Verification of a Cryptographic Primitive: SHA-256

ANDREW W. APPEL, Princeton University

A full formal machine-checked verification of a C program: the OpenSSL implementation of SHA-256. This
is an interactive proof of functional correctness in the Coq proof assistant, using the Verifiable C program
logic. Verifiable C is a separation logic for the C language, proved sound w.r.t. the operational semantics for
C, connected to the CompCert verified optimizing C compiler.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Correctness proofs; E.3
[Data Encryption]: Standards; F.3.1 [Specifying and Verifying and Reasoning about Programs]

General Terms: Verification

1. INTRODUCTION

[C]ryptography is hard to do right, and the only way to know if some-
thing was done right is to be able to examine it. ... This argues very strongly
for open source cryptographic algorithms....[But] simply publishing the
code does not automatically mean that people will examine it for security
flaws. Bruce Schneier [1999]

Be suspicious of commercial encryption software ... [because of] back
doors. ... Try to use public-domain encryption that has to be compatible with
other implementations....” Bruce Schneier [2013]

That is, use widely used, well examined open-source implementations of published,
nonproprietary, widely used, well examined, standard algorithms—because “many
eyes make all bugs shallow” works only if there are many eyes paying attention.

To this I add: use implementations that are formally verified with machine-checked
proofs of functional correctness, of side-channel resistance, of information-flow prop-
erties. “Many eyes” are a fine thing, but sometimes it takes them a couple of years
to notice the bugs [Bever 2014]. Verification can guarantee program properties in ad-
vance of widespread release.

In this paper I present a first step: a formal verification of the functional correctness
of the SHA-256 implementation from the OpenSSL open-source distribution.

Formal verification is not necessarily a substitute for many-eyes assurance. For ex-
ample, in this case, I present only the assurance of functional correctness (and its
corollary, safety, including absence of buffer overruns). With respect to other proper-
ties such as timing side channels, I prove nothing; so it is comforting that this same C
program has over a decade of widespread use and examination.

SHA-256, the Secure Hash Algorithm with 256-bit digests, is not an encryption al-
gorithm, but it is used in encryption protocols. The methods I discuss in this paper
can be applied to the same issues that appear in ciphers such as AES: interpreta-
tion of standards documents, big-endian protocols implemented on little-endian ma-
chines, odd corners of the C semantics, storing bytes and loading words, signed and
unsigned arithmetic, extended precision arithmetic, trustworthiness of C compilers,
use of machine-dependent special instructions to make things faster, correspondence
of models to programs, assessing the trusted base of the verification tools.

Copyright ©Andrew W. Appel. This material is based on research sponsored by the DARPA under agree-
ment number FA8750-12-2-0293. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.

ACM Transactions on Programming Languages and Systems, to appear 2015

2 Andrew W. Appel

This paper presents the following result: I have proved functional correctness of
the OpenSSL implementation of SHA-256, with respect to a functional specification:
a formalization of the FIPS 180-4 Secure Hash Standard [FIPS 2012]. The machine-
checked proof is done using the Verifiable C program logic, in the Coq proof assistant.
Verifiable C is proved sound with respect to the operational semantics of C, with a
machine-checked proof in Coq. The C program can be compiled to x86 assembly lan-
guage with the CompCert verified optimizing C compiler; that compiler is proved cor-
rect (in Coq) with respect to the same operational semantics of C and the semantics of
x86 assembly language. Thus, by composition of machine-checked proofs with no gaps,
the assembly-language program correctly implements the functional specification.

In addition, I implemented SHA-256 as a functional program in Coq and proved
it equivalent to the functional specification. Coq can execute the functional program
on real strings (only a million times slower than the C program), and gets the same
answer as standard reference implementations.! This gives some extra confidence that
no silly things are wrong with the functional spec.

Limitations. The implementation is from OpenSSL, with some macro expansion
to instantiate it from generic SHA-2 to SHA-256. I factor assignment statements so
that there is at most one memory operand per command, e.g., ctx— h[0] += a; becomes
t=ctx— h[0]; ctx— h[0]=t+a; see §10.

CompCert generates assembly language, not machine language; there is no correct-
ness proof of the assembler or of the x86 processor hardware on which one might run
the compiled program. The Coq proof assistant is widely used, and its kernel is believed
to be a correct implementation of the Predicative Calculus of Inductive Constructions
(CiC), which in turn is believed to be consistent.

A different kind of limitation is in the time and cost of doing the verification. SHA-
256 was the “shakedown cruise” for the Verifiable C system. This “cruise” revealed
many inefficiencies of Verifiable C’s proof automation system: it is slow, it is a memory
hog and it is difficult to use in places, and it is incomplete: some corners of the C
language have inadequate automation support. But this incompleteness, or shakiness
of proof automation, cannot compromise the end-to-end guarantee of machine-checked
logical correctness: every proof step is checked by the Coq kernel.

Nonlimitations. The other way that my implementation differs from OpenSSL is
that I used the x86’s byte-swap instruction in connection with big-endian 4-byte
load/store (since it is a little-endian machine). This illustrates a common practice
when implementing cryptographic primitives on general-purpose microprocessors: use
machine-dependent special instructions to gain performance. It is good that the pro-
gram logic can reason about such instructions.

What about using gcc or LLVM to compile SHA-256? Fortunately, these compilers
(gcc, LLVM, CompCert) agree quite well on the C semantics, so a verification of SHA-
256 can still add assurance for users of other C compilers. In most of the rare places
they disagree, CompCert is correct and the others are exhibiting a bug [Yang et al.
2012]; no bugs have ever been found in the phases of CompCert behind Verifiable C.2

IThat’s 0.25 seconds per block, versus 0.25 microseconds; fast enough for testing the specification. The Coq
functional program is a million times slower because it simulates the logical theory of binary integers used
in the specification! The functional spec is even slower than that, because its W function takes a factor of
416 more time.

2That is, CompCert has a front-end phase from C to C light; Verifiable C plugs in after this phase, at C
light. Yang et al. [2012] found a bug or two in that front-end phase at a time when that phase was not
formally verified, but they could not find any bugs in any of the verified phases, the ones between C light
and assembly language. Since then, Leroy has formally verified the C-to-Clight phase, but that doesn’t
matter for Verifiable C, because in effect we verify functional correctness of the C light program. Also, Yang

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 3

2. VERIFIED SOFTWARE TOOLCHAIN

The Verified Software Toolchain (VST) [Appel et al. 2014] contains the Verifiable C pro-
gram logic for the C language, proved sound with respect to the operational semantics
of CompCert C. The VST has proof automation tools for applying this program logic to
C programs.

One style of formal verification of software proceeds by applying a program logic to
a program. An example of a program logic is Hoare logic, which relates the program c
to its specification (precondition P, postcondition @) via the judgment {P}c{Q}. This
Hoare triple can be proved by using the inference rules of the Hoare logic, such as the
sequential composition rule:

{(Pta{@} {Q}e{R}
{P}crs e {R}

We prefer sound program logics or analysis algorithms, i.e., where there is a proof
that whatever the program logic claims about your program is actually true when the
program executes. The VST is proved sound by giving a semantic model of the Hoare
judgment with respect to the full operational semantics of CompCert C, so that we
can really say, what you prove in Verifiable C is what you get when the source program
executes. CompCert is itself proved correct, so we can say, what you get when the source
program executes is the same when the compiled program executes. Composing these
three proofs together: the proof of a program, the soundness of Verifiable C, and the
correctness of CompCert, we get: the compiled program satisfies its specification.

C programs are tricky to verify because one needs to keep track of many side condi-
tions and restrictions: this variable is initialized here, that addition does not overflow,
this p < ¢ compares pointers into the same object, that pointer is not dangling. The
Verifiable C logic keeps track of every one of these; or rather, assists the user in keep-
ing track of every one. We know that there are no missed assumptions, because of the
soundness proof w.r.t. the C semantics; and we know the C semantics does not miss
any, because of the CompCert correctness proof w.r.t. safe executability in assembly
language.

Of course, there are easier ways to prove programs correct. One can write functional
programs in languages (such as Gallina, ML, Haskell) with much cleaner proof theo-
ries than C, and then the proof effort is smaller by an order of magnitude. Whenever
the performance of a high-level garbage-collected language is tolerable, this is the way
to go. The vast amount of software that is today written in Perl, Python, Javascript
might profitably be rewritten in functional languages with clean proof theories for ef-
fective verification. But cryptographic primitives are not written in these languages; if
we want to verify a well established widely used open-source cryptographic implemen-
tation, we need tooling for C.

Synthesis instead of verification?. C was not designed with a simple proof theory in
mind, so perhaps a simpler route to verified crypto would be to use program synthesis
from a domain-specific specification language. One example is Cryptol [Erkok et al.
2009] which can generate either C or VHDL directly from a functional specification. In
principle one could hope to prove the Cryptol synthesizer correct (though this has not
been done) or validate the output (which might be easier than proving general-purpose
C programs).

et al. [2012] found a specification bug in CompCert, regarding how it treated bit-fields. Although Leroy has
since fixed that specification bug, this also does not matter: Verifiable C is immune to specification bugs in
C, for reasons discussed in §8.

ACM Transactions on Programming Languages and Systems, to appear 2015

4 Andrew W. Appel

Unfortunately, synthesis languages sometimes have limited expressiveness. Cryptol
has been used to synthesize the block-shuffle part of SHA from a functional spec—
but only the block-shuffle (the function that OpenSSL calls sha256_block_data_order).?
Using Verifiable C I have verified the entire implementation, including the padding,
length computation, multi-block handling, incremental update of unaligned strings,
and so on. The Cryptol synthesizers (which translate Cryptol to C or VHDL) can han-
dle only fixed-size blocks, so cannot handle these parts (SHA256_Init, SHA256 _Update,
SHA256_Final, SHA256).

3. SPECIFICATION OF SHA-256

A program without a specification cannot be incorrect, it can only be surprising.* Typ-
ically one might prove a C program correct with respect to a relational specification.
For example, a C implementation implementing lookup tables must satisfy this rela-
tion between program states and inputs/outputs: that if the most recent binding for «
is z — y, then looking up z yields y.

Sometimes one does this in two stages: prove that the C program correctly imple-
ments a functional specification (an abstraction of the implementation), then prove
that functional specification satisfies the relational specification. For example, a C im-
plementation implementing lookup tables by balanced binary search trees might be
proved correct with respect to a functional-spec of red-black trees. Then the functional
red-black trees can (more easily) be proved to have the lookup-table property.

For cryptographic hashing, we® built a functional spec from the FIPS 180-4 stan-
dard [FIPS 2012]. The relational spec is, “implements a random function.” Unfortu-
nately, nobody in the world knows how to prove that SHA-256 implements a random
function—even on paper—so I did not attempt a machine-checked proof of that (see
§11).

The FIPS 180-4 SHS (Secure Hash Standard) mentions (in §3.2) 32-bit unsigned bi-
nary arithmetic with operators such as addition-modulo-32, exclusive-or, and shifting.
We must give a model of 32-bit arithmetic in pure logic. Fortunately, Leroy has defined
such an Integers module and proved many of its properties as part of the semantics of
CompCert C [Leroy 2009]; we use this directly in the functional spec, which is other-
wise entirely independent of the C language. We have: the type int; operations such as
Int.add, Int.xor; injection (Int.repr : Z — int) from the mathematical integers to 32-bit
integers, and projection (Int.unsigned : int — Z). We have “axioms” such as,

0<i<2%
Int.unsigned (Int.repr i) = i

but this is not an axiom of the underlying logic (CiC), it is a theorem proved® from the
axioms of Coq using the constructive definitions of Int.unsigned and Int.repr.

SHS defines SHA-256 on a bitstring of any length, and explains how to pack these
into big-endian 32-bit integers. OpenSSL's implementation permits any sequence of
bytes, that is, multiples of 8 bits. We represent a sequence of byte values by a sequence
of mathematical integers, and we can define the big-endian packing function as,

Definition Z_to_Int (abcd: 2Z) : Int.int :=
Int.or (Int.or (Int.or (Int.shl (Int.repr a) (Int.repr 24)) (Int.shl (Int.repr b) (Int.repr 16)))

3Aaron Tomb, Galois.com, personal communication, 13 January 2014.

4Paraphrase of J. J. Horning, 1982.

5Stephen Yi-Hsien Lin wrote a functional spec of SHA-256 in Coq, which I subsequently adapted and
rewrote.

SHenceforth, “proved” can be understood to mean, “proved with a machine-checked proof in Coq.”

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 5

(Int.shl (Int.repr c) (Int.repr 8))) (Int.repr d).

Given a list nl of byte values (represented as mathematical integers, type Z), if the
length of nl is a multiple of 4, it’s simple to define the corresponding list of big-endian
32-bit integers:

Fixpoint Zlist_to.intlist(nl: list 2): list int :=
match nl with h1::h2::h3::h4::it = Z_to_Int h1 h2 h3 h4 :: Zlist_to.intlist t
| .= nil
end.

Coq uses Definition for a nonrecursive function (or value, or type), and Fixpoint for struc-
turally recursive functions. The operator :: is list cons. The operations such as Int.shl
(shift left) and Int.repr (the 32-bit representation of a mathematical integer) are given
foundational meaning by Leroy’s Int package, as explained above.

SHS defines several functions Ch, Maj, ROTR, SHR, $§2°%}, {256} {236} " {256} ‘g
example,

Ch(z,y, z)
Maj(z,y, z)

(2 A y)® (~a A7)
(zAy)®(xAz)D(yAz)

Translating these into Coq is quite straightforward:

Definition Ch (x y z : int) : int := Int.xor (Int.and x y) (Int.and (Int.not x) z).

Definition Maj (x y z : int) : int := Int.xor (Int.xor(Int.and x z)(Int.and y z))(Int.and x y).
Definition Rotr b x : int := Int.ror x (Int.repr b).

Definition Shr b x : int := Int.shru x (Int.repr b).

Definition Sigma.0 (x : int) : int := Int.xor (Int.xor (Rotr 2 x) (Rotr 13 x)) (Rotr 22 x).
Definition Sigma.1 (x : int) : int .

Definition sigma.0 (x : int) : int
Definition sigma.1 (x : int) : int

The vector K(;{%G} . K6{32 56} is given as a series of 32-bit hexadecimal constants, as
is the vector HO(O) e H7(0). In Coq we write them in decimal, and inject with Int.repr:

Definition K := map Int.repr [1116352408 , 1899447441, 3049323471, ..., 3329325298].

Definition initial .registers := Map Int.repr [1779033703, 3144134277, ..., 1541459225].

Given a message M of length ¢ bits, the SHS explains: append a 1 bit, then enough
zero bits so the length-appended message will be a multiple of the block size, then a
64-bit representation of the length. Since we have a message M of length n bytes; we
append a 128 byte (which already has 7 trailing zeros), then the appropraiate number
of zero bytes. We big-endian convert this to 32-bit integers, then add two more 32-bit
integers representing the high-order and low-order parts of the length-in-bits.

Definition generate_.and.pad M :=
let n := Zlength M in
Zlist_to.intlist (M ++ [128%Z] ++ list.repeat (Z.to.nat (-(n + 9) mod 64)) 0)
++ [Int.repr (n * 8 / Int.modulus), Int.repr (n * 8)].

Note that 0 < ¢ mod 64 < 64 even if a is negative. The magic number 9 comes from 1+8:
1 terminator byte (value 128) plus 8 bytes for the 64-bit length field. Taking —(n + 9)
mod 64 gives the number of bytes of padding necessary to round up to the next multiple
of 64 bytes, which is the block size.

ACM Transactions on Programming Languages and Systems, to appear 2015

6 Andrew W. Appel

SHS defines the message schedule W, as follows:

" {M;i) 0<t<15
t — = E
Ufzdﬁ}(Wt—z) + Wiz + 05206}(Wt—15) + Wi—ie 16 <t <63
where the superscript (i) indicates the value in the ith message block. We translate
this into Coq as,

Function W (M: Z — int) (t: Z) {measure Z.to_nat t} : int :=
if zItt 16
then M t
else (Int.add (Int.add (sigma-1 (W M (t-2))) (W M (t-7)))
(Int.add (sigma.0 (W M (t-15))) (W M (t-16)))).
Proof.
intros; apply Z2Nat.inj.It; omega. (x t-2 < t*)
intros; apply Z2Nat.inj.lt; omega. (x -7 < t*)
intros; apply Z2Nat.inj.It; omega. (x t-15 < t)
intros; apply Z2Nat.inj.It; omega. (x t-16 < t %)
Qed.

Coq is a language of total functions. The measure and Proof/Qed demonstrate that the
W function always terminates. There is one proof line for each of the 4 recursive calls;
each proof'is, “calling on a smaller value of ¢.”

One could run this W as a functional program; but it takes time exponential in
t, since there are 4 recursive calls. It serves well as a functional spec but it is not
practically executable.

The block cipher computes 256-bit (8-word) hashes of 512-bit (16-word) blocks. The

accumulated hash of the first i blocks is the vector H\" ... H!”). To hash the next block,

the eight “working variables” a through & are initialized from the H (") vector. Then 64
iterations of this Round function are executed:

Definition registers := list int.

Function Round (regs: registers) (M: Z — int) (t: 2)
{measure (funt = Z.to_nat(t+1)) t} : registers :=
if zIt t O then regs
else match Round regs M (t-1) with
| [a,b,c,d,e,f,g,h] =
let T1 := Int.add(Int.add(Int.add(Int.add h (Sigma.1 €))(Ch e f g))(nthi K t))(W M t) in
let T2 := Int.add (Sigma.0 a) (Majabc) in
[Int.add T1 T2, a, b, ¢, Int.add d T1, e, f, 9]
| .= nil
end.
Proof. intros; apply Z2Nat.inj_lt; omega. Qed.

That is, one calls (Round r (nthi block) 63). (The function nthi b i returns the ith element
of the list b, or the arbitrary element Int.zero if i is negative or beyond the length of
the list.) If the length of the regs list is not 8, an arbitrary result (the empty list) is
returned; but it will be 8.

I represent registers as a list, rather than a dependently typed vector (i.e., a list
whose type inherently enforces the length restriction) to keep the specification as first-
order as possible. This simplifies reasoning about the specification, especially its porta-
bility to other logics.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 7

The round function returns registers a’,b’,..., 1’ which are then added to the i (@)
to yield HU+D:

Definition hash_block (r: registers) (block: list int) : registers :=
map2 Int.add r (Round r (nthi block) 63).

Given a message of length 16, the following function computes the H(*) by applying
hash_block to each successive 16-word block:

Function hash_blocks (r: registers) (msg: list int) {measure length msg} : registers :=
match msg with
| nil = r
| .= hash_blocks (hash.block r (firstn 16 msg)) (skipn 16 msg)
end.
Proof. ... Qed.

Finally, the SHA_256 produces the message digest as a 32-byte string by the big-
endian conversion of H(*),

Definition SHA_256 (str : list Z) : list Z :=
intlist_to_Zlist (hash_blocks init_registers (generate.and_pad str)).

4. FUNCTIONAL PROGRAM

One can prove that a program satisfies a specification, but how does one know that
the specification is properly written down? One way to gain confidence in the specifi-
cation is to calculate its results on a series of examples, i.e., to run it. The SHA_.256
function given above is actually an executable specification. Coq permits relational
(nonconstructive, propositional) specifications that do not run, but also permits fully
constructive specifications such as this one.

However, since the W function is exponential, it’s impractical to run this program.
Therefore I wrote an alternative functional program called SHA_256’. One can run this
program directly inside the Coq proof assistant on actual inputs; it takes about 0.25
seconds per block.

The key to this “efficiency” is that the W function should remember its previous
results.” Here msg is the reversed list W,_1, W;_o, W;_s, ... W:

Definition Wnext (msg : list int) : int :=
match msg with
| x1::x2::x3::x4::x5:x6:X7:x8::x9::x10::x11:x12::x13::x 14 :x15:x16::. =
(Int.add (Int.add (sigma-1 x2) x7) (Int.add (sigma.0 x15) x16))
| - = Int.zero (x impossible)
end.

Should we be worried about the “impossible” case? Coq is a language of total functions,
so we must return something here. One reason we need not worry is that I proved
that this case cannot cause the SHA_256’ program to be wrong. That is, I proved the
equivalence (using the extensionality axiom):

Lemma SHA_256’_eq: SHA_.256’' = SHA_256.

Also, the fact that SHA_256’ gives the right answer—on all the inputs that I tried—
allows us to know that SHA_256 is also right on those inputs.

7Also in this efficient program the generate.and.pad function is done quite differently.

ACM Transactions on Programming Languages and Systems, to appear 2015

8 Andrew W. Appel

This equivalence proof took about a day to build; this is much faster than building
the proof that the C implementation correctly implements the functional spec. But
sometimes we must program in C—to get SHA that runs in microseconds rather than
seconds.

Instead of calculating the result inside Coq, one could instead extract the program
as an ML program, and compile with the OCaml compiler. This would lead to faster
results than Coq, but slower than C. For the purpose of testing the SHA specification,
it is unnecessary.

5. INTRODUCTION TO VERIFIABLE C

The Verifiable C language and program logic is a subset of CompCert’s C Light lan-
guage. Every Verifiable C program is a legal C program, and every C program can
be expressed in Verifiable C with only local program transformations, such as pulling
side effects out of expressions: a=(b+=2)+3; becomes b+=2; a=b+3; (sometimes an extra
local variable is required to hold the intermediate result). The CompCert compiler ac-
cepts (essentially) the full C language; we use a subset not because of any inadequacy
of CompCert but to accommodate reasoning about the program. It is easier to reason
about one assignment at a time.

Separation logic. We use a variant of Hoare logic known as separation logic, which is
more expressive regarding anti-aliasing of pointers and separation of data structures.
We write {P} ¢ {Q} to mean (more or less), if P holds before ¢ executes, then @ will
hold after. In our separation logic, the assertion P has a spatial part dealing with
the contents of a particular footprint of memory, and a local part dealing with local
program variables, and a propositional part dealing with mathematical variables. An
example of a spatial assertion is,

array{o?n)(p) (n:2,f:Z—-V,p:V)

which represents an array of n elements starting at address p, whose ith element is
f(i). Here f is a total function from (mathematical) integers to values; we ignore f’s
domain outside [0, 7). Values V may be 32-bit integers (Vint i), 32-bit representations
of mathematical integers (Vint (Int.repr z)), floating point (Vfloat f), pointers (Vptr b)
with base b and in-the-block offset 4, or undefined/uninitialized values (Vundef).

Verifiable C’s array constructor actually takes two more arguments: a permission
share 7 indicating read-only, read-write, etc.; and the C-language type of the elements,
such as the type of unsigned characters,

Definition tuchar := Tint I8 Unsigned noattr.

Suppose we have two different arrays p, ¢ and we execute the assignment p[i]=q[j];
one possible specification is this:

{0<i<ji<nA (array () * arrayf’07n)(q))}
t=q[j; pli] =t

{0<i<j<nA (array{o[ln 90 (p) & arrayf, 1 (q))}

Separation logic’s inference rules prefer reasoning about one load or store at a time,
so I have made a local program transformation. Here I assume there are two disjoint
arrays p and ¢ whose contents are f and g respectively. You can tell they are disjoint
because the * operator enforces this. Because they are disjoint, we know (in the post-
condition) that ¢ is unchanged, i.e., its contents are still g. (If the programmer had
intended p and ¢ to possibly overlap, one would write a different specification.)

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 9

Program variables, symbolic values. This is a bit of a simplification: i, j, p, ¢ are pro-
gram variables, not logical variables. Verifiable C distinguishes these; one might write
the precondition “for real” as,

PROP (0 < i < j < n; writable_share 1)
LOCAL((eq 7) (eval.id .i); (eq j) (eval.id .j); (eq p) (eval.id .p); ‘(eq q) (eval.id .q))
SEP (‘(array.at tuchar 71 f 0 n p); ‘(array.at tuchar 75 g 0 n ¢))

where the PROP part has pure logical propositions (that do not refer to program state);
LOCAL gives assertions about local variables of the program state (but not memory);
and SEP is the separating conjunction of spatial assertions, i.e., about various disjoint
parts of memory.

The notation ‘(eq 7) (eval.id .i) means, “C program variable _i contains the symbolic
value :. This is effectively a statement about the current program state’s local-variable
environment p. The notation 'f lifts f over local-variable environments [Appel et al.
2014, Chapter 21], that is,

(eq i) (eval.id .i) = (funp= (eqi) (eval.id.ip)) =
(funp=(funz = i==z)(eval.id.ip)) = (funp=i=eval.id.ip).

or in other words, looking up .i in p yields i.

Permissions. The p array needs to be writable, while the ¢ array needs to be at least
read-only. This is expressed with permission-shares: p’s permission-share 7 needs to
satisfy the writable_share predicate. We don’t need to say readable_share m» because
that is implied by the array.at predicate.

We call these permission shares rather than just permissions because in the shared-
memory concurrent setting, a proof could split 7; = 7, + 71, into smaller shares that
are given to concurrent threads. These shares 71, and 71, would not be strong enough
for write permission, but they could be both strong enough for read permission. That
permits exclusive-write-concurrent-read protocols. Now, suppose SHA-256 were called
in one thread of a concurrent program. Its parameter (the string to be hashed) could
be a read-only shared array, but its result (the array to hold the message digest) must
be writable. All this is concisely expressed in the permission-share annotation of my
SHA-256 specification.

Control flow. The C language has control flow: a command ¢ might fall-through nor-
mally, might continue a loop, or break a loop, or return from a function. Thus the
postcondition) must have up to four different assertions for these cases. For the
case where all but fall-through are prohibited—i.e., three of these four postcondition-
assertions are False—use the construction normal_ret.assert.

normal_ret.assert (

PROP ()

LOCAL('(eq 7) (eval.id .i); "(eq 7) (eval.id _j); (eq p) (eval.id _p); (eq q) (eval.id _q))
SEP ((array-at tuchar 7 (upd f < (¢7)) O n p); ‘(array-at tuchar mo g 0 n g)))

This postcondition shows that the p array has changed in one spot and ¢ has not
changed. We can omit (0 < i < j < n) from the postcondition, since it’s a logical fact
independent of state, and (if true in the precondition) is eternally true.

Higher-order reasoning. Ordinary separation logic is inexpressive regarding
function-pointers, data abstraction, and concurrency; so Verifiable C is a higher-order
impredicative concurrent separation logic. Higher-order means that one can quantify
over predicates. This is useful for specifying abstract data types. It is also useful for
function pointers: if function f takes a parameter p that’s a function-pointer, then the

ACM Transactions on Programming Languages and Systems, to appear 2015

10 Andrew W. Appel

precondition of f will characterize the specification of p, i.e., p’s precondition and post-
condition. When function-pointer specifications are used to describe object-oriented
programs, then impredicative quantification over these specifications is necessary.

One might think that C is not an object-oriented language, but in fact C program-
mers often use design patterns that they express with void x. C’s type system is to
weak to “prove” that all these void * casts turn out all right, but we can specify and
prove this with the program logic.

The SHA verification does not use these higher-order features, though one could use
data abstraction for the context structure, SHA256state_st. However, OpenSSL uses an
object-oriented “engine” construction to compose HMAC with SHA.

Further reading. Appel et al. [2014] give a full explanation of the program logic.

6. THE C PROGRAM

The OpenSSL implementation of SHA-256 is clever in several ways (many of which
were intentional in the SHA-256 design):

(1) It works in one pass, waiting until the end before adding the padding and length.

(2) It allows incremental hashing. Suppose the message to be hashed is available,
sequentially, in segments s, s, ..., s;. One calls SHA256_Init to initialize a context,
SHA256_Update with each s; in turn, then SHA256_Final to add the padding and
length and hash the last block. If the s; are not block-aligned, then SHA256_Update
remembers partial blocks in a buffer. However, a block internal to one of the s; is
not cycled through the buffer; the sha256_block_data_order function operates on it
directly from the memory where it was passed to SHA256_Update.

(3) Within the 64-round computation, it store only the the most recent 16 elements of
W4, in a buffer accessed modulo 16 using bitwise-and in the array subscript.

(4) In adding the length of s; to the accumulated 64-bit count of bits, there is an over-
flow test: is the result of (a + b) mod 232 < a? If so, add a carry to the high-order
word. Such tests are easy to get wrong [Wang et al. 2013]; here it works because
a, b are declared unsigned, but still a proof is worthwhile.

(5) In the SHA256_Final function, there is one last block containing the 1-bit, padding,
and length. But there could be two “last” blocks, if the message body ends within 8
bytes of the end of a block (so there’s no room for the 1-bit plus 64-bit length).

(6) The accumulated state between calls to SHA256_Update is kept in a record “owned”
by the caller and initialized by SHA256_Init. But the W vector is purely local to the
“round” function (sha256_block_data_order), so is kept as a local-variable (stack-
allocated) array. Although that’s not particularly clever, it’s too clever for some C-
language verification systems, which (unlike Verifiable C) cannot handle address-
able local variables [Greenaway et al. 2012; Carbonneaux et al. 2014].

The client of SHA-256 calls upon it as follows:

typedef struct SHA256state_st {
unsigned int h[8]; // The H vector
unsigned int NI,Nh; // Length, a 64-bit number in two parts
unsigned char data[64]; // Partial block not yet hashed
unsigned int num; // Length of the message fragment

} SHA256.CTX;

SHA256_CTX c;

char digest[32];

char xmy, *ma, ..., xmg;
unsigned int nq, no, ..., ng;

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 11

// How the caller hashes a message:
SHA256_Init(&c);
SHA256_Update(&ec, m1, n1);
SHA256_Update(&c, ma, ns);

SHA256_Update(&c, my, n);
SHA256_Final(digest, &c);

The strings m; of lengths n; respectively make up the message. The idea is that Init
sets up the context ¢ with the initial register state c.h[], and then each Update hashes
some more blocks into that register state. If m; is not a full block, or rather if Z;.:l n; is
not a multiple of the block size, then a partial block is saved in (copied into) the context
c. Then the (i 4 1)th call to Update will use that fragment as the beginning of the next
full block. The m; need not be disjoint; the caller can build the successive parts of the
message in the same m buffer.

After the ith call, the registers c.h[] contain the hash of all the full blocks seen so
far, and the length NI,Nh contains the length (in bits) of all the message fragments, i.e.,
8- Z;:l nj.

At the end, the Final call adds the padding and length, and hashes the last block(s).
The final c.h[] values are then returned as a byte-string, the message digest.

Most of these “clever” implementation choices are not directly visible in the func-
tional specification, and are not representable in a domain-specific language such as
Cryptol. They are just general-purpose C programming, and our specification language
must be able to reason about them.

7. SPECIFYING THE C PROGRAM

The Separation Logic specification of a C program relates the program (and its in-
memory data structures) to functional or relational correctness properties. Appendix B
gives the full separation-logic specification of the OpenSSL SHA-256 program; here I
present a part of it.

The SHA256_CTX data structure has a concrete meaning and an abstract meaning.
The concrete meaning is given by this 6-tuple of values, corresponding to the 6 fields
of the struct:

Definition s256state := (list val « (val = (val « (list val x val)))).
(xcomment: h NI Nh data numx)

There’s a specific reason for using a tuple here, instead of a Coq record: this tuple
type is calculated automatically from the C-language struct definition, inside Coq’s
calculational logic.

The abstract meaning is that all the full blocks of m; + my + ... + m; have been
parsed® into a sequence of 32-bit words that we call hashed; and the remaining less-
than-a-block fragment is a sequence of bytes that we call data.

8SHS uses the word “parsed” to indicate: grouping bytes/bits into big-endian 32-bit words, and grouping
32-bit words into 16-word blocks.

ACM Transactions on Programming Languages and Systems, to appear 2015

12 Andrew W. Appel

Inductive s256abs := (x SHA-256 abstract state *)
S256abs: V (hashed: list int) (x words hashed, so far x)
(data: list Z), (x bytes in partial block x)
s256abs.

This fancy notation is really just a 2-tuple (hashed,data); I define it this way to influ-
ence the names Coq chooses for introduced variables.

The abstract state is an abstraction of the concrete state. I make this relation formal
in Coq as follows. First, we calculate what the H vector would be at the end of hashed:

Definition s256a_regs (a: s256abs) : list int :=
match a with S256abs hashed data = hash_blocks init_registers hashed end.

Notice that this calls upon hash_blocks from the functional spec described in section 3.
Next, we can calculate the bit-length of the hashed words plus the data bytes:

Definition s256a_len (a: s256abs) : Z :=
match a with S256abs hashed data = (Zlength hashed * 4 + Zlength data) * 8 end.

We can define the 64-bit concatenation of two 32-bit numbers, and what it means for a
(mathematical) integer to be representable in an unsigned char:

Definition hilo (hi: int) (lo:int) : Z := (Int.unsigned hi * Int.modulus + Int.unsigned lo).
Definition isbyteZ (i: Z) := (0 <i < 256).

Finally, here is the abstraction relation:

Definition s256_relate (a: s256abs) (r: s256state) : Prop :=
match a with S256abs hashed data =
§256.h r = map Vint (hash_blocks init.registers hashed)
A (3hi, 3lo, s256_Nh r = Vint hi A s256_NIr = Vint lo A
(Zlength hashed * 4 + Zlength data)«8 = hilo hi lo)
A s8256._data r = map Vint (map Int.repr data)
A (length data < 64 A Forall isbyteZ data)
A (16 | Zlength hashed)
A s256_num r = Vint (Int.repr (Zlength data))
end.

That is, a concrete state (., ™Nh, 7™NI; Tdatas Thum) Ye€presents an abstract state a =
(hashed, data) whenever:

— 1, is the result of hashing all of hashed;

— the bit-length of (hashed, data) equals ry, - 232 + r;

— the sequence of char values rg,;, corresponds exactly to the sequence of (mathemat-
ical) integers data;

— the length of data is less than the block size, and every element of datais 0 < d < 256;

— the length of hashed is a multiple of 16 words;

— the length of data is ry,m, bytes.

Verifiable C’s logic has an operator (data.at = 7 r p) saying that memory-address p,
interpreted according to the C-language type 7, contains (struct/array/integer) data
value r with access permission 7. For example: 7 =t.struct. SHA256state_st, p is a
pointer to struct SHA256state_st, r is a concrete-state value (m,, 7nn, N1, Tdata, Tnum), and
m is the full-access permission Tsh.

To relate the in-memory SHA256_.CTX to an abstract state, we simply compose the
relations data_at and s256._relate:

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 13

Definition sha256state. (a: s256abs) (c¢: val) : mpred :=
EX r: s256state,
PROP (s256.relate a r)
LOCAL ()
SEP (data.at Tsh t_struct.SHA256state_st r c¢).

This relates a to ¢ by saying there exists a concrete state r» such that abstract-to-
concrete composes with concrete-in-memory.

Incremental update. The SHA256_Update function updates a context ¢ with the bytes
data. of length len:

void SHA256_Update (SHA256_CTX *c, const void *data_, size_t len);

Suppose data. contains the sequence of integers msg. Appending msg to an
abstract state a« = (hashed, oldfrag) yields the updated abstract state o =
(hashed++blocks, newfrag) when,

Inductive update._abs: list Z — s256abs — s256abs — Prop :=
Update.abs:

(V msg hashed blocks oldfrag newfrag,
Zlength oldfrag < 64 —
Zlength newfrag < 64 —
(16 | Zlength hashed) —
(16 | Zlength blocks) —
oldfrag++msg = intlist_to_Zlist blocks ++ newfrag —

update_abs msg (S256abs hashed oldfrag) (S256abs (hashed++blocks) newfrag)).

where intlist_.to_Zlist unpacks big-endian 32-bit words into a sequence of byte values.
With these preliminaries defined, I can now present the separation-logic specifica-
tion of the Update function.

Definition SHA256_Update_spec :=
DECLARE _SHA256_Update
WITH a: s256abs, data: list Z, ¢ : val, d: val, sh: share, len : nat
PRE [-c OF tptr t_struct.SHA256state_st, .data. OF tptr tvoid, _len OF tuint]
PROP (len <= length data;
s256a.len o + Z.of_nat len x 8 < two_p 64)
LOCAL ('(eq ¢) (eval.id _c); (eq d) (eval.id _data.);
‘(eq (Z.of.nat len)) ('Int.unsigned(‘force.int(eval.id _len))))
SEP('K_vector (eval.var K256 (tarray tuint 64));
‘(sha256state. a c); ‘(data.block sh data d))
POST [tvoid]
EX a’:s256abs,
PROP (update._abs (firstn len data) a a’) LOCAL ()
SEP('K_vector (eval .var K256 (tarray tuint 64));
‘(sha256state. o’ ¢); (data.block sh data d)).

DECLARE gives the name (C language function identifier) of the function being speci-
fied. WITH binds (logical/mathematical) variables that can be used in both the precon-
dition and postcondition.

The precondition has the form PRE [Z] PROP P LOCAL @ SEP R where 7 are the
function parameters, annotated with their C language types (e.g., data. has type
pointer-to-void); P are pure logical PROPositions (that do not refer to the input state);
@ are local facts (that do not refer to the memory, but may refer to program variables),
and R are spatial facts (that refer to the memory via SEParation logic).

ACM Transactions on Programming Languages and Systems, to appear 2015

14 Andrew W. Appel

Here, data is a sequence of integers and d is an address in memory; both of these are
logical variables. The LOCAL clause says that the function’s data. parameter actually
contains the value d, the ¢ parameter contains the pointer value ¢, and so on. The
SEP clause names three separate memory regions of interest: the 64-word global array
K256; a SHA256_CTX c representing abstract state a; and a data-block at address d
containing the next message-segment data.

The postcondition is parameterized by the return value (this particular function has
no return value). Its PROP part relates a to the new abstract state a’; the LOCAL part
is empty (since there’s no return value to characterize), and the spatial (SEP) part says:
the global array K256 is still there unchanged; at address ¢ there is now an updated
state a’; and the data-block at d is still there unchanged.

Corollary. By the nature of separation logic, this functional specification inherently
makes specific guarantees about confidentiality, integrity, and lack of buffer overruns:

— The only variables or data structures read or written to are those mentioned in
function’s specification.

— The only variables or data structures written to are those mentioned with write
permission in the function’s specification.

— The values written are limited to what the specification claims.

For example, SHA256_Update_spec’s SEP clauses mention only the memory blocks at
addresses K256, ¢, and d; and the permission-share sh (controlling d) is not mentioned
as writable; this severely limits where SHA256_Update can read and write.

Static analysis tools such as Coverity cannot prove functional correctness, but at
least in principle they can find basic safety problems. But “Coverity does not spot the
heartbleed flaw ... it remained stubborn even when they tweaked various analysis set-
tings. Basically, the control flow and data flow between the socket read() from which the
bad data originates and the eventual bad memcpy() is just too complicated.” [Regehr
2014]

SHA-256, especially the Update function which copies fragments of arrays, contains
nontrivial control flow and data flow leading to memcpy(). But the full verification
reported in this paper must fully analyze the control and data, no matter how compli-
cated; and the higher-order logic (CiC) provides a sufficiently expressive tool in which
to do it. We know there’s no heartbleed in SHA.

8. IS THE SPECIFICATION RIGHT?

The SHA-256 program is about 235 lines of C code (including blank lines and sparse
comments).

The FIPS 180-4 specification of SHA is 35 pages of text and mathematics; the parts
specific to SHA-256 are perhaps 16 pages. My functional specification—the “transla-
tion” of this to logic—is 169 lines of Coq, but it relies on libraries for the mathematical
theories of the unbounded integers, the 32-bit integers, and lists, which together are
many lines more.

My specification of how the C code corresponds function-for-function to the func-
tional spec takes 247 lines of Coq. The proof in Coq is much larger—see §9—but it
need not be trusted because it is machine-checked.

Have we gained anything when the specification of a 235-line program is 169+247
lines? Is it easier to understand (and trust) the program, or its specification?

There are several reasons that the specification is valuable:

(1) It can be manipulated logically. For example, two different characterizations of the
W function can be proved equivalent.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 15

(2) The functional specification can be executed on test data. In this case, we do this
indirectly but assuredly by proving its equivalence to a functional program that
executes on the test data.

(3) The proof of SHA-256 correctness connects directly to the proof of C-compiler cor-
rectness, inside the theorem prover with no specification “gaps.”

The last point is quite important. The C program for SHA-256 may be only 235 lines,
but its meaning depends on the understanding of the semantics of C. Even if it is true
that (these days) C has a clear and well-understood specification,? that spec is orders
of magnitude larger than 235 lines. In contrast, in the Verified Software Toolchain the
C spec is an internal interface between the program logic and the CompCert compiler.
That is, suppose for the sake of argument that CompCert’s C specification is “wrong;”
or the Verifiable C program logic is “wrong.” It still won’t matter: by composing the cor-
rectness proof of SHA-256 (in the Verifiable C program logic), with the soundness proof
of the program logic, with the correctness proof of CompCert, we get an end-to-end
proof about the observable input/output behavior of the assembly language program,
regardless of the internal specifications.

Still, the first point is important too: the value of a specification is that one can
interact with it in logic. You need not assume that my translation of the SHS document
into Coq is correct; you have the opportunity to test its properties mathematically (by
proving theorems about it) in the proof assistant.

The specifications of the block.data.order, Init, Update, and Final functions are rather
complex, because of the way they support incremental hashing. One mathematical way
of gaining confidence in these specifications is to compose them. That is, this C function

void SHA256(const unsigned char *d, size_t n, unsigned char *md) {
SHA256_CTX c;
SHA256_Init (&c);
SHA256_Update (&c,d,n) ;
SHA256_Final (md,é&c) ;
}

should be equivalent to nonincremental SHA-256 hashing. We can see this in its spec:

Definition SHA256_spec =
DECLARE _.SHA256
WITH d: val, len: Z, dsh: share, msh: share, data: list Z, md: val
PRE [.d OF tptr tuchar, .n OF tuint, .md OF tptr tuchar]
PROP (writable_share msh; Z.of_nat (length data) x 8 < two_p 64)
LOCAL ((eq d) (eval.id .d); (eq (Z.of.nat (length data))) ('Int.unsigned (‘force.int (eval.id _n)));
‘(eq md) (eval.id .md))
SEP('K.vector (eval _var .K256 (tarray tuint 64));
‘(data_block dsh data d); (memory._block msh (Int.repr 32) md))
POST [tvoid]
SEP('K.vector (eval _var .K256 (tarray tuint 64));
‘(data_block dsh data d); "(data_block msh (SHA_256 data) md)).

This says that calling SHA256(d,n,md) will fill in the message-digest md with the hash
as computed by the functional specification (SHA.256 data), as long as the memory
at d was indeed data, and data is less than two billion gigabytes. In addition, the
(global) K256 must be properly initialized beforehand, and is guaranteed preserved

9and even if it were true that compiler experts understand that specification in the same way that program-
mers do, which is doubtful [Wang et al. 2013]

ACM Transactions on Programming Languages and Systems, to appear 2015

16 Andrew W. Appel

unchanged; the input data must be present and will not be modified; and the output
area must be writable. Finally, no other memory (except for the activation records of
called functions) will be read or written; this is an implicit (but very real) guarantee of
the separation logic.

The fact that SHA256 satisfies this (relatively) simple specification is a proof for the
nonincremental case, that all the other functions’ specifications are “right”—that is,
they compose properly. It is not a proof that the incremental case (more than one call
to Update) is specified right, but it does help build assurance. Guarantees about the
incremental case rely on the rightness of the SHA256_Update_spec definition.

9. THE PROOF

The proof of the functional program w.r.t. the functional specification is fairly concise:
Lines Seconds component

1022 29 Lemmas about the functional spec
1202 12 Correctness proof of functional program
2424 41 Total

I show here the size of the Coq proof, and the time for Coq to check the proof in batch
mode. The first component (lemmas) is shared with the proof of the C program.

My correctness proof of the C program is quite large—6539 lines of proof, written by
hand with some cut-and-paste. It’s also very slow to check. Thus, the current Verifi-
able C system must be regarded as a prototype implementation (though unlike most
prototypes it has a machine-checked proof of correctness).

Lines Seconds component

1022 29 Lemmas about the functional spec
229 83 Proof of addlength function
1640 625 sha256_block_data_order()
43 256 SHAZ256 Init()
1682 800 SHAZ256_Update()
1484 687 SHA256_Final()
58 91 SHA256()

6539 2571 Total

Writing 6500 lines to verify this program is simply too much work. I'm sure that
my proof is clumsy and inelegant in many places and likely there is a 2000-line proof
struggling to get out. But perhaps the real solution here is to drastically improve the
proof automation by using modern proof-search algorithms such as satisfiability mod-
ulo theories (SMT). Recent experiments have combined the trustworthiness of Coq
(small kernel checking a proof) with the power of SMT (large C++ program claiming
unsatisfiability) by exporting proof witnesses from SMT solvers to Coq [Besson et al.
2011; Armand et al. 2011].

Checking the proofs takes 2571 seconds (43 minutes) on one processor of an Intel
core i7 (at 3.4 Ghz) with plenty of cache and 2GB ram. Multicore, it goes much faster
using parallel make. Still, 43 minutes is far too long for a program this size. As a batch
command it might be tolerable; the problem is in the interactive proof, where it might
take 2 minutes to move past one line of C code—this is not very interactive.

Coq is not normally so slow; the problem is symbolic execution. The component listed
in the first line of the table above (lemmas about the functional spec etc.) contains no
symbolic execution—no application of the C-language program logic with all its side
conditions. That component takes only 29 seconds in Coq.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 17

Why is symbolic execution of C programs so slow? We wrote the prototype inter-
active prover for Verifiable C as a user-driven symbolic executor programmed in the
Ltac language of Coq. As symbolic execution proceeds, the user frequently provides
proofs for those steps where the automation cannot find a proof. So far, no problem—
although it would be better to have more automation, so less user interaction; that’s
future work. The problem is that Coq builds a proof trace of the symbolic execution—
that is, every step of the analysis corresponds to a data structure describing a proof
term. Worse yet, as the terms are being constructed they are actually function closures
(activation records) that (when invoked) will build the concrete proof terms. Since each
step of symbolic execution checks dozens of conditions, the proof-construction function
closures can occupy hundreds of megabytes. Since I am running a 32-bit Coq limited
to 2 gigabytes and with a copying garbage collector, this consumes most of memory.

One solution, readily available, is to run 64-bit Coq on my 32-gigabyte desktop com-
puter. But I would like to think that verifying a program as small as SHA-256 could
readily be done on an ordinary laptop. Two other solutions to this problem are poten-
tially available:

(1) Program the symbolic execution using computational reflection. That is, write a
functional program in Coq to do symbolic execution of the Verifiable C program
logic, prove it correct in Coq, and then apply it to C programs such as SHA-256.
During the execution of such a program, Coq does not build proof traces. The VST
project is already working on this approach [Appel et al. 2014, Chapters 25,46,47].

(2) Coq does not necessarily need to build proof terms as data structures. The Edin-
burgh LCF proof assistant in 1979 demonstrated a technique for using a small
trustworthy proof-checking kernel using an abstract-data-type interface rather
than a proof-term data structures [Gordon et al. 1979]. Some modern systems such
as HOL and Isabelle/HOL also use this ADT approach. Using ADTs instead of proof
terms would solve the memory problem, but it would require substantial change
inside Cogq.

10. IS IT REALLY OPENSSL?

Verifiable C is a subset of the C language; certain program transformations are needed
before applying the program logic. Therefore I modified the OpenSSL implementation
of SHA-256 in these ways:

(1) OpenSSL is heavily macro-ized so that the same source file generates SHA-224,
SHA-256, and other instantiations. I expanded the macros and included header
files just enough to specialize to SHA-256.

(2) Verifiable C prohibits side effects inside subexpressions; I broke these into separate
statements.

(3) Verifiable C prohibits memory references inside subexpressions, and requires that
each assignment statement have at most one memory reference at top level. This
requires local rewriting, often with the introduction of a temporary variable.

(4) The current prototype Verifiable C requires a return statement instead of a fall-
through at the end of a function, so I added some return statements.

The first two of these are handled automatically by the compiler before applying the
program logic, so they do not require any manual changes to the program. The third
one could also be handled by the compiler but is not at present. The last one will be
remedied in the near future.

Still, by instantiating some macros I made my proof task easier, at the cost of limit-
ing the generality of my result to the 256-bit case.

ACM Transactions on Programming Languages and Systems, to appear 2015

18 Andrew W. Appel

11. COMPOSING THIS PROOF WITH OTHERS

Verifications of individual components can suffer from the problem that the size of the
specification can be larger than the size of the program. The machine-checked proof
removes the program from the trusted base, but if the specification is as big as the
program, what have we gained? The answer can come in the composition of systems.
When we compose the SHA-256 proof with the Verifiable C proof with the CompCert
proof, the entire specification of C drops out of the trusted base (as explained in §8).

At the other end, we should connect SHA-256 with its application, for example in the
HMAC protocol for cryptographic authentication. HMAC calls upon a cryptographic
hash function (such as SHA-256).

Desired claim: A particular implementation A of HMAC in the C language is a key-
selected pseudorandom function (PRF) on the message.

Proof structure:

(1) The C program A, which calls upon SHA-256, correctly implements the functional
specification of HMAC. (Future work: To be formalized and proved using tech-
niques similar to those described in this paper.)

(2) The functional spec of HMAC (indexed by a randomly chosen key) gives a PRF, pro-
vided that the underlying hash primitive is a Merkle-Damgard hash construction
applied to a PRF compression function. Proof: Future work based (for example) on
Gazi et al. [2014] or Bellare et al. [1996; 2006] but fully formalized in Coq.'?

(3) OpenSSL’'s SHA-256 correctly implements the functional spec of SHA-256.
(This paper.)

(4) The functional spec of SHA-256 is a Merkle-Damgard hash construction. (Provable
from the functional spec described in this paper; future work.)

(5) The compression function underlying SHA-256 is a PRF.!! Oops! Nobody knows
how to prove that SHA-256’s compression function is a PRF. For now, the world
survives on the fact that nobody knows how (without knowing the key) to distin-
guish it from a random function.

So this is a chain of proofs with a hole. Fortunately, the hole is in only the place where
symmetric crypto always has a hole: the crypto properties of the symmetric-key primi-
tive. This hole is bounded very closely by the functional specifications of both SHA-256
(169 lines of Coq) and of one-way functions. All the rest—the messy parts in C—are
not in the trusted base, their connection is proved with machine-checked proofs.

That’s almost true—but there’s really one more thing. Eventually the end user has
to call the HMAC function, from a C program. That user will need a specification
related to C-language calling conventions. In this paper I have shown what such a
specification looks like for SHA-256: the definition SHA256_spec in §8. This is not too
large or complex; the specification of HMAC would be similar.

10There are rumors that something like this has been done in CertiCrypt, but no publication describes a
CertiCrypt proof of HMAC or NMAC. There is a brief description of an EasyCrypt proof of NMAC in [Barthe
et al. 2012], but (unlike CertiCrypt) EasyCrypt is not foundational: “EasyCrypt was conceived as a front-end
to the CertiCrypt framework. . .. Certification remains an important objective, although the proof-producing
mechanism may fall temporarily out of sync with the development of EasyCrypt.” [Barthe et al. 2012] It
appears that EasyCrypt/CertiCrypt have been continuously out of sync since 2012.

1 More precisely: Bellare’s [2006] HMAC proof requires that the underlying hash function H is a Merkle-
Damgérd construction on a round function R(z, m) such that: (A) the “dual family” of R is secure against
related-key attacks, and (B) R is a pseudorandom function (PRF). That is, given a random unknown key z,
it is computationally intractable to distinguish Am.R(z, m) from a randomly chosen function over m.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 19

12. THE TRUSTED BASE

The assurance of the correctness of SHA-256 relies on a trusted base, a series of specifi-
cations and implementations that must be correct for the proof to be meaningful. That
is, we must trust:

Calculus of Inductive Constructions. The logic underlying Coq must be consistent in
order to trust proofs in it. Several refereed papers have been published giving
consistency arguments for versions of this logic, but these papers have not fully
tracked the particular logic implemented in Coq. In general, CiC is a stronger and
more complex logic than some of its competitors such as HOL and LF, so there is
more to trust here.

Axioms. The soundess proof of Verifiable C uses the axioms of (dependent) functional
extensionality and propositional extensionality. Both of these axioms are consis-
tent with Coq’s core theory, that is, when they are added to CiC it is still impossi-
ble to prove false. But in 2013 it was discovered that propositional extensionality is
unsound in Coq 8.4.!2 This is not an inherent problem with the consistency of the
axiom, it is a bug in Coq’s termination checking.!? It is expected that near-future
releases of Coq will be consistent with functional and propositional extensionality.

Coq kernel. Coq has a kernel that implements proof-checking (type-checking) for CiC.
We must trust that this kernel is free of bugs. The kernel is between 10,000 and
11,000 lines of ML code.

OCaml compiler. The Coq kernel’s ML compiler is compiled by a the OCaml compiler,
which is tens of thousands of lines of code. That compiler is compiled by itself,
leading to an infinite regression that cannot be fully trusted [Thompson 1984].

OCaml runtime. Coq, running as an OCaml-compiled binary, is serviced by the
OCaml runtime system and garbage collector, written in C.

Functional specification of SHA-256. We must trust that I have correctly transcribed
the FIPS 180-4 standard into Coq. However, if (in the future) we complete crypto
proofs about the functional spec, then this element drops out of the trusted base,
to some extent.

API specification of SHA-256. The intended relation of the functional spec to data
structures at API function calls, what I have called the “API spec”, must be right,
otherwise I have proved the wrong thing.

Specification of CompCert. 1 have explained earlier that we do not need to trust
CompCert’s specification of the C language, since that “drops out” of the trusted
base when composed with the soundness proof of the Verifiable C program logic.
But we do need to trust that CompCert’s specification of Intel x86 (IA-32) assembly
language is correct.

Assembler. At present, there is no proved-correct assembler for CompCert. The tran-
sition from assembly language to machine language is done by the GNU assembler
and linker. Proving correctness of an assembler is quite achievable [Wu et al. 2003].

Intel Core i7. The OCaml binary and garbage collector run in machine language. My
computer is an Intel Core i7, and we must trust that Intel has correctly imple-
mented the instruction-set architecture, for two reasons: First, we run Coq on it,
so that affects confidence in the proof-checking. Second, we run the SHA-256 on it,

12Daniel Schepler, Maxime Déneés, Arthur Charguéraud, “Propositional extensionality is inconsistent in
Coq,” coq-club mailing list, 12 December 2013.

13«Just to reassure everyone having developments relying on these axioms, the problem does not seem too
deep. There is a slight inconsistency in the way the guard checker handles unreachability hypotheses, but
that should be easily fixed without too much impact on existing contributions (hopefully).” Maxime Dénes,
coqg-club mailing list, 12 December 2013.

ACM Transactions on Programming Languages and Systems, to appear 2015

20 Andrew W. Appel

and therefore the specification of the assembly language is part of the assumptions
of the CompCert correctness proof.

This is a long chain of trust. One can do much better. The Foundational Proof-
Carrying code project had a trusted base of less than 3000 lines of code, including
axioms, proof-checking kernel, compiler, runtime, functional specification, API specifi-
cation, and ISA specification [Wu et al. 2003] (and it avoided the Thompson paradox
by not needing a compiler in the trusted base). But that was for a much less ambi-
tious project (safety instead of correctness) in a much weaker logic (LF instead of Coq).
Scaling those tiny-trusted-base techniques to VST would not be easy.

13. RELATED WORK IN CRYPTO
One can compare to previous work on several dimensions:

Specification. Is there a specification of the program’s function? Is the specification
be written in a pure functional (or relational) language, amenable to analysis in a
proof assistant? (That is, aside from verification that an implementation satisfies
the functional spec, can one reason about the functional spec per se?)
Implementation. Is the proof about an efficient implementation (e.g., in compiled
C or Java), or only about a functional spec?

Foundational. Is there an end-to-end machine-checked proof from the foundations
of logic, that the generated assembly code correctly implements the specification,
without trusting the compiler (or equivalently, without trusting the programming-
language specification)? (Where there is no implementation, this question does not
even apply.)

Automatic. Does the verifier check or synthesize the crypto algorithm without
much (or any) interactive (or scripted) human input or annotations?

General. Can the verifier handle all parts of a crypto algorithm (such as the man-
agement code in SHA256_Update), or only the parts where the number of input bits
is fixed and the loops can be completely unrolled?

Specification, implementation, foundational, not eutemeatie, general:. The work de-
scribed in this paper.

Specification, implementation, not foundeational, automatic, not general:. Smith and
Dill [2008] verified several block-cipher implementations written in Java, w.r.t. a func-
tional spec written either in Java or in ACL2. They compiled to byte-code, then used
a subset model of the JVM to generate straight-line code. This renders them immune
to bugs in javac, but the JIT compiler (from byte-code to native code) is unverified (or,
equivalently, their JVM spec is unverified). They prove the straight-line code equiva-
lent to the straight-line code of the functional spec. Their verification is fully automatic,
using rewrite rules to simplify and normalize arithmetic expressions—with rules for
many special patterns that occur in crypto code, such as bitfield concatentation by
shift-and-or. After rewriting, they use a SAT solver to compare the normalized expres-
sions. Smith and Dill’s method applies only where the number of input bits is fixed
and the loops can be completely unrolled. Their verifier would likely be applicable to
the SHA-256 block shuffle (sha256_block_data_order) function, but certainly not to the
management code (SHA256_Update).

Limited specifieatiorn, implementation, not foundeational, automatic, not general.
Cryptol [Erkok et al. 2009] generates C or VHDL directly from a functional specifica-
tion, where the number of input bits is fixed and the loops can be completely unrolled.
In fact, Cryptol does unroll the loop in sha256_block_data.order, leading to a program
that is 1.5x faster than OpenSSL’s standard implementation (when both are compiled

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 21

by gcc and run on Intel Core i7)'%. The spec is in a Haskell dialect, not directly embed-
dable in any existing proof assistant; the synthesizer is not verified.

Specification, implementation, not foundeational, not awtomatic, not generai.. Toma
and Borrione [2005] used ACL2 to prove correctness of a VHDL implementation of the
SHA-1 block-shuffle algorithm.

No specification, implementation, not foundationat, automatic, general:. One can ap-
ply static analysis algorithms to C programs to learn whether they have memory-
safety bugs such as buffer overruns. Many such analyses are both unsound (will miss
some bugs) and incomplete (will report false-positives about bug-free programs). Even
so, they can be very useful; but they do not attempt to prove functional correctness
with respect to a specification.

Complementary work. In this paper I have concentrated on the verification that
an implementation satisfies its functional specification. Complementary work estab-
lishes properties of the functional specs. For example, Duan et al. [2005] proved a
property of the functional specs of several encryption algorithms: that decryption is
the inverse of encryption. More relevant to SHA-256, Backes et al. [2012] verify me-
chanically (in EasyCrypt) that Merkle-Damgard constructions have certain security
properties. Bellare [1996; 2006] gave the first proofs of NMAC/HMAC security (with-
out a machine-checked proof); Gazi et al. [2014] prove PRF-security of NMAC/HMAC
(without a machine-checked proof), based on fewer assumptions.

EasyCrypt. Almeida et al. [2013] describe the use of their EasyCrypt tool to ver-
ify the security of an implementation of the RSA-OAEP encryption scheme. A func-
tional specification of RSA-OAEP is written in EasyCrypt, which then verifies its se-
curity properties. An unverified Python script translates the EasyCrypt specification
to (an extension of) C; then an extension of CompCert compiles it to assembly lan-
guage. Finally, a leakage tool verifies that the assembly-language program has no more
program-counter leakage than the source code, i.e. that the compiled program’s trace
of conditional branches is no more informative to the adversary than the source code’s.

The EasyCrypt verifier is not fully foundational; it is an OCaml program whose
correctness is not proved. The translation from EasyCrypt to C is not foundational. The
translation from C to assembly language is foundational, using CompCert. Programs
must operate on fixed-size data blocks.

The leakage model is the Program Counter Model (trace of conditional branches),
and there is a foundational checker (i.e., proved correct in Coq) that compiled pro-
grams leak no more PC-trace information than the source program. But other forms
of leakage are not modeled. In particular, SHA-256 has a line of code (marked
/* keep it zeroed */) whose entire purpose is to reduce leakage of message frag-
ments through deallocated memory; but that kind of leakage channel is not modeled
in EasyCrypt.

EasyCrypt’s C code relies on bignum library functions called through a nonstandard
specification interface—nonstandard, because standard CompCert (through the cur-
rent version, 2.3) has no way to handle external function calls that receive or return
results in memory. But EasyCrypt provides no mechanism by which these functions
can be proved correct, nor does it give a mechanized proof theory for this custom spec-
ification interface.

In summary, Almeida et al. attack two problems that are exactly complementary
to the work I have done. EasyCrypt allows reasoning about crypto properties of the

14 Aaron Tomb, Galois.com, personal communication, 13 January 2014.

ACM Transactions on Programming Languages and Systems, to appear 2015

22 Andrew W. Appel

functional spec; and they extend CompCert’s compilation-correctness guarantees with
a guarantee about a particular side channel. They do not reason about the semantic
relation between the functional spec and the C program (either the main algorithm or
the bignum library).

14. RELATED WORK IN C VERIFICATION

There are many program analysis tools for C. Most of them do not address func-
tional specification or functional correctness, and most are unsound and incomplete.
Nonetheless, they are very useful in practice: C static-analysis tools are a billion-
dollar-a-year industry.'®

Foundational formal verification of C programs has only recently been possible. The
most significant such works are both operating-system kernels: sel.4 [Klein et al. 2009]
and CertiKOS [Gu et al. 2011]. Both proofs are refinement proofs between functional
specifications and operational semantics. Both proofs are done in higher-order logics:
sel4 in Isabelle/HOL and CertiKOS in Coq. Each of these projects verifies a signifi-
cantly larger C program than the SHA-256 program I describe here.

Neither of their proof frameworks use separation logic, neither can accommodate
the use of addressable local variables in C, and neither can handle function-pointers
or higher-order specifications. This means that the OpenSSL SHA-256 program could
not be proved in these frameworks, because it uses addressable local variables. A minor
adjustment of the C program—moving the X array into the SHA256state_st structure—
would eliminate the use of addressable locals, however.

SHA-256 does not use function pointers. However, OpenSSL uses function point-
ers in its “engines” mechanism, an object-oriented style of programming that dynam-
ically connects components together—for example, HMAC and SHA. The Verifiable C
program logic, with higher-order separation logic, is capable of reasoning about such
object-oriented patterns in C [Appel et al. 2014, Chapter 29].

The C semantics used in the original sel.4 proof was not connected to a C compiler
(e.g., it is not the CompCert C semantics), so the entire C semantics is part of the
trusted base of the selLl4 proof. More recent work removes C from the trusted base:
Sewell et al. [2013] perform translation validation for gcc 4.5.1 by decompiling ARM
code to logical graphs, then using a combination of carefully tuned heuristic proof
search and SMT solving to find a proof of equivalence between source program and
machine language.

CertiKOS is proved correct with respect to the CompCert C semantics, so (as in my
SHA-256 proof) this C semantics drops out of the trusted base.

Both selL4 and CertiKOS are newly written C programs designed for verification.
In principle, this is the right way to do things: it can be difficult to verify pre-existing
programs. However, there are times when it’s important to be able to do so. Aircraft
manufacturers, who have code bases already certified (and trusted) for use in passen-
ger jets, should not be asked to rewrite their fly-by-wire software just so that they
can apply new and better verification techniques. And, to the extent that the security
community has come to trust nonfunctional properties of OpenSSL—Ilack of timing
channels, fault injection resistance, compatibility with many C compilers—this trust
cannot necessarily be transferred to new implementations.

15. CONCLUSION

Functional correctness verification of C programs has important applications in com-
puter security. Correctness has the corollary of memory safety, which is valuable in

15Andy Chou, “From the Trenches: Static Analysis in Industry”, invited talk at POPL 2014, January 24,
2014.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 23

itself. But in the implementatation of protection mechanisms (such as operating sys-
tems, encryption, authentication), safety is not enough: correctness is what guarantees
that these mechanisms actually secure the systems that they are supposed to protect.

C is not friendly to program verification: it has tricky corners, one needs to keep track
of many side conditions. Nonetheless it is possible to do full formal verification of C
programs. Previous results have demonstrated this for operating-system microkernels
[Klein et al. 2009] (though not with the verified connection to a verified compiler). In
such results, the C program is typically constructed anew with a design particularly
suited for the verification task.

In this project I demonstrated that one can verify a program as it is. This
is valuable because widely used open-source cryptographic primitives have many
relevant properties other than functional correctness. For example, the comment
/* keep it zeroed */ in the Update function is attached to a line that has no func-
tional impact, but might reduce information flow through deallocated variables. My
program logic cannot prove that this line reduces side channels, but at least I can prove
that it does not impair functional correctness. Whatever assurance and confidence the
community has gained in this program will only be increased by this verification.

At the same time, these cryptographic primitives have many implementation vari-
ants (using machine-dependent instructions). Small variations of this proof can serve
to prove all of them equivalent to the same functional specification, even if there are
not “many eyes” on every single one of them to keep the bugs shallow.

REFERENCES

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and Francois Dupressoir. 2013. Certified computer-
aided cryptography: efficient provably secure machine code from high-level implementations. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications security. ACM, 1217—
1230.

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, San-
drine Blazy, and Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge.

Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benjamin
Werner. 2011. A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In First
International Conf. on Certified Programs and Proofs.

Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, César Kunz, Malte Skoruppa, and San-
tiago Zanella Béguelin. 2012. Verified security of Merkle-Damgéard. In Computer Security Foundations
Symposium (CSF), 2012 IEEE 25th. IEEE, 354-368.

Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, and Santiago Zanella Béguelin. 2012.
Computer-aided cryptographic proofs. In Interactive Theorem Proving. Springer, 11-27.

Mihir Bellare. 2006. New proofs for NMAC and HMAC: Security without collision-resistance. In Advances
in Cryptology-CRYPTO 2006. Springer, 602—-619.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Keying hash functions for message authentication.
In Advances in CryptologyCRYPTO96. Springer, 1-15.

Frédéric Besson, Pierre-Emmanuel Cornilleau, and David Pichardie. 2011. Modular SMT Proofs for Fast
Reflexive Checking inside Coq. In First International Conf. on Certified Programs and Proofs.

Lindsey Bever. 2014. Major bug called ‘Heartbleed’ exposes Internet data. Washington Post (9 April 2014).

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-End Verifica-
tion of Stack-Space Bounds for C Programs. In In Proc. 2014 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’14).

Jianjun Duan, Joe Hurd, Guodong Li, Scott Owens, Konrad Slind, and Junxing Zhang. 2005. Functional
correctness proofs of encryption algorithms. In Logic for Programming, Artificial Intelligence, and Rea-
soning. Springer, 519-533.

L. Erkok, Magnus Carlsson, and Adam Wick. 2009. Hardware/software co-verification of cryptographic algo-
rithms using Cryptol. In Formal Methods in Computer-Aided Design, 2009 (FMCAD’09). IEEE, 188-191.

FIPS 2012. Secure Hash Standard (SHS). Technical Report FIPS PUB 180-4. Information Technology Lab-
oratory, National Institute of Standards and Technology, Gaithersburg, MD.

ACM Transactions on Programming Languages and Systems, to appear 2015

24 Andrew W. Appel

Peter Gazi, Krzysztof Pietrzak, and Michal Rybar. 2014. The Exact PRF-Security of NMAC and HMAC. In
Advances in Cryptology—-CRYPTO 2014. Springer, 113-130.

Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF: A Mechanised Logic
of Computation. Lecture Notes in Computer Science, Vol. 78. Springer-Verlag, New York.

David Greenaway, June Andronick, and Gerwin Klein. 2012. Bridging the gap: Automatic verified abstrac-
tion of C. In Interactive Theorem Proving. Springer, 99—-115.

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS: A Certified
Kernel for Secure Cloud Computing. In Proceedings of the Second Asia-Pacific Workshop on Systems
(APSys’11). ACM, Article 3, 5 pages. DOI:http:/dx.doi.org/10.1145/2103799.2103803

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, and others. 2009. seL.4: Formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 207-220.

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. Journal of Automated Reasoning 43, 4 (2009),
363-446.

John Regehr. 2014. A New Development for Coverity and Heartbleed. Embedded in Academia (12 April
2014). blog.regehr.org/archives/1128

Bruce Schneier. 1999. Open Source and Security. Crypto-Gram Newsletter (15 Sept. 1999).

Bruce Schneier. 2013. How to Remain Secure Against the NSA. Crypto-Gram Newsletter (15 Sept. 2013).

Thomas A. L. Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation validation for a verified OS
kernel. ACM SIGPLAN Notices 48, 6 (2013), 471-482.

Eric W. Smith and David L. Dill. 2008. Automatic formal verification of block cipher implementations. In
Formal Methods in Computer-Aided Design (FMCAD’08). IEEE, 1-7.

Ken Thompson. 1984. Reflections on Trusting Trust. 27, 8 (1984), 761-763.

Diana Toma and Dominique Borrione. 2005. Formal verification of a SHA-1 circuit core using ACL2. In
Theorem Proving in Higher Order Logics. Springer, 326-341.

Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards optimization-
safe systems: analyzing the impact of undefined behavior. In Proceedings 24th ACM Symposium on
Operating Systems Principles. ACM, 260-275.

Dinghao Wu, Andrew W. Appel, and Aaron Stump. 2003. Foundational Proof Checkers with Small Witnesses.
In PPDP. 264-274.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2012. Finding and understanding bugs in C compilers.
ACM SIGPLAN Notices 47, 6 (2012), 283-294.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 25

APPENDIX
A. SHA-256, C PROGRAM ADAPTED FROM OPENSSL

/* Adapted 2013 from OpenSSL098 crypto/sha/sha256.c Copyright (c) 2004 The OpenSSL
* Project. All rights reserved according to the OpenSSL license.

*/

extern unsigned int __builtin_read32_reversed(const unsigned int * ptr);
extern void __builtin_write32_reversed(unsigned int * ptr, unsigned int x);

#include <stddef.h>
#include <string.h> /* for memcpy, memset */

#define HOST_c21(c,1) \
(1=(unsigned long) (__builtin_read32_reversed (((unsigned int *)c))),c+=4,1)

#define HOST_12c(1,c) \
(__builtin_write32_reversed (((unsigned int *)(c)),1),c+=4,1)

#define SHA_LONG unsigned int

#define SHA_LBLOCK 16
#define SHA_CBLOCK (SHA_LBLOCK*4)
/* SHA treats input data as a contiguous array of 32 bit wide big-endian values. */
#define SHA_LAST_BLOCK (SHA_CBLOCK-8)
#define SHA_DIGEST_LENGTH 20

#define SHA256_DIGEST_LENGTH 32

typedef struct SHA256state_st {
SHA_LONG h[8];
SHA_LONG N1,Nh;
unsigned char data[SHA_CBLOCK];
unsigned int num;
} SHA256_CTX;

#define MD32_REG_T long
#define ROTATE(a,n) (((a)<<(m))|(((a)&Ooxffffffff)>>(32-(n))))

static const SHA_LONG K256[64] = {
0x428a2f98UL,0x71374491UL, Oxbef9a3f7UL,0xc67178f2UL };

/* FIPS specification refers to right rotations, while our ROTATE macro is left one.
* This is why you might notice that rotation coefficients differ from those

* observed in FIPS document by 32-N...

*/

#define SigmaO(x) (ROTATE((x),30) ~ ROTATE((x),19) ~ ROTATE((x),10))

#define Sigmal(x) (ROTATE((x),26) ~ ROTATE((x),21) ~ ROTATE((x),7))

#define sigmaO(x) (ROTATE((x),25) ~ ROTATE((x),14) ~ ((x)>>3))

#define sigmal(x) (ROTATE((x),15) ~ ROTATE((x),13) ~ ((x)>>10))

#define Ch(x,y,z) (((x) & (y)) ~ (("(x)) & (2)))
#define Maj(x,y,z) (((x) & (y)) ~ ((x) & (2)) ~ ((y) & (2)))

void sha256_block_data_order (SHA256_CTX *ctx, const void *in) {

unsigned MD32_REG_T a,b,c,d,e,f,g,h, s0,s1,T1,T2,t;
SHA_LONG X[16],1,Ki;

ACM Transactions on Programming Languages and Systems, to appear 2015

26 Andrew W. Appel

int i;
const unsigned char *data=in;

= ctx->h[0]; Db
e = ctx->h[4]; f

ctx->h[1]; c¢ = ctx->h[2]; d
ctx->h[6]; g = ctx->h[6]; h

ctx->h[3];
ctx->h[7];

[V
|

for (i=0;i<16;i++) {
HOST_c21(data,l); X[i] = 1;
Ki=K256[i];
T1 =1+ h + Sigmal(e) + Ch(e,f,g) + Ki;
T2 = SigmaO(a) + Maj(a,b,c);

h =g; g =1 f =e; e=d + Ti;
d =c; c = b; b = a; a =T1 + T2;
}
for (;i<64;i++) {
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
sl = X[(i+14)&0x0f]; sl = sigmal(sl);

T1 = X[i&O0xf];

t = X[(i+9)&0xf];
Tl += s0 + s1 + t;
X[i&0xf] = T1;
Ki=K256[i];

T1 += h + Sigmal(e) + Ch(e,f,g) + Ki;
T2 = SigmaO(a) + Maj(a,b,c);
h=g; g =1 f = e; e
d = c; c = b; b = a; a

d + T1;
T1 + T2;

}

t=ctx->h[0]; ctx->h[0]=t+a;
t=ctx->h[1]; ctx->h[1]=t+b;
t=ctx->h[2]; ctx->h[2]=t+c;
t=ctx->h[3]; ctx->h[3]=t+d;
t=ctx->h[4]; ctx->h[4]=t+e;
t=ctx->h[5]; ctx->h[5]=t+f;
t=ctx->h[6]; ctx->h[6]=t+g;
t=ctx->h[7]; ctx->h[7]=t+h;
return;

}

void SHA256_Init (SHA256_CTX *c) {
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
c->h[2]=0x3c6ef372UL; c->h[3]=0xab4ff53alL;
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
c->N1=0; c->Nh=0;
c->num=0;
return;

}

void SHA256_addlength(SHA256_CTX *c, size_t len) {
SHA_LONG 1, cN1,cNh;
cN1l=c->N1; cNh=c->Nh;
1=(cN1+(((SHA_LONG)1len)<<3))&OxffffffffUL;
if (1 < cN1) /* overflow */
{cNh ++;}
cNh += (len>>29);

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256

c->N1=1; c->Nh=cNh;
return;

}

void SHA256_Update (SHA256_CTX *c,
const void *data_, size_t len) {
const unsigned char *data=data_;
unsigned char *p;
size_t n, fragment;

SHA256_addlength(c, len);
n = c->num;
p=c->data;
if (n != 0) {
fragment = SHA_CBLOCK-n;
if (len >= fragment) {
memcpy (p+n,data,fragment);
sha256_block_data_order (c,p);
data += fragment;
len -= fragment;
memset (p,0,SHA_CBLOCK); /* keep it zeroed */

}
else {
memcpy (p+n,data,len);
c->num = n+(unsigned int)len;
return;
}
}

while (len >= SHA_CBLOCK) {
sha256_block_data_order (c,data);
data += SHA_CBLOCK;
len -= SHA_CBLOCK;

}

c->num=len;

if (len !'= 0) {
memcpy (p,data,len);

return;

}

void SHA256_Final (unsigned char *md, SHA256_CTX *c) {
unsigned char *p = c->data;
size_t n = c->num;
SHA_LONG cN1,cNh;

pln] = 0x80; /* there is always room for one */
n++;

if (n > (SHA_CBLOCK-8)) {
memset (p+n,0,SHA_CBLOCK-n);
n=0;
sha256_block_data_order (c,p);
}

memset (p+n,0,SHA_CBLOCK-8-n);

p += SHA_CBLOCK-8;
cNh=c->Nh; (void)HOST_12c(clh,p);

ACM Transactions on Programming Languages and Systems, to appear 2015

28 Andrew W. Appel

cN1l=c->N1; (void)HOST_12c(cN1,p);
p —= SHA_CBLOCK;
sha256_block_data_order (c,p);
c->num=0;
memset (p,0,SHA_CBLOCK) ;
{unsigned long 11;
unsigned int xn;
for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++)
{ 11=(c)->h([xn]; HOST_12c¢(11l,md); }
}
return;

}

void SHA256(const unsigned char *d,
size_t n, unsigned char *md) {
SHA256_CTX c;
SHA256_Init (&c) ;
SHA256_Update(&c,d,n) ;
SHA256_Final (md,&c) ;
return;

B. THE SPECIFICATION

Definition big-endian.integer (contents: Z — int) : int :=
Int.or (Int.shl (contents 0) (Int.repr 24))
(Int.or (Int.shl (contents 1) (Int.repr 16))
(Int.or (Int.shl (contents 2) (Int.repr 8))
(contents 3))).

Definition LBLOCK?z : Z := 16. (x length of a block, in 32-bit ints x)
Definition CBLOCKz : Z := 64. (x length of a block, in characters x)

Definition s256state := (list val x (val * (val x (list val % val))))%type.
Definition s256_h (s: s256state) := fst s.

Definition s256_NI (s: s256state) := fst (snd s).

Definition s256_Nh (s: s256state) := fst (snd (snd s)).

Definition s256_data (s: s256state) := fst (snd (snd (snd s))).
Definition s256_num (s: s256state) := snd (snd (snd (snd s))).

Inductive s256abs := (x SHA-256 abstract state x)
S256abs: V (hashed: list int) (x words hashed, so far *)
(data: list Z), (x bytes in the partial block not yet hashed x)
s256abs.

Definition s256a.regs (a: s256abs) : list int :=
match a with S256abs hashed data = hash_blocks init_registers hashed end.

Definition s256a_len (a: s256abs) : Z :=

match a with S256abs hashed data = (Zlength hashed * 4 + Zlength data) * 8
end%Z.

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256

Definition hilo hi lo := (Int.unsigned hi % Int.modulus + Int.unsigned 10)%Z.
Definition isbyteZ (i: Z) := (0 <=i < 256)%Z.

Definition s256_relate (a: s256abs) (r: s256state) : Prop :=
match a with S256abs hashed data =
s256_h r = map Vint (hash_blocks init_registers hashed)
A (3 hi, 3lo, s256_Nh r = Vint hi A s256_NIr = Vint lo A
(Zlength hashed x 4 + Zlength data)«8 = hilo hi l0)%Z

A s256_data r = map Vint (map Int.repr data)
A (Zlength data < CBLOCKz A Forall isbyteZ data)
A (LBLOCKz | Zlength hashed)
A §256.num r = Vint (Int.repr (Zlength data))

end.

Definition init_.s256abs : s256abs := S256abs nil nil.

Definition sha_finish (a: s256abs) : list Z :=

match a with S256abs hashed data = SHA_256 (intlist.to_Zlist hashed ++ data) end.

Definition cVint (f: Z — int) (i: Z) = Vint (fi).

Definition sha256_length (len: Z) (c: val) : mpred :=
EX lo:int, EX hi:int,
I (hilo hilo = len) &&
(field.at Tsh t_struct. SHA256state_st NI (Vint lo) ¢
field.at Tsh t_struct. SHA256state_st _Nh (Vint hi) c).

Definition sha256state_ (a: s256abs) (c: val) : mpred :=
EX r:s256state, ! s256.relate a r && data.at Tsh t_struct.SHA256state_st r c.

Definition tuints (vl: list int) := ZnthV tuint (map Vint vl).
Definition tuchars (vl: list int) := ZnthV tuchar (map Vint vl).

Definition data_block (sh: share) (contents: list Z) :=
Il Forall isbyteZ contents &&
array.at tuchar sh (tuchars (map Int.repr contents))
0 (Zlength contents).

Definition __builtin_.read32_reversed_spec =
DECLARE .__builtin_read32_reversed
WITH p: val, sh: share, contents: Z — int
PRE [1 OF tptr tuint]

PROP() LOCAL ((eq p) (eval.id 1))
SEP (‘(array.at tuchar sh (cVint contents) 0 4 p))

POST [tuint]
local (‘(eq (Vint (big-endian.integer contents))) retval) &&
“(array.at tuchar sh (cVint contents) 0 4 p).

Definition __builtin_write32_reversed_spec :=

DECLARE ___builtin_write32_reversed
WITH p: val, sh: share, contents: Z — int

ACM Transactions on Programming Languages and Systems, to appear 2015

29

30 Andrew W. Appel

PRE [1 OF tptr tuint, 2 OF tuint]
PROP(writable_share sh)
LOCAL ('(eq p) (eval.id 1);
‘(eq (Vint(big-endian_.integer contents))) (eval.id 2))
SEP (‘(memory_block sh (Int.repr 4) p))
POST [tvoid]
“(array.at tuchar sh (cVint contents) 0 4 p).

Definition memcpy.spec = (x elided *)
Definition memset_spec = (x elided *)

Definition K_vector : environ — mpred =
array.at tuint Tsh (tuints K) 0 (Zlength K).

Definition sha256_block_data_order_spec :=
DECLARE _sha256_block.data.order
WITH hashed: list int, b: list int, ctx : val, data: val, sh: share
PRE [_ctx OF tptr t_struct. SHA256state_st, -in OF tptr tvoid]
PROP(Zlength b = LBLOCKz; (LBLOCKz | Zlength hashed))
LOCAL ('(eq ctx) (eval.id _ctx); (eq data) (eval.id -in))
SEP (‘(array.at tuint Tsh
(tuints (hash_blocks init_registers hashed)) 0 8 ctx);
‘(data.block sh (intlist.to.Zlist b) data);
"K_vector (eval.var .K256 (tarray tuint 64)))
POST [tvoid]
(‘(array.at tuint Tsh
(tuints (hash_blocks init_registers (hashed++b))) 0 8 ctx) =
‘(data_block sh (intlist-to_Zlist b) data)
"K_vector (eval .var .K256 (tarray tuint 64))).

Definition SHA256_addlength_spec :=
DECLARE _SHA256_addlength
WITHlen:Z,c:val,n: Z
PRE [.c OF tptr t_struct. SHA256state_st , _len OF tuint]
PROP (0 <= n+len*8 < two.p 64)
LOCAL ('(eq len) (Int.unsigned (force.int (eval.id _len)));
‘(eq c) (eval.id _c))
SEP (‘(sha256._length n c))
POST [tvoid]
‘(sha256.length (n+lenx8) c).

Definition SHA256._Init_spec =
DECLARE _SHA256.Init
WITH c : val
PRE [-c OF tptr t_struct.SHA256state_st |
PROP () LOCAL ('(eqc) (eval.id _c))
SEP('(data.at. Tsh t_struct. SHA256state_st c))
POST [tvoid]
((sha256state. init_s256abs c)).

Inductive update.abs: list Z — s256abs — s256abs — Prop :=
Update_abs:

ACM Transactions on Programming Languages and Systems, to appear 2015

Verification of a Cryptographic Primitive: SHA-256 31

(v msg hashed blocks oldfrag newfrag,
Zlength oldfrag < CBLOCKz —
Zlength newfrag < CBLOCKz —
(LBLOCKz | Zlength hashed) —
(LBLOCKz | Zlength blocks) —
oldfrag++msg = intlist_-to_Zlist blocks ++ newfrag —
update_abs msg (S256abs hashed oldfrag)
(S256abs (hashed++blocks) newfrag)).

Definition SHA256_Update_spec :=
DECLARE _SHA256_Update
WITH a: s256abs, data: list Z, ¢ : val, d: val, sh: share, len : nat
PRE [.c OF tptr t_struct. SHA256state_st, .data_ OF tptr tvoid, _len OF tuint]
PROP ((len <= length data)%nat;
(s256a-len a + Z.of_nat len x 8 < two._p 64)%Z)
LOCAL ((eqc) (eval.id -c); (eq d) (eval.id .data.);
‘(eq (Z.of_nat len))
('Int.unsigned (‘force.int (eval.id _len))))
SEP('K_vector (eval .var K256 (tarray tuint 64));
‘(sha256state. a c); ‘(data.block sh data d))
POST [tvoid]
EXa:,
PROP (update.abs (firstn len data) a a’) LOCAL ()
SEP('K.vector (eval.var .K256 (tarray tuint 64));
‘(sha256state. a’ ¢); ‘(data_block sh data d)).

Definition SHA256_Final _spec :=
DECLARE _SHA256_Final
WITH a: s256abs, md: val, ¢ : val, shmd: share, sh: share
PRE [.md OF tptr tuchar, _.c OF tptr t_struct. SHA256state_st]
PROP (writable_share shmd)
LOCAL ((eq md) (eval.id .md); (eq c) (eval.id _c))
SEP('K.vector (eval.var .K256 (tarray tuint 64));
‘(sha256state. a c);
‘(memory_block shmd (Int.repr 32) md))
POST [tvoid]
PROP () LOCAL ()
SEP('K.vector (eval _var _K256 (tarray tuint 64));
‘(data.at. Tsh t_struct. SHA256state._st c);
‘(data_block shmd (sha_finish a) md)).

ACM Transactions on Programming Languages and Systems, to appear 2015

