Typed Machine Language and its Semantics

Kedar N. Swadi
Princeton University

kswadi@cs.princeton.edu

ABSTRACT

We present TML, a new low level typed intermediate language for
the proof-carrying code framework. The type system of TML is
expressive enough to compile high level languages like core ML to
and can be guaranteed sound. It is also flexible enough to provide
a lot of freedom for low-level data representations. We can model
real machine instructions in TML, and thus avoid high-level opaque
operations like memory allocation and perform provably safe opti-
misations like array bounds check eliminations. Most important,
TML has a semantic model.

1. INTRODUCTION

Proof-carrying code (PCC) [11] is a framework for the genera-
tion of provably safe programs. In this framework, an untrusted
program is accompanied by a proof of its compliance with some
predefined safety policy (resource access, type safety, or memory
safety). The host mechanically checks the proof for correctness
to ensure safety of execution of the untrusted code. Though this
technique is general enough to encode a very wide range of safety
properties, existing PCC systems [10] suffer from a lack of flexi-
bility with respect to the high-level source languages they translate
from and the target machine architectures they compile to.

Building on a semantic model of machine-level types [4], we
design TML, a new low-level language that is general enough so
that a wide variety of high-level languages may be compiled to it,
and is also retargetable to different machines.

TML makes the following contributions : 2

¢ We have a semantic model for TML types based on a very

Andrew W. Appel
Princeton University

appel@cs.princeton.edu

e TML is really a machine language, with instructions speci-
fied by integer opcodes; thus we do not need to trust an as-
sembler.

e Unlike TAL [9] or DTAL [16], we can model each machine
instruction in TML, even those occuring in sequences allo-
cating a heap record. While TAL and DTAL have an atomic
“malloc” instruction that expands into several real machine
instructions, TML is expressive enough to reason about the
intermediate states in the malloc subroutine; similarly for
multi-instruction case-discrimination sequences. Each TML
instruction corresponds to a single instruction on a real ma-
chine like SPARC. This allows a compiler to perform prov-
ably safe optimisations and the trusted computing base is also
made smaller as a result.

e We can encode complex dataflow facts within the type sys-
tem. Tracking dataflow allows us to reason about interme-
diate machine states and thus make operations like sum-type
discrimination nonatomic in a safe way.

e Like other PCC systems, TML has no decision procedure:

we assume that a type-preserving compiler from a safe source
language produces hints and invariants useful in constructing
machine-checkable proofs. However, because each typing
rule is proved separately as a derived lemma (not through a
global syntactic metatheorem), we find it easy to add ad-hoc
rules for the convenience of the prover or compiler (in the
case where no change is necessary to the semantic model).

TYPED MACHINE LANGUAGE

TML is stratified into the levels okinds typesandvalues To

small set of axioms. Our trusted computing base comprises reduce complexity of the system we have only two kinds in TML.
the rules of higher-order logic augmented by some elemen- There are no other kind constructors in TML like functions or pair-

tary facts about number arithmetic. All TML types are mod-

ing. This simplifies the semantic model. The type constructors

elled as (defined) predicates, and type inference rules areare sufficiently low-level to allow translation from a wide range of
lemmas for which we provide machine-checkable proofs. Pre-source languages into TML. We cannot model quantification over
vious approaches to low-level semantics [9, 11] did not pro- higher-order kinds, which are required by the polymorphic typed

vide models, but only syntactic consistency results.

e Low-level type constructors for type intersections and ad-
dress arithmetic give front-end compilers more freedom in
data layout than high-level (TAL-style)
records or objects would.

lambda calculug,. We can extend TML to higher kinds such as
Q — Q — Q, but we can’'t quantify over these higher kinds; still,
this is enough to do type constructors in core ML.

2.1 TML Kinds

Preliminary version, July 2001

To reason about machine-level programs with machine-level types,
in TML we have kinds foiinstructionsandtype maps Type maps
are judgements on a vector of values associating them with their
types, and have the kin@. In our semantic model, we can use
type maps also to represent scalar types (judgements on a single
value, not a vector) and also to represent numbers. The main mo-
tivation to unify the three kinds into one was to have a smaller set
of quantification operators and also fewer rules for specifying static
semantics.

2.2 Types{:Q)

In TML, the state comprises a register baRkand a memory
M. All accessible values live in registers Bf These values may
point to data in memory. If xis a number theR(x) is the value
of the xth register; informally, we writex. Unlike TAL, which
distinguishes address values from integer values, our machine-level
calculus uses numbers to index memory.

As in the Appel-Felty semantic model of types [4], types are
encoded as predicates on values. Thdn; ry : T if M andR(x)
satisfy the predicate. TML has the following primitive types:

e T, L: Every value has typg; no value has type .

id : The identity type-constructor i.6d(1) =T.

box(T) : Thebox type constructor is for memory references.
v: box (1) if the content ofM(v) satisfies the predicate box
makes immutable references. TML can accommodate muta-
ble references using the semantic model of Ahmed, Appel,
and Virga [2], but we will not show details here.

rec(T) : This constructor allows us to define recursive types.
offset(i)(T) : The valuev has this type ifv+i satisfiest.
This constructor is useful wherever address arithmetic is re-
quired. For example, if locatioR(x) contains a pointer to

a record with two fieldg0 : 11,1 : 12], we could sayry :
offset(1) (box T2). A convenient abbreviatiorfield c T is

the same asffset(c) (box T).

T1 N Ty is the type of a value satisfying predicates for boih
andt,, while a value of typea; U1, satisfies predicates for
at least one of types.

V,3: These are the universal and existential quantifiers. We
allow guantification ovef) but not overINSTR We use de
Bruijn indices [6] (see Section 3.1) rather than variables, so
v or 3implicitly binds a de Bruijn variable. Informally, how-
ever, we will often show variables with the quantifiers.

rec : General (covariant, contravariant) recursive types are
written asrec T, whererec implicitly binds a de Bruijn index
that may be free im. For appropriate (“contractive”) expres-
sionst, we haverec T is a fixed point oft, which is written
asrec T =T[rec T-id] in the calculus of explicit substitutions.
codeptr : The judgement : codeptr ¢ holds ifv is a code
pointer with formal parameterg That is, it is safe to jump

to locationv if the registers satisfyp. The formal parameters
are modelled as a type map (Section 2.4).

at(1,s) : If at memory locatiorl, we have a TML instruction

| of sizes, thenl : at(1,s).

2.3 Integers (:0Q)

In TML, we can specify the types of integers, and constant and
bounded integers.

e inty(i) : The type of integerg such thai mti. For example,
int<100 is the type of integers less than 100, amd-(c)

is the singleton type of integers equaldoFor example, the
type of machine integers is
int3y = int>0Nint< 232,

+ : This type captures the result of additions. After executing
ri <—rj+rcwhererj :int_ng andry : int_np, we inferr; :
int=(n1+nyp) Other arithmetic operators like subtraction or
multiplication on integers can also be easily defined, as can
modular arithmetic.

These constructors allow us a great deal of flexibility for data
representation. Consider, for example, a list-of-integers datatype.
List cells could have untagged or tagged representations. In an

Kinds

Q

INSTR
Types (Q)
TIL
codeptr @
offset (N, T)
idt1

box T

rec T

Nt |tUT
Vi3t

{n:1}
o\n

Lo

!

intr[n
ni+nz

at(1,n)

n

Instructions (INSTR
instr(l,0,@)

Y1

N

>|>[<[<[=]#

Figure 1: TML Syntax : Kinds and Types

untagged scheme (Figure 2a)t4fis a pointer to a list, assuming a
4-byte word, we represent this as

r1:int=0U (int,.0N (field Oint3p) N (field 41))

where the left union type is the nil case and the right is the cons
case. Ifry contains a non-zero value it points to a record of two
fields, the first being the data and the second being the pointer to the
next cell. This makes pointers non-abstract in TML. (This example
is a simplification which avoids dealing with the recursive nature
of the list data type; see section 3.1 for a discussion of recursive

types.)

ril 0 | ri[20}—~ 0
Nil 10 Nil :
130
1
r2[300 J
Cons r2 | 300 10
Cons 130
@ (b)

Figure 2: Data Representation

To get a tagged representation (Figure 2b) we write

(field 0int_0) U
(field 0int_1 N field 4ints N field 8T)

rq:

In this case, a nil cell has a tag of 0, and the cons cell has a nonzero
tag field followed by the data and the next-cell pointer.

2.4 Type Maps ¢:Q) not the register bank. This type map describes the local typing in-
Atype map is a collection of typing judgements for registers, as- Variants at location. Using intersectionrf), we collect the local

sociating each registey to some typay. For most purposes, type ~ invariants at all program locations. This resultant malp.is

maps serve the function of environments. If any register is not ex- AS arunning example, consider the SPARC program in Figure 5

plicitly referenced in the environment, it is assumed unconstrained. Which adds up the elements of a list.

e The empty type map iS.
e {i:T}: Thisis asingletontype map, where the only judge-)
ment is that register has typer. N i .

We also write{i : 11, j : T2} for {i : 11} N {j : T2}.

e 1N : IfregisterbankR: @ andR : @p, we haveR : @ N@y. : 72
¢ @\i contains the type judgements for all registerg except ol — 2]
for ther;. : _
Existential and singleton types allow us to capture dataflow infor- 3 D
mation which can be used to relate the contents of two registers. Fg
For example, iR(i) = R(j), we can express this fact as
In{i:int=n,j :int_n} Register Bank Memory
A more general type mapelate, captures a wider class of such
register relations. Figure 4: List Representation in Memory
relaten(F,G)(i,]) =
an. S
{ri F (intn(n)} N {r} : G (int=(n))} I_n this program, registerl isa I|_st_value, WhICh is elther_O ora
pointer to a two-word record containing an integer and a list value.
We use the following example to illustrate the useredfte. Let A length-3 list containing1,2, 3] is shown in Figure 4. Register
@ = {ri : box 1}. We fetch the contents of the memomyl) at 02 is a temporary to hold the data till it is added to the accumulator
R(i) into register;, (rj < M[rj]). This operation results in a new in registero3. SPARC uses delay slots after branch instructions.
environmentg,. Trivially, R(j) = M[R(i)] in ¢. This fact is ex- Instructions which go in delay slots are shown prefixed with’g “
pressed using thelate constructor agelate—(box,id)(i, j). In the and they are executed whether or not the branch is taken.
definition above, the existential is instantiated WiliR(i)]. This For this program to be safe, it must start with registeraving
instantiation can be shown to satisfy the two sub-environments. We the type of a pointer to a list, and registét should have the return
now have address, i.e. it should have the type of a code pointer which expects

@ = {i : box T} Nrelate=(box,id)(i, j). From this environment, registero3 to have an integer. Assuming definitions for high-level
we have lemmas which can infer that: T € @,. We can also use types likelist_ty for lists (as shown at the end of Section 3.1), we
relate to reason about the safety of certain optimisations. For ex- have the preconditiogy for address 0 to be

ample, Section 7.3 explains how to perform provably safe sum-type

discriminations usingelate. . .
@ = {o1: list.ty} N{o7 : codeptr{o3:int3z}}

Register Bank Memory Register Bank Memory

: If this condition holds, then it is safe to jump to location 0. The
i — i — compiler provides invarianty for each locatior, which are com-
bined into
f VT A VT = {0:codeptr(@p)} N
: {4 : codeptr(qq)} N
Before | oad After | oad

.{36 :codeptr(@zg) }

Figure 3: relate Example One of the goals of TML is to be able to work with multiple
target machines. Unlike TAL or PCC, which assume the correct-
ness of the assembler, we wish to have evidence that the code was

2.5 Code Context(:Q) assembled correctly. Hence, proofs of safety of programs must
Program safety can be proved from type safety. Thus, we en- also include proofs that each word in the code part of the memory
sure that certain typing judgements hold before and after the ex- matches its semantic specification. For each machine, we need to
ecution of every instruction. Consider an instruction at location know the instruction semantics, or how instructions in that machine
which requires its arguments to be of certain types. For example, change the state. Assuming that program locdtioas valuer, we
a load instruction might require its source register to be fitld must prove that this value decodes to some instruction (described
type. In terms of Hoare logic, if the register baRlsatisfies some in Section 2.6), of sizes, which has the required semantics. In-
precondition, it is safe to jump to locatidn This precondition formally, we must prove that the contents of the “opcode” column
on R is represented as the type m@p Thus we have being of in Figure 5 implement the contents of the “pseudo code” column.
type codeptr(¢). This fact itself can be encoded as the type map A encodes the contents of the part of the memory containing the
{I': codeptr(@)}, thoughl is an address indexing into the code and program as intersections of singleton type m@bsbox(int=v)}

Address Program Pseudocode opcode
0 tst %ol Rjol]==07? 0x80900009
4 mov 0, %02 R[02] + 0 0x94102000
8 ba entry gotoentry 0x10800005

12 x mov 0, %03 R[03] + 0 0x96102000
16 loop: Id [%01],%02 R[02] + M[R]01]] 0xd4024000
20 Id [%01+4],%01 R[ol] + M[R[01] +4] 0xd2026004
24 tst %ol if Rjol] <>07? 0x80900009
28 entry: bne loop gotoloop 0x12bffffd
32 x add %03, %02, %03 R[03] <~ R[02] + R[03] 0x9602c00a
36 retl return 0x81c3e008
40 * Nop 0x01000000

Figure 5: SPARC program to add the contents of an integer list

for each addredsin the program. For our example program, gives us a convenient way of expressing this. Therefore, we have
A = {0:box(int=80900009)} N add(i,j,k) <, VI,@nm.
{4 : box(int=9410200@g)} N instr(l, (@ N {j:int=n}N{k:int=m}),
. ((@N {jint=n}N{k:int=m})\i
: N {i:ntm}))
{40 :box(int=0100000@s) }
The form of instruction for addition given above is the most gen-
If we shuffleANT to interleave the contents 6fandA to look like eral form. Howeveradd may be called in other contexts, most

importantly for address arithmetic needed for subsequent loads and
stores. This form ofdd is significantly different in its semantic
specification and we must prove that the most general form is a
subtype of the form below.

{0 : codeptr(qo)} N
{0 : box(int—80900009g)} N
{4 : codeptr(qq)} N
{4 box(int—9410200Qg)} N

s add(i, j,k) <, VI, @T,cC
{40 :box(int—-0100000@s) } instr(I, (@ N {j: field ct} N {k:int=c}),

the connection to traditional Hoare logic style presentation becomes (o0 {J -field c T} {k:int—ch)\i
obvious. Thag's are the program annotations, while the other sin- i 2 box(1)}))
gletons form the program instructions. Unlike add which made no reference to the code contds (

. given the instructionjmp r;, we need to make sure that it is type-
2.6 Instructions safe to jump to the branch target (given®{l), the contents aof;)

An instruction in TML is a relation onpy, the type map which with the current register environmeng, Hence, should satisfy
holds before its execution, ang, the one that holds after its ex- the precondition for code addre81). Thus the TML instruc-
ecution. The tupld@, @) is the Hoare-logic style specification tion characterising a jump should have a code corfiex{R(1) :
of an instruction withg, being the precondition angh being the codeptr(@)}. The instruction subtyping rule for a jump is written
postcondition for that instruction. as

Unlike Hoare logic, we have explicit branches and jumps. For
branches we need to know the preconditions of all possible branch
targets. This is provided by the code contExtWe therefore have
the instruction constructoinstr depending on three type maps,
(r’F%(pZ)' | ider thald ()i ion in cod

or example, consider { ri < rj+ry) instruction in code
contextl”. Addition requires the sourcejvalues to be integers. Sowe 3. TML STATIC SEMANTICS

Jmp(l) Ci vrvq)vn'
instr(F N {n: codeptr(®)},
oN{i:int_n},
oN{i:int=n})

have the preconditiop, = (¢ N {j :intz2} N{k:int3z}). After TML static semantics are given in terms of rules for the well-
addition, all previous typing judgements abautare invalidated. formedness of types, type maps and instructions
Additionally, in @y, r; gets the integer type, encoded{as: int3»}. (Figure 10), subtyping rules on types in all these kinds (Figure 12),
Thereforeg = (@ \i) N {i :int3}. and well-formedness of programs.

We can actually have a stronger formulationdaid .If we know
that in@y, {j : int=n,k: int=m}, we have the postconditiog, = 3.1 Well-Formedness of Types
(@ \i)N{i:int=(n+m)} In TML, we use thenstr instruction con- Some types liké/ andd take type arguments and could be writ-
structor to encodedd for ¢; and @, under contexf” asadd = ten asv (Ax. F x). But type functions using would require higher
instr(I",@1,@). We see thaadd is polymorphic over all environ- kinds, complicating the semantic model. We avoid this compli-
ments@ and contextd”. Therefore, in writing TML-instruction cation by having quantifiers implicitly bind de Bruijn indices [6],
constructors we need quantifications o@eiusing operators,, 3. represented asinstead of named variables in the type terms. The
We usually wish to prove that an instruction at some location satis- above term, for example, looks liké(F 0). We use explicit sub-
fies some semantic specifications. Subtyping on instructiang, “ stitution [1] rules given in Figure 11 to manipulate the terms.

For reasoning about recursive types, we need to know which
types are contractive (as in the ideal model [7] or the indexed model
[5]). The typea = offset(3,a) is not meaningful because the oper-
atoroffset is not contractive, but

list = int—0U (int..0N (field Ointsp) N (field 4 list))

is meaningful becaudéeld is contractive.

To define well-formedness, we use a context formedAhya
list mapping indices in the type term to their contractiveness, and
— in effect — we reason about type-functions, not types. Ifrffle
element inW is Y, it means thah may be assumed to be contrac-
tive for determining the contractiveness of the term containing it.
If it is N, the contractiveness of the term is not dependent on the
contractiveness af. Whenever we introduce any new variable, it
gets the de Bruijn index 0. We shift all other indices by 1. There-
fore, we add theY or N to the head of the conteXt/. We use the
notationWw” andWN to force all entries itW to Y andN respec-
tively. Figure 10 gives the complete set of rules to determine the
well-formedness of type terms. We list a few of these below.

WET:Q WFEnN:Q
W offset (n,T): Q

WF_OFFSET

NWE 1:Q

———————— WF.REC
WE recT:Q

YWET1:Q
WEVT:Q

YWE 1:Q

WEY WE 3t.0

WF_3

Win]

WF_CONST
WkEN:Q

WF_INDEX V\m

For example, consider the tenrc(Aa(offset 3 a)), written as
rec(offset 3 0) using de Bruijn indices. This term is not well-
formed sinceoffset is not a contractive constructor. The derivation
tree for the well-formedness of the term under cont@xs

277 WF_CONST
NWE 00 Nwr 3:a O
NWE offset30:Q \OFoET
WF_REC

W F rec(offset 30): Q

After using thewF_OFFSETrule, we use th&/F_CONSTrule to
show well-formedness of 3. Sind®&,W}[0] = N, we cannot use
the WF_INDEX rule to show the well-formedness of thesGbterm,
and hence the derivation fails.

The integer-list data type of Figure 2a is,

rec(int—0U
(int.0N (field Ointsy) N (field 4 0)))

and this can be proved well-formed with a syntax-directed deriva-
tion.

3.2 Subtyping

In our proofs for derivations of program safety, we are often re-
quired to prove that any value of tygeis also a value of type'.
Subtyping provides a convenient way of expressing this, and we
express the above condition @sC . For instructions, we often
wish to say that an instructionimplements another instructioh
(like add implementing pointer arithmetic in Section 2.6), express
this syntactically asc, 1. A few illustrative rules are given below.

A larger set of rules is in Figure 12.

list_ty =

cT
TCT
—————— CINT.n —————— CJINTm
int=i C int> (i) int=i C int< (i)
T1CT
—Lt="2 _ Boxep
box 11 C box T2
TCT3 1CTy
—————— R
TCT3NTy
T1CT
—1-2 _ CsinGLE
{iruq}c{i:t}
- C.
TCT\i
T,C1y 1,CTp T3CT-
1 2 3 CINSTR

instr(T1,T2,T3) C instr(T),T5,T5)

4. REAL MACHINE INSTRUCTIONS

We want to run real programs on real machines; we will take a
usable subset of the SPARC architecture as our prototype example.
We omit floating-point instructions, register windows, and privi-
leged instructions; this means that we can still type-check (prove
safe) integer-only programs generated by compilers that don’t shift
register windows, of which the FLINT compiler [13] is an example.
But for this paper we illustrate only a subset of our subset.

For each machine, we must augment our type system with types
and typing rules that are necessary to describe that machine. For
SPARC, we need to add kinds and types necessitated by the archi-
tecture details.

4.1 SPARC Instruction Syntax

For the subset of SPARC instructions we consider, there are three
classes of instructions, the ALU instructions,
branch instructions, and memory access instructions. In TML, we
model these instructions as subtypes of instructions formed by the
instr construct in TML, as shown in Figure 15. Wellformedness
rules for SPARC instructions are given in Figure 14.

SPARC arithmetic instructions take the foend s, — d, where
s1 must be one of the 32 registess, may be a register or an im-
mediate sign-extended 13-bit constant, dmdust be a register. To
describe the second operand we have a Kadimmwhich allows
us to discriminate between register-mdtiglode type arguments
and immediate-modiMode type instructions.

Figure 13 shows the kinds and constructors for operators. A gen-
eral ALU instruction is specified bylu(x,c,oper), whereoper (of
kind Oper) is the operation to be performer,(0 or 1) specifies
whether carry-in is to be performed as part of the operationcand
(0 or 1) specifies whether the condition codes are to be modified
by the operation. Thus, for example, the standard add instruction is
alu(0,1,add_oper) : INSTR

Condition codes on architectures such as SPARC and Pentium,
are modelled as if they live somewhere in the register bank, perhaps
in one or more processor-status registers. The fact that the condi-
tion codes in some stat®, M) match the condition “not equal” is
written M R : cc_ne, and we see thaic_ne occupies the position
of a type map. The SPARC has sixteen predicates on the condition
codes, of which “not equal” is one; thus, we have sixteen primitive
type maps, of whickec_ne is one. We also have a type map op-

erator\ ¢, which is analogous to our type map operatpthat is, For example, a singleton type map constructor (cglLitt}) is
@\ is a type map similar tg but with any information about the defined in the following way:
condition-code settings removed, e@¢ @\C.

We define the complement operator on condition-code 1:1}= Xo
type maps as follows: ')\(k (50,%0))-
ccla=ccon ccn=cc.a (alwaysnever T(0) K (sv, Ai.xv(1))
ccg=cc.le ccle=ccg (>,<) Sincet may contain de Bruijn indices, we provide an environ-

mento to interpret them. In this type map, we wish the first vector
entry to satisfy the type. Hence, we extract the first component
Some arithmetic and logical operations on the SPARC yield condit@ns before again putting it into a tuple with the state. Theis
code settings, and these settings depend not only on the result but ir@Pplied to the new tuple with index
some cases on how the result is computed (i.e. on the arguments). As mentioned before, type scalars are also modelled as type
We model this with an operateetcc(oper, ng, nz) which computes ~ Maps. For example, the definition of the character type “char” is
the appropriate condition-code type maps. For example, given below.
setcc(add_oper,3,—7) =
cc-a N ccone N cc_le N ccl N
cc_gu M cc.cc N cc_ne N cc.ve
A conditional branch instruction is specified by We apply O taxy, to convert itinto a scalar (call &,). The set defin-
ibranch(cond a,i) wherecond is a condition-code type mam ing “char” should only allow values between 0 and 256. Therefore,
specifies whether the delay-slot instruction should be annulled if we check that, satisfies this condition.
the branch is not taken, amds the displacement, an integer to be A numbern: Q can be represented by the tyipe—(n) : Q.
added to the program counter if the comparison yields true. In this model, we think of programs both as sequences of op-
For SPARC load instructions of the forda «+— M([s; +-c] or store codesA and as collections of code pointdrs Assuming a pro-
instructions of the fornM([s; + c| +— sp, thec argument is formed gram starts at location 100 with an environmendescribing the
with thelMode constructor. The store instruction has involved se- types of values in registers, we must show that location 100 has
mantics which are tied to our allocation model. We describe this typecodeptr(@) for any indexk. We prove this by induction ok

char=Aa.A(K, (sv,%v))-
0 < (Ai.xy 0) < 256

model and the store instruction in detail in Section 7.1. The base case is easy enough; every value hag tiggeanyT to
approximation 0. For the induction step, we prove that
5. SEMANTIC MODEL OF TYPES v (ANF) (K V) = T (K 1,v).

In this section, we briefly describe the semantic model we use

; . ; That is, if the program satisfies predicéte " to approximatiork,
f . | I h I Appel . 2
gdt){\ﬁs;”ez?err%?de 's built upon the model described by Appe then it also satisfieE to degreek+ 1. Appel and McAllester [5]

explain in detail what this means.

To avoid mentioning indicek in the TML system, we abstract
vk,v. @(k,v) = @(k+1,v) aspE¢. Thus, the previous formula
is written asANT &I, and we give syntactic rules for introducing
and eliminating& in Figure 6:

In this model, aty-predis a predicate on tuplegk,v). Infor-
mally, a valuev belongs to a type to indexk, (v ik 1), it is safe
to run a program expecting a value of typen argumenv for k
instructions. Since is a predicate on valuesk vmeans thatk, v)
belongs to the type.

A valuev is a tuple(s,x). The first componens, describes the
state of the machineitself is complicated and contains other rela- , " ,
tions likereadable, writable, allocated, which describe the sets of et ter . et . . T
readable, writable and allocated parts of the machine memory re- Te(r'nt’) et rer —
spectively. Since types involving memory references would require
to know about the currently readable parts of memory, for example,

T C {l:at(instr(t',11,1"),9)}

we need to have the state as a component of the value. T C ({l +s: codeptr(t")}) & INSTR
The Appel-McAllester model is too weak to specify dependent T &({l : codeptr(t1)}))
types (e.g.relate). In our new model, the second component
of a value(s,x) is a vector of integers (i.e., a finite function on *.CPTR
integers). For example, Figure 2a illustrates a vdlye) where I &({l : codeptr(L)})
the memory component afcontains{300+— 10,304+ 130} and .
the “root vector’r contains{1 — 0,2 — 300}. INT ET & \npUC
Ty-preds are written as predicates on the tuples). To con- ct

tinue our example, the valus,r(2)) might or might not be a list,
because in this illustration we don’t know the contents of memory
location 130; but to approximation 1 it's a list, meaning that if we
execute for at most 1 instruction frofs,r(2)) the program can't
notice that it fails to be a list. We write this st ty(1, (s,r(2))).

The type expressions of TML are not simply modelled by ty- 6. PROVING PROGRAM SAFETY
preds, because we must also represent open de Bruijn indices: an an o
open term is (implicitly) parameterized by a substitution providing L€t be the allocated set which includes the part of the memory
values for all the unbound variables. So the type map of TMLis thathas the program code and any allocated deitanot primitive;
it can be expressed as a predicate on the merkbriRegisters,

(N — ty-pred) — ty-pred andr; will point to the boundaries of the allocation area, that is,

Figure 6:G-Rules

availR) = {R(a),R(a)+1,...,R(l)—1} are locations available for ProvingA C T is nontrivial and we give a schematic description
future allocation. To check the safety of the program under memory below. Figure 8 gives part of the proof tree for the second condition.
M and register banR, we have the following rule : The two most interesting stages in the proof are labedteghdS2

At stage S1, we need to prove facts lke\[" @{I : codeptr(@)}

for every locationl in the program. This means that can always

AMER: 1 . o

AcC readabl:zp EZ; take another well-typed execution step at any point in the program.
avail(R) =C (readableNwritable) (3) These are t_he typing judge_ments _Nhic_h implement Fhe induction
AnavailR) = 0 (4) proof (mentioned in the earlier section) in our underlying model.
AM - R(pc) : codeptr(Q) (5) In stage S2 proving these facts for each locati@reduced to

safe(R, M) 1. proving that some instruction is present at locatievhose
precondition igp specified by the environment ladnd post-
condition is somey, and

2. proving that the next instruction is a codepointer
which expects the environment to satigfy

This program could be just a function which is called by another
piece of code with some parameters. Hence, the initial program
location is a continuation with formal parametersTherefore, the
first condition says that we start out with the environmentWe
do not wish to have any assumptions about the type system of theThe connection to traditional Hoare-logic proofs is again evident.
calling program. We might like the called function to use any com- Below is the Hoare-logic style proof for our list sum example.
plex type system which the caller might not know about. Hence, We start out with thé\ andl™ as described in 2.5.
we expectpto be very primitive in nature and easily provable. This To prove the first fact, we begin with decoding the contents. of
condition ensures that we start out in the correct state. Each program code locatioh,contains some number The first

Premises (2) says that code and allocated data should be readstep involves proving that decodes into a TML instruction =
able, (3) says that free space should also be writable and (4) ensuresnstr (I, @, @). We prove this using instruction decoding techniques

that allocated set is disjoint from the free space. described by Michael and Appel [8, 3]. After this, we prove that
For the example program in Figure 5, let theadable set be @ C @. This allows us to executeunder the environmeng safely.

{0...1000}, the writable set be{200...1000}, and the allocated Proving the second part involves showing that the resultant en-

set be{0...300}. Proving (2),(3), and (4) is fairly easy. vironmentg is compatible with the given environment at next lo-

The last condition says that we start at a location which is a valid cation,| 44 (for non branch instruction). This is done by showing
code pointer of type. It is this condition which captures the main thatg C @4
proof of safety of the program. We list the environment supplied at each point in the program
along with the decoded instructions.

loaded(A,M) ACT T CR(i):t @ = {o1 : list}
AMER():T 0 sPARCTST
@ = {ol:list}
A=V fibox(intup(i)} Vi€ dom p.M(i) = p(i) 4 sparcMOV
I€dom p @s=@N{o2:int3}
loaded(A, M) 8 SPARCBRANCH
@12 = @3N {03 :int32}
12 sparcMov
Figure 7: Program-loading rules @16 = Q12N {01 :int,0}
16 sparcLOAD
Figure 7 lists the inference rules on values. The first rule shows G20 = Q12N {0l 1int,0} N {02 :int3y}
that proving (5) involves proving three facts: 20 spARCLOAD]
e We first show that the program loaded in memory is de- @24 = Q12N {02 :int3o}
scribed by 24 spARCTST
e The second condition involves decodifgto get TML in- $28 = P24
structions. Then we must show that these instructions respect 28 SPARCBRANCH
the invariants mentioned in the code contéxiThe proof of (2= (28
this fact requires us to traverse the program and check that 32 sPARCALU]))
type safety is preserved at each point in the execution of the @36 = {o1 :list} N{o2 :int3z} N {03 :int32}

program. This proof captures progress by showing that there wie can always execute the instruction at location 0, since the
is always another instruction (the next instruction for non- precondition forSPARCTST has no constraints. From subtyping

branches, and the branch target instruction otherwise) that ryle . REFL, we can prove thagy C @. The postcondition
may be safely executed.

« Finally, for the program counter), we must show that ¢ =goN((cc-nen o tint,0}) U(cc.en{ol :int=0}))
theT from the second condition satisfi@syc : codeptr(¢) }. @ is stronger thanps, and step (2) in stage S2 can be easily
This can be prove_d using the subtyping rules shown in Figure proven by subtyping rules. This postcondition helps us relate the
12. For example, if value ofol to the condition code when we take a branch depending
[=10: codept A {4 codept no on it. We can always execute the twwv instructions (at location
{0: codep r(%)}m {‘{10 :zzdzgt:gxg} 4 and at the delay slot at location 12) as there are no source regis-
ter constraints. After the branch instruction at location 8, we have

thenl” C {0 : codeptr(qo)} is trivial. postcondition

: : : <
ANT C {0:at(instr(l, @0, ¢1),4)} ANT C {4 :at(instr(l", ¢4, @5),4)} ANT C {36 :at(instr(I", P36, P10),4) }

ANT C {4 :codeptr(qq)} ANT C {8:codeptr(pg)} ANT C {40 :codeptr(ao) }
ANT &{0:codeptr(qo)} ANT &{4:codeptr(@s)}...ANT &{40 :codeptr(gyo)}
ANl ar B
ﬁ E_INDUC

Figure 8: Part of Syntactic Proof Tree for Program Safety

A

Start

Ppa= P1N {02 :int=0} N {03 :int-0} wl&%&&‘

This environment can be shown to be stronger thanthe target
of the unconditional branch, i.en, C @pg. At this point, depend-
ing on the condition codes, we either go to location 12 or location
36 after executing the add instruction at location 32. Since types of
02 ando3 areintsy, we can show that thiSPARCALU addition
instruction in the delay slot can be executed. Memory
The postcondition of the conditional branch, if taken, is

@ =@N((cccnen{ol :int,0})N{o2:int32} N{03 :int32} Figure 9: Memory Allocation

Boundary

Free

A

Limit

This environment satisfies the condition of the pointeninbe-
ing non-null. We can prove that itis stronger thandhg, the target 1o by the registerap. rp, points to the beginning of the unallocated
of the conditional branch using rules in Figure 12. set of locations.i.e., all locations frorgp to rp, — 1 are allocated

Since we are using the untagged representation of a list, and wepoints to the end of the memory allocation region. All of these are
have{o1:list_ty} and{o1:int.0}. We caninfefo1:field Oint32}N virtual registers, and may not be used as register arguments to any
{o1:field 4 listty}. instructions.

This would satisfy the precondition for the instruction at lo- We wish to allocate a tuple of two integers. Let these integers
cations at 20 and 24, since the typeso@f ando3 are the same, pe stored iy andr, and letrs point to the resultant tuple. Be-
but the type ofol is stronger than judist. The next load canbe fore allocation, we must start out with a guarantee that some space

similarly shown to be safe. is avilable. Assumeap pointing to location 100y, pointing to
_ If the branch at location 28 is not taken, we have the postcondi- |gcation 120, and, pointing to location 200. The atomic malloc
tion program would be split into the following steps:
=@ N ((cccenol:int=0})N{o2:int=0} N {03 :int32} e Check for the availability of space : The conditi®ib) +
This is stronger than the requirement that we return Wi : 4 < R(I) checks that we have space for two integers.
int32}. Thus the entire function can be shown to be safe. e Store contents af; at addresK(b).

e UpdateR(b) to R(b+4).
7. NO ATOMIC OPERATIONS For SPARC, thestore instructionsto i, j, ¢ allows us to

In TML, we do not use opaque high-level instructions for allo- gpjit malloc . It uses the first type map to encodes the intial checks
cation or array accesses which expand into multiple instructions on by hayingrelate< (offset 4,id)(b, |) This ensures space for one inte-
real machines. Our type system allows us to argue about interme-ger taking up one machine word. By haviregate— ((offset ¢), id)(i, b),
diate machine states within these instructions. Below we explain \ye know the address for storing is exactly the same as the begin-
how to perform safe memory allocation, array bounds check elimi- ning of the unallocated space. The postcondition correctly assigns
nation, and sum type discriminations in TML. the type tai. It also updates thg, to point to the next unallocated
7.1 Memory Allocation location, a_md maintains the< relatlon_between the, and the _

. . .. 1. Thus, it guarantees that the store is safe. The second store is

We assume that memory is allocated from a contiguous region in gimjjarly guaranteed safe. At the end of the two stores, we have
order. i.e. every location is aIIoca_ted_ after all preced!ng Ioca_tlons {i : (field 4 intsp)} from the firststo and{i : (field 8 int32)} from
have been allocated. As shown in figure 9, the region begins athe second. Taking the intersection of these two types, we fhave
“Start” and ends at “Limit”, where all locations till “Boundary” are having exactly the type for a tuple of two integers.

allocated. _ Our allocation method is not completely general. For example,
Most typed assembly languages treat memory allocation as anyye stjll have the restriction of making allocations in a linear order
atomic operation. This increases the trusted computing base, makyyithout holes.

ing us trust the safety of the allocation subroutine. This also disal-

lows the compiler making certain optimisations or rearrangement 7.2 Array bounds check elimination

of instructions in the code that involves memory allocation. In We can define-length arrays in TML as

TML, we use bookkeeping registers to get rid of the atomicity of al-

location. The contiguous allocation space starts at address pointed array(n,T) = Vi.field(((4*i) Nint>0Nint<n),T)

The allocation for arrays is similar to the example above. We
assume a registey which has typa. We make up an array of type
T and sizen by initialising n locations using the scheme above to
the value inr; within a loop. Due to lack of space, we cannot go
through a complete example.

We have a rich set of constuctors over integer values and sin-
gleton types in TML which allow us to perform safe array bounds
check eliminations.

Loc Program Pseudo code

100 loop:subcc %02, %04, %g0 R[02] == R[o4] ?
104 be done; nop gotodone

112 add %o01, %04, %05 R[05] + [0 1] + R[o4]
116 Id [%05], %06 R[02] + M[R[05]]
120 add %06, %03, %03 R[03] + R[03] + R[06]
124 add %o04, 4, %04 R[o4] + R[o4] +4
128 ba foo; nop gotoloop

136 done:

Consider the program above which adds the elements of an inte-

ger array. Registayl contains the pointer to the arra2 contains
length of the arrayo3 is the accumulator for the sum of elements.
04 contains an integer used to index into the array. We start with
the environment

{o1:array nintgp Nint=41} N {02 : int=4n}N
{04 : ints0Nint<4nNint=4m}

Pro0=

From the types inp g, the starting point for the program, we can
infer the fact thaR(04) < R(02) and thatR(04) andR(o1) are di-
visible by 4. After thesubcc instruction at 100, usingPARCALU _2
(which considers condition codes), instantiated with= sub, i =

02, j = o4 andk = g0, we have the environmen o4 correspond-
ing to the postcondition havinget_cc(sub,R(02),R(04)). The
branch instructiorsPBRANCH requires the postcondition that the
“equal” flag is not set for the fall-through instruction. Therefore,
we can determine the precondition of instruction at 112 to include
R(02) # R(o4). These two facts allow us to further infer that
R(o4) < 4n. Theadd instruction at address 112 computes the

address of the array element to be accessed. This access is safe

only if the address is between the array b&e1) and the ar-

ray limit (= R(o1)+4n), and if it is on a word boundary. Since

0 < R(04) < 4n, the effect of theadd instruction is thaR(o1) <
R(05) < R(o1)+4n. The sum is also divisible by 4. We expect a
medium-sized set of arithmetic lemmas to be sufficient for deriv-
ing most of the inferences required for such reasoning. All these
conditions can be shown to be implied by the postcondition we get
for theadd instruction. Therefore, the nelkd instruction at loca-

Code Pseudocode
100 Id [%01], %02 R[02] + M(R(01))
104 tst %02 if 02#0
108 bne b_case;nop Btagcase
116 ba a_case; nop else Atag case
124 hcase: Id [%01+12], %03 R[03] < M(R(0l)+12)
140 acase: Id [%01+4], %03 R[03] + M(R(0l)+4)

Assume that registesl points to afoo cell. Instruction 100
loads the tag into regist&?2. If 02 is not zero, B case) then we
branch to théb_case label. Else, A case) we go to tha_case
label. In instruction 124, we access the third field. This access may
be ensured to be safe in the following way. The load instruction
relateso2 andol such thatM[o1] = 02 (Fact 1). On jumping to
b_case after the test, we have another fac = 0 (Fact 2) due
to the TML instruction SPARCIST. At location 124, both facts
1 and 2 continue to be true. From these two facts, we use simple
arithmetic lemmas to conclude théfo1] # 0. This combined with
the fact{o1 : box(foo)} allows us to conclude thatl has theB
variant offoo . Therefore, the access in location 124 can be proven
safe.

8. RELATED WORK

The PCC system described by Necula [11] lays the foundation
for this research. However, it has a very large trusted computing
base in terms of the type inference rules and the “VCgen” or the
verification condition generator. By giving semantic model to types
and machine semantics, we have a much smaller trusted computing
base. Also, their implementations are specially geared towards ‘C’
or Java.

TAL [9] uses opaque high level operations to handle allocations
and array accesses. TAL is also specialised for compilation to
x86 architectures. DTAL seems to be more expressive than TAL,
though it also handles allocation in an opaque way. DTAL also
requires an extension to the system to handle sum type discrimi-
Ration. However, due to the presence of dependent types, DTAL
makes array accesses transparent and allows us to perform safe
array-bounds check eliminations.

Finally, PCC and TAL have had no semantic models, only syn-
tactic metatheorems.

9. FUTURE WORK

We are using Twelf [12] to encode TML. Though most of our

tion 116 can be shown to load from an address on a word boundarymodel for types has been encoded, we still have to encode the

which is within the array limits. Hence the access is safe. After
theadd instruction at location 128, we can easily prove tR&i4)
remains to be divisible by 4.

7.3 Sum type discrimination
Consider the following ML datatype.

= A of int * int
| Boft*t*int

datatype foo

This has a machine level representation wheredthadB cases
are differentiated on the basis of a tag. A zero tag implies fase
and the next two words contain integers. A nonzero tag imfdies
tag where it is safe to access the third word after the tag.

model for instructions and many lemmas which are required to
complete the proofs of program safety. Our allocation model is
also not fully general and we hope to extend it to handle regions
[14]. This could allow us to use provably safe garbage collection
schemes as shown by Wang and Appel [15].
We are also using TML to construct a semantic model for a TAL-

like calculus, completing the end-to-end path from ML source code
to a foundational safety proof.

10. ACKNOWLEDGEMENTS

We would like to thank Adriana Compagnoni, Amy Felty, Zhong
Shao, Roberto Virga, David Walker and Dan Wang for many help-
ful comments and suggestions. We would also like to thank Roberto
Virga for helping us design the wellformedness judgements.

11. REFERENCES

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit
substitutions. IrBeventeenth Annual ACM Symp. on Principles of
Prog. Languagespages 31-46. ACM Press, Jan 1990.

[2] Amal Ahmed, Andrew W. Appel, and Roberto Virga. Semantics of

general references by a hierarchy ajdel' numberings. July 2001.

Andrew W. Appel. Foundational proof-carrying code.Sgmposium

on Logic in Computer Science (LICS 'Qppages 247-258. |IEEE,

2001.

[4] Andrew W. Appel and Amy P. Felty. A semantic model of types and

machine instructions for proof-carrying code. ROPL '00: The 27th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languagespages 243—-253. ACM Press, January 2000.

Andrew W. Appel and David McAllester. An indexed model of

recursive types for foundational proof-carrying code. Technical

Report TR-629-00, Princeton University, October 2000.

[6] N. G. deBruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulatiotndag. Math, 34:381-92,
1972.

[7] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model
for recursive polymophic typemformation and Computatign
71(1/2):95-130, 1986.

[8] Neophytos G. Michael and Andrew W. Appel. Machine instruction
syntax and semantics in higher-order logicllfth International
Conference on Automated Deductidane 2000.

[9] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly languageP@PL '98: 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 85-97. ACM Press, January 1998.

[10] George Necula. Proof-carrying code.2ath ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 106-119, New York, January 1997. ACM Press.

[11] George Ciprian Necul&ompiling with ProofsPhD thesis, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
September 1998.

[12] Frank Pfenning and Carsten Sehiiann. System description: Twelf
— a meta-logical framework for deductive systemsThe 16th
International Conference on Automated DeductiSpringer-Verlag,
July 1999.

[13] Zhong Shao. An overview of the FLINT/ML compiler. Proc. 1997
ACM SIGPLAN Workshop on Types in Compilatidane 1997.

[14] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-valueA-calculus using a stack of regions. Twenty-first
ACM Symposium on Principles of Programming Languageges
188-201. ACM Press, January 1994.

[15] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage
collectors. INPOPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languagesies
166-178. ACM Press, January 2001.

[16] Hongwei Xi and Robert Harper. A dependently typed assembly
language. Technical Report OGI-CSE-99-008, Computer Science
and Engineering Department, Oregon Graduate Institute, July 1999.

3

5

10

APPENDIX

WEi:Q
— — —— WF.CONST ————— >~ WF.INT-
wr o wr oY o wrech):a WH intg:Q T
W+ Q WFH :Q : WET1:Q
Ny M2 ey WETQ op - WF_CPTR
WHEnNn +n:Q WEidt:Q W™ I codeptr1:Q
WET:Q WEN:Q WET1:Q NWE T:Q
WF.OFFSET ————————— WFBOXED '~ "' g
W offset (n,1): Q WNE boxT:Q WF rect:Q " eC
WL, W Ti Q0 WY Wo b TziQWFm WET1:Q WFE TZ:QWF
WLWo) F 11NT2: Q - WH 11UT,: Q -
YWET:Q WEy YWET1:Q WES Wn =Y WEINDEX
WEVT:Q B WE 31:Q T WEDN:Q B
W}—IZQ.W}— T:QWF_SINGLE WET1:Q W}—l:QWF_\
Wk {i:1}:Q WE T\i: Q
i i 1.
WE LIINSTR WEs:Q _VW LT,T:0 WEINSTR
W at(l,s): Q Wt instr(T,7,7"7) : INSTR
Y,WH 1:INSTR Y,WFE 1 INSTR W,NW' F 1:Q
- _WFy, ——— — WF3j ——————— WF.WEAKEN
W V1 INSTR WHE J1:INSTR W,Y,WF 1:Q

Figure 10: Static Semantics : Wellformedness of Types

Termst, | = n|T]|L|codeptrT|offset(n,T) |id T |boxT|

Nt |tut v |3t |rect|{n:1}|T\n|
relater(T1,T2)(N1,N2) | ¢ N |int32 | intgn | Nz+n2 |
at(t,n) | instr(t, T, 1") Wit | 3t | T]g

Substitutions,is id|t]t-s|ros

0fid =0 “*" op 9=t V™ T = mE@E) " Yi§ =0 (se)] =

sdllsd = Wsro %] 9" Tdog =ty T weid =t T

T[to (T 9)] =1y es-Shificons T1NT2[g = T1[g N T2[g e T1UT2[g =1 T1[g| UT2[S] -

es_Map es_Ass
(U5 o s]=c7[U'[s] - (so 5] Uso(sos’)=r1[(sos)os’]

es_int ————— es.nt ——— esc
intnt[§ = intn(t]s) " ints§ =cintszz o cn§ =ccn

Figure 11: Static Semantics : Explicit Substitution Rules

11

tct tv'ct

C_REFL Tt

TICT

C-TRANS

c-T c-L n n n -
TCT lCt int=1 C int>1

Ty Cint<ny T2 Cint<p

C_INT_T

c(nz2+ny) C int3p
C

! !
1CT T’CT C.EQ
T:'[T

————— CJINT.m
int=1 C int<I

T1CT
L 2 c.ID

+(11,T2) Cint3n

®RC@ T1CTp

CCPTR

idtyCidte

T1 CT12

codeptr(@1) C codeptr(qp)

c.nL1

TINTC Ty TINT2C 1y

C-UR1

TLCT1UT, L CT1UT,

VX. (T1 X) C (T2 X) VX (T1 X) C (T2 X)

offset (i) T1 C offset (i) T2

c.nL2

C.UR2

C_OFFSET C_BOXED

box 11 C box T2
TCT3 TCTy

Tctnt, R

T1CT ToCT

Tuct

T1CTo

V11 C V12 dtp C Jtp

{i:t1} C{i:12}

C-SINGLE \

— C-
TCT\i

11 C 2

({i - F(int=n)} Nrelaten(F,G)(i,])) C {] : G(intn(n)) }

VX ((11X) Ci (12 X))
V|l1 G Vllz

Vix. ((11X) & (12 X))
ENER =10

CRELATE ——=—— c.at
at(11,s) C at(1,9)

TICTy T,CT2 T3C T

- . C.INSTR
instr(Ty, T2, T3) C instr(Ty,T5,15)

Figure 12: Static Semantics : Subtyping Rules

SPARC Kinds

Oper
Reglmm
Q

ALU operators
instruction modes

types

SPARC ALU Operators (Oper)

cc.a | ccon| ceone | ...

\CC

set_cc(op, Ny, N2)

op = add(add_cc) integer add (set codes)
| addc(addc_cc) logical add/carry (set codes)
| and(and_cc) logical AND (set codes)
| andn(andn_cc) logical NAND (set codes)
| xor(xor_cc) logical XOR (set codes)
| xnor(xnor_cc) logical XNOR (set codes)
SPARC Instruction Modes (Regimn)
ri = RModen Register mode
| IModen Immediate mode
SPARC types (Q)
Ts calc(op,ng,np) ALUop result

Condition codes
Restrict on condition codes
ALUop cc result

SPARC instructions (INSTR

alu(x,c,op)(i, ri,K)
ibranch(ts,a,n;)
load(i,ri, j)
store(i,ri,)

ALU instruction
integer branch instruction
load instruction
store instruction

Figure 13: TML Syntax : SPARC Kinds and Types

12

1<i<32 22 <ot
F rmode(i) : Qregimm F imode(i) : Qregimm

x€{0,1} ce€{0,1} I oper:Oper F regimm:Reglmm jk:Qnum
F alu(x,c,oper)(i,regimmk) : Q

Figure 14: Wellformedness of SPARC Instructions

- - SPARCALU_1
alu(0,0,0p)(i,RMode(j),k) C,
VI, @, m, M.
instr(lC,@N {i :int=ny, j :int=ny},
((eN{i :int=nyg, j :int=np})\i)
n {k : Calc(opvnlan)})
SPARCALU_2

alu(0,1,0p)(i,RMode(j),k) C,
VI, @,ng, M.
instr(C,@N {i :int=ny, j :int=ny},
((eN{i:int=ng,j :int=np})\i\)
N {k: calc(op,ng,np)}
N set_cc(op,ng,Ny))

I Cyinstr(l,@NTs, PN Ts)
1 C, instr(F,@NTs, N Ts)
{I : at(ibranch(ts,0,i),4),1 +4 :at(1,4)} C,
{I - at(instr(F N{l +i : codeptr(@)},®,95),8)}

SPARCBRANCH

, - SPARCLOAD
load(i,IMode(c), j) C,

vI,eT.
instr(l,@N {j : field c T},
((eN{j : field cT})\i) Nrelate=(id, field c)(i, j)

SPARCSTORE

store(i,IMode(c), j) C,
vI,o,t.
instr(I,@N {i: 1} N relate=(offset c,id)(j,b)

relate< (offset 4,id)(b,1),

oN {i:t}\rpNrelate=(offset (c+4),id)(j,b)
relate<(id,id)(b,1)
SPARCTST

tst(i) C, VI, . instr(T,@N {i:int3o},
@N ((cc-neN{ol :int,0}) U(cceN{ol :int=0})))

- - - SPARCMOV
mov (i) C, VI, @. instr(, @ (¢\j)N{j:int=c})

Figure 15: Static Semantics : SPARC Instructions in TML

13

