
J� Functional Programming � �to appear� c� ���� Cambridge University Press �

Shrinking Lambda Expressions in Linear Time

Andrew W� Appel

Princeton University� Princeton� NJ ������	��
� USA

�email� appel�princeton�edu�

Trevor Jim

University of Pennsylvania� Philadelphia� PA ������
���� USA

�email� tjim�saul�cis�upenn�edu�

Abstract

Functional�language compilers often perform optimizations based on beta and delta re�
duction� To avoid speculative optimizations that can blow up the code size� we might
wish to use only shrinking reduction rules guaranteed to make the program smaller� these
include dead�variable elimination� constant folding� and a restricted beta rule that inlines
only functions that are called just once�

The restricted beta rule leads to a shrinking rewrite system that has not previously been
studied� We show some e�cient normalization algorithms that are immediately useful in
optimizing compilers� and we give a con	uence proof for our system� showing that the
choice of normalization algorithm does not a
ect �nal code quality�

� Introduction

The lambda calculus is a language of functions� so one of the most useful opti�

mizations we can perform in a lambda�calculus�based language is function inlining�

Inlining a function eliminates the expense of a procedure call� and instantiating the

function arguments may enable other optimizations� But indiscriminate inlining

leads to the evaluation of the entire program at compile time� which can lead to

code blowup or nonterminating compilation�

A simple solution to this problem is to inline only those functions that are used

exactly once and whose actual parameters are just atoms �variables or literals��

After the function has been inlined� its de�nition can be deleted� resulting in a

smaller program� It makes sense to perform this optimization in concert with other

optimizations that are guaranteed to make the code smaller� such as dead�variable

elimination� and ��reduction �the evaluation of side�e�ect�free primitive operators

whose arguments are constants��

All of these optimizations either depend critically on the usage counts of vari�

ables� or change the usage counts of variables� or both� Thus there is a challenge in

applying them simultaneously and e	ciently� We have previously described �Appel

 Jim� ����
 Appel� ����� the Contract phase of the Standard ML of New Jersey

compiler� which implements these optimizations by a naive algorithm� The naive

� A� W� Appel and T� Jim

Contract is e�ective� it improves the speed of the generated code by a factor of ���

�Appel� ����� p� ����� However� it is also expensive in terms of compile time�

In this paper� we describe simple and practical improvements to the Contract

algorithm that allow it to accomplish the same result in less time� Because our new

algorithms do their optimizing rewrites in a di�erent order than the old algorithm�

we have also found it reassuring to prove that our rewrite system is con�uent�thus�

all the algorithms produce the same output�

� Syntax

The intermediate code of our compiler is a lambda calculus based on continuation�

passing style �CPS�� A representative subset of the language is de�ned by the

following grammar�

M ��� let f�x�� � � � � xn� � M in N recursive function de�nition

j f�a�� � � � � an� function application

j let r � ha�� � � � � ani in M record creation

j let x � �i�a� in M record �eld selection

HereM and N range over terms� f � x� and r range over variables� and a ranges over

atoms� The only primitive operators we treat here are record creation and selection�

and the only atoms here are variables�

Of course� the calculus used by the compiler has more kinds of atoms �such as in�

teger constants�� and many more primitive operators� But the ��rules for primitives

such as arithmetic� branching� and constructor discrimination can be implemented

in much the same way as the record primitives we discuss here� And all side ef�

fects and �observation� of side e�ects are restricted to particular primitives �they

are syntactically evident�� so side e�ects do not complicate optimizations such as

dead�variable elimination� Thus our selection of primitives� while limited� su	ces

to illustrate the complexities of shrinking optimizations�

The syntax of our CPS language enforces an important property� every interme�

diate value computed by a program is named in the program� In particular� the

allowable arguments of functions and primitives are severely restricted� For exam�

ple� f��xM� is not a CPS term
 anonymous �nameless� functions are prohibited�

because they compute a value �a closure�� And f�g�x�� is not a CPS term� because

the value computed by g�x� is not named� The way to write such programs in our

CPS language is to �rst name the complex argument ��xM or g�x��� then pass the

name as the argument� Besides names� the only other permissible arguments are

literals�in other words� all arguments are atoms�

Atomic arguments simplify the task of deciding when to inline� For example�

inlining a function application f�M� in a less restricted language may not be sound�

because M may have side e�ects or be nonterminating
 but it is always semantics�

preserving to inline a function with atomic arguments� And it is easy to calculate

the size of inlined function bodies� substituting atoms for formal parameters does

not change the size of a term�

Indeed there are several intermediate codes now in use that require function

Shrinking Lambda Expressions in Linear Time �

arguments to be atoms� our own CPS �Appel
 Jim� ����� �but not the CPS of

Steele ������ or Kranz �������
 the Bform of Tarditi ������ �but not the A�normal

form of Flanagan et al� �������
 and the �core language� used by Peyton Jones

�������

The continuation�passing of our CPS language is not relevant to the shrinking

reductions we describe in this paper� For example� Tarditi de�nes similar reductions

in his Bform intermediate language� which is a direct�style calculus� But ��reduction

is easier to express in CPS than in Bform� and we have implemented our algorithms

in SML�NJ� which uses CPS� So CPS permits both a simpler exposition and real�

world performance evaluation�

� Rewriting rules

A substitution is a �nite mapping from variables to atoms �but not to terms in

general�� A substitution may be written as fx� �� a�� � � � � xn �� ang where the xi
are distinct
 we use � to range over substitutions� The application of a substitution

to a term is de�ned as usual �avoiding the capture of free variables�� and is written

post�x �M� or Mfx� �� a�� � � � � xn �� ang�� Note that if M is a term and � is a

substitution� then M� is a term of the same size as M �

A context C��� is a �term with a hole
� C�M � indicates the term obtained by

�lling the hole of C��� with the term M � possibly capturing free variables of M �

The dead�variable�elimination rules delete de�nitions that are not used�

�let z�x�� � � � � xn� � N in M� � M

�let z � ha�� � � � � ani in M� � M

�let z � �i�a� in M� � M

��
�where z is not free in M or N

The record selection rule is a kind of constant�folding on �eld�selection expres�

sions� �
let r � ha�� � � � � ani

in C� let x � �i�r� in M �

�
�

�
let r � ha�� � � � � ani

in C� Mfx �� aig �

�

For soundness� we must ensure that if the atom ai is a variable� then it is not

captured by a binding in the context C���
 and that C��� does not rebind r� This is

accomplished by requiring that all bound variables be distinct from each other and

from free variables� As an added bene�t� this also simpli�es the implementation of

substitution in our compiler�

The inlining rule replaces a function call with the body of the function��
let f�x�� � � � � xn� � M

in C� f�a�� � � � � an� �

�
�

�
let f�x�� � � � � xn� �M

in C� M �fx� �� a�� � � � � xn �� ang �

�

where M � is obtained from M by renaming all bound variables to �fresh� variables�

Renaming is necessary to preserve distinct bindings�

These rules are the CPS equivalent of the �� and ��rules of the lambda cal�

culus� In principle� we could use them to do �computation� on CPS� though it is

more common to use CPS as an intermediate representation for optimization before

translation to machine language�

� A� W� Appel and T� Jim

The demands of optimization are di�erent from those of computation� In partic�

ular� we demand that optimization terminate� A simple way of guaranteeing termi�

nation is to use only shrinking reductions� those that make the term smaller� Clearly

the dead�variable rules and the record�selection rule are shrinking reductions� But

the inlining rule is not a shrinking reduction�

We are not willing to abandon inlining� because it is such a useful optimization�

Therefore we adopt the following shrinking inlining rule for functions called exactly

once� �
let f�x�� � � � � xn� � M

in C� f�a�� � � � � an� �

�
� C� Mfx� �� a�� � � � � xn �� ang ��

where f does not appear in C���� M � or in fa�� � � � � ang� Shrinking inlining combines

inlining with dead�variable elimination�once the function is inlined into its single

call site� it becomes dead and its de�nition can be deleted� Notice that in contrast

to the general inlining rule� renaming is not required� because no duplication of the

bindings in M has occurred�

We can simplify our implementation of shrinking inlining by requiring that any

function called exactly once have its de�nition deleted� We do this by adding the

following recursive�dead�function rule�

�
let f�x�� � � � � xn� � C� f�a�� � � � � an� �

in M

�
�M

where f does not appear in C���� M � or in fa�� � � � � ang� Although we could have

written a more general recursive�dead�function rule �permitting f to be free in C���

or ai�� these cases don�t come up much and we prefer to keep our algorithms simple�

We write M � N if N is obtained from M by transforming some subterm by

one of our shrinking reductions� dead�variable elimination� including recursive�dead�

function elimination
 record selection
 and shrinking inlining� We write �� for the

re�exive and transitive closure of the relation �� A term M is in shrink�normal

form if there is no term N such that M � N �

Our shrinking reduction system is con�uent� or Church�Rosser�

Theorem �Con�uence�� If M� �
� M� and M� �

� M�� there is some M� such

that M� �
� M� and M� �

� M��

Proof� See Appendix A�

The important consequence of con�uence is that every CPS program has a unique

shrink�normal form� So although the three Contract algorithms we describe in this

paper apply the shrinking reductions in very di�erent orders� the �nal output will be

identical� Therefore in comparing the algorithms� we only have to compare running

times� and not the programs produced by the algorithms�

We have also proved con�uence for shrinking reductions on ordinary lambda

calculus�where function arguments can be terms� not just atoms �Appel
 Jim�

������

Shrinking Lambda Expressions in Linear Time �

Fig� �� Gathering usage counts� use
 � �� to increment�

census �
� let f�x�� � � � � xn� �M in N � �
census�
�M�� census�
� N�

census �
� f�a�� � � � � an� � �
Countapp���f��� Countapp���f�� �

Countesc���ai��� Countesc���ai�� �
� � � i � n

census �
� let r � ha�� � � � � ani in M � �
Countesc���ai��� Countesc���ai�� �
� � � i � n

census�
�M�

census �
� let x � �i�a� in M � �
Countapp���a��� Countapp���a�� �

census�
�M�

	 A naive Contract algorithm

The Contract phase of our compiler does just the shrinking reductions� dead�

variable elimination� record��eld selection� and inlining of functions called only

once� Because we compile ML� our optimizer can assume that programs are well

typed� so that no program applies a function to the wrong number of arguments�

or selects a nonexistent �eld from a record�

Redexes of the shrinking inlining rule depend on a rather global property� to

determine whether an application f�a� should be inlined requires knowing whether

f has any other uses�

Thus� contraction is implemented in two passes� The census pass �Figure ��

gathers the usage count of each variable� and the contract pass �Figure �� performs

the reductions�

The census and contract passes use several global mapping tables�

Bind A table mapping function variables to �argument�body� pairs� and record

variables to tuples of atoms

� A substitution mapping variables to atoms

Countapp A table mapping function variables to their number of occurrences in

function�call position� and record variables to their number of occurrences in

selected�from position�

Countesc A table mapping variables to their number of occurrences as record �elds

or function arguments�

The contraction of a redex often produces new redexes� For example� our record

selection rule removes a reference to a record� which may then become a candidate

for dead�variable elimination� This sort of dependency makes it di	cult to perform

all contractions in one pass�

In fact� if we consider a �pass� over an expression tree as �down to the leaves

and then back up to the root�� it is provably impossible to produce a shrink�normal

form in one down�and�up pass �Appel� ����� pp� ������� or any constant number

 A� W� Appel and T� Jim

Fig� �� Performing reductions �old algorithm��

contract � let f�x�� � � � � xn� �M in N � �
Bind�f �� ��x�� � � � � xn��M�
if Countapp�f � � � and Countesc�f � � �
then contract�N�
else let f�x�� � � � � xn� � contract�M� in contract�N�

contract � f�a�� � � � � an� � �
if Countapp���f�� � � and Countesc���f�� � �

and Bind���f�� � ��x�� � � � � xn��M�
then � � � � fx� �� ��a��� � � � � xn �� ��an�g� contract�M�
else ��f����a��� � � � � ��an��

contract � let r � ha�� � � � � ani in N � �
Bind�r�� ha�� � � � � ani
if Countesc�r� � �
then contract�N�
else let r � h��a��� � � � � ��an�i in contract�N�

contract � let x � �i�a� in N � �
if Countapp�x� � Countesc�x� � �
then contract�N�
else if Bind���a�� � hb�� � � � � bni
then � � � � fx �� ��bi�g� contract�N�
else let x � �i���a�� in contract�N�

of such passes �see section �� At most we will need a linear number of passes� since

each pass removes at least one node from the expression tree�

We were led astray by this theorem� We reasoned that if a bounded number of

passes could not do the job� then several passes are necessary
 and thus any reason�

able multi�pass algorithm would su	ce� Therefore we used the following strategy

in our code optimizer�

repeat

Initialize �� Bind� Countapp� and Countesc� to empty�

Gather usage counts �census��

Perform contractions based on usage counts �contract��

until no redexes left�

The Glasgow Haskell optimizer uses the same methodology� described by Santos

������ as �Analyse�Simplify�Iterate��

As contractions were done� we did not update the usage counts to re�ect the

changed program� Since usage counts can increase �by shrinking inlining or record

selection� as well as decrease �by any shrinking rule�� this might seem dangerous�

But the two rules that depend on usage counts are dead�variable elimination and

shrinking inlining� The usage count of a dead variable can never increase� so dead�

variable elimination is safe with nonupdated usage counts
 and if Countesc�f � � �

then Countapp�f � can only decrease� so shrinking inlining is safe with nonupdated

usage counts�

Shrinking Lambda Expressions in Linear Time �

The real problem is that the algorithm iterates too many times before reaching

shrink�normal form� In practice the last several iterations of the algorithm contract

very few redexes� so we adjusted the algorithm to be

repeat

Initialize �� Bind� Countapp� and Countesc� to empty�

Gather usage counts �census��

Perform contractions based on usage counts �contract��

until only a dozen contractions done in this round�

This loop was a major part of Standard ML of New Jersey�s optimizer� up to

SML�NJ version ��� � But as we will show in this paper� keeping the usage counts

current is easy and practical� and greatly improves the speed of the compiler�

 A better Contract

We have recently improved the Contract phase to be a quasi�one�pass algorithm�

We do this by recording the e�ect of each optimization on usage counts� and by

changing the order in which optimizations are applied� As a result we contract the

vast majority of redexes in one pass� resulting in a program with very few shrinking

redexes� Our New Contract algorithm uses ncontract �Figure �� in place of contract�

but with the same census function of Figure ��

The �rst improvement is to carefully maintain usage counts� For example�

� In dead�variable elimination� if let f�x� � M is deleted because f is a dead

variable� the usage counts of the free variables of M are decremented�

� In ��reduction� when we replace

let r � h�ai

in C� let x � �i�r� in M �

by let r � h�ai in C� Mfx �� aig �� we decrement the count of r and adjust

the count of ai according to how many times x appears in M �

� In shrinking inlining� a de�nition let f��x� �M is removed and an occurrence

f��a� is replaced by Mf�x �� �ag
 so the usage count of each ai is adjusted

according to how many times xi is used in M �

Previously� we had not adjusted usage counts while doing reductions� Typically�

Contract would overestimate usage counts� thereby doing fewer inlinings and dead�

variable eliminations than it otherwise could have�

The second improvement concerns the order in which we perform dead�variable

elimination� The �old� Contract� encountering an expression such as

let r � ha�� � � � � ani in M

during its recursive descent� checks whether r is dead before processing M � We

can achieve better results by performing dead�variable elimination both before and

after processing M �

� A� W� Appel and T� Jim

� We remove a dead r before processing M because it decrements the usage

counts of the ai� This can enable other optimizations
 for example� if an ai is

a function called only from M � its usage count decreases and we may be able

to inline the function�

� A reference to r may occur in M � but be removed during the processing ofM �

Thus the earliest we can remove r is after processing M � Removing r may

now cause one of the ai to become dead� cascading this optimization on the

way up� It turns out to be quite common to have long chains of variables that

can be removed going up�

It turns out to be tricky to distinguish between recursive dead functions and

shrinking�inlining redexes� since each has a Countapp of �� We do it as follows�

When ncontract comes across a de�nition let f��x� � M in N � it sets Bind�f � to

��x�M� and recurs on N �

� If Countapp�f � � � and ncontract�N� �nds no occurrences of f � then upon the

return of ncontract�N� the recursive�dead�function rule applies� so census����M�

is called to decrement counts of all the variables that occur in M �

� But if� deep inside N � ncontract �nds f��a� when Countapp�f � � �� then it can

replace f��a� with M � updating � appropriately� To communicate this fact to

�the outer call� ncontract�let f��x� � M in N�� we set Bind�f � to a special

token inlined so that census����M� will not be performed� The de�nition

f��x� � M will still be deleted� since no uses of f remain� but Mfxi �� aig

still exists�

� Suppose on entry to ncontract�let f��x� � M in N� it is the case that

Countapp�f � � � or Countesc�f � � �� There is no recursive�dead�function or

shrinking�inlining redex� But perhaps during ncontract�N� the counts of f

will decrease because of other reductions� When N � � ncontract�N� returns�

we check for three cases�

� Bind�f � � inlined� meaning that during ncontract�N� the counts of f

decreased and then f��a� was found and was replaced by Mfxi �� aig� We

must now remove f��x� �M �

� Bind�f � �� inlined� but the counts of f are now zero� We can delete

f��x� � M and perform census����M��

� Bind�f � �� inlined� and f still has occurrences�We now perform ncontract�M�

but any occurrence of f��a� that we might �nd within M must not be in�

lined� because it is a recursive calls and therefore not shrinking�inlining re�

dexes� To disable inlining of f we set Bind�f �� �� before calling ncontract�M��

Because ncontract adjusts usage counts and performs dead�variable elimination

both before and after each recursive call� for some inputs the number of passes

required by the new Contract to reach shrink�normal form is a factor of N better

than that of the old Contract� where N is the input size�

Figure � shows an example of how ncontract �nds more redexes in one pass� In

a compilation of the SML�Lex lexical analyzer generator� the old Contract �solid

circles� reduces ���� redexes in the �rst pass� ��� redexes in the second pass� ��

Shrinking Lambda Expressions in Linear Time �

Fig� �� Performing reductions �new algorithm��

ncontract � let f�x�� � � � � xn� �M in N � �
Bind�f �� ��x�� � � � � xn��M�
if Countapp�f � � � and Countesc�f � � �
then census����M�� ncontract�N�
else if Countapp�f � � � and Countesc�f � � �
then N � � ncontract�N�

if Bind�f � �� inlined then census����M�
N �

else N � � ncontract�N�
if Bind�f � � inlined then N �

else if Countapp�f � � � and Countesc�f � � �
then census����M�� N �

else Bind�f �� ��
let f�x�� � � � � xn� � ncontract�M� in N �

ncontract � f�a�� � � � � an� � �
if Countapp���f�� � � and Countesc���f�� � �

and Bind���f�� � ��x�� � � � � xn��M�
then � � � � fx� �� ��a��� � � � � xn �� ��an�g

Countapp���ai��� Countapp���ai�� � Countapp�xi�� �� � � i � n

Countapp���f��� �
Bind���f��� inlined

ncontract�M�
else ��f����a��� � � � � ��an��

ncontract � let r � ha�� � � � � ani in N � �
Bind�r�� ha�� � � � � ani
if Countapp�r� � � and Countesc�r� � �
then Countesc���ai��� Countesc���ai��� �� i � � � n

ncontract�N�
else N � � ncontract�N�

if Countapp�r� � � and Countesc�r� � �
then Countesc�ai�� Countesc�ai�� �� i � � � n

N �

else let r � h��a��� � � � � ��an�i in N �

ncontract � let x � �i�a� in N � �
if Countapp�x� � � and Countesc�x� � �
then Countapp���a��� Countapp���a��� �� ncontract�N�
else if Bind���a�� � hb�� � � � � bni
then � � � � fx �� ��bi�g

Countapp���bi��� Countapp���bi�� � Countapp�x�
Countesc���bi��� Countesc���bi�� � Countesc�x�
Countapp���a��� Countapp���a��� �
ncontract�N�

else N � � ncontract�N�
if Countapp�x� � Countesc�x� � �
then Countapp���a��� Countapp���a��� �

N �

else let x � �i���a�� in N �

�� A� W� Appel and T� Jim

Fig� �� Cumulative reductions after each round

�

���

���

����

����

����

����

����

R
e
d
u
c
t
i
o
n
s

� � � � � � � � �

Rounds of contraction

� Old

� New

�

�

� � � � � � �

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
������
�����
������
�����
������
������
�����
������
�����
������
�����
������
������
�����
��������������
����������������������

���
��

�

� � � �

�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�������������������������������������

���

Table �� Compile�time improvement�
Compile Time Run Time

Program New�Old
Old � New � Ratio Old New

Barnes�Hut ���� �� ���� �� ���� ����� �����
Boyer ���� �� ���� �� ���� ���� ����
CML�sieve ���� �� ���� �� ���� ����� �����
Knuth�B� ���� �� ���� �� ���� ���� ����
Lex ���� �� ���� �� ���� ����� �����
Life ��� �� ��� �� ���� ���� ����
Mandelbrot ���� �� ���� �� ���� ����� �����
Yacc ����� �� ����� �� ���� ���� ����
Ray ���� �� ���� �� ���� ����� �����
Simple ���� �� ���� �� ���� ����� �����
VLIW ����� �� ����� �� ���� ����� �����

Average ����
Total compile time� percentage of compile time taken by optimization� and execution
time are shown for each benchmark under �old� �multi�pass contract� and �new� �one�
pass contract� compilers� The optimizations are Contract as well as eta�reduction and
speculative inlining �Appel� ����� Ch� � ���

in the third� and so on� The new Contract �white circles� reduces � �� in the �rst

pass� so that only �� are left for all remaining passes� Although we have not reduced

all the redexes in just one pass� there are so few remaining that a second pass is

not justi�ed by the expected return�

Table � shows that using the new Contract� all of the benchmark programs �from

the benchmark set used by Shao and Appel ������� are compiled faster� by an

average of ��!�

The quality of the code generated by the new Contract seems to be just as good

as that of the code generated by the old Contract � execution time decreases by

���!	���!�the average decrease in execution time is less than the variance� This

is as expected� the new algorithm typically contracts as many redexes in its one

round as the old algorithm contracts in three�

Shrinking Lambda Expressions in Linear Time ��

Why is there any change in execution time at all" Neither algorithm reduces

programs completely to shrink�normal form �because the required extra rounds of

Contract would be too expensive �Appel� ����� p� �����
 each leaves a �slightly

di�erent� set of residuals�

� Asymptotic complexity of Contract

Both the old and the new Contract algorithms reduce expressions to shrink�normal

form in worst case time complexity #�N���

The upper bound is easily established by considering separately the cost of �nding

redexes and the cost of performing contractions� We �nd a redex by making a down�

and�up pass over the expression tree� Each pass takes time #�N� and �nds at least

one redex �if shrink�normal form has not yet been reached�� Contracting a redex

makes the graph smaller� so there are at most N contractions� and therefore at most

N passes� This gives an upper bound of O�N�� on the time spent �nding redexes�

The cost of performing a contraction �substitution and updating usage counts� is

at worst O�N�� and there are at most N contractions to perform� so the total cost

of performing contractions is O�N��� The cost of the algorithm as a whole is the

sum of these costs� or O�N���

A simple example demonstrates the $�N�� behavior�

let f��x�� y�� z�� � h�z��

f��x�� y�� z�� � h�z��
���

fN �xN � yN � zN � � h�zN �

g��� � f�
g��� � f��g�� f�� f��

g��� � f��g�� f�� f��
���

gN �� � fN���gN��� fN � x�

in h�gN �

In the ith pass of the new Contract� the body of fi is inlined in the application

fi�gi� fi��� fi��� because the usage count of fi is �� On the ith upward pass� function

gi is deleted because it is a dead variable� reducing the usage count of fi�� to ��

Thus N passes are required to reach shrink�normal form� each taking linear time�

giving $�N�� as the lower bound�

This pathological case cannot be typical� given the data in Figure �� A much

more typical case� on which the old Contract took N passes and the new Contract

takes one pass� is�

�� A� W� Appel and T� Jim

let r� � hx� xi

r� � hr�� xi
���

rN � hrN��� xi

in h�x�

� A linear
time Contract

We also have an algorithm that reduces expressions to shrink�normal form in linear

time� in the worst case� The idea is to represent a program as a doubly linked tree

of nodes� and maintain a doubly linked list of the occurrences of each variable� The

use of in�place updating allows us to contract redexes in any order� freeing us from

the restrictions of the down�and�up passes of Contract�

We have not implemented this algorithm� It spends all its time doing in�place

updates of doubly linked lists and of expression tree nodes� This style of program�

ming� while implementable straightforwardly in ML using ref variables� does not

mesh well with the rest of our compiler� There is a signi�cant advantage� in ease of

correct implementation and readability� in a style of optimization that uses rewrit�

ing by structural induction� The new Contract described in this paper is easily

implemented in such a style
 the linear�time algorithm is not� But there are im�

plementation styles in which doubly linked lists are natural� and our algorithm

establishes the exact complexity of the problem�

Formally� programs are represented as expression trees� We use D�E� F� � � � to

range over expressions� which are the nodes of the trees� We use v� w� x� � � � to range

over binding occurrences of variables� and a� b� c� � � � to range over nonbinding occur�

rences of variables� Binding occurrences of variables will be called simply variables�

while nonbinding occurrences will be called occurrences�

We navigate the expression tree via the following functions�

var maps each occurrence to its binding variable

occ maps each variable to its set of occurrences �represented as a doubly linked

list�

def maps each variable to the expression that binds it
 and

site maps each occurrence to the smallest expression containing the occurrence

�recall that an occurrence is not an expression��

rec indicates� for each occurrence c� whether it is a recursive occurrence� In the

term C�let f�x� � N in M �� the occurrences of f within N are recursive and

the occurrences of f in M are not recursive�

For example� the program fragment

let v � hq� ri

in let w � ���v�

in w�v� r�

Shrinking Lambda Expressions in Linear Time ��

is represented by the following expression tree fragment�

D � let v � ha� bi in E�

E � let w � ���c� in F�

F � d�e� f��

where

var�a� � q�

var�b� � var�f� � r�

var�c� � var�e� � v�

var�d� � w�

occ�v� � fc� eg�

occ�w� � fdg�

def�v� � site�a� � site�b� � D�

def�w� � site�c� � E�

site�d� � site�e� � site�f� � F�

Our example program fragment contains a ��redex that can be reduced by� ���

deleting the de�nition of w
 and ��� substituting q for w� The reduction can be

carried out in the expression tree by� ��� updating E to F in D
 and ��� updating

the set of occurrences of q� by

occ�var�a�� �� occ�var�a��
 occ�w��

�Recall that q � var�a���

This update can be performed in constant time� even if var�a� is not known� The

occurrence a is part of the doubly linked occurrence list of some unique variable�

in this case� q� We can splice the doubly linked list occ�w� next to a inside occ�q��

all without knowing q�

The reason we might not know var�a� is that it is too expensive� in general� to

update the var function to maintain the invariant g � occ�x� i� var�g� � x� for

any occurrence g and variable x� In our update above� for example� it would require

visiting all the elements of occ�w�
 and we might have to perform var updates

many times for a single occurrence� We describe below how we obtain var when

necessary while staying within our linear time bound�

Figure shows the algorithm� The algorithm maintains a set of redexes� each of

which has one of the following forms�

inline�v� marks a function bound to v that can be inlined

dead�v� marks a variable v that has no occurrences �and is therefore a dead

variable�� or that has only a recursive occurrence �and is therefore a recursive

dead function�
 and

select�a� marks an occurrence a of a record which is being selected�

The initial redex set is obtained by the same census function used by all our Con�

tract algorithms� modi�ed to mark recursive occurrences as rec� Redexes in the set

may be removed and reduced in any order� and reduction may add newly discovered

redexes to the set�

�� A� W� Appel and T� Jim

Fig� �� Auxiliary functions for the linear�time algorithm�

delete�a� �
� remove a from occurrence list
occ�var�a�� �� occ�var�a��� fag
� check for new redexes
if jocc�var�a�� j � �
compute v � var�a�
if jocc�v� j � �
add dead�v� to redex set

if occ�v� � fcg�
and site�c� is c��cj��
and def�v� is let v� �wi� � E in F

if rec�c�
add dead�v� to redex set

else add inline�v� to redex set

subst�w� a� �
� check for new record redexes
if rec�a� � a is a recursive occurrence
for each b in occ�w�

rec�b� �� true

if var�a� de�ned � a is a record
for each b in occ�w�

var�b� �� var�a� � var update
if site�b� is let x � �i�b� in D

add select�b� to redex set
� perform substitution
occ�var�a�� �� occ�var�a�� 	 occ�w�

Fig� �� The linear�time Contract algorithm�

while redex set is not empty
remove r from redex set
case r of
dead�v� �
if def�v� is D is let v� �wi� � E in F

splice F in place of D in expression tree
for each occurrence a in E

delete�a�
if def�v� is D is let v � hb�� � � � � bni in E

splice E in place of D in expression tree
for � � i � n

delete�bi�
inline�v� �

def�v� is D is let v�w�� � � � � wk� � E in F

occ�v� is fag
site�a� is G is a�b�� � � � � bk�
splice F in place of D in expression tree
splice E in place of G in expression tree
for � � i � k

subst�wi� bi�
delete�bi�

select�a� �
� a is a record� so var�a� is de�ned
var�a� is v
def�v� is let v � hb�� � � � � bni in D

site�a� is E is let x � �i�a� in F

splice F in place of E in the expression tree
subst�x� bi�
delete�a�

Shrinking Lambda Expressions in Linear Time ��

Much of the work is done by the two auxiliary functions� delete and subst�

Delete�a� removes a from the occurrence list of var�a�� This can be done in con�

stant time� just as for the update above� Deleting an occurrence can create new

dead�variable or function inlining redexes� so delete also checks for this� This in�

volves testing the cardinality of occurrence sets
 but we only need to know whether

the cardinality is zero� one� or greater than one� This test can be done in constant

time on doubly linked lists� Delete also computes var�a�� but only when the occur�

rence list has length � or less� If we give each occurrence list a �header� node that

indicates the var value� we can compute var from an occurrence just by searching

down the list� When the list is of length � this takes constant time� Thus delete as

a whole is a constant time operation�

Subst�w� a� substitutes var�a� for w by updating the occurrence list of var�a��

as described above� Subst can create new select redexes� var�a� may be bound to

a record� and some occurrence b of w may be selected from� When we later need

to reduce the redex select�b�� we will have to compute var�b�� In this case� b may

be only one of many occurrences of the record variable� so that we cannot use the

trick of searching down the occurrence list for the header node� Instead� we will

faithfully maintain var for every occurrence of a record� This means updating var

for an occurrence in subst when splicing it into the occurrence list of a record�

Once an occurrence is bound to a record� it can never be rebound
 so a var update

will be performed at most once per occurrence� Thus the total cost of maintaining

var for records is at most O�N��

Similarly� we propagate the rec property as occurrences are substituted� Consider

a term C� let v�x� � N in M �� where the occurrences of v within N are marked

rec and the occurrences within M are unmarked� When we perform a reduction

within N or M � this may create more occurrences of v
 for example� N or M might

be

C�� let r � hcvi in C�� let w � ���r� in K � �

where cv is an occurrence of v� and K contains occurrences ei of w that now become

occurrences of v� If r � hcvi was within N � then cv would have been marked rec

and subst�w� cv� will mark all the ei rec
 and if r � hcvi was within M � then cv
would not have been rec and the ei will stay non�rec� An occurrence acquires the

rec property at most once� so the total cost of rec propagation is linear�

We can now analyze the total running time of the algorithm� It is the sum of the

times needed to reduce each redex�

To reduce a redex dead�v�� we must �rst remove its de�ning expression from

the expression tree� which takes constant time� We must also traverse the de�nition

of v� removing each occurrence in the de�nition from its occurrence list� Traversing

a dead de�nition takes time linear in the size of the de�nition� But we can delete any

given de�nition or occurrence only once
 so over a complete run of the algorithm�

the total time spent reducing dead�variable redexes is O�N��

Reducing a redex inline�v� involves deleting a call expression a�b�� � � � � bk� from

the expression tree �constant time�� and performing k substitutions and deletions�

� A� W� Appel and T� Jim

But any call can be inlined at most once
 so the total time spent on inlining is

O�N�� plus the cost of the var updates performed by subst�

The reduction of a redex select�a� involves one substitution and one deletion�

and at most O�N� select redexes can be reduced by the program� Thus the total

time spent on select redexes is O�N�� plus the cost of the var updates performed

by subst�

We have already seen that the total cost of var updates is O�N�� and so the

algorithm runs in worst�case linear time� Since it is trivial to construct an example

with c �N redexes� the time complexity is #�N��

� Eta
reduction

In our intermediate language� eta�reduction is the �copy propagation� of function

de�nitions� A de�nition of the form

let f�x�� � � � � xn� � g�x�� � � � � xn�

simply assigns a new name f to the function g
 we can remove the de�nition of f � and

use g for f in the rest of the program�provided that g �� ff� x�� � � � � xng� The result

is a smaller program� and thus we consider eta�reduction a shrinking reduction� Eta

redexes can be introduced by the programmer� but are more commonly introduced

by code transformations performed by the compiler�

Contracting an eta redex can create further redexes�

let f�x� � let g�y� � h�y�

in g�x�

in � � �

Here we can reduce one eta redex� removing the de�nition of g and using h instead

this produces a new redex� f�x� � h�x��

In contrast with the Contract phase� however� our Eta phase can produce an

eta�normal form in at most two passes� In the �rst pass� we maintain a renaming

map� and traverse the expression from root to leaves and back� When we reach a

function de�nition f�x�� � � � � xn� � M � we �rst reduce M � obtaining M �� If M � is

of the form g�x�� � � � � xn�� we have found an eta redex� so we remove the de�nition

for f and record that we should use g in place of f in the renaming map�

This strategy can fail to produce an eta�normal form in some cases involving

mutually recursive functions� for example�

let f�x�� � � � � xn� �M

and g�y�� � � � � yn� � f�y�� � � � � yn�

in N�

Here we �rst traverseM � obtaining M �
 then remove the de�nition of g
 and �nally

traverse N � renaming g to f � However� g may still appear in M �
 we may need to

traverse M �� renaming g to f �

This seems to be a pathological special case� so our strategy is to defer the

traversal of any such M � to a second pass �this also avoids a possible quadratic

Shrinking Lambda Expressions in Linear Time ��

blowup in execution time�� In compiling the �������line SML�NJ compiler� the

second pass of Eta is never invoked�

Our original implementation combined the Eta and Contract phases� But our

current implementation keeps the phases separate� for two reasons�

First� we alternate Contract with other optimization passes that do speculative

inlining and loop�invariant analysis
 we iterate this alternation several times� But

none of these optimizations introduce new eta redexes
 so it su	ces to do Eta just

once� before the other optimizations�

Second� combining Eta and Contract results in a noncon�uent system� For ex�

ample� the program

let f�x� � M

in let h�y� � N

in let g�z� � f�z�

in h�g�

rewrites by inlining f to

let h�y� � N

in let g�z� � Mfx �� zg

in h�g�

and by 	�reducing g to

let f�x� � M

in let h�y� � N

in h�f��

No sequence of reductions can join the two�

The failure of con�uence results in a system that is harder to analyze and debug

indeed� our combined Contract�Eta was never free of bugs� and was discarded several

years ago�

� Further work

It should be possible to formally relate each of our three algorithms to the rewriting

system� and therefore to prove the algorithms correct� This will probably be easier

for the linear time algorithm �which performs one reduction at a time� than for the

tree�walk algorithms �which perform reductions incrementally��

�� Conclusion

Our improvements to the Contract phase of Standard ML of New Jersey yield an

algorithm that reduces �almost all� shrink redexes in linear time� Our improved

Eta phases reduces all eta redexes in linear time� The algorithms that they replace

both took worst�case quadratic time� The new algorithms allow us to greatly re�

duce the number of Contract and Eta passes performed by the compiler� without

compromising the speed of the generated code� Furthermore� our rewriting system

is con�uent �Church�Rosser�� so the optimizations are nicely deterministic�

�� A� W� Appel and T� Jim

References

Appel� Andrew W� ������� Compiling with continuations� Cambridge University Press�

Appel� Andrew W�� Jim� Trevor� ������� Continuation�passing� closure�passing style�
Pages �����	� of
 Conference record of the sixteenth annual ACM symposium on prin�
ciples of programming languages�

Appel� Andrew W�� Jim� Trevor� ���� �November�� Making lambda�calculus smaller�
faster� Tech� rept� CS�TR�������� Princeton University�

Barendregt� Henk� ������� The lambda calculus
 Its syntax and semantics �revised edition
�
Studies in Logic and the Foundation of Mathematics� vol� ���� North�Holland�

Flanagan� Cormac� Sabry� Amr� Duba� Bruce F�� Felleisen� Matthias� ������� The
essence of compiling with continuations� Pages ������� of
 Proceedings of the ACM
SIGPLAN ��� conference on programming language design and implementation�

Kranz� David� ������� ORBIT
 An optimizing compiler for Scheme� Ph�D� thesis� Yale
University� New Haven� CT�

Peyton Jones� Simon L� ������� Implementing lazy functinal languages on stock hardware�
the Spineless Tagless G�machine� Journal of functional programming� �� ���!����

Santos� Andr"e Lu"#s de Medeiros� ������� Compilation by transformation in non�strict
functional languages� Ph�D� thesis� University of Glasgow� Glasgow� Scotland�

Shao� Zhong� Appel� Andrew W� ������� Space�e�cient closure representations� Pages
��	���� of
 Proceedings of the ���� ACM conference on Lisp and functional program�
ming�

Steele� Guy L� ���� �May�� RABBIT
 A compiler for SCHEME� Tech� rept� AI!TR!����
Arti�cial Intelligence Laboratory� M�I�T�

Tarditi� David� ������� Optimizing ML� Ph�D� thesis� Carnegie Mellon University� Pitts�
burgh� PA� expected �����

Shrinking Lambda Expressions in Linear Time ��

A Proof of Con�uence

We now prove con�uence for a class of untyped term rewriting systems that gener�

alizes the shrinking rewrite system of Section �� Con�uence is typically achieved by

imposing some syntactic restrictions on the form of rules used to de�ne the system�

However� it is di	cult to formulate a simple set of restrictions on rules that permit

all of the rules we have in mind
 and not all rewriting systems are de�ned by rules�

Therefore� we will instead specify properties that the rewriting relation as a whole

must satisfy in order to guarantee con�uence�

The main results can be stated as follows�

De�nition�A rewriting relation is a shrinking rewriting relation if it is substitutive�

compatible� includes shrinking inlining� dead�function elimination� recursive�dead�

function elimination� and satis�es Properties ��� below�

Con�uence follows from the following stronger result� Let �r be the re�exive

�but not transitive� closure of �� so M �r M
� if M �M � or M �M ��

Theorem �Diamond Property�� Suppose � is a shrinking rewriting relation� If

M� �r M� and M� �r M�� there is some M� such that M� �r M� and M� �r M��

Theorem� The rewriting relation of Section � is a shrinking rewriting relation� and

therefore� con�uent�

We now develop the necessary technical machinery for the proof of the Diamond

Property� As we introduce each of the Properties ���� we will show that the system

of Section � satis�es it�

We �x a set of constants� ranged over by �� Typical ��s include record selection

and creation operators� numerals and arithmetic functions� etc� The CPS terms are

generated by the following grammar�

M ��� let f�x�� � � � � xn� �M in N recursive function de�nition

j f�a�� � � � � an� function application

j let x�� � � � � xn � ��a�� � � � � am� in M primitive operation

Note that we allow primitive operations to return more than one result� For

example� we might want

�let quot � rem � �
 � in N�� Nfquot �� �� rem �� �g�

We use some standard concepts �free and bound variables� occurrences� sub�

terms� etc�� without formal de�nition
 the interested reader may consult Barendregt

������� We write fv�M� for the free variables of M � and M � N to indicate that

M is a subterm of N � We consider terms to be equal modulo renaming of bound

variables� We have already mentioned that we require� in any mathematical con�

text� that all bound variables be distinct from each other and from free variables

this is a standard requirement� sometimes called the Variable Convention�

We informally introduced the concept of a syntactic context as a �term with a

�� A� W� Appel and T� Jim

hole�� We formalize that idea by the following grammar�

C��� ��� ���

j let f�x�� � � � � xn� � C��� in M

j let f�x�� � � � � xn� � M in C���

j let x�� � � � � xn � ��a�� � � � � am� in C���

If C��� is a context� then C�M � is the term obtained by replacing the hole of C���

by M � possibly capturing free variables of M
 we omit a formal de�nition� Note

that an atom a is not a CPS term� so C�a� is not well de�ned�

In our proof we will need contexts with more than one distinct hole� For example�

C�������� � let f�x�� � � � � xn� � ���� in ����

is a context with two distinct holes� which may be �lled with two di�erent terms�

as in

C�M ���N �� � let f�x�� � � � � xn� �M in N�

We sometimes abbreviate C�������� by C������� See Barendregt ������ x����� for a

formal de�nition of this sort of context�

A �term� rewriting relation is a binary relation on terms� A rewriting relation R

is compatible if whenever �M�N� � R� then �C�M �� C�N �� � R for every context

C���� The compatible closure of a rewriting relation R is the least compatible relation

containing R� The kernel of a compatible rewriting relation R is the least relation

whose compatible closure is R� If �%�%�� is in the kernel of R then % is called a

redex and %� a contractum �of %�� If � is a compatible rewriting relation� we write

M
�
� M � to indicate that M rewrites to M � by contracting redex %� that is� we

have M � C�%� and M � � C�%�� for some context C��� and contractum %� of %�

The domain of a substitution f�x �� �ag consists of the variables �x� and its range

consists of the atoms �a� A substitution � may be applied to� an atom a yielding an

atom a�
 a sequence of atoms �a yielding a sequence of atoms �a�
 a term M yielding

a term M�
 or a context C��� yielding a context �C������ A rewriting relation R is

substitutive if whenever �%�%�� � R� then �%��%��� � R for any substitution ��

Two standard results about substitutions will be useful�

Lemma �

If no variable in the domain or range of � is bound in C���� then

�C�M ��� � �C���M��

for any term M �

Lemma 	

If no variable of �x appears in the domain or range of �� then

�Mf�x �� �ag�� � �M��f�x �� �a�g

for any term M and atoms �a�

We now develop the Properties needed for con�uence� Our �rst Property says that

every reduction deletes a de�nition� and that reduction is invariant with respect to

Shrinking Lambda Expressions in Linear Time ��

certain changes in the syntax of terms� In stating the Property� we use D to range

over de�nitions �f��x� �M or �x � ���a��� and we say f��x� � M de�nes the variables

ffg� and �x � ���a� de�nes the variables f�xg�

Property �

A rewriting relation � satis�es Property � if� whenever M
�
� M � and % is not a

shrinking inlining redex� there exist a substitution �� a unique context C���� and a

unique term �let D in N� such that

M � C� let D in N �
�
� C� N� � �M ��

the domain of � contains only variables de�ned by D� and C� let D in N � � �

C� N �� � for any term N � that contains no more variables de�ned by D than N �

The term �let D in N� in Property � will be called the focus of the redex %�

and N� will be called the focal replacement of %� For example� in the system of

Section �� we have the following focuses and focal replacements�

� If % is a dead�variable�elimination redex �let D in N�� the focus of % is %

and the focal replacement of % is N � Note� here we may take the substitution

� to be the empty �identity� substitution�

� If % is a record selection redex �let r � h�ai in C� let x � �i�r� in N ��� the

focus of % is the subterm �let x � �i�r� in N� and the focal replacement of

% is Nfx �� aig�

It will be useful to extend this terminology to shrinking inlining redexes�

� If % is a shrinking inlining redex �let f��x� � N in C� f��a� ��� the focus of %

is %� and the focal replacement of % is C� Nf�x �� �ag ��

Intuitively� the �rst part of Property � says that every rewrite rule of the system

deletes a de�nition� and the focus of a redex is de�ned to be the smallest subterm

containing the deleted de�nition� When a redex is contracted� only the focus is

a�ected
 the portion of the term outside of the focus is unchanged� Usually the

focus of the redex is the redex itself� and the focal replacement is the contractum

of the redex
 but not always� as in the case of record selection�

To verify the second part of Property � for the system of Section �� we consider

two cases�

� If C� let D in N �� C� N � by dead�variable elimination� then N contains no

variables de�ned by D� And C� let D in N � �� C� N � � for any N � containing

no variables de�ned by D�

� If C� let x � �i�r� in N � � C� Nfx �� aig � by record selection� then

C� let x � �i�r� in N � � � C� N �fx �� aig � for any N �� regardless of the

variables it contains�

The next Property concerns the reduction of a redex properly containing its focus�

e�g�� record selection� Like Property �� it states that such reductions are invariant

under certain syntactic modi�cations to terms�

In a term �let D in N�� we call the de�nition D the head and N the body� We say

�� A� W� Appel and T� Jim

a de�nition is dominant in a context if its scope includes the hole of the context�

Note that if % is a redex with focus F �� % in term C�F �� then the head of % is

dominant in C����

Property 	

A rewriting relation � satis�es Property 	 if� whenever % is a redex with focus

F �� % and focal replacement F �� then

C�� �C�� F ��� �� C�� �C�� F
� ��� �

for any C����� C����� and � such that the head of % is dominant in C����� and the

domain of � includes no variable appearing in C�����

For the system of Section �� the only case in which F �� % is when % is a record

selection redex� In this case� C����� F � and F � have the following forms�

C���� � C� let r � h�ai in C ���� ��

F � let x � �i�r� in N�

F � � Nfx �� aig�

and we want to verify that

C�� �C�� let x � �i�r� in N ��� �� C�� �C�� Nfx �� aig ��� ��

We assume that x does not appear in � �else rename x�� Then since r is not in the

domain of �� we have �let x � �i�r� in N�� � �let x � �i�r� in �N���� And since

ai is not in the domain of �� by Lemma � we have �Nfx �� aig�� � �N��fx �� aig�

This is enough to verify the reduction�

The following lemma summarizes an important special case of Property ��

Lemma

Suppose � satis�es Property �� and % is a redex with focus F �� % and focal

replacement F �� Then C�F �� C�F �� for any context C��� in which the head of % is

dominant�

Because of the shrinking inlining and dead�function rules� we must keep track

of the number of occurrences in function position of a variable during the course

of a reduction �e�g�� in the term f�a�� f is in function position and a is not�� The

next property gives conditions guaranteeing that occurrences in function position

decrease� It holds for our shrinking rewrite system� but not for rewrite systems in

general
 for example� it fails under the unrestricted inlining rule�

Property

A rewriting relation � satis�es Property
 if� whenever a variable f has n occur�

rences in function position in a term M � and no other occurrences� and M � M ��

then f has n or less occurrences in function position in M �� and no other occur�

rences�

Our �nal two properties concern overlaps� which can be particularly troublesome

in proving con�uence� The �rst property states that when overlaps occur� they do

so in a harmless manner� The second states that a harmful kind of overlap does not

Shrinking Lambda Expressions in Linear Time ��

occur� In practice� these two properties are the most di	cult to prove of a rewrite

system� because the number of cases to consider is quadratic in the number of rules�

Property �

A rewriting relation � satis�es Property � if� whenever two redexes have the same

focus� then they have the same focal replacement� So� if %� and %� have the same

focus� M
��� M�� and M

��� M�� then M� �M��

For the system of Section �� a case analysis shows that if two distinct redexes

have the same focus� then one redex is a record selection redex

%� � let r � h�ai in C� let x � �i�r� in N ��

and the other redex is a dead�variable�elimination redex

%� � �let x � �i�r� in N��

That is� %� is the focus of %�� Since x does not appear in N � the focal replacement�

Nfx �� aig� of %� is the same as the focal replacement� N � of %�� as desired�

Property �

A rewriting relation � satis�es Property � if� whenever F � �let D in N� is the

focus of a redex in a term M � F � is the focus of a second redex� %�� in M � and F �

is a proper subterm of F � then D is not the head of %��

If F � � %�� then %� is a proper subterm of F � so D is not the head of %�� Thus

to verify Property �� it is su	cient to consider those cases where F � �� %�� For

the system of Section �� the only such case is when %� is a record selection redex�

By way of contradiction� assume D is the head r � h�ai of %�� Then the focus

�let D in N� can only be a dead�variable redex� But the record selection focus

F � � N must contain r� contradiction�

Proof of the Diamond Property�

If M� � M� or M� � M� the result follows trivially� So assume M�
��� M� and

M�
��� M� for some redexes %� and %�� with focuses F� and F�� respectively� We

consider the following cases�

If F� and F� are disjoint� then M�� M�� and M� have the following forms�

M� � C� F� �� F� ��

M� � C� F �
� �� F� ��

M� � C� F� �� F
�
� ��

Here F �
� and F �

� are the focal replacements of F� and F�� respectively�

De�ne M� � C� F �
� �� F �

� �� If F� � %�� then M�
��� M� by compatibility� If

F� �� %�� then the head of %� is dominant in C�F����� and therefore also in C�F �
������

Then M� �M� by Lemma �� The same argument shows that M� �M��

If F� and F� coincide� then by Property �� M� �M�� so it is su	cient to choose

M� �M��

Otherwise the focus of one redex is properly contained in the focus of another

�� A� W� Appel and T� Jim

we assume without loss of generality that F� contains F�� Let F �
� be the focal

replacement of F�� We consider the following cases�

� If F� is not a shrinking inlining redex� and F� is contained in the body of F��

then M�� M�� and M� have the following forms�

M� � C�� let D in C�� F� � ��

M� � C�� �C�� F� ��� ��

M� � C�� let D in C�� F
�
� � ��

Here D is the head of F� and � is the substitution predicted by Property ��

De�ne M� � C�� �C�� F
�
� ��� ��

If %� � C��F��� then M�
���� M� by compatibility and substitutivity�

Otherwise F� �� %�� and the head of %� is dominant in C���� �the head of %�

is not D by Property ��� Then M� �M� by Property ��

Let y be a variable de�ned by D� Note that if y does not appear in C�� F� ��

it appears nowhere in M�� Then by Property �� y does not appear in C�� F
�
� ��

so M� �M� by Property ��

� If F� is a dead�function�elimination redex and F� is contained in the head of

F�� then M�� M�� and M� have the following forms�

M� � C�� let f��x� � C�� F� � in M ��

M� � C�� M ��

M� � C�� let f��x� � C�� F
�
� � in M ��

De�ne M� � C�� M �
 then M� �r M� by re�exivity�

Since f is a dead function� it has at most one occurrence in function position

in C�� F� �� and no other occurrences anywhere in M�� Then by Property ��

f has at most one occurrence in function position in C�� F
�
� �� and no other

occurrences in M�� So M� �M� by eliminating the dead function f �

� If F� is a shrinking inlining redex and F� is contained in the head of F�� then

M�� M�� and M� have the following forms�

M� � C�� let f��x� � C�� F� � in C�� f��a� � ��

M� � C�� C�� �C�� F� ��f�x �� �ag � ��

M� � C�� let f��x� � C�� F
�
� � in C�� f��a� � ��

De�ne M� � C�� C�� �C�� F
�
� ��f�x �� �ag � ��

Since f has a single occurrence in function position in M�� and no other

occurrences in M�� by Property � the same is true of f in M�� So M� �M�

by shrinking inlining�

If %� � C��F��� then M�
��f�x ���ag

� M� by compatibility and substitutivity�

Otherwise F� �� %�� and the head of %� is dominant in C���� �the head of

%� is not f��x� � C�� F� � by Property ��� Therefore� the head of %� is also

dominant in C�� C���� �� and M� �M� by Property ��

� If F� is a shrinking inlining redex and F� is contained in the body of F� disjoint

Shrinking Lambda Expressions in Linear Time ��

from the inlining site� then M�� M�� and M� have the following forms�

M� � C�� let f��x� � M in C�� F� �� f��a� � ��

M� � C�� C�� F� �� Mf�x �� �ag � ��

M� � C�� let f��x� � M in C�� F
�
� �� f��a� � ��

De�ne M� � C�� C�� F
�
� �� Mf�x �� �ag � ��

Since f has a single occurrence in function position in M�� and no other

occurrences in M�� by Property � the same is true of f in M�� So M� �M�

by shrinking inlining�

If F� � %�� then M�
��� M� by compatibility�

If F� �� %�� then the head of %� must be dominant in C�� let f��x� �

M in C����� f��a� � �� and cannot be f�x� � M by Property �� Therefore

the head of %� is dominant in C�� C����� Mf�x �� �ag � �� So by Lemma ��

M� �M��
� If F� and F� are shrinking inlining redexes� and the inlining site of F� appears

in the head of F�� then M�� M�� and M� have the following forms�

M� � C�� let f��x� �M in C�� let g��y� � C�� f��a� � in C�� g��b� � � ��

M� � C�� C�� let g��y� � C�� Mf�x �� �ag � in C�� g��b� � � ��

M� � C�� let f��x� �M in C�� C�� �C�� f��a� ��f�y �� �bg � � ��

De�ne M� � C�� C�� C�� �C�� Mf�x �� �ag ��f�y �� �bg � � ��

Then M� �M� by shrinking inlining�

Note that �y and �b are not bound in C����� and are disjoint from �x� Then by

Lemmas � and ��

�C�� f��a� ��f�y �� �bg � �C�f�y �� �bg�� f��af�y �� �bg� ��

�C�� Mf�x �� �ag ��f�y �� �bg � �C�f�y �� �bg�� Mf�x �� �af�y �� �bgg ��

So M� �M� by shrinking inlining�
� If F� and F� are shrinking inlining redexes� and the inlining site of F� appears

in the body of F�� then M�� M�� and M� have the following forms�

M� � C�� let f��x� � M in C�� let g��y� � N in C�� f��a� �� g��b� � � ��

M� � C�� C�� let g��y� � N in C�� Mf�x �� �ag �� g��b� � � ��

M� � C�� let f��x� � M in C�� C�� f��a� �� Nf�y �� �bg � � ��

De�ne M� � C�� C�� C�� Mf�x �� �ag �� Nf�y �� �bg � � �� Note that f does not

appear in Nf�y �� �bg� and g does not appear in Mf�x �� �ag� Then M� � M�

and M� �M� by shrinking inlining�
� If F� is a shrinking inlining redex� F� is a dead�function redex� and the head

of F� contains the inlining site of F�� thenM�� M�� andM� have the following

forms�

M� � C�� let f��x� �M in C�� let g��y� � C�� f��a� � in N � ��

M� � C�� C�� let g��y� � C�� Mf�x �� �ag � in N � ��

M� � C�� let f��x� �M in C�� N � ��

� A� W� Appel and T� Jim

De�ne M� � C�� C�� N � �� Then M� � M� by eliminating the dead func�

tion f �

Since g is a dead function� it has at most one occurrence in function position

in C�� f��a� �� and no other occurrences anywhere in M�� Then by Property ��

g has at most one occurrence in function position in C�� Mf�x �� �ag �� and

no other occurrences anywhere in M�� So M� �M� by eliminating the dead

function g�

� If F� is a shrinking inlining redex� F� is not a shrinking inlining redex� and

the inlining site of F� is in the body of F�� then M�� M�� and M� have the

following forms�

M� � C�� let f��x� � M in C�� let D in C�� f��a� � � ��

M� � C�� C�� let D in C�� Mf�x �� �ag � � ��

M� � C�� let f��x� � M in C�� �C�� f��a� ��� � ��

Here � is the substitution predicted by Property ��

De�ne M� � C�� C�� �C�� Mf�x �� �ag ��� � ��

Because f is not in the domain of �� and no variable of M is in the domain

of �� we have

�C�� f��a� ��� � �C���� f��a�� ��

�C�� Mf�x �� �ag ��� � �C���� Mf�x �� �a�g ��

Then M� �M� by shrinking inlining�

Let y be a variable de�ned by D� Note that if y does not appear in C�� f��a� ��

then it appears nowhere in M�� Then by Property �� y does not appear in

C�� Mf�x �� �ag �� so M� �M� by Property ��

End proof�

