b) TailHypo(𝑄,𝒑nor

⊢ ), TailHypo(𝑄brk,𝒑brk
⊢ ), TailHypo(𝑄con,𝒑con

⊢ ) and TailHypo(𝑄ret,𝒑ret
⊢ ),

(c) FullHypo(𝒑⊢⊣),
(d) AssnFreeHypo(𝑃,𝑄,𝒑nor

− ), AssnFreeHypo(𝑃,𝑄brk,𝒑brk
− ), AssnFreeHypo(𝑃,𝑄con,𝒑con

− ) and
AssnFreeHypo(𝑃,𝑄ret,𝒑ret

− ),
then {𝑃} 𝐶⇓ {𝑄, [𝑄brk, 𝑄con, 𝑄ret]}, where 𝐶⇓ represents the result of erasing all annotations from 𝐶 .

Noticing that all of the control flows in a function body should end with a return statement, we

directly use the following corollary in VST-A.
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HeadHypo(𝑃, ®𝑐𝑏−{𝑄}) = {𝑃} ®𝑐𝑏
{
𝑄, [ ®⊤]

}
HeadHypo(𝑃,𝒑⊣) =

∧
𝑝∈𝒑⊣

HeadHypo(𝑃, 𝑝)

AssnFreeHypo(𝑃,𝑄, ®𝑐𝑏) = {𝑃} ®𝑐𝑏
{
𝑄, [ ®⊤]

}
AssnFreeHypo(𝑃,𝑄,𝒑−) =

∧
𝑝∈𝒑−

AssnFreeHypo(𝑃,𝑄, 𝑝)

TailHypo(𝑄, {𝑃}−®𝑐𝑏) = {𝑃} ®𝑐𝑏
{
𝑄, [ ®⊤]

}
TailHypo(𝑄,𝒑⊢) =

∧
𝑝∈𝒑⊢

TailHypo(𝑄, 𝑝)

FullHypo({𝑃}−®𝑐𝑏−{𝑄}) = {𝑃} ®𝑐𝑏
{
𝑄, [ ®⊤]

}
FullHypo(∀𝑥 . 𝑝⊢⊣) = ∀𝑥 . FullHypo(𝑝⊢⊣)
FullHypo(𝒑⊢⊣) =

∧
𝑝∈𝒑⊢⊣

FullHypo(𝑝)

Fig. 14. Hypotheses of the soundness theorem

Corollary 5. For any ClightA program 𝐶 and pre-/post-conditions 𝑃 and 𝑄 , if

split(𝐶) =
{
∅, ∅, ∅,𝒑ret

− , ∅, ∅, ∅,𝒑ret
⊢ ,𝒑⊣,𝒑⊢⊣

}
and (a)HeadHypo(𝑃,𝒑⊣), (b)TailHypo(𝑄,𝒑ret

⊢ ), (c) FullHypo(𝒑⊢⊣), and (d)AssnFreeHypo(𝑃,𝑄,𝒑ret
− ),

then {𝑃}𝐶⇓ {𝑄}.

Remark. CompCert Clight does not have an assume statement. We choose to encode the assume

statement into Clight AST, and encode straightline Hoare triples into VST Hoare triples, so that

VST-A’s users can directly use VST’s tactics to prove those straightline triples. Specifically,

assume 𝑒 ≜ if (𝑒) skip else break;

{𝑃} 𝑐1; 𝑐2; ...; 𝑐𝑛 {𝑄} ≜ {𝑃} 𝑐1; 𝑐2; ...; 𝑐𝑛 {𝑄, [⊤,⊥,⊥]} .
We proved:

Lemma 6. For straightline Hoare triples, {𝑃} assume 𝑒; 𝑐 {𝑄} if and only if {𝑃 ∧ 𝑒 ≠ 0} 𝑐 {𝑄}.

4.2 Split function
The core split function is defined by recursion on the abstract syntax tree of the input ClightA

program. Note that the split function is a partial function, since we will not try to compute the

reduction result if there is an assertion-free loop in the CFG.

Base cases (Fig. 15). For primary statements 𝑐𝑝 , the normal assertion-free path set (the 𝒑nor

− field)

is a singleton of the statement itself, i.e. {[𝑐𝑝 ]}, and all other path sets are empty. For a break
statement, the assertion-free break-exit path set is a singleton of an empty list of basic statements,

i.e. {[]}. The split results of continue and return are similar. For the assertion annotation assert 𝑃 ,
the split result has only one head path {[]−{𝑃}} and one normal tail path {{𝑃}−[]}.

Recursion cases. Using sequential composition as an example, all “full paths” between the asser-

tions in 𝐶1;𝐶2 can be divided into three classes (Fig. 16): (1) paths that completely fall in the CFG

of 𝐶1; (2) paths that completely fall in the CFG of 𝐶2; and (3) paths that combine two parts, one

of which is a “tail path” of 𝐶1 and the other of which is a “head path” of 𝐶2. Such “tail paths” and

“head paths” of an assertion-annotated C program can also be recursively computed. We show our

complete definition in Fig. 17.
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split(𝑐𝑝 ) =


{[𝑐𝑝 ]}, ∅, ∅, ∅
∅, ∅, ∅, ∅
∅, ∅

 split(break) =


∅, {[]}, ∅, ∅
∅, ∅, ∅, ∅
∅, ∅

 split(return) =


∅, ∅, ∅, {[]}
∅, ∅, ∅, ∅
∅, ∅


split(continue) =


∅, ∅, {[]}, ∅
∅, ∅, ∅, ∅
∅, ∅

 split(assert 𝑃) =


∅, ∅, ∅, ∅
{{𝑃}−[]}, ∅, ∅, ∅
{[]−{𝑃}}, ∅


Fig. 15. Split function for basic statements

C1

C2

Full path in C1

Full path in C2

 C1's tail paths +
 C2's head paths

Fig. 16. Different full paths in 𝐶1;𝐶2

If

split(𝐶1) =


𝒑nor

− ,𝒑brk

− ,𝒑con

− ,𝒑ret

− ,

𝒑nor

⊢ ,𝒑brk

⊢ ,𝒑con

⊢ ,𝒑ret

⊢ ,

𝒑⊣,𝒑⊢⊣


split(𝐶2) =


𝒒nor− , 𝒒brk− , 𝒒con− , 𝒒ret− ,

𝒒nor⊢ , 𝒒brk⊢ , 𝒒con⊢ , 𝒒ret⊢ ,

𝒒⊣, 𝒒⊢⊣

 ,
then

split(𝐶1;𝐶2) =



𝒑nor

− · 𝒒nor− ,

𝒑brk

− ∪ 𝒑nor

− · 𝒒brk− ,

𝒑con

− ∪ 𝒑nor

− · 𝒒con− ,

𝒑ret

− ∪ 𝒑nor

− · 𝒒ret− ,

𝒑nor

⊢ ∪ 𝒑nor

⊢ · 𝒒nor− ,

𝒑brk

⊢ ∪ 𝒒brk⊢ ∪ 𝒑nor

⊢ · 𝒒brk− ,

𝒑con

⊢ ∪ 𝒒con⊢ ∪ 𝒑nor

⊢ · 𝒒con− ,

𝒑ret

⊢ ∪ 𝒒ret⊢ ∪ 𝒑nor

⊢ · 𝒒ret− ,

𝒑⊣ ∪ 𝒑nor

− · 𝒒⊣,
𝒑⊢⊣ ∪ 𝒒⊢⊣ ∪ 𝒑nor

⊢ · 𝒒⊣



.

Fig. 17. The definition of split(𝐶1;𝐶2)

In this definition, we use · to represent the concatenation of two paths, and overload this notation

to connect two sets of paths:

𝑝⊢ · 𝑞⊣ = {𝑃}−( ®𝑐𝑏++ ®𝑐𝑏 ′)−{𝑄} where 𝑝⊢ ={𝑃}−®𝑐𝑏 and 𝑞⊣ = ®𝑐𝑏 ′−{𝑄}
𝑝− · 𝑞⊣ = ( ®𝑐𝑏++ ®𝑐𝑏 ′)−{𝑄} where 𝑝− = ®𝑐𝑏 and 𝑞⊢ = ®𝑐𝑏 ′−{𝑄}
𝑝⊢ · 𝑞− = {𝑃}−( ®𝑐𝑏++ ®𝑐𝑏 ′) where 𝑝⊢ ={𝑃}−®𝑐𝑏 and 𝑞− = ®𝑐𝑏 ′
𝑝− · 𝑞− = ®𝑐𝑏++ ®𝑐𝑏 ′ where 𝑝− = ®𝑐𝑏 and 𝑞− = ®𝑐𝑏 ′
𝒑 · 𝒒 = {𝑝 · 𝑞 | 𝑝 ∈ 𝒑, 𝑞 ∈ 𝒒}

Computing split(if (𝑏) 𝐶1 else 𝐶2) simply adds assume statements to the head of all head paths

and assertion-free paths in the two if-branches, and returns the union of the two split results.

Computing split(loop (𝐶2) 𝐶1) is similar. Detailed definitions can be found in the extended version

of the paper and our Coq development.

Handling logical variables (Fig. 18). The focus of computing split(ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶1) is to
handle the logical variable 𝑥 . (1) The ExGiven structure has an existentially quantified precondition

𝑃 (𝑥) in the head. Therefore, there are no assertion-free paths in the split result, and the result of the
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If split(𝐶1) =


𝒑nor

− ,𝒑brk

− ,𝒑con

− ,𝒑ret

− ,

𝒑nor

⊢ ,𝒑brk

⊢ ,𝒑con

⊢ ,𝒑ret

⊢ ,

𝒑⊣,𝒑⊢⊣

 ,
then split(ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶1) =

∅, ∅, ∅, ∅{
{∃𝑥 : 𝐴. 𝑄}−®𝑐𝑏 |{𝑄}−®𝑐𝑏 ∈ 𝒑nor

⊢
}
∪ {{∃𝑥 : 𝐴. 𝑃 (𝑥)}−[]} · 𝒑nor

−{
{∃𝑥 : 𝐴. 𝑄}−®𝑐𝑏 |{𝑄}−®𝑐𝑏 ∈ 𝒑brk

⊢
}
∪ {{∃𝑥 : 𝐴. 𝑃 (𝑥)}−[]} · 𝒑brk

−{
{∃𝑥 : 𝐴. 𝑄}−®𝑐𝑏 |{𝑄}−®𝑐𝑏 ∈ 𝒑con

⊢
}
∪ {{∃𝑥 : 𝐴. 𝑃 (𝑥)}−[]} · 𝒑con

−{
{∃𝑥 : 𝐴. 𝑄}−®𝑐𝑏 |{𝑄}−®𝑐𝑏 ∈ 𝒑ret

⊢
}
∪ {{∃𝑥 : 𝐴. 𝑃 (𝑥)}−[]} · 𝒑ret

−
{[]−{∃𝑥 : 𝐴. 𝑃 (𝑥)}},{
∀𝑥 : 𝐴. {𝑃}−®𝑐𝑏−{𝑄}| ®𝑐𝑏−{𝑄}∈ 𝒑⊣

}
∪
{
∀𝑥 : 𝐴. {𝑄}−®𝑐𝑏−{𝑅}|{𝑄}−®𝑐𝑏−{𝑅}∈ 𝒑⊢⊣

}


Fig. 18. The definition of split(ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶1)

head paths is a singleton of []−{∃𝑥 : 𝐴. 𝑃 (𝑥)}. (2) The tail paths in ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶1 can

either be paths from the precondition ∃𝑥 : 𝐴. 𝑃 (𝑥) to exits of𝐶1 or tail paths of𝐶1 itself. When these

tail paths connect to head paths later, the postconditions of those head paths will not be in the scope

of 𝑥 . Thus, we existentially quantify over the variable 𝑥 in all those tail paths’ preconditions now,

i.e. if {𝑄 (𝑥)}−®𝑐𝑏 is a tail path of𝐶1, then {∃𝑥 : 𝐴. 𝑄 (𝑥)}−®𝑐𝑏 is a tail path of ExGiven 𝑥 : 𝐴, {𝑃 (𝑥)} 𝐶1.

(3) In full paths, we need to unify the existential variable 𝑥 in 𝑃 with those in the head paths that

are split from 𝐶1, so that 𝑥 can be shared among the pre-/post-conditions of each combined full

path. Full paths in 𝐶1 (𝒑⊢⊣) are also collected after adding a universal binder 𝑥 to the result. In our

Coq development, we implement this definition using Coq dependent types. We put technique

details in the extended version of the paper.

4.3 Proof of soundness
We prove theorem 4 by induction over ClightA syntax trees. For the convenience of presentation,

we use AllHypo(𝑃, ®𝑄, split(𝐶)) to represent all ten hypotheses of this soudnenss theorem: In order

words, the soundness theorem says: AllHypo(𝑃, ®𝑄, split(𝐶)) implies {𝑃} 𝐶⇓
{
®𝑄
}
.

AllHypo
©­«𝑃,𝑄, [𝑄brk, 𝑄con, 𝑄ret] ,


𝒑nor

− ,𝒑brk

− ,𝒑con

− ,𝒑ret

− ,

𝒑nor

⊢ ,𝒑brk

⊢ ,𝒑con

⊢ ,𝒑ret

⊢ ,

𝒑⊣,𝒑⊢⊣

ª®¬
≜

AssnFreeHypo(𝑃,𝑄,𝒑nor

− ) ∧ AssnFreeHypo(𝑃,𝑄brk,𝒑brk

− ) ∧
AssnFreeHypo(𝑃,𝑄con,𝒑con

− ) ∧ AssnFreeHypo(𝑃,𝑄ret,𝒑ret

− ) ∧
TailHypo(𝑄,𝒑nor

⊢ ) ∧ TailHypo(𝑄brk,𝒑brk

⊢ ) ∧
TailHypo(𝑄con,𝒑con

⊢ ) ∧ TailHypo(𝑄ret,𝒑ret

⊢ ) ∧
HeadHypo(𝑃,𝒑⊣) ∧ FullHypo(𝒑⊢⊣) .

.

In this proof, only induction steps about sequential compositions, if-statements and loops are

interesting. We describe the main idea of proving split(𝐶1;𝐶2) sound in this section. The proofs for

if-statements and loops are similar and can be found in the extended version of the paper.
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if 

Fig. 19. Soundness proof example of sequential composition

Fig. 19 shows an example of sequential composition with precondition 𝑃 , postcondition 𝑄 , and

annotations 𝑃1, 𝑃2, 𝑄1, 𝑄2. The split function will generate these straightline Hoare triples:

{𝑃1} 𝑐1𝑎 ; assume 𝑏; 𝑐2𝑎 {𝑄1}
{𝑃1} 𝑐1𝑎 ; assume !𝑏; 𝑐2𝑏 {𝑄2}
{𝑃2} 𝑐1𝑏 ; assume 𝑏; 𝑐2𝑎 {𝑄1}
{𝑃2} 𝑐1𝑏 ; assume !𝑏; 𝑐2𝑏 {𝑄2}

· · ·
In order to prove {𝑃} 𝐶1 ⇓ ; 𝐶2 ⇓ {𝑄}, we need to find an intermediate assertion 𝑅 such that

{𝑃} 𝐶1⇓ {𝑅} and {𝑅} 𝐶2⇓ {𝑄} (according to Semax-Seq). These two judgments can be established

by induction hypothesis and the following four Hoare triples:

{𝑃1} 𝑐1𝑎 {𝑅} {𝑅} assume 𝑏; 𝑐2𝑎 {𝑄1} {𝑃2} 𝑐1𝑏 {𝑅} {𝑅} assume !𝑏; 𝑐2𝑏 {𝑄2}
These requirements can be simply satisfied if we let 𝑅 be

wp(assume 𝑏; 𝑐2𝑎, 𝑄1) ∧wp(assume !𝑏; 𝑐2𝑏, 𝑄2).
In the general case, we instantiate 𝑅 to the conjunction of the weakest preconditions of all head

paths and assertion-free paths in split(𝐶2). Using VST’s higher order logic, this middle condition

can be written as:

𝑅 ≜


∃𝑅. 𝑅 ∧ HeadHypo(𝑅, 𝒒⊣)

∧ AssnFreeHypo(𝑅,𝑄, 𝒒nor− )
∧ AssnFreeHypo(𝑅,𝑄brk, 𝒒brk− )
∧ AssnFreeHypo(𝑅,𝑄con, 𝒒con− )
∧ AssnFreeHypo(𝑅,𝑄ret, 𝒒ret− )


According to the induction hypothesis, it suffices to prove the following two propositions.

AllHypo(𝑃, 𝑅, [𝑄brk, 𝑄con, 𝑄ret], split(𝐶1)) (1)

AllHypo(𝑅,𝑄, [𝑄brk, 𝑄con, 𝑄ret], split(𝐶2)) (2)

The proof of (2) is simple, which can be justified by the following lemma in VST.

Lemma 7. For any program 𝑐 and postcondition ®𝑄 ,
{
∃𝑃 : assert. 𝑃 ∧

(
{𝑃} 𝑐

{
®𝑄
})}

𝑐

{
®𝑄
}
holds.

For proposition 1, the inversion lemma for sequencing (Lemma 1) has already shown that the

weakest precondition of the second statement can serve as the intermediate assertion for the

sequential composition. Based on Lemma 1, we can prove a corresponding inversion lemma on the

· operator for each type of path in the split results.

Proposition 8 (Inversion lemmas for split results).

(1) If AssnFreeHypo(𝑃,𝑄, 𝑝− ·𝑞−), then AssnFreeHypo(𝑃, ∃𝑅. 𝑅 ∧AssnFreeHypo(𝑅,𝑄, 𝑞−), 𝑝−)
(2) If HeadHypo(𝑃, 𝑝− · 𝑞⊣), then AssnFreeHypo(𝑃, ∃𝑅. 𝑅 ∧ HeadHypo(𝑅, 𝑞⊣), 𝑝−)
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(3) If TailHypo(𝑄, 𝑝⊢ · 𝑞−), then TailHypo(𝑄, ∃𝑅. 𝑅 ∧ AssnFreeHypo(𝑅,𝑄, 𝑞−), 𝑝⊢)
(4) If FullHypo(𝑝⊢ · 𝑞⊣), then TailHypo(∃𝑅. 𝑅 ∧ HeadHypo(𝑅,𝑞⊣), 𝑝⊢)

According to the conjunction rule, AssnFreeHypo and TailHypo from Proposition 8 still hold if

we combine all of those weakest preconditions of 𝐶2’s partial paths (i.e. those preconditions are

such that AssnFreeHypo(𝑅,𝑄, 𝑞−) and HeadHypo(𝑅,𝑞⊣)). Formally, Proposition 8 can be extended

into the following form by the conjunction rule.

Proposition 9 (Grouped Inversion lemmas).

(1) IfAssnFreeHypo(𝑃,𝑄,𝒑− ·𝒒−), thenAssnFreeHypo(𝑃, ∃𝑅. 𝑅∧AssnFreeHypo(𝑅,𝑄, 𝒒−),𝒑−)
(2) If HeadHypo(𝑃,𝒑− · 𝒒⊣), then AssnFreeHypo(𝑃, ∃𝑅. 𝑅 ∧ HeadHypo(𝑅, 𝒒⊣),𝒑−)
(3) If TailHypo(𝑄,𝒑⊢ · 𝒒−), then TailHypo(𝑄, ∃𝑅. 𝑅 ∧ AssnFreeHypo(𝑅,𝑄, 𝒒−),𝒑⊢)
(4) If FullHypo(𝒑⊢ · 𝒒⊣), then TailHypo(∃𝑅. 𝑅 ∧ HeadHypo(𝑅, 𝒒⊣),𝒑⊢)

Theorem 10 (Conjunction Rule). If Hoare triples {𝑃} 𝑐
{
𝑄1, [ ®𝑄 ′

1
]
}
and {𝑃} 𝑐

{
𝑄2, [ ®𝑄 ′

2
]
}
are

derivable, then {𝑃} 𝑐
{
𝑄1 ∧𝑄2, [ ®𝑄 ′

1
∧ ®𝑄 ′

2
]
}
is derivable.

Next, we also use the conjunction rule to combine the weakest preconditions of the different

kinds of paths and prove proposition 1, which completes the soundness proof of split(𝐶1;𝐶2).
However, the conjunction rule is not ubiquitous among the Hoare logic variants proposed in the

literature: for example, the current VST program logic cannot derive the conjunction rule. We will

leave the discussion of the conjunction rule to §5. For now, we assume that the conjunction rule

holds, so that Proposition 9 and the proof of split(𝐶1;𝐶2) soundness can hold.

5 CONJUNCTION RULE AND PRECISENESS
The conjunction rule is natural in traditional Hoare logics and separation logics for sequential

programs, but some extensions to the logics will make the conjunction rule inadmissible. In this

section, we more extensively discuss why the conjunction rule is required by our soundness proof

(§5.1, §5.2). To make the conjunction rule admissible in VST-A (§5.3, §5.4, §5.5), we identify a new

notion of preciseness to restrict the function specifications being called during verification. We

also discuss the trade-offs of using conjunction rules and precise function specifications, and we

suggest some future directions for improvement (§5.6).

5.1 A small example
Suppose we would like to prove the Hoare triple

{𝑃} 𝑐1; if (𝑏) 𝑐2 else 𝑐3 {𝑅} (3)

given that the following split results hold (here, we assume that 𝑐1, 𝑐2 and 𝑐3 are primary statements):

{𝑃} 𝑐1; assume 𝑏; 𝑐2 {𝑅} (4)

{𝑃} 𝑐1; assume !𝑏; 𝑐3 {𝑅} (5)

By inversion on sequential composition (lemma 1), proposition (3), (4) and (5) are equivalent to:

{𝑃} 𝑐1 {wp(if (𝑏) 𝑐2 else 𝑐3, 𝑅)}
{𝑃} 𝑐1 {wp(assume 𝑏; 𝑐2, 𝑅)}
{𝑃} 𝑐1 {wp(assume !𝑏; 𝑐3, 𝑅)}

Furthermore, by inversion (Lemmas 1 and 2) and properties of assume (Lemma 6), wp(if (𝑏) 𝑐2 else 𝑐3, 𝑅)
is equivalent to

wp(assume 𝑏; 𝑐2, 𝑅) ∧wp(assume !𝑏; 𝑐3, 𝑅)
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Thus, the split function’s soundness on the example above can be reduced to an instance of the

conjunction rule.

5.2 Unsoundness when the conjunction rule is inadmissible
So far, we have seen a tight connection between the conjunction rule and the split function’s

soundness — our soundness proof uses the conjunction rule (§4.3) and a very simple instance of

this soundness theorem can be reduced to an instance of the conjunction rule (§5.1). But what will

happen to split’s soundness if the conjunction rule is not admissible? Consider Hoare logic with

ghost updates [Krebbers et al. 2017a] as an example. Ghost states are “logical states” that help with

the program’s proof, and they particularly useful for verifying concurrent programs.
9
When users

prove programs with ghost states, they can apply a ghost update when they use the consequence

rule, see Semax-Conseq-Ghost below. Here, |⇒ 𝑃 says: there is at least one possible ghost update

which makes the state satisfy 𝑃 .

Semax-Conseq-Ghost

𝑃1 ⊨ |⇒ 𝑃2 𝑅2 ⊨ |⇒ 𝑅1 ®𝑅′
2
⊨ |⇒ ®𝑅′

1
{𝑃2} 𝑐

{
𝑅2, [ ®𝑅′

2
]
}

{𝑃1} 𝑐
{
𝑅1, [ ®𝑅′

1
]
}

The conjunction rule is not admissible in this logic — if the proofs of {𝑃} 𝑐 {𝑄} and {𝑃} 𝑐 {𝑄 ′}
use different and conflicting ghost updates, {𝑃} 𝑐 {𝑄 ∧𝑄 ′} cannot be valid since two conflicting

ghost updates cannot happen simultaneously.

In this logic, our split function is unsound. This loss of soundness is not determined by the

way we prove soundness in §4.3 but by the framework we propose to first split the program into

individual paths, which are then verified separately. Consider the following annoated program:

1 /∗@ Assert 𝑔 ↦→ 𝐴 ∗/
2 f();

3 x = nondetermined_0_or_1();

4 if (x) {
5 /∗@ Assert 𝑔 ↦→ 𝐵1 ∧ x = 1 ∗/
6 f1();

7 } else {
8 /∗@ Assert 𝑔 ↦→ 𝐵0 ∧ x = 0 ∗/
9 f0();

10 }

11 /∗@ Assert 𝑔 ↦→ 𝐶1 ∧ x = 1 ∨ 𝑔 ↦→ 𝐶0 ∧ x = 0 ∗/

in which 𝑔 is a ghost location for storing the status of the following STS (state transition system)

[Turon et al. 2013]: 𝐴 → 𝐴0, 𝐴 → 𝐴1, 𝐴0 → 𝐵0, 𝐴1 → 𝐵1, 𝐵0 → 𝐶0, 𝐵1 → 𝐶1. We assume that f(),

9
Ghost states are not the same as the “ghost variables” of traditional Hoare logics. Ghost variables are logical variables that

were introduced to relate old values of variables to current values, and to relate current values to abstract mathematical

values. VST and Iris support ghost variables using ordinary Coq variables; those ghost variables are fully compatible with

our VST-A program decomposition, to support data abstraction and modular verification [Beringer 2021]. Examples of such

variables in Fig. 1 are 𝑙, 𝑙1,𝑢, 𝑥, 𝑙2.
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f0(), and f1()’s specifications are:

for any 𝑏 ∈ bool,
{𝑔 ↦→ (if 𝑏 then 𝐴1 else 𝐴0)} 𝑓 () {𝑔 ↦→ (if 𝑏 then 𝐵1 else 𝐵0)}
{𝑔 ↦→ 𝐵0} 𝑓 0() {𝑔 ↦→ 𝐶0}
{𝑔 ↦→ 𝐵1} 𝑓 1() {𝑔 ↦→ 𝐶1} .

In this example, all straightline Hoare triples in split’s result are provable, especially the following

two triples about f():

{𝑔 ↦→ 𝐴} f(); x = nondetermined_0_or_1(); assume x; {𝑔 ↦→ 𝐵1 ∧ x = 1}
{𝑔 ↦→ 𝐴} f(); x = nondetermined_0_or_1(); assume !x; {𝑔 ↦→ 𝐵0 ∧ x = 0}

For the first triple, we can choose to take the𝐴 → 𝐴1 step in ths STS before calling f(). For the second

triple, we can choose to take the𝐴 → 𝐴0 step in ths STS before calling f(). However, the whole Hoare

triple is not provable since we cannot determine the value of x before x = nondetermined_0_or_1()

is executed. That breaks split’s soundness.

5.3 VST-A’s design choice and proof strategy
In the current design of VST-A, we focus on sequential program verification and disallow all ghost

updates. VST-A uses a more restricted variant of the VST program logic. This variant is still proved

sound w.r.t. CompCert Clight semantics and the most significant change is that the ghost update

operator is removed from the consequence rule.

Despite the removal of ghost updates, users are still able to write unrestricted higher-order

predicates and prove many complex sequential programs in VST-A. We derive the conjunction rule

(theorem 10) from this stronger logic by induction over Clight abstract syntax tree. Our inductive

proof steps are all Hoare-logic-based, and we believe that such a proof strategy is (1) easier to

formalize in Coq, and (2) in fact more general than a semantic-based proof, since it is independent

of how the soundness of the Hoare logic was proved w.r.t. its semantic model.

Consider the induction step for 𝑐 = 𝑐1; 𝑐2. By applying Lemma 1 to the premises we obtain the

following:

{𝑃} 𝑐1
{
∃𝑅1. 𝑅1 ∧ {𝑅1} 𝑐2

{
𝑄1, [ ®𝑄 ′

1
]
}
, [ ®𝑄 ′

1
]
}

{𝑃} 𝑐1
{
∃𝑅2. 𝑅2 ∧ {𝑅2} 𝑐2

{
𝑄2, [ ®𝑄 ′

2
]
}
, [ ®𝑄 ′

2
]
}

We can apply the induction hypothesis of 𝑐1 and make use of Semax-Conseq to obtain the following:

{𝑃}𝑐1


∃𝑅. 𝑅 ∧ {𝑅} 𝑐2
{
𝑄1, [ ®𝑄 ′

1
]
}

∧ {𝑅} 𝑐2
{
𝑄2, [ ®𝑄 ′

2
]
} ,

[
®𝑄 ′
1
∧ ®𝑄 ′

2

]
where 𝑅 can be instantiated as 𝑅1 ∧ 𝑅2. According to Semax-Seq, we are left to prove:

∃𝑅. 𝑅 ∧ {𝑅} 𝑐2
{
𝑄1, [ ®𝑄 ′

1
]
}

∧ {𝑅} 𝑐2
{
𝑄2, [ ®𝑄 ′

2
]
}  𝑐2

{
𝑄1 ∧𝑄2,[
®𝑄 ′
1
∧ ®𝑄 ′

2

] }
Using Extract-Exists and Extract-Prop, it suffices to prove:

{𝑅} 𝑐2
{
𝑄1, [ ®𝑄 ′

1
]
}
, {𝑅} 𝑐2

{
𝑄2, [ ®𝑄 ′

2
]
}
⇒ {𝑅} 𝑐2

{
𝑄1 ∧𝑄2,

[
®𝑄 ′
1
∧ ®𝑄 ′

2

]}
which immediate follows the induction hypothesis of 𝑐2.

For other induction steps (e.g. for if-statements and for loops), the proof idea is somewhat similar

in that their corresponding inversion lemmas are first applied, then the induction hypotheses can
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be used to complete the proof. For control flow statements (break, continue and return), the proof

is trivial. Thus, we are only left to derive the conjunction rules for primary statements.

5.4 The conjunction rule for memory stores
Consider a simple store statement and corresponding proof rule in VST.

∀ 𝑣 .
{
𝑝 ↦→ 𝑣 ∗ (𝑝 ↦→ 𝑣 ′ −∗ 𝑅)

}
∗ 𝑝 = 𝑣 ′ {𝑅} (6)

The precondition states that the heap can be split into two parts. One part is a singleton heap,

in which the nonaddressable variable 𝑝 is a pointer to the old value 𝑣 , and it is described by the

mapsto predicate 𝑥 ↦→ 𝑣 . The other part should satisfy the postcondition 𝑅 when joined with a

singleton heap that stores the new value 𝑣 ′.
Note that in this specification, the old value 𝑣 is universally quantified. If we want to conjoin the

postconditions of two Hoare triples about ∗𝑝 = 𝑣 ′, we need to unify the two different instantiations

of 𝑣 into one. To be specific, the following property needs to hold:

Proposition 11 (Preciseness of store).

(∃ 𝑣1. 𝑝 ↦→ 𝑣1 ∗ (𝑝 ↦→ 𝑣 ′ −∗ 𝑅1)) ∧
(∃ 𝑣2. 𝑝 ↦→ 𝑣2 ∗ (𝑝 ↦→ 𝑣 ′ −∗ 𝑅2))

⊨ ∃ 𝑣 . 𝑝 ↦→ 𝑣 ∗ (𝑝 ↦→ 𝑣 ′ −∗ 𝑅1 ∧ 𝑅2)

In VST-A, we prove this through semantic-model-level reasoning based on its underlying memory

model. Then, the conjunction rule for such simplified store statements can be logically derived. We

leave the detailed proof for the extended version of the paper.

In VST, assignment statements 𝑒1 := 𝑒2 include (1) assigning a value to a nonaddressable variable,

(2) loading a value from memory to a nonaddressable variable and (3) storing a value in memory.

VST’s higher-order assertion language also supports separation logic predicates with fractional

permissions. In VST-A, we have proved that the conjunction rule holds for all primary set/load/store

operations.

5.5 The conjunction rule for function calls
The store rule mentioned above can be treated as a specification for a function call that contains

only a single store instruction. We have shown that Proposition 11 is an important property for

deriving the conjunction rule. In this section, we generalize this property, which we refer to as

precise function specifications, to derive the conjunction rule for function calls.

As previously mentioned, VST-A function specification has a form of

With [®𝑎 : ®𝐴] . Require {𝜆®𝑦.𝑃} Ensure {𝜆𝑟 .𝑄} ,

where 𝑃 is a precondition parameterized by a list of formal parameters ®𝑦, 𝑄 is a postcondition

parameterized by the return value 𝑟 , and types ®𝐴 represents the type of logical values to be shared

between 𝑃 and 𝑄 . Therefore, both 𝑃 and 𝑄 will also be abstracted over a set of logical variables ®𝑎
typed ®𝐴. We define the precise function specifications as follows:

Definition 12 (Precise function specification). With [®𝑎 : ®𝐴] . Require {𝜆®𝑦.𝑃} Ensure {𝜆𝑟 .𝑄} is

precise, if for any formal parameters
®𝑏, return value 𝑟 and assertions 𝑅1, 𝑅2, it holds that(

∃ ®𝑥1 : ®𝐴. 𝑃 ®𝑏 ®𝑥1 ∗ (𝑄 𝑟 ®𝑥1 −∗ 𝑅1)
)
∧
(
∃ ®𝑥2 : ®𝐴. 𝑃 ®𝑏 ®𝑥2 ∗ (𝑄 𝑟 ®𝑥2 −∗ 𝑅2)

)
⊨ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 𝑟 ®𝑥 −∗ 𝑅1 ∧ 𝑅2)
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In VST-A’s program logic (a variant of VST’s program logic), the function call rule, Semax-Call,

requires the callee function specification to be precise.

Semax-Call

𝜙 = With [®𝑥 : ®𝐴] . Require {𝜆®𝑦.𝑃} Ensure {𝜆𝑟 .𝑄}
𝑓 satisfies 𝜙 𝜙 is a precise specification{

®𝑒 ⇓ ®𝑏 ∧ ∃®𝑥 : ®𝐴. 𝑃 ®𝑏 ®𝑥 ∗ (𝑄 a ®𝑥 −∗ 𝑅)
}
a := 𝑓 (®𝑒)

{
𝑅, [ ®⊥]

}
The notion of “precise function specification” that we propose is defined with respect to an

operation (e.g. a store statement or a function call), while traditionally, “preciseness” is defined for

a predicate. A typical example of a precise predicate is the 𝑝 ↦→ 𝑣 predicate used in Semax-Store.

Definition 13 (Precise predicate). A predicate 𝑃 is precise if for any 𝑄1, 𝑄2,

(𝑃 ∗𝑄1) ∧ (𝑃 ∗𝑄2) = 𝑃 ∗ (𝑄1 ∧𝑄2)

In fact, our definition of precise function specifications includes a common use case of precise

predicates. As proved by Gotsman et al. [2011] and Vafeiadis [2011], if the conjunction rule is

expected in concurrent separation logic with locks, the resource invariant for locks should be a

precise predicate. Consider the following specification for a release operation for lock 𝑙 :

∀ 𝑙 𝜋 . {𝜋 is readable ∧ locked𝜋 (𝑙, 𝑅) ∗ 𝑅} release(𝑙) {unlocked𝜋 (𝑙, 𝑅)}

where 𝑅 is the predicate that describes the locked memory. We use locked𝜋 and unlocked𝜋 to denote

whether this memory is owned by the current thread or not; 𝜋 is a fractional permission. It is clear

that if the resource invariant 𝑅 is a precise predicate, then one can show that this specification is a

precise specification. The precise function specification also makes a difference in the sequential

setting we are considering. One example of a non-precise function specification is:

1 void foo (int ∗ p)
2 /∗@ With 𝑞 Require p ↦→ 0 ∗ 𝐹 (𝑞) Ensure p ↦→ 1 ∗ 𝐹 (𝑞) ∗/
3 { ∗ p = 1; return; }

Here 𝐹 is a predicate dependent on a logical variable 𝑞 describing the frames that the function foo
does not modify. It is possible to find such 𝐹 that holds for two different instantiations of 𝑞, and

breaks the precise function specification requirement.

In our Coq development, we find that, for most function specifications, we can derive that for

any formal parameters
®𝑏, logical variables ®𝑥1, ®𝑥2:(

𝑃 ®𝑏 ®𝑥1 ∗ True
)
∧
(
𝑃 ®𝑏 ®𝑥2 ∗ True

)
⊨ ®𝑥1 = ®𝑥2 (7)

Then, to prove a specification precise, it is sufficient to show that 𝑃 is a precise predicate. A typical

example is the store predicate “↦→”. Clearly:

∀ 𝑝 𝑣1 𝑣2. ((p ↦→ 𝑣1 ∗ True) ∧ (p ↦→ 𝑣2 ∗ True)) ⊨ 𝑣1 = 𝑣2 (8)

For linked lists’ representation predicate ll, we also have:

∀ 𝑝 𝑙1 𝑙2 . ((ll (p, 𝑙1) ∗ True) ∧ (ll (p, 𝑙2) ∗ True)) ⊨ 𝑙1 = 𝑙2 (9)

Moreoever, property (7) is composable. For example, in order to prove:

((p ↦→ 𝑥1 ∗ ll(𝑥1, 𝑙1)) ∗ True) ∧ ((p ↦→ 𝑥2 ∗ ll(𝑥2, 𝑙2)) ∗ True) ⊨ 𝑥1 = 𝑥2 ∧ 𝑙1 = 𝑙2

we can first use (8) to derive 𝑥1 = 𝑥2, then use after (9) to derive 𝑙1 = 𝑙2.
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It is well-known that precise predicates are also composable, thus we developed several extensible

automatic tactics in VST-A to help users prove the precise specification by combining property (7)

and predicates’ preciseness.
10

We believe that most C functions have specifications that are naturally precise. Non-precise

specifications are usually caused by separation logic conjuncts that describe inaccessible memory

slices to the function, such as the 𝐹 (𝑞) proposition in the example above. In practical verification

tasks, one can usually remove these conjuncts using the “frame rule” and obtain a precise specifica-

tion. The pruned part of the specification can be expressed elsewhere in the program, where the

memory slice is really used.

5.6 Discussion and future work
In our current design of VST-A, we require the conjunction rule to be derivable in the logic to

ensure the splitting algorithm’s soundness. We do not consider our current design choice as a fatal

problem for future extensions. Here are some potential research directions that may support ghost

updates or remove the restriction of only using precise specifications in the future.

Verify the sequential fragments of a concurrent program. As was discussed in §5.2, the existence

of the conjunction rule forbids the use of ghost updates. However, there are ways to verify the

sequential fragment of a concurrent program with VST-A. We have proved the following property:

Theorem 14. If {𝑃} 𝑐1; 𝑐2 |⇒
{
𝑅, [ ®𝑅′]

}
, where |⇒ indicates that the triple is derivable from the

original VST logic that supports ghost state updates, then there exists𝑄, ®𝑄 ′ such that {𝑃} 𝑐1
{
𝑄, [ ®𝑄 ′]

}
and {𝑄} 𝑐2 |⇒

{
𝑅, [ ®𝑅′]

}
.

The triple about 𝑐1 is derivable from the stronger program logic in VST-A. We can apply the

current VST-A framework to the sequential fragment 𝑐1, and leave the rest of the program to be

verified by the full-power VST interactive verifier.

New annotations for ghost actions. Another possible direction is to improve the capability of

annotations in terms of expressing proofs. For example, in future versions of VST-A, we could

allow users to write either explicit ghost commands in their programs, or write two consecutive

assertions where the latter can be derived from the former with a ghost update. As a result, we do

not need to worry about the possibility of having two conflicting ghost updates simultaneously.

Additional annotations for function calls. As was discussed in §5.5, in order to derive the conjunc-

tion rule for function calls, the callee should meet the requirement of precise function specification.

However, this requirement could be removed if the logical variables of the specification are explicitly

instantiated. This avoids the possibility that proofs of multiple straightline Hoare triples containing

the same function call could actually instantiate those logical variables differently, causing issues

in proving the conjunction rule. Intuitively, this is like putting two assertions before and after the

function call statement as pseudo "join points" in the control flow, ensuring that every function call

would only appear in one unique path in the split result. Then, split’s soundness would be trivial

for function calls.

Prophecy variables. In our counterexample in §5.2, the verification target is unprovable but will

become provable if we are allowed to insert a prophecy variable [Abadi and Lamport 1988; Jung

10
In several cases only weaker equivalence relations can be derived from the conjunction. Our tactics also support proof

automation for that, if this relation implies the equality of the specification
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et al. 2020] into the program. In general, we may be able to prove split’s soundness with the help

of prophecy variables even if ghost updates are permitted in the logic.

6 EVALUATION
In this section we evaluate VST-A in various aspects, including verification effort, verification time,

and statistics of our development. We also draw a comparison between VST-A and VST.

Verification effort using VST-A. We test VST-A using several sets of programs and present the

statistics about verification effort in Table 1. VST-A proofs are divided into two parts: the annotated

programs (which describe the main idea of the proof in a way easier to read than VST proofs)

and Coq verification of straightline Hoare triples (similar to corresponding parts of VST proofs).

Therefore, we count the lines of annotations and proofs separately, in the Specification and Assertion

columns and the Proof column, respectively.

Our benchmarks include some measured by Sammler et al. [2021], including linked lists and

binary search trees. We also include a slightly larger example—a small-step interpreter of a toy

imperative language, which includes a number of if-branches. It can be seen from our evaluation

that without providing additional assertions in the program code, VST-A is still able to split and

verify the program.

VST-A VST

Program Functions Code Spec Assert Proof Proof

Basics 8 78 56 5 84 156

Singly linked list 18 350 85 55 969 1212

Doubly linked list 4 95 16 16 171 213

Binary search tree 4 115 44 23 202 364

Interpreter 5 337 47 0 423 653

Table 1. Number of C functions, lines of C code (without annotations), VST-A specification lines annotated in
the C comments, assertion annotations in the C comments, Coq proofs in VST-A, versus Coq specifications
and proofs in VST.

We also conduct a comparison in the proof effort between VST-A and VST. The last column

in Table 1 shows the lines of proofs for verifying the same function in VST; compare this to the

“Specification+Assertion+VST-A Proof” columns. The proof lines do not count auxiliary predicate

definitions and lemmas since they are the same in VST and VST-A.

Not manifest in the line-count, but still important, is that the VST user must learn to use several

different tactics for different forms of control flow, and each of these has several options depending

on which assertions are supplied (e.g., if-postcondition, for-loop continue assertion, for-loop break

assertion, etc.). In contrast, VST-A’s control-flow splitting takes care of all of this, leaving the user

to learn only the straight-line forward and forward_call tactics. In some cases, splitting makes

the Coq proof easier to automate. For example, verifying the interpreter example in Table 1 using

VST-A only needs to use forward to handle assumes repeatedly, but this proof strategy cannot be

used in the corresponding VST proof.

To summarize, we believe that to verify the same program, the manual effort of VST-A is no more

than that of VST, while in the meantime VST-A can provide more intuitive and readable proofs

with annotations in the C source program.

Verification time for different phases in VST-A. The verification time is shown in Table 2. Since the

splitting process in VST-A is a computationally proven sound function, it is not surprising that the
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Program Reduction Common Avg. compile Avg. verify Max. verify VST verify

Basics 0.239 12.0 1.7 × 14 4.8 × 14 8.1 29.1

SLL 0.087 11.0 1.7 × 57 6.9 × 57 12.2 159.2

DLL 0.064 16.0 1.7 × 13 7.1 × 13 13.5 48.5

BST 0.069 11.0 1.7 × 18 7.4 × 18 12.2 54.8

Interpreter 0.090 25.0 1.7 × 45 20.8 × 45 41.9 222.9

Table 2. Verification time for different phases (in seconds). Reduction: time used for parsing C and generating
straightline paths in Coq. Common: time used for compiling common definitions and theorems. Avg. compile:
the average time used for compiling the straightline Hoare triple definitions of all generated paths × the
number of paths. Avg. verify: the average time used for verifying each path × the number of paths. Max.
verify: the maximum time used for verifying each path. VST verify: the time used for verifying the same
programs in VST.

reduction time is short. For different verification tasks, users need to provide different separation

logic predicates and lemmas to specify and prove the program. This consitutes a majority of the

compilation time, which is also needed by a VST proof.

A significant difference between VST-A and VST is that in VST-A each straightline Hoare triple’s

proof can be developed as a separate lemma, residing in distinct files, facilitating parallel checking

and compilation. Therefore, we present the average time for these phases and the number of paths.

In VST, the correctness theorem of a function needs to be proved as a whole, which is more difficult

to parallelize.

In addition to parallelized compilation, the separation of straightline Hoare triple proofs also

makes it easier to maintain the correctness of the proofs when the program is modified. Only those

paths that are affected by the modification need to be re-verified. We conducted several experiments

and the results are shown in Table 3.

Program Function Paths Changes Changed paths

Singly linked list append 5 modify the pre-condition 1

Singly linked list rev_append 4 change the loop invariant 3

Singly linked list reverse 4→ 3 remove an assertion in the loop 2 → 1

Binary search tree lookup 5 modify the post-condition 2

Interpreter eval 21 change the code in one branch 1

Table 3. Case study of the number of paths that need to be re-verified when the program is modified.
4 → 3 indicates that the program modification changed the number of paths.

Statistics of the development of VST-A. We present the line of codes statistics for our development

in VST-A below. Our development in VST-A includes the following parts:

• Coq formalization of the restricted fragment of VST program logic, including the logical

rules, auxiliary lemmas, and the conjunction rule proof: 6,236 lines

• Coq formalization of the VST-A framework, including the split algorithm, and its soundness

proof: 6,287 lines

• Modification to the CompCert C parser to parse annotated C programs: 1.87% of change

• Modification to the VST-Floyd lemmas and automation tactics to support forward symbolic

execution in the restricted fragment of VST program logic: 6.74% of change
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• OCaml development that provides an efficient implementation of the split algorithm: 3,176

lines in addition to original CompCert

7 RELATEDWORK
7.1 Traditional annotation verifiers
Many annotation verifiers work by reducing annotated programs to SMT assertion entailments:

these include Frama-C, Dafny, VeriFast, Viper, Hip/Sleek. Some of those systems use a special-

ized intermediate language for verification, connectable to several SMT back-ends and to several

programming-language front-ends; for example Frama-C uses Why3 [Filliâtre and Paskevich 2013]

and Dafny uses Boogie [Barnett et al. 2006]. Modern SMT solvers effectively and efficiently solve

many of the resulting entailments. These annotation verifiers are, in practice, “interactive:” one

starts by annotating the program with function specifications and some loop invariants, and the

verifier inevitably points out several places where the proof fails—with sufficiently good error

messages that the user can adjust the assertions, add new assertions and invariants, and try again,

and again. This works well in practice, and it is what we wanted to emulate.

The disadvantage of those systems is in the poverty of their assertion languages. Because SMT

(or Why3 or Boogie) accommodates only first-order or near-first-order logics, the rich specification

languages of VST or of logics built in Iris cannot be used. In VST one often proves high-level

properties about the behavior of programs, in application-specific mathematics that would be

difficult to fit into SMT. In Frama-C, Dafny and CN (etc.), some authors work around this by writing

higher-level proofs in Coq and program-logic proofs in the annotation verifier, and stapling together

the two verifications (in different logics without a common foundation) [Boldo et al. 2014]. That

approach could be made more foundational by embedding a semantics of Why3 in Coq [Cohen

and Johnson-Freyd 2024], but the assertion language would still be near-first-order.

Another disadvantage of those annotation verifiers is that none has a machine-checked proof of

soundness (e.g., w.r.t. an operational semantics). This lack is not inherent, as VST-A demonstrates.

When proving programs in VST or in an Iris-based logic, one generally uses automated solvers

to prove entailments, or at least to prove the easy parts and leave residuals for the user. These

solvers may be programmed in Coq (using tactics or computational reflection) or may be external

(such as SMT). VST-A does not choose a specific solver. Users can choose their own solver to prove

the split result correct.

BRiCk [Malecha et al. 2022], used by BedRock Systems Inc. to verify its microkernel/hyperviser,

is a program logic for C++, built in Iris, on principles inspired by VST. We expect that our VST-A

method would work well in such a C++ program logic.

Tools like F* [Martínez et al. 2019], LiquidHaskell [Vazou et al. 2014, 2018], and ATS [Chen

and Xi 2005] have managed to combine higher-order programming with theorem proving in a

dependent type system so that rich higher-order properties can be automatically verified in the

style of the program’s annotations. However, they require users to either write programs in a new

domain-specific language or construct the proof as a term in the program. By contrast, VST-A

works on the standard (and practical) C programming language while also enabling reasoning with

higher-order properties.

We also note the work of sledgehammer [Böhme and Nipkow 2010] and auto2 [Zhan 2016] for

proof automation in Isabelle. Sledgehammer relies on SMT solvers, while auto2 builds compositional

proof automation using a saturation-based proof automation system in which goal-directed proof

strategies can be encoded. Users of auto2 can easily extend auto2 with their own domain-specific

proof strategy. Zhan [2018] built an auto2 instance that supports separation logic reasoning for

verifying sequential programs. Although auto2 supports flexible saturation-based proof strategies,
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this specific instance of sequential program verification is mainly goal-directed. VST-A is not

goal-directed, and is open to any solver or proof style when verifying entailments, regardless of

whether it is, based on an interactive proof a tactic-based solver, or a model checking based one.

7.2 Interactive prover-based program verification
There is no deep reason why annotation verifiers should lack soundness proofs (e.g., Frama-C,

Dafny, Verifast) and tactic-based verifiers should have machine-checked soundness proofs (e.g.,

VST, Iris). We guess that the reason is: such soundness proofs are naturally higher-order, more

easily accommodated in the kinds of higher-order logics implemented in proof assistants such as

Coq and Isabelle, so it is natural that designers of VST and Iris also have their users operate in the

same proof assistants.

Soundness proofs are important for real-world programming languages, which have many subtle

features in their semantics and compilers. Users want what they prove about a program to be

consistent with the compiled machine code semantics, so the foundational soundness of VST-A is a

real benefit. In this section, we compare VST-A with other foundational tools.

VST and various Iris-based verifiers have invested significantly in increasing proof automation so

that users can verify their programs conveniently. However, they all require their users to complete

correctness proofs for the entire program in an interactive theorem prover, which is not easy for

an ordinary software engineer to learn.

There are also works that build annotation verification into interactive theorem provers and have

achieved foundational soundness. RefinedC [Sammler et al. 2021] is an automated and foundational

annotation verifier for C programs, that defines a restricted fragment of the Iris logic, Lithium, so

that proof searches can be guided by translating the assertion annotations into a Lithium program.

DiaFrame [Mulder et al. 2022] is also an automated and foundational tool. It employs a similar

structural approach to RefinedC, but is more targeted at proving fine-grained concurrent programs.

These tools use tactic-based proof strategy design and achieve some reasonable automation. In

other words, a Hoare triple will be reduced to smaller proof goals (and even directly solved) by

automatically applying a series of proof tactics, which use proved-sound logic rules or verified

single-step symbolic execution. In comparison, VST-A is based on one computational proved-sound

reduction function. Thus, developers of VST-A do not need to decompose this reduction step into

multiple proof tactics, which in the end allows users to describe more flexible proofs using annotated

C programs. Here is an example of how reduction is decomposed into tactics. Given an annotated

program of form (here, we use a pair of braces to emphasize that sequential composition is right

associative in CompCert Clight and in our ClightA syntax):

/∗@ 𝑃 ∗/ if (𝑏) 𝑐1 else 𝑐2; { 𝑐3; /∗@ 𝑄 ∗/ 𝑐4 } /∗@ 𝑅 ∗/

VST-A will generate 3 straightline Hoare triples:

{𝑃}assume 𝑏; 𝑐1; 𝑐3{𝑄} {𝑃}assume !𝑏; 𝑐2; 𝑐3{𝑄} and {𝑄}𝑐4{𝑅}.
In order to achieve this in RefinedC’s or DiaFrame’s tactic-based proof automation system, the

system needs to apply the Seq-Assoc rule (see §2.2) first, turning the proof goal into:

{𝑃} { if (𝑏) 𝑐1 else 𝑐2; 𝑐3 } ; 𝑐4 {𝑅}
and then apply the sequence rule with middle condition 𝑄 . After that, one more proof rule

11
is

needed for turning if (𝑏) 𝑐1 else 𝑐2; 𝑐3 into if (𝑏) { 𝑐1; 𝑐3 } else { 𝑐2; 𝑐3 } so that the Semax-If rule

can be used to complete the reduction. However, such tactic-based decomposition is not always

easy to design, and it can even be impossible. Especially, it is not obvious how to design tactic-based

11
In most Iris-based verifiers, this last step is not needed since Iris’s symbolic execution can do that implicitly.
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proof automation for handling nontraditional loop invariants supported by VST-A. That is, our split

function (in effect) performs some nontrivial static analysis and is verified by a nontrivial soundness

proof. Besides supporting more flexible proofs, the core split function in VST-A is computation-

based so that VST-A can first complete the reduction step very efficiently, and users can then prove

straightline Hoare triples manually or using their own domain-specific proof automations. Also,

this design of VST-A can better support incremental development.

7.3 Conjunction rule and preciseness
The conjunction rule is naturally sound in traditional Hoare logic [Floyd 1993]. However, for

concurrent separation logic with locks, a counterexample that leads to unsoundness [O’Hearn

2004] can be found. As a workaround, De Vilhena et al. [2020] proved a restricted version called

the candidate rule, which requires postconditions to be pure (independent of resources, especially

ghost resources) to solve their verification problem. However, this rule cannot be applied in our

setting. In VST-A, we do not propose alternative rules but prove the conjunction rule on top of a

VST logic without ghost updates. As for supporting concurrency, we proposed several possible

directions in §5.6.

We are not aware of any similar notions of precise function specifications in the literature as we

have defined in this paper. Traditionally, preciseness restrictions are placed on assertion predicates.

For example, in concurrent separation logic, the resource invariant should be a precise predicate to

make the conjunction rule sound [Gotsman et al. 2011; Vafeiadis 2011]. Our aim is to define a notion

of preciseness for specifications, so that the conjunction rule is derivable from the existing logical

rules. Compared with traditional preciseness, we showed in §5.5 that our notion of preciseness is

more expressive, as it accounts for a pair of pre-/post-conditions for an operation and allows the

specification to be quantified by logical variables.

8 CONCLUSION
We have presented VST-A, an annotation verifier that is foundationally verified. VST-A targets a

widely used real-world language, C, and supports higher-order assertions in the very rich specifica-

tion language of VST that includes the full expressive power of Coq. VST-A splits the verification

of a large program into verifications of straightline control flow paths separated by assertions.

The soundness of this approach requires the conjunction rule to be derivable in the program logic.

We have identified a novel notion of precise specifications in the proof of the conjunction rule.

Currently, VST-A only supports sequential C program verification, but we have proposed ways to

extend VST-A to support concurrency in the future. Our formal annotation language and other

major designs are not C-specific, nor are they separation-logic-specific, nor VST-specific. A similar

development can be used to design other Hoare-style annotation verifiers for imperative languages.

Comparing to existing foundational program verification tools built in interactive theorem

provers, VST-A has the following advantages:

• Annotation-based proof is a more readable way to explain why a program is correct.

• Our annotation-based proof language ClightA is expressive enough to describe nonstructural

proofs, which cannot be supported systematically using goal-directed tactic-based proof

automation;

• VST-A is easier to use — users only need to write assertions in annotations, and use forward

symbolic execution to prove straightline Hoare triples. In comparison, users of other tools

like VST and Iris need to use different tactics to handle different program structures like

if-conditions, recursions and different loops.
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• VST-A reduces proof recompilation time. When a verified program is updated slightly, its

correctness proof also needs corresponding updates. In existing interactive verifiers, users

must rerun all tactical proof scripts, even though only a small portion needs to be updated.

Now, only the part of the program that has been changed and the corresponding proof need

to be recompiled, since other parts in split’s result are unchanged.

We aim to enhance the verification process of VST-A further. Future work includes the intro-

duction of domain-specific heuristics for automatically manipulating separation logic predicates

during symbolic execution and proving separation logic entailments on straightline Hoare triples.

We also plan to allow user to specify partial assertions, so that users do not need to write assertions

for the entire state of the function throughout the whole program.
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