
Typed Machine Language and its Semantics

Kedar N. Swadi
Princeton University

kswadi@cs.princeton.edu

Andrew W. Appel
Princeton University

appel@cs.princeton.edu

ABSTRACT
We present TML, a new low level typed intermediate language for
the proof-carrying code framework. The type system of TML is
expressive enough to compile high level languages like core ML to
and can be guaranteed sound. It is also flexible enough to provide
a lot of freedom for low-level data representations. We can model
real machine instructions in TML, and thus avoid high-level opaque
operations like memory allocation and perform provably safe opti-
misations like array bounds check eliminations. Most important,
TML has a semantic model.

1. INTRODUCTION
Proof-carrying code (PCC) [11] is a framework for the genera-

tion of provably safe programs. In this framework, an untrusted
program is accompanied by a proof of its compliance with some
predefined safety policy (resource access, type safety, or memory
safety). The host mechanically checks the proof for correctness
to ensure safety of execution of the untrusted code. Though this
technique is general enough to encode a very wide range of safety
properties, existing PCC systems [10] suffer from a lack of flexi-
bility with respect to the high-level source languages they translate
from and the target machine architectures they compile to.

Building on a semantic model of machine-level types [4], we
design TML, a new low-level language that is general enough so
that a wide variety of high-level languages may be compiled to it,
and is also retargetable to different machines.

TML makes the following contributions :
� We have a semantic model for TML types based on a very

small set of axioms. Our trusted computing base comprises
the rules of higher-order logic augmented by some elemen-
tary facts about number arithmetic. All TML types are mod-
elled as (defined) predicates, and type inference rules are
lemmas for which we provide machine-checkable proofs. Pre-
vious approaches to low-level semantics [9, 11] did not pro-
vide models, but only syntactic consistency results.
� Low-level type constructors for type intersections and ad-

dress arithmetic give front-end compilers more freedom in
data layout than high-level (TAL-style)
records or objects would.

Preliminary version, July 2001

� TML is really a machine language, with instructions speci-
fied by integer opcodes; thus we do not need to trust an as-
sembler.
� Unlike TAL [9] or DTAL [16], we can model each machine

instruction in TML, even those occuring in sequences allo-
cating a heap record. While TAL and DTAL have an atomic
“malloc” instruction that expands into several real machine
instructions, TML is expressive enough to reason about the
intermediate states in the malloc subroutine; similarly for
multi-instruction case-discrimination sequences. Each TML
instruction corresponds to a single instruction on a real ma-
chine like SPARC. This allows a compiler to perform prov-
ably safe optimisations and the trusted computing base is also
made smaller as a result.
� We can encode complex dataflow facts within the type sys-

tem. Tracking dataflow allows us to reason about interme-
diate machine states and thus make operations like sum-type
discrimination nonatomic in a safe way.
� Like other PCC systems, TML has no decision procedure:

we assume that a type-preserving compiler from a safe source
language produces hints and invariants useful in constructing
machine-checkable proofs. However, because each typing
rule is proved separately as a derived lemma (not through a
global syntactic metatheorem), we find it easy to add ad-hoc
rules for the convenience of the prover or compiler (in the
case where no change is necessary to the semantic model).

2. TYPED MACHINE LANGUAGE
TML is stratified into the levels ofkinds, typesandvalues. To

reduce complexity of the system we have only two kinds in TML.
There are no other kind constructors in TML like functions or pair-
ing. This simplifies the semantic model. The type constructors
are sufficiently low-level to allow translation from a wide range of
source languages into TML. We cannot model quantification over
higher-order kinds, which are required by the polymorphic typed
lambda calculusFω. We can extend TML to higher kinds such as
Ω! Ω! Ω, but we can’t quantify over these higher kinds; still,
this is enough to do type constructors in core ML.

2.1 TML Kinds
To reason about machine-level programs with machine-level types,

in TML we have kinds forinstructionsandtype maps. Type maps
are judgements on a vector of values associating them with their
types, and have the kindΩ. In our semantic model, we can use
type maps also to represent scalar types (judgements on a single
value, not a vector) and also to represent numbers. The main mo-
tivation to unify the three kinds into one was to have a smaller set
of quantification operators and also fewer rules for specifying static
semantics.

1

2.2 Types (τ : Ω)
In TML, the state comprises a register bankR and a memory

M. All accessible values live in registers ofR. These values may
point to data in memoryM. If x is a number thenR(x) is the value
of the xth register; informally, we writerx. Unlike TAL, which
distinguishes address values from integer values, our machine-level
calculus uses numbers to index memory.

As in the Appel-Felty semantic model of types [4], types are
encoded as predicates on values. Then,M ` rx : τ if M andR(x)
satisfy the predicateτ. TML has the following primitive types:

� >,?: Every value has type>; no value has type?.
� id : The identity type-constructor i.e.,id(τ) = τ.
� box(τ) : Thebox type constructor is for memory references.

v : box (τ) if the content ofM(v) satisfies the predicateτ. box
makes immutable references. TML can accommodate muta-
ble references using the semantic model of Ahmed, Appel,
and Virga [2], but we will not show details here.
� rec(τ) : This constructor allows us to define recursive types.
� o�set(i)(τ) : The valuev has this type ifv+ i satisfiesτ.

This constructor is useful wherever address arithmetic is re-
quired. For example, if locationR(x) contains a pointer to
a record with two fields[0 : τ1;1 : τ2], we could sayrx :
o�set(1) (box τ2). A convenient abbreviation,�eld c τ is
the same aso�set(c) (box τ).

� τ1\ τ2 is the type of a value satisfying predicates for bothτ1
andτ2, while a value of typeτ1[τ2 satisfies predicates for
at least one of types.

� 8;9 : These are the universal and existential quantifiers. We
allow quantification overΩ but not overINSTR. We use de
Bruijn indices [6] (see Section 3.1) rather than variables, so
8 or 9 implicitly binds a de Bruijn variable. Informally, how-
ever, we will often show variables with the quantifiers.

� rec : General (covariant, contravariant) recursive types are
written asrec τ, whererec implicitly binds a de Bruijn index
that may be free inτ. For appropriate (“contractive”) expres-
sionsτ, we haverec τ is a fixed point ofτ, which is written
asrec τ = τ[rec τ � id] in the calculus of explicit substitutions.

� codeptr : The judgementv : codeptr φ holds if v is a code
pointer with formal parametersφ. That is, it is safe to jump
to locationv if the registers satisfyφ. The formal parameters
are modelled as a type map (Section 2.4).

� at(ι;s) : If at memory locationl , we have a TML instruction
ι of sizes, thenl : at(ι;s).

2.3 Integers (n : Ω)
In TML, we can specify the types of integers, and constant and

bounded integers.

� intπ(i) : The type of integersx such thatx π i. For example,
int<100 is the type of integers less than 100, andint=(c)
is the singleton type of integers equal toc. For example, the
type of machine integers is
int32 = int�0\ int<232.
� + : This type captures the result of additions. After executing

ri r j + rk wherer j : int=n1 andrk : int=n2, we infer ri :
int=(n1+n2) Other arithmetic operators like subtraction or
multiplication on integers can also be easily defined, as can
modular arithmetic.

These constructors allow us a great deal of flexibility for data
representation. Consider, for example, a list-of-integers datatype.
List cells could have untagged or tagged representations. In an

Kinds

κ ::= Ω
j INSTR

Types (Ω)
τ;φ;Γ ::= > j ?

j codeptr φ
j o�set (n;τ)
j id τ
j box τ
j rec τ
j τ\ τ0 j τ[τ0
j 8 τ j 9 τ

j fn : τg
j φnn

j intπn
j n1+n2

j at(ι;n)
j n

Instructions (INSTR)
ι ::= instr(Γ;φ;φ0)

j 8ι ι
j 9ι ι

π ::= > j � j< j � j= j 6=

Figure 1: TML Syntax : Kinds and Types

untagged scheme (Figure 2a), ifr1 is a pointer to a list, assuming a
4-byte word, we represent this as

r1 : int=0[(int6=0\ (�eld 0 int32)\ (�eld 4 τ))

where the left union type is the nil case and the right is the cons
case. Ifr1 contains a non-zero value it points to a record of two
fields, the first being the data and the second being the pointer to the
next cell. This makes pointers non-abstract in TML. (This example
is a simplification which avoids dealing with the recursive nature
of the list data type; see section 3.1 for a discussion of recursive
types.)

10

130

...

...

0 0

:
:

1

10

130

200

300
300

Nil

Cons

Nil

Cons

(a) (b)

r1

r2

r1

r2

Figure 2: Data Representation

To get a tagged representation (Figure 2b) we write

r1 : (�eld 0 int=0) [
(�eld 0 int=1 \ �eld 4 int32 \ �eld 8 τ)

In this case, a nil cell has a tag of 0, and the cons cell has a nonzero
tag field followed by the data and the next-cell pointer.

2

2.4 Type Maps (φ : Ω)
A type map is a collection of typing judgements for registers, as-

sociating each registerrx to some typeτx. For most purposes, type
maps serve the function of environments. If any register is not ex-
plicitly referenced in the environment, it is assumed unconstrained.

� The empty type map is>.
� fi : τg : This is asingletontype map, where the only judge-

ment is that registerri has typeτ.
� φ1\φ2 : If register bankR : φ1 andR : φ2, we haveR : φ1\φ2.

We also writefi : τ1; j : τ2g for fi : τ1g\f j : τ2g.
� φni contains the type judgements for all registers inφ except

for theri .

Existential and singleton types allow us to capture dataflow infor-
mation which can be used to relate the contents of two registers.
For example, ifR(i) = R(j), we can express this fact as

9n:fi : int=n; j : int=ng

A more general type map,relate, captures a wider class of such
register relations.

relateπ(F;G)(i; j) �
9n:
fri : F (intπ(n))g\fr j : G (int=(n))g

We use the following example to illustrate the use ofrelate. Let
φ1 = fri : box τg. We fetch the contents of the memory (M) at
R(i) into registerr j , (r j M[ri]). This operation results in a new
environment,φ2. Trivially, R(j) =M[R(i)] in φ2. This fact is ex-
pressed using therelate constructor asrelate=(box; id)(i; j). In the
definition above, the existential is instantiated withM[R(i)]. This
instantiation can be shown to satisfy the two sub-environments. We
now have
φ2 = fi : box τg \ relate=(box; id)(i; j). From this environment,
we have lemmas which can infer thatr j : τ 2 φ2. We can also use
relate to reason about the safety of certain optimisations. For ex-
ample, Section 7.3 explains how to perform provably safe sum-type
discriminations usingrelate.

...

...

: τv : τv
...

...

: τv

Before After load load

MemoryMemoryRegister Bank Register Bank

r

r

r

rj

ii

j

Figure 3: relate Example

2.5 Code Context (Γ : Ω)
Program safety can be proved from type safety. Thus, we en-

sure that certain typing judgements hold before and after the ex-
ecution of every instruction. Consider an instruction at locationl
which requires its arguments to be of certain types. For example,
a load instruction might require its source register to be of a�eld
type. In terms of Hoare logic, if the register bankR satisfies some
precondition, it is safe to jump to locationl . This precondition
on R is represented as the type mapφ . Thus we havel being of
type codeptr(φ). This fact itself can be encoded as the type map
fl : codeptr(φ)g, thoughl is an address indexing into the code and

not the register bank. This type map describes the local typing in-
variants at locationl . Using intersection (\), we collect the local
invariants at all program locations. This resultant map isΓ.

As a running example, consider the SPARC program in Figure 5
which adds up the elements of a list.

...

...

...

...

......

0
3

1

2o1

Register Bank Memory

Figure 4: List Representation in Memory

In this program, registero1 is a list value, which is either 0 or a
pointer to a two-word record containing an integer and a list value.
A length-3 list containing[1;2;3] is shown in Figure 4. Register
o2 is a temporary to hold the data till it is added to the accumulator
in registero3 . SPARC uses delay slots after branch instructions.
Instructions which go in delay slots are shown prefixed with a “* ”,
and they are executed whether or not the branch is taken.

For this program to be safe, it must start with registero1 having
the type of a pointer to a list, and registero7 should have the return
address, i.e. it should have the type of a code pointer which expects
registero3 to have an integer. Assuming definitions for high-level
types likelist ty for lists (as shown at the end of Section 3.1), we
have the preconditionφ0 for address 0 to be

φ0 = fo1 : list tyg\fo7 : codeptrfo3 : int32gg

If this condition holds, then it is safe to jump to location 0. The
compiler provides invariantsφl for each locationl , which are com-
bined into

Γ = f0 : codeptr(φ0)g \
f4 : codeptr(φ4)g \
...
f36 :codeptr(φ36)g

One of the goals of TML is to be able to work with multiple
target machines. Unlike TAL or PCC, which assume the correct-
ness of the assembler, we wish to have evidence that the code was
assembled correctly. Hence, proofs of safety of programs must
also include proofs that each word in the code part of the memory
matches its semantic specification. For each machine, we need to
know the instruction semantics, or how instructions in that machine
change the state. Assuming that program locationl has valuev, we
must prove that this value decodes to some instruction (described
in Section 2.6)ι, of sizes, which has the required semantics. In-
formally, we must prove that the contents of the “opcode” column
in Figure 5 implement the contents of the “pseudo code” column.
∆ encodes the contents of the part of the memory containing the
program as intersections of singleton type mapsfl : box(int=v)g

3

Address Program Pseudocode opcode
0 tst %o1 R[o1] == 0 ? 0x80900009

4 mov 0, %o2 R[o2] 0 0x94102000

8 ba entry gotoentry 0x10800005

12 � mov 0, %o3 R[o3] 0 0x96102000

16 loop: ld [%o1],%o2 R[o2] M[R[o1]] 0xd4024000

20 ld [%o1+4],%o1 R[o1] M[R[o1]+4] 0xd2026004

24 tst %o1 i f R[o1]<> 0 ? 0x80900009

28 entry: bne loop gotoloop 0x12bffffd

32 � add %o3, %o2, %o3 R[o3] R[o2]+R[o3] 0x9602c00a

36 retl return 0x81c3e008

40 � nop 0x01000000

Figure 5: SPARC program to add the contents of an integer list

for each addressl in the program. For our example program,

∆ = f0 : box(int=8090000916)g \
f4 : box(int=9410200016)g \

...
f40 :box(int=0100000016)g

If we shuffle∆\Γ to interleave the contents ofΓ and∆ to look like

f0 : codeptr(φ0)g \
f0 : box(int=8090000916)g \
f4 : codeptr(φ4)g \
f4 : box(int=9410200016)g \
...
f40 :box(int=0100000016)g

the connection to traditional Hoare logic style presentation becomes
obvious. Theφ’s are the program annotations, while the other sin-
gletons form the program instructions.

2.6 Instructions
An instruction in TML is a relation onφ1, the type map which

holds before its execution, andφ2, the one that holds after its ex-
ecution. The tuple(φ1;φ2) is the Hoare-logic style specification
of an instruction withφ1 being the precondition andφ2 being the
postcondition for that instruction.

Unlike Hoare logic, we have explicit branches and jumps. For
branches we need to know the preconditions of all possible branch
targets. This is provided by the code contextΓ. We therefore have
the instruction constructorinstr depending on three type maps,
(Γ;φ1;φ2).

For example, consider theadd (ri r j + rk) instruction in code
contextΓ. Addition requires the source values to be integers. So we
have the preconditionφ1 = (φ \ f j : int32g\fk : int32g). After
addition, all previous typing judgements aboutri are invalidated.
Additionally, in φ2, ri gets the integer type, encoded asfri : int32g.
Therefore,φ2 = (φ1ni) \ fi : int32g.

We can actually have a stronger formulation foradd .If we know
that in φ1, f j : int=n;k : int=mg, we have the postconditionφ2 =
(φ1ni)\fi : int=(n+m)g In TML, we use theinstr instruction con-
structor to encodeadd for φ1 and φ2 under contextΓ asadd =
instr(Γ;φ1;φ2). We see thatadd is polymorphic over all environ-
mentsφ and contextsΓ. Therefore, in writing TML-instruction
constructors we need quantifications overΩ, using operators8ι; 9ι.
We usually wish to prove that an instruction at some location satis-
fies some semantic specifications. Subtyping on instructions, “�ι”

gives us a convenient way of expressing this. Therefore, we have

add(i; j ;k) �ι 8Γ;φ;n;m:
instr(Γ;(φ \ f j : int=ng\fk : int=mg);

((φ \ f j : int=ng\fk : int=mg)ni
\ fi : n+mg))

The form of instruction for addition given above is the most gen-
eral form. However,add may be called in other contexts, most
importantly for address arithmetic needed for subsequent loads and
stores. This form ofadd is significantly different in its semantic
specification and we must prove that the most general form is a
subtype of the form below.

add(i; j ;k) �ι 8Γ;φ;τ;c:
instr(Γ;(φ \ f j : �eld c τg\ fk : int=cg);

((φ \ f j : �eld c τg\ fk : int=cg)ni
\fi : box(τ)g))

Unlike add which made no reference to the code context (Γ),
given the instructionjmp r1, we need to make sure that it is type-
safe to jump to the branch target (given byR(1), the contents ofr1)
with the current register environment,φ. Hence,φ should satisfy
the precondition for code addressR(1). Thus the TML instruc-
tion characterising a jump should have a code contextΓ\fR(1) :
codeptr(φ1)g. The instruction subtyping rule for a jump is written
as

jmp(i) �ι 8Γ;φ;n:
instr(Γ\fn : codeptr(φ)g;

φ\fi : int=ng;
φ\fi : int=ng)

3. TML STATIC SEMANTICS
TML static semantics are given in terms of rules for the well-

formedness of types, type maps and instructions
(Figure 10), subtyping rules on types in all these kinds (Figure 12),
and well-formedness of programs.

3.1 Well-Formedness of Types
Some types like8 and9 take type arguments and could be writ-

ten as8 (λx: F x). But type functions usingλ would require higher
kinds, complicating the semantic model. We avoid this compli-
cation by having quantifiers implicitly bind de Bruijn indices [6],
represented asn instead of named variables in the type terms. The
above term, for example, looks like8 (F 0). We use explicit sub-
stitution [1] rules given in Figure 11 to manipulate the terms.

4

For reasoning about recursive types, we need to know which
types are contractive (as in the ideal model [7] or the indexed model
[5]). The typeα = o�set(3;α) is not meaningful because the oper-
atoro�set is not contractive, but

list = int=0[(int6=0\ (�eld 0 int32)\ (�eld 4 list))

is meaningful because�eld is contractive.
To define well-formedness, we use a context formed byW, a

list mapping indices in the type term to their contractiveness, and
– in effect – we reason about type-functions, not types. If thenth

element inW is Y, it means thatn may be assumed to be contrac-
tive for determining the contractiveness of the term containing it.
If it is N, the contractiveness of the term is not dependent on the
contractiveness ofn. Whenever we introduce any new variable, it
gets the de Bruijn index 0. We shift all other indices by 1. There-
fore, we add theY or N to the head of the contextW. We use the
notationWY andWN to force all entries inW to Y andN respec-
tively. Figure 10 gives the complete set of rules to determine the
well-formedness of type terms. We list a few of these below.

W ` τ : Ω W ` n : Ω
W ` o�set (n;τ) : Ω

WF OFFSET

N;W ` τ : Ω
W ` rec τ : Ω

WF REC

Y;W ` τ : Ω
W ` 8 τ : Ω

WF 8
Y;W ` τ : Ω
W ` 9 τ : Ω

WF 9

W[n] = Y

W ` n : Ω
WF INDEX

W ` int=(i) : Ω
WF CONST

For example, consider the termrec(λα(o�set 3 α)), written as
rec(o�set 3 0) using de Bruijn indices. This term is not well-
formed sinceo�set is not a contractive constructor. The derivation
tree for the well-formedness of the term under contextW is

???
N;W ` 0 : Ω N;W ` 3 : Ω

WF CONST

N;W ` o�set 3 0: Ω
WF OFFSET

W ` rec(o�set 3 0) : Ω
WF REC

After using theWF OFFSETrule, we use theWF CONSTrule to
show well-formedness of 3. SincefN;Wg[0] = N, we cannot use
theWF INDEX rule to show the well-formedness of the 0subterm,
and hence the derivation fails.

The integer-list data type of Figure 2a is,

list ty = rec(int=0[
(int6=0\ (�eld 0 int32)\ (�eld 4 0)))

and this can be proved well-formed with a syntax-directed deriva-
tion.

3.2 Subtyping
In our proofs for derivations of program safety, we are often re-

quired to prove that any value of typeφ is also a value of typeφ0.
Subtyping provides a convenient way of expressing this, and we
express the above condition asφ � φ0. For instructions, we often
wish to say that an instructionι implements another instructionι0
(like add implementing pointer arithmetic in Section 2.6), express
this syntactically asι�ι ι0. A few illustrative rules are given below.
A larger set of rules is in Figure 12.

τ�>
� >

int= i � int�(i)
� INT π

int= i � int�(i)
� INT π

τ1 � τ2

box τ1 � box τ2
� BOXED

τ� τ3 τ� τ4
τ� τ3\ τ4

� \R

τ1� τ2

fi : τ1g � fi : τ2g
� SINGLE

τ� τni
� n

τ01 � τ1 τ02 � τ2 τ3 � τ03
instr(τ1;τ2;τ3)�ι instr(τ01;τ

0
2;τ

0
3)

� INSTR

4. REAL MACHINE INSTRUCTIONS
We want to run real programs on real machines; we will take a

usable subset of the SPARC architecture as our prototype example.
We omit floating-point instructions, register windows, and privi-
leged instructions; this means that we can still type-check (prove
safe) integer-only programs generated by compilers that don’t shift
register windows, of which the FLINT compiler [13] is an example.
But for this paper we illustrate only a subset of our subset.

For each machine, we must augment our type system with types
and typing rules that are necessary to describe that machine. For
SPARC, we need to add kinds and types necessitated by the archi-
tecture details.

4.1 SPARC Instruction Syntax
For the subset of SPARC instructions we consider, there are three

classes of instructions, the ALU instructions,
branch instructions, and memory access instructions. In TML, we
model these instructions as subtypes of instructions formed by the
instr construct in TML, as shown in Figure 15. Wellformedness
rules for SPARC instructions are given in Figure 14.

SPARC arithmetic instructions take the forms1�s2! d, where
s1 must be one of the 32 registers,s2 may be a register or an im-
mediate sign-extended 13-bit constant, andd must be a register. To
describe the second operand we have a kindRegImm, which allows
us to discriminate between register-modeRMode type arguments
and immediate-modeIMode type instructions.

Figure 13 shows the kinds and constructors for operators. A gen-
eral ALU instruction is specified byalu(x;c;oper), whereoper (of
kind Oper) is the operation to be performed,x (0 or 1) specifies
whether carry-in is to be performed as part of the operation, andc
(0 or 1) specifies whether the condition codes are to be modified
by the operation. Thus, for example, the standard add instruction is
alu(0;1;add oper) : INSTR.

Condition codes on architectures such as SPARC and Pentium,
are modelled as if they live somewhere in the register bank, perhaps
in one or more processor-status registers. The fact that the condi-
tion codes in some state(R;M) match the condition “not equal” is
writtenM ` R : cc ne, and we see thatcc ne occupies the position
of a type map. The SPARC has sixteen predicates on the condition
codes, of which “not equal” is one; thus, we have sixteen primitive
type maps, of whichcc ne is one. We also have a type map op-

5

eratorncc, which is analogous to our type map operatorn; that is,
φncc is a type map similar toφ but with any information about the
condition-code settings removed, e.g.,φ� φncc.

We define the complement operator on condition-code
type maps as follows:

cc a= cc n cc n= cc a (always;never)
cc g = cc le cc le= cc g (>;�)

...
...

Some arithmetic and logical operations on the SPARC yield condition-
code settings, and these settings depend not only on the result but in
some cases on how the result is computed (i.e. on the arguments).
We model this with an operatorsetcc(oper;n1;n2) which computes
the appropriate condition-code type maps. For example,
setcc(add oper;3;�7) =
cc a \ cc ne \ cc le \ cc l \
cc gu \ cc cc \ cc ne \ cc vc

A conditional branch instruction is specified by
ibranch(cond;a; i) where cond is a condition-code type map,a
specifies whether the delay-slot instruction should be annulled if
the branch is not taken, andi is the displacement, an integer to be
added to the program counter if the comparison yields true.

For SPARC load instructions of the formd1 M[s1+c] or store
instructions of the formM[s1+ c] s2, thec argument is formed
with the IMode constructor. The store instruction has involved se-
mantics which are tied to our allocation model. We describe this
model and the store instruction in detail in Section 7.1.

5. SEMANTIC MODEL OF TYPES
In this section, we briefly describe the semantic model we use

for types. Our model is built upon the model described by Appel
and McAllester [5].

In this model, aty-pred is a predicate on tuples(k;v). Infor-
mally, a valuev belongs to a typeτ to indexk, (v :k τ), it is safe
to run a program expecting a value of typeτ on argumentv for k
instructions. Sinceτ is a predicate on values,τ k vmeans that(k;v)
belongs to the typeτ.

A valuev is a tuple(s;x). The first component,s, describes the
state of the machine.s itself is complicated and contains other rela-
tions likereadable, writable, allocated, which describe the sets of
readable, writable and allocated parts of the machine memory re-
spectively. Since types involving memory references would require
to know about the currently readable parts of memory, for example,
we need to have the state as a component of the value.

The Appel-McAllester model is too weak to specify dependent
types (e.g.,relate). In our new model, the second componentx
of a value(s;x) is a vector of integers (i.e., a finite function on
integers). For example, Figure 2a illustrates a value(s; r) where
the memory component ofs containsf300 7! 10;304 7! 130g and
the “root vector”r containsf1 7! 0;2 7! 300g.

Ty-preds are written as predicates on the tuple(k;v). To con-
tinue our example, the value(s; r(2)) might or might not be a list,
because in this illustration we don’t know the contents of memory
location 130; but to approximation 1 it’s a list, meaning that if we
execute for at most 1 instruction from(s; r(2)) the program can’t
notice that it fails to be a list. We write this aslist ty(1;(s; r(2))).

The type expressions of TML are not simply modelled by ty-
preds, because we must also represent open de Bruijn indices: an an
open term is (implicitly) parameterized by a substitution providing
values for all the unbound variables. So the type map of TML is

(N ! ty-pred)! ty-pred:

For example, a singleton type map constructor (call itf1 : τg) is
defined in the following way:

f1 : τg= λσ:
λ(k;(sv;xv)):
τ(σ) k (sv; λi:xv(1))

Sinceτ may contain de Bruijn indices, we provide an environ-
mentσ to interpret them. In this type map, we wish the first vector
entry to satisfy the typeτ. Hence, we extract the first component
of v, before again putting it into a tuple with the state. Thenτ is
applied to the new tuple with indexk.

As mentioned before, type scalars are also modelled as type
maps. For example, the definition of the character type “char” is
given below.

char= λσ:λ(k;(sv;xv)):
0� (λi:xv 0)< 256

We apply 0 toxv to convert it into a scalar (call itcv). The set defin-
ing “char” should only allow values between 0 and 256. Therefore,
we check thatcv satisfies this condition.

A numbern : Ω can be represented by the typeint=(n) : Ω.
In this model, we think of programs both as sequences of op-

codes∆ and as collections of code pointersΓ. Assuming a pro-
gram starts at location 100 with an environmentφ describing the
types of values in registers, we must show that location 100 has
typecodeptr(φ) for any indexk. We prove this by induction onk.

The base case is easy enough; every value has typeτ for anyτ to
approximation 0. For the induction step, we prove that

8k;v: (∆\Γ)(k;v)) Γ(k+1;v):

That is, if the program satisfies predicate∆\Γ to approximationk,
then it also satisfiesΓ to degreek+1. Appel and McAllester [5]
explain in detail what this means.

To avoid mentioning indicesk in the TML system, we abstract
8k;v: φ(k;v)) φ0(k+1;v) asφ +�φ0. Thus, the previous formula
is written as∆\Γ +�Γ, and we give syntactic rules for introducing
and eliminating +� in Figure 6:

τ +�τ0 τ +�τ00

τ +�(τ0\ τ00)
+� \

τ +�τ0

τ� τ0
+� �

Γ +�>
+� >

τ� fl : at(instr(τ0;τ1;τ00);s)g
τ� (fl +s : codeptr(τ00)g)

τ +�(fl : codeptr(τ1)g)
+� INSTR

Γ +�(fl : codeptr(?)g)
+� CPTR

τ\ τ0 +�τ0

τ� τ0
+� INDUC

Figure 6: +� Rules

6. PROVING PROGRAM SAFETY
Let A be the allocated set which includes the part of the memory

that has the program code and any allocated data.A is not primitive;
it can be expressed as a predicate on the memoryM. Registersra
and rl will point to the boundaries of the allocation area, that is,

6

avail(R)= fR(a);R(a)+1; : : : ;R(l)�1g are locations available for
future allocation. To check the safety of the program under memory
M and register bankR, we have the following rule :

A;M ` R : φ (1)
A� readable (2)
avail(R) =� (readable\writable) (3)
A\avail(R) = /0 (4)
A;M ` R(pc) : codeptr(φ) (5)

safe(R;M)

This program could be just a function which is called by another
piece of code with some parameters. Hence, the initial program
location is a continuation with formal parametersφ. Therefore, the
first condition says that we start out with the environmentφ. We
do not wish to have any assumptions about the type system of the
calling program. We might like the called function to use any com-
plex type system which the caller might not know about. Hence,
we expectφ to be very primitive in nature and easily provable. This
condition ensures that we start out in the correct state.

Premises (2) says that code and allocated data should be read-
able, (3) says that free space should also be writable and (4) ensures
that allocated set is disjoint from the free space.

For the example program in Figure 5, let thereadable set be
f0: : :1000g, thewritable set bef200: : :1000g, and the allocated
set bef0: : :300g. Proving (2),(3), and (4) is fairly easy.

The last condition says that we start at a location which is a valid
code pointer of typeφ. It is this condition which captures the main
proof of safety of the program.

loaded(∆;M) ∆� Γ Γ� R(i) : τ
A;M ` R(i) : τ

∆ =

T

i2dom p
fi : box(int=p(i))g 8i 2 dom p:M(i) = p(i)

loaded(∆;M)

Figure 7: Program-loading rules

Figure 7 lists the inference rules on values. The first rule shows
that proving (5) involves proving three facts:
� We first show that the program loaded in memory is de-

scribed by∆
� The second condition involves decoding∆ to get TML in-

structions. Then we must show that these instructions respect
the invariants mentioned in the code contextΓ. The proof of
this fact requires us to traverse the program and check that
type safety is preserved at each point in the execution of the
program. This proof captures progress by showing that there
is always another instruction (the next instruction for non-
branches, and the branch target instruction otherwise) that
may be safely executed.
� Finally, for the program counter (rpc), we must show that

theΓ from the second condition satisfiesfrpc : codeptr(φ)g.
This can be proved using the subtyping rules shown in Figure
12. For example, if

Γ = f0 : codeptr(φ0)g \ f4 : codeptr(φ4)g \ : : :
\ f40 :codeptr(φ40)g

thenΓ� f0 : codeptr(φ0)g is trivial.

Proving∆� Γ is nontrivial and we give a schematic description
below. Figure 8 gives part of the proof tree for the second condition.
The two most interesting stages in the proof are labelledS1andS2.
At stage S1, we need to prove facts like∆\Γ +�fl : codeptr(φl)g
for every locationl in the program. This means that can always
take another well-typed execution step at any point in the program.
These are the typing judgements which implement the induction
proof (mentioned in the earlier section) in our underlying model.

In stage S2 proving these facts for each locationl is reduced to

1. proving that some instruction is present at locationl whose
precondition isφl specified by the environment atl and post-
condition is someφ0, and

2. proving that the next instruction is a codepointer
which expects the environment to satisfyφ0.

The connection to traditional Hoare-logic proofs is again evident.
Below is the Hoare-logic style proof for our list sum example.

We start out with the∆ andΓ as described in 2.5.
To prove the first fact, we begin with decoding the contents of∆.

Each program code location,l , contains some numbern. The first
step involves proving thatn decodes into a TML instructionι =
instr(Γ;φ;φ0). We prove this using instruction decoding techniques
described by Michael and Appel [8, 3]. After this, we prove that
φl � φ. This allows us to executeι under the environmentφl safely.

Proving the second part involves showing that the resultant en-
vironmentφ0 is compatible with the given environment at next lo-
cation,l +4 (for non branch instruction). This is done by showing
thatφ0 � φl+4.

We list the environment supplied at each point in the program
along with the decoded instructions.

φ0 = fo1 : listg
0 SPARCTST

φ4 = fo1 : listg
4 SPARCMOV

φ8 = φ4\fo2 : int32g
8 SPARCBRANCH

φ12 = φ8\fo3 : int32g
12 SPARCMOV

φ16 = φ12\fo1 : int6=0g
16 SPARCLOAD

φ20 = φ12\fo1 : int6=0g\fo2 : int32g
20 SPARCLOAD

φ24 = φ12\fo2 : int32g
24 SPARCTST

φ28 = φ24
28 SPARCBRANCH

φ32 = φ28
32 SPARCALU

φ36 = fo1 : listg\fo2 : int32g\fo3 : int32g

We can always execute the instruction at location 0, since the
precondition forSPARCTST has no constraints. From subtyping
rule�REFL, we can prove thatφ0� φ. The postcondition

φ0 = φ0\ ((cc ne\fo1 : int6=0g)[(cc e\fo1 : int=0g))

φ0 is stronger thanφ4, and step (2) in stage S2 can be easily
proven by subtyping rules. This postcondition helps us relate the
value ofo1 to the condition code when we take a branch depending
on it. We can always execute the twomov instructions (at location
4 and at the delay slot at location 12) as there are no source regis-
ter constraints. After the branch instruction at location 8, we have
postcondition

7

...
∆\Γ� f0 : at(instr(Γ;φ0;φ4);4)g

∆\Γ� f4 : codeptr(φ4)g

...
∆\Γ� f4 : at(instr(Γ;φ4;φ8);4)g

∆\Γ� f8 : codeptr(φ8)g

...
∆\Γ� f36 :at(instr(Γ;φ36;φ40);4)g

∆\Γ� f40 :codeptr(φ40)g

S2

∆\Γ +�f0 : codeptr(φ0)g ∆\Γ +�f4 : codeptr(φ4)g : : :∆\Γ +�f40 :codeptr(φ40)g
S1

∆\Γ +�Γ
+� \

∆� Γ
+� INDUC

Figure 8: Part of Syntactic Proof Tree for Program Safety

φba = φ4\fo2 : int=0g\fo3 : int=0g

This environment can be shown to be stronger thanφ28, the target
of the unconditional branch, i.e.φba� φ28. At this point, depend-
ing on the condition codes, we either go to location 12 or location
36 after executing the add instruction at location 32. Since types of
o2 ando3 are int32, we can show that thisSPARCALU addition
instruction in the delay slot can be executed.

The postcondition of the conditional branch, if taken, is

φy = φ0\ ((cc ne\fo1 : int 6=0g)\fo2 : int32g\fo3 : int32g

This environment satisfies the condition of the pointer ino1 be-
ing non-null. We can prove that it is stronger than theφ16, the target
of the conditional branch using rules in Figure 12.

Since we are using the untagged representation of a list, and we
havefo1 : list tyg andfo1 : int6=0g. We can inferfo1 :�eld 0 int32g\
fo1 : �eld 4 list tyg.

This would satisfy the precondition for theld instruction at lo-
cations at 20 and 24, since the types ofo2 ando3 are the same,
but the type ofo1 is stronger than justlist. The next load can be
similarly shown to be safe.

If the branch at location 28 is not taken, we have the postcondi-
tion

φn = φ0\ ((cc e\fo1 : int=0g)\fo2 : int=0g\fo3 : int32g

This is stronger than the requirement that we return withfo3 :
int32g. Thus the entire function can be shown to be safe.

7. NO ATOMIC OPERATIONS
In TML, we do not use opaque high-level instructions for allo-

cation or array accesses which expand into multiple instructions on
real machines. Our type system allows us to argue about interme-
diate machine states within these instructions. Below we explain
how to perform safe memory allocation, array bounds check elimi-
nation, and sum type discriminations in TML.

7.1 Memory Allocation
We assume that memory is allocated from a contiguous region in

order. i.e. every location is allocated after all preceding locations
have been allocated. As shown in figure 9, the region begins at
“Start” and ends at “Limit”, where all locations till “Boundary” are
allocated.

Most typed assembly languages treat memory allocation as an
atomic operation. This increases the trusted computing base, mak-
ing us trust the safety of the allocation subroutine. This also disal-
lows the compiler making certain optimisations or rearrangement
of instructions in the code that involves memory allocation. In
TML, we use bookkeeping registers to get rid of the atomicity of al-
location. The contiguous allocation space starts at address pointed

��������

����
����
����
����

����

Allocated

Free

Memory

Start

Boundary

Limit

Figure 9: Memory Allocation

to by the registerrap. rb points to the beginning of the unallocated
set of locations.i.e., all locations fromrap to rb�1 are allocated.rl
points to the end of the memory allocation region. All of these are
virtual registers, and may not be used as register arguments to any
instructions.

We wish to allocate a tuple of two integers. Let these integers
be stored inr1 and r2 and letr3 point to the resultant tuple. Be-
fore allocation, we must start out with a guarantee that some space
is avilable. Assumerap pointing to location 100,rb pointing to
location 120, andrl pointing to location 200. The atomic malloc
program would be split into the following steps:

� Check for the availability of space : The conditionR(b)+
4� R(l) checks that we have space for two integers.
� Store contents ofr1 at addressR(b).
� UpdateR(b) toR(b+4).

For SPARC, thestore instructionsto i, j, c allows us to
split malloc . It uses the first type map to encodes the intial checks
by havingrelate�(o�set 4; id)(b; l) This ensures space for one inte-
ger taking up one machine word. By havingrelate=((o�set c); id)(i;b),
we know the address for storing is exactly the same as the begin-
ning of the unallocated space. The postcondition correctly assigns
the type toi. It also updates therb to point to the next unallocated
location, and maintains the “�” relation between therb and the
rl . Thus, it guarantees that the store is safe. The second store is
similarly guaranteed safe. At the end of the two stores, we have
fi : (�eld 4 int32)g from the firststo andfi : (�eld 8 int32)g from
the second. Taking the intersection of these two types, we haveri
having exactly the type for a tuple of two integers.

Our allocation method is not completely general. For example,
we still have the restriction of making allocations in a linear order
without holes.

7.2 Array bounds check elimination
We can definen-length arrays in TML as

array(n;τ) = 8i:�eld(((4� i)\ int�0\ int<n);τ)

8

The allocation for arrays is similar to the example above. We
assume a registerri which has typeτ. We make up an array of type
τ and sizen by initialising n locations using the scheme above to
the value inri within a loop. Due to lack of space, we cannot go
through a complete example.

We have a rich set of constuctors over integer values and sin-
gleton types in TML which allow us to perform safe array bounds
check eliminations.

Loc Program Pseudo code
100 loop:subcc %o2, %o4, %g0 R[o2] == R[o4] ?
104 be done; nop gotodone
112 add %o1, %o4, %o5 R[o5] R[o1]+R[o4]
116 ld [%o5], %o6 R[o2] M[R[o5]]
120 add %o6, %o3, %o3 R[o3] R[o3]+R[o6]
124 add %o4, 4, %o4 R[o4] R[o4]+4
128 ba foo; nop gotoloop
136 done:

Consider the program above which adds the elements of an inte-
ger array. Registero1 contains the pointer to the array,o2 contains
length of the array.o3 is the accumulator for the sum of elements.
o4 contains an integer used to index into the array. We start with
the environment

φ100= fo1 : array n int32\ int=4lg\fo2 : int=4ng\
fo4 : int>0\ int�4n\ int=4mg

From the types inφ100, the starting point for the program, we can
infer the fact thatR(o4)� R(o2) and thatR(o4) andR(o1) are di-
visible by 4. After thesubcc instruction at 100, usingSPARCALU 2
(which considers condition codes), instantiated withop= sub, i =
o2, j = o4 andk = g0, we have the environmentφ104 correspond-
ing to the postcondition havingset cc(sub;R(o2);R(o4)). The
branch instructionSP BRANCH requires the postcondition that the
“equal” flag is not set for the fall-through instruction. Therefore,
we can determine the precondition of instruction at 112 to include
R(o2) 6= R(o4). These two facts allow us to further infer that
R(o4) < 4n. The add instruction at address 112 computes the
address of the array element to be accessed. This access is safe
only if the address is between the array baseR(o1) and the ar-
ray limit (= R(o1)+4n), and if it is on a word boundary. Since
0< R(o4) < 4n, the effect of theadd instruction is thatR(o1) <
R(o5)< R(o1)+4n. The sum is also divisible by 4. We expect a
medium-sized set of arithmetic lemmas to be sufficient for deriv-
ing most of the inferences required for such reasoning. All these
conditions can be shown to be implied by the postcondition we get
for theadd instruction. Therefore, the nextld instruction at loca-
tion 116 can be shown to load from an address on a word boundary
which is within the array limits. Hence the access is safe. After
theadd instruction at location 128, we can easily prove thatR(o4)
remains to be divisible by 4.

7.3 Sum type discrimination
Consider the following ML datatype.

datatype foo = A of int * int
| B of t * t * int

This has a machine level representation where theA andB cases
are differentiated on the basis of a tag. A zero tag implies caseA
and the next two words contain integers. A nonzero tag impliesB
tag where it is safe to access the third word after the tag.

Code Pseudocode
100 ld [%o1], %o2 R[o2] M(R(o1))
104 tst %o2 if o2 6= 0
108 bne b_case;nop B tag case
116 ba a_case; nop else A tag case
124 bcase: ld [%o1+12], %o3 R[o3] M(R(o1)+12)
...
140 acase: ld [%o1+4], %o3 R[o3] M(R(o1)+4)
...

Assume that registero1 points to afoo cell. Instruction 100
loads the tag into registero2 . If o2 is not zero, (B case) then we
branch to theb case label. Else, (A case) we go to thea case
label. In instruction 124, we access the third field. This access may
be ensured to be safe in the following way. The load instruction
relateso2 ando1 such thatM[o1] = o2 (Fact 1). On jumping to
b case after the test, we have another facto2 6= 0 (Fact 2) due
to the TML instruction SPARCTST. At location 124, both facts
1 and 2 continue to be true. From these two facts, we use simple
arithmetic lemmas to conclude thatM[o1] 6= 0. This combined with
the factfo1 : box(foo)g allows us to conclude thato1 has theB
variant offoo . Therefore, the access in location 124 can be proven
safe.

8. RELATED WORK
The PCC system described by Necula [11] lays the foundation

for this research. However, it has a very large trusted computing
base in terms of the type inference rules and the “VCgen” or the
verification condition generator. By giving semantic model to types
and machine semantics, we have a much smaller trusted computing
base. Also, their implementations are specially geared towards ‘C’
or Java.

TAL [9] uses opaque high level operations to handle allocations
and array accesses. TAL is also specialised for compilation to
x86 architectures. DTAL seems to be more expressive than TAL,
though it also handles allocation in an opaque way. DTAL also
requires an extension to the system to handle sum type discrimi-
nation. However, due to the presence of dependent types, DTAL
makes array accesses transparent and allows us to perform safe
array-bounds check eliminations.

Finally, PCC and TAL have had no semantic models, only syn-
tactic metatheorems.

9. FUTURE WORK
We are using Twelf [12] to encode TML. Though most of our

model for types has been encoded, we still have to encode the
model for instructions and many lemmas which are required to
complete the proofs of program safety. Our allocation model is
also not fully general and we hope to extend it to handle regions
[14]. This could allow us to use provably safe garbage collection
schemes as shown by Wang and Appel [15].

We are also using TML to construct a semantic model for a TAL-
like calculus, completing the end-to-end path from ML source code
to a foundational safety proof.

10. ACKNOWLEDGEMENTS
We would like to thank Adriana Compagnoni, Amy Felty, Zhong

Shao, Roberto Virga, David Walker and Dan Wang for many help-
ful comments and suggestions. We would also like to thank Roberto
Virga for helping us design the wellformedness judgements.

9

11. REFERENCES
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit

substitutions. InSeventeenth Annual ACM Symp. on Principles of
Prog. Languages, pages 31–46. ACM Press, Jan 1990.

[2] Amal Ahmed, Andrew W. Appel, and Roberto Virga. Semantics of
general references by a hierarchy of G¨odel numberings. July 2001.

[3] Andrew W. Appel. Foundational proof-carrying code. InSymposium
on Logic in Computer Science (LICS ’01), pages 247–258. IEEE,
2001.

[4] Andrew W. Appel and Amy P. Felty. A semantic model of types and
machine instructions for proof-carrying code. InPOPL ’00: The 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 243–253. ACM Press, January 2000.

[5] Andrew W. Appel and David McAllester. An indexed model of
recursive types for foundational proof-carrying code. Technical
Report TR-629-00, Princeton University, October 2000.

[6] N. G. deBruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation.Indag. Math., 34:381–92,
1972.

[7] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model
for recursive polymophic types.Information and Computation,
71(1/2):95–130, 1986.

[8] Neophytos G. Michael and Andrew W. Appel. Machine instruction
syntax and semantics in higher-order logic. In17th International
Conference on Automated Deduction, June 2000.

[9] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly language. InPOPL ’98: 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 85–97. ACM Press, January 1998.

[10] George Necula. Proof-carrying code. In24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, New York, January 1997. ACM Press.

[11] George Ciprian Necula.Compiling with Proofs. PhD thesis, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
September 1998.

[12] Frank Pfenning and Carsten Sch¨urmann. System description: Twelf
— a meta-logical framework for deductive systems. InThe 16th
International Conference on Automated Deduction. Springer-Verlag,
July 1999.

[13] Zhong Shao. An overview of the FLINT/ML compiler. InProc. 1997
ACM SIGPLAN Workshop on Types in Compilation, June 1997.

[14] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-valueλ-calculus using a stack of regions. InTwenty-first
ACM Symposium on Principles of Programming Languages, pages
188–201. ACM Press, January 1994.

[15] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage
collectors. InPOPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
166–178. ACM Press, January 2001.

[16] Hongwei Xi and Robert Harper. A dependently typed assembly
language. Technical Report OGI-CSE-99-008, Computer Science
and Engineering Department, Oregon Graduate Institute, July 1999.

10

APPENDIX

W ` > : Ω
WF >

W ` ? : Ω
WF ?

W ` c (i) : Ω
WF CONST

W ` i : Ω
W ` intπi : Ω

WF INT π

W ` n1 : Ω W ` n2 : Ω
W ` n1 + n2 : Ω

WF +
W ` τ : Ω

W ` id τ : Ω
WF ID

W ` τ : Ω
WN ` codeptr τ : Ω

WF CPTR

W ` τ : Ω W ` n : Ω
W ` o�set (n;τ) : Ω

WF OFFSET
W ` τ : Ω

WN ` box τ : Ω
WF BOXED

N;W ` τ : Ω
W ` rec τ : Ω

WF REC

W1;WY
2 ` τ1 : Ω WY

1 ;W2 ` τ2 : Ω
(W1;W2) ` τ1\ τ2 : Ω

WF \
W ` τ1 : Ω W ` τ2 : Ω

W ` τ1[τ2 : Ω
WF [

Y;W ` τ : Ω
W ` 8 τ : Ω

WF 8
Y;W ` τ : Ω
W ` 9 τ : Ω

WF 9
W[n] = Y

W ` n : Ω
WF INDEX

W ` i : Ω W ` τ : Ω
W ` fi : τg : Ω

WF SINGLE
W ` τ : Ω W ` i : Ω

W ` τni : Ω
WF n

W ` ι : INSTR W` s : Ω
W ` at(ι;s) : Ω

WF at

W ` τ;τ0;τ00 : Ω
W ` instr(τ;τ0;τ00) : INSTR

WF INSTR

Y;W ` ι : INSTR

W ` 8ιι : INSTR
WF 8ι

Y;W ` ι : INSTR

W ` 9ιι : INSTR
WF 9ι

W;N;W0 ` τ : Ω
W;Y;W0 ` τ : Ω

WF WEAKEN

Figure 10: Static Semantics : Wellformedness of Types

Termsτ; ι ::= n j > j ? j codeptr τ j o�set(n;τ) j id τ j box τ j
τ\ τ0 j τ[τ0 j8τ j 9τ j rec τ j fn : τg j τnn j
relateπ(τ1;τ2)(n1;n2) j c n j int32 j intπn j n1+n2 j
at(ι;n) j instr(τ;τ0;τ00) j8ιι j 9ιι j τ[s]

Substitutions r;s ::= id j " j τ � s j r Æ s

0 [id] =τ 0
es VarId

0 [τ � s] =τ τ
es VarCons

(τ1τ2)[s] =τ (τ1[s])(τ2[s])
es App

8 τ[s] =τ τ[0 � (sÆ ")]
es 8

τ[s1][s2] =τ τ[s1 Æ s2]
es Clos

τ[id Æ s] =τ τ[s]
es IdL

τ[" Æ id] =τ τ["]
es ShiftId

τ[" Æ (τ0 � s)] =τ τ[s]
es ShiftCons

τ1\ τ2[s] =τ τ1[s]\ τ2[s]
es \

τ1[τ2[s] =τ τ1[s][τ2[s]
es [

τ[(τ0 � s) Æ s0] =τ τ[τ0[s0] � (sÆ s0)]
es Map

τ[sÆ (s0 Æ s00)] =τ τ[(sÆ s0) Æ s00]
es Ass

intπτ[s] =τ intπ(τ[s])
es intπ

int32[s] =τ int32
es int32

c n[s] =τ c n
es c

Figure 11: Static Semantics : Explicit Substitution Rules

11

τ� τ � REFL
τ� τ00 τ00 � τ0

τ� τ0
� TRANS

τ� τ0 τ0 � τ
τ =τ τ0

� EQ

τ�>
� >

?� τ
� ?

int=i � int�i
� INT π

int=i � int�i
� INT π

τ1 � int�n1 τ2� int�n2 c(n2+n2)� int32

+(τ1;τ2)� int32
� +

τ1 � τ2

id τ1 � id τ2
� ID

φ2 � φ1

codeptr(φ1)� codeptr(φ2)
� CPTR

τ1 � τ2

o�set (i) τ1 � o�set (i) τ2
� OFFSET

τ1 � τ2

box τ1 � box τ2
� BOXED

τ1\ τ2 � τ1
� \L1 τ1\ τ2 � τ2

� \L2
τ� τ3 τ� τ4

τ� τ3\ τ4
� \R

τ1� τ1[τ2
� [R1 τ2 � τ1[τ2

� [R2
τ1� τ τ2� τ

τ1[τ2 � τ � [L

8x: (τ1 x)� (τ2 x)

8τ1� 8τ2
� 8

8x:(τ1 x)� (τ2 x)

9τ1� 9τ2
� 9

τ1 � τ2

fi : τ1g � fi : τ2g
� SINGLE

τ� τni
� n

(fi : F(int=n)g\ relateπ(F;G)(i; j))� f j : G(intπ(n))g
� RELATE

ι1�ι ι2

at(ι1;s)� at(ι2;s)
� at

8x: ((ι1 x)�ι (ι2 x))

8ιι1 �ι 8ιι2
� 8ι

8ιx: ((ι1 x)�ι (ι2 x))

9ιι1 �ι 9ιι2
� 9ι

τ01 � τ1 τ02 � τ2 τ3 � τ03
instr(τ1;τ2;τ3)� instr(τ01;τ

0
2;τ

0
3)

� INSTR

Figure 12: Static Semantics : Subtyping Rules

SPARC Kinds

κ ::= Oper ALU operators
j RegImm instruction modes
j Ω types

SPARC ALU Operators (Oper)
op ::= add(add cc) integer add (set codes)

j addc(addc cc) logical add/carry (set codes)
j and(and cc) logical AND (set codes)
j andn(andn cc) logical NAND (set codes)
j xor(xor cc) logical XOR (set codes)
j xnor(xnor cc) logical XNOR (set codes)

SPARC Instruction Modes (RegImm)
ri ::= RMode n Register mode

j IMode n Immediate mode
SPARC types (Ω)

τs ::= calc(op;n1;n2) ALUop result
j cc a j cc n j cc ne j ::: Condition codes
j ncc Restrict on condition codes
j set cc(op;n1;n2) ALUop cc result

SPARC instructions (INSTR)
ιs ::= alu(x;c;op)(i; ri;k) ALU instruction

j ibranch(τs;a;n1) integer branch instruction
j load(i; ri; j) load instruction
j store(i; ri; j) store instruction

Figure 13: TML Syntax : SPARC Kinds and Types

12

1� i < 32
` rmode(i) : Ωregimm

�212� i < 212

` imode(i) : Ωregimm

x2 f0;1g c2 f0;1g ` oper : Oper ` regimm: RegImm i;k : Ωnum

` alu(x;c;oper)(i; regimm;k) : Ωι

Figure 14: Wellformedness of SPARC Instructions

alu(0;0;op)(i;RMode(j);k)�ι
8Γ;φ;n1;n2:

instr(Γ;φ\fi : int=n1; j : int=n2g;
((φ\fi : int=n1; j : int=n2g)ni)
\ fk : calc(op;n1;n2)g)

SPARCALU 1

alu(0;1;op)(i;RMode(j);k)�ι
8Γ;φ;n1;n2:

instr(Γ;φ\fi : int=n1; j : int=n2g;
((φ\fi : int=n1; j : int=n2g)nincc)
\ fk : calc(op;n1;n2)g
\ set cc(op;n1;n2))

SPARCALU 2

ι �ι instr(Γ;φ\ τs;φ\ τs)
ι �ι instr(Γ;φ\ τ̄s;φ\ τ̄s)

fl : at(ibranch(τs;0; i);4); l +4 : at(ι;4)g �ι
fl : at(instr(Γ\fl + i : codeptr(φt)g;φ;φ f);8)g

SPARCBRANCH

load(i; IMode(c); j)�ι
8Γ;φ;τ:

instr(Γ;φ\f j : �eld c τg;
((φ\f j : �eld c τg)ni)\ relate=(id;�eld c)(i; j)

SPARCLOAD

store(i; IMode(c); j)�ι
8Γ;φ;τ:
instr(Γ;φ\ fi : τg\ relate=(o�set c; id)(j ;b)

relate�(o�set 4; id)(b; l);
φ\ fi : τgnrb\ relate=(o�set (c+4); id)(j ;b)

relate�(id; id)(b; l)

SPARCSTORE

tst(i)�ι 8Γ;φ: instr(Γ;φ\ fi : int32g;
φ\ ((cc ne\fo1 : int6=0g)[(cc e\fo1 : int=0g)))

SPARCTST

mov(i)�ι 8Γ;φ: instr(Γ;φ;(φn j)\f j : int=cg)
SPARCMOV

Figure 15: Static Semantics : SPARC Instructions in TML

13

