
Separation Logic for Small-step Cminor

Andrew W. Appel1,⋆ and Sandrine Blazy2,⋆

1 Princeton University
2 ENSIIE

Abstract. Cminor is a mid-level imperative programming language;
there are proved-correct optimizing compilers from C to Cminor and
from Cminor to machine language. We have redesigned Cminor so that
it is suitable for Hoare Logic reasoning and we have designed a Sepa-
ration Logic for Cminor. In this paper, we give a small-step semantics
(instead of the big-step of the proved-correct compiler) that is moti-
vated by the need to support future concurrent extensions. We detail
a machine-checked proof of soundness of our Separation Logic. This is
the first large-scale machine-checked proof of a Separation Logic w.r.t. a
small-step semantics. The work presented in this paper has been carried
out in the Coq proof assistant. It is a first step towards an environment
in which concurrent Cminor programs can be verified using Separation
Logic and also compiled by a proved-correct compiler with formal end-
to-end correctness guarantees.

1 Introduction

The future of program verification is to connect machine-verified source pro- To appear in
TPHOLs 2007 (20th
International Con-
ference on Theorem
Proving in Higher-
Order Logics),
September 2007,
Lecture Notes in
Computer Science,
Springer-Verlag.

grams to machine-verified compilers, and run the object code on machine-verified
hardware. To connect the verifications end to end, the source language should
be specified as a structural operational semantics (SOS) represented in a log-
ical framework; the target architecture can also be specified that way. Proofs
of source code can be done in the logical framework, or by other tools whose
soundness is proved w.r.t. the SOS specification; these may be in safety proofs
via type-checking, correctness proofs via Hoare Logic, or (in source languages
designed for the purpose) correctness proofs by a more expressive proof theory.
The compiler—if it is an optimizing compiler—will be a stack of phases, each
with a well specified SOS of its own. There will be proofs of (partial) correctness
of each compiler phase, or witness-driven recognizers for correct compilations,
w.r.t. the SOS’s that are inputs and outputs to the phases.

Machine-verified hardware/compiler/application stacks have been built be-
fore. Moore described a verified compiler for a “high-level assembly language”
[13]. Leinenbach et al. [11] have built and proved a compiler for C0, a small
C-like language, as part of a project to build machine-checked correctness proofs
of source programs, Hoare Logic, compiler, micro-kernel, and RISC processor.
These are both simple one- or two-pass nonoptimizing compilers.

⋆ Appel supported in part by NSF Grants CCF-0540914 and CNS-0627650. This work
was done, in part, while both authors were on sabbatical at INRIA.

Leroy [12] has built and proved correct in Coq [1] a compiler called CompCert
from a high-level intermediate language Cminor to assembly language for the
Power PC architecture. This compiler has 4 intermediate languages, allowing
optimizations at several natural levels of abstraction. Blazy et al. have built and
proved correct a translator from a subset of C to Cminor [5]. Another compiler
phase on top (not yet implemented) will then yield a proved-correct compiler
from C to machine language. We should therefore reevaluate the conventional
wisdom that an entire practical optimizing compiler cannot be proved correct.

A software system can have components written in different languages, and
we would like end-to-end correctness proofs of the whole system. For this, we pro-
pose a new variant of Cminor as a machine-independent intermediate language
to serve as a common denominator between high-level languages. Our new Cmi-
nor has a usable Hoare Logic, so that correctness proofs for some components
can be done directly at the level of Cminor.

Cminor has a “calculus-like” view of local variables and procedures (i.e. local
variables are bound in an environment), while Leinenbach’s C0 has a “storage-
allocation” view (i.e. local variables are stored in the stack frame). The calculus-
like view will lead to easier reasoning about program transformations and easier
use of Cminor as a target language, and fits naturally with a multi-pass optimiz-
ing compiler such as CompCert; the storage-allocation view suits the one-pass
nonoptimizing C0 compiler and can accommodate in-line assembly code.

Cminor is a promising candidate as a common intermediate language for
end-to-end correctness proofs. But we have many demands on our new variant
of Cminor, only the first three of which are satisfied by Leroy’s Cminor.

• Cminor has an operational semantics represented in a logical framework.
• There is a proved-correct compiler from Cminor to machine language.
• Cminor is usable as the high-level target language of a C compiler.

◦ Our semantics is a small-step semantics, to support reasoning about in-
put/output, concurrency, and nontermination.

◦ Cminor is machine-independent over machines in the “standard model” (i.e.
32- or 64-bit single-address-space byte-addressable multiprocessors).

◦ Cminor can be used as a mid-level target language of an ML compiler [8], or
of an OO-language compiler, so that we can integrate correctness proofs of
ML or OO programs with the proofs of their run-time systems and libraries.

◦ As we show in this paper, Cminor supports an axiomatic Hoare Logic (in fact,
Separation Logic), proved sound with respect to the small-step semantics,
for reasoning about low-level (C-like) programs.

◦ In future work, we plan to extend Cminor to be concurrent in the “stan-
dard model” of thread-based preemptive lock-synchronized weakly consistent
shared-memory programming. The sequential soundness proofs we present
here should be reusable in a concurrent setting, as we will explain.

Leroy’s original Cminor had several Power-PC dependencies, is slightly clumsy
to use as the target of an ML compiler, and is a bit clumsy to use in Hoare-style
reasoning. But most important, Leroy’s semantics is a big-step semantics that

2

can be used only to reason about terminating sequential programs. We have re-
designed Cminor’s syntax and semantics to achieve all of these goals. That part
of the redesign to achieve target-machine portability was done by Leroy himself.
Our redesign to ease its use as an ML back end and for Hoare Logic reasoning
was fairly simple. Henceforth in this paper, Cminor will refer to the new version
of the Cminor language.

The main contributions of this paper are a small-step semantics suitable
for compilation and for Hoare Logic; and the first machine-checked proof of
soundness of a sequential Hoare Logic (Separation Logic) w.r.t. a small-step
semantics. Schirmer [17] has a machine-checked big-step Hoare-Logic soundness
proof for a control flow much like ours, extended by Klein et al. [10] to a C-like
memory model. Ni and Shao [14] have a machine-checked proof of soundness of
a Hoare-like logic w.r.t. a small-step semantics, but for an assembly language
and for much simpler assertions than ours.

2 Big-step Expression Semantics

The C standard [2] describes a memory model that is byte- and word-addressable
(yet portable to big-endian and little-endian machines) with a nontrivial seman-
tics for uninitialized variables. Blazy and Leroy formalized this model [6] for
the semantics of Cminor. In C, pointer arithmetic within any malloc’ed block
is defined, but pointer arithmetic between different blocks is undefined; Cmi-
nor therefore has non-null pointer values comprising an abstract block-number
and an int offset. A NULL pointer is represented by the integer value 0. Pointer
arithmetic between blocks, and reading uninitialized variables, are undefined but
not illegal: expressions in Cminor can evaluate to undefined (Vundef) without
getting stuck.

Each memory load or store is to a non-null pointer value with a “chunk”
descriptor ch specifying number of bytes, signed or unsigned, int or float. Storing
as 32-bit-int then loading as 8-bit-signed-byte leads to an undefined value. Load

and store operations on memory, m ⊢ v1
ch
7→ v2 and m′ = m[v1

ch
:= v2], are partial

functions that yield results only if reading (resp., writing) a chunk of type ch

at address v1 is legal. We write m ⊢ v1
ch
7→ v to mean that the result of loading

from memory m at address v1 a chunk-type ch is the value v.
The values of Cminor are undefined (Vundef), integers, pointers, and floats.

The int type is an abstract data-type of 32-bit modular arithmetic. The expres-
sions of Cminor are literals, variables, primitive operators applied to arguments,
and memory loads.

There are 33 primitive operation symbols op; two of these are for accessing
global names and local stack-blocks, and the rest is for integer and floating-point
arithmetic and comparisons. Among these operation symbols are casts. Cminor
casts correspond to all portable C casts. Cminor has an infinite supply ident of
variable and function identifiers id . As in C, there are two namespaces—each id
can be interpreted in a local scope (using Evar (id)) or in a global scope (using
Eop with the operation symbol for accessing global names).

3

i : int ::= [0, 232)

v : val ::= Vundef | Vint (i) | Vptr (b, i) | Vfloat (f)

e : expr ::= Eval (v) | Evar (id) | Eop (op, el) | Eload (ch, e)

el : exprlist ::= Enil | Econs (e, el)

Expression Evaluation. In original Cminor, expression evaluation is expressed
by an inductive big-step relation. Big-step statement execution is problematic
for concurrency, but big-step expression evaluation is fine even for concurrent
programs, since we will use the separation logic to prove noninterference.

Evaluation is deterministic. Leroy chose to represent evaluation as a relation
because Coq had better support for proof induction over relations than over
function definitions. We have chosen to represent evaluation as a partial func-
tion; this makes some proofs easier in some ways: f(x) = f(x) is simpler than
f x y ⇒ f x z ⇒ y = z. Before Coq’s new functional induction tactic was avail-
able, we developed special-purpose tactics to enable these proofs. Although we
specify expression evaluation as a function in Coq, we present evaluation as a
judgment relation in Fig. 1. Our evaluation function is (proved) equivalent to
the inductively defined judgment Ψ ; (sp; ρ; φ; m) ⊢ e ⇓ v where:
Ψ is the “program,” consisting of a global environment (ident → option block)

mapping identifiers to function-pointers and other global constants, and a
global mapping (block → option function) that maps certain (“text-segment”)
addresses to function definitions.

sp : block. The “stack pointer” giving the address and size of the memory
block for stack-allocated local data in the current activation record.

ρ : env. The local environment, a finite mapping from identifiers to values.
φ : footprint. It represents the memory used by the evaluation of an expression

(or a statement). It is a mapping from memory addresses to permissions.
Leroy’s Cminor has no footprints.

m : mem. The memory, a finite mapping from blocks to block contents [6].
Each block represents the result of a C malloc, or a stack frame, a global
static variable, or a function code-pointer. A block content consists of the
dimensions of the block (low and high bounds) plus a mapping from byte
offsets to byte-sized memory cells.

e : expr. The expression being evaluated.
v : val. The value of the expression.

Loads outside the footprint will cause expression evaluation to get stuck.
Since the footprint may have different permissions for loads than for stores to
some addresses, we write φ ⊢ loadch v (or φ ⊢ storech v) to mean that all the
addresses from v to v + |ch| − 1 are readable (or writable).

To model the possibility of exclusive read/write access or shared read-only
access, we write φ0 ⊕ φ1 = φ for the “disjoint” sum of two footprints, where ⊕
is an associative and commutative operator with several properties such as φ0 ⊢
storech v ⇒ φ1 6⊢ loadch v, φ0 ⊢ loadch v ⇒ φ ⊢ loadch v and φ0 ⊢ storech v ⇒

4

Ψ ; (sp; ρ;φ; m) ⊢ Eval (v) ⇓ v
x ∈ dom ρ

Ψ ; (sp; ρ; φ; m) ⊢ Evar (x) ⇓ ρ(x)

Ψ ; (sp; ρ; φ; m) ⊢ el ⇓ vl Ψ ; sp ⊢ op(vl) ⇓eval operation v

Ψ ; (sp; ρ; φ; m) ⊢ Eop (op, el) ⇓ v

Ψ ; (sp; ρ; φ; m) ⊢ e1 ⇓ v1 φ ⊢ loadch v1 m ⊢ v1

ch
7→ v

Ψ ; (sp; ρ; φ; m) ⊢ Eload (ch, e1) ⇓ v

Fig. 1. Expression evaluation rules

φ ⊢ storech v. One can think of φ as a set of fractional permissions [7], with 0
meaning no permission, 0 < x < 1 permitting read, and 1 giving read/write
permission. A store permission can be split into two or more load permissions,
which can be reconstituted to obtain a store permission. Instead of fractions, we
use a more general and powerful model of sharable permissions similar to one
described by Parkinson [16, Ch. 5].

Most previous models of Separation Logic (e.g., Ishtiaq and O’Hearn [9])
represent heaps as partial functions that can be combined with an operator like
⊕. Of course, a partial function can be represented as a pair of a domain set
and a total function. Similarly, we represent heaps as a footprint plus a Cminor
memory; this does not add any particular difficulty to the soundness proofs for
our Separation Logic.

To perform arithmetic and other operations, in the third rule of Fig. 1, the
judgment Ψ ; sp ⊢ op(vl) ⇓eval operation v takes an operator op applied to a list of
values vl and (if vl contains appropriate values) produces some value v. Operators
that access global names and local stack-blocks make use of Ψ and sp respectively
to return the address of a global name or a local stack-block address.

States. We shall bundle together (sp; ρ; φ; m) and call it the state, written as σ.
We write Ψ ; σ ⊢ e ⇓ v to mean Ψ ; (spσ; ρσ; φσ; mσ) ⊢ e ⇓ v.

Notation. We write σ[:= ρ′] to mean the state σ with its environment component
ρ replaced by ρ′, and so on (e.g. see rules 2 and 3 of Fig. 2 in Section 4).

Fact. Ψ ; sp ⊢ op(vl) ⇓eval operation v and m ⊢ v1
ch
7→ v are both deterministic

relations, i.e. functions.

Lemma 1. Ψ ; σ ⊢ e ⇓ v is a deterministic relation. (Trivial by inspection.)

Lemma 2. For any value v, there is an expression e such that ∀σ. (Ψ ; σ ⊢ e ⇓ v).

Proof. Obvious; e is simply Eval v. But it is important nonetheless: reasoning
about programs by rewriting and by Hoare Logic often requires this property, and
it was absent from Leroy’s Cminor for Vundef and Vptr values. �

An expression may fetch from several different memory locations, or from
the same location several times. Because ⇓ is deterministic, we cannot model a
situation where the memory is updated by another thread after the first fetch

5

and before the second. But we want a semantics that describes real executions
on real machines. The solution is to evaluate expressions in a setting where we
can guarantee noninterference. We will do this (in our extension to Concurrent
Cminor) by guaranteeing that the footprints φ of different threads are disjoint.

Erased Expression Evaluation. The Cminor compiler (CompCert) is proved cor-
rect w.r.t. an operational semantics that does not use footprints. Any program
that successfully evaluates with footprints will also evaluate ignoring footprints.
Thus, for sequential programs where we do not need noninterference, it is sound
to prove properties in a footprint semantics and compile in an erased semantics.
We formalize and prove this in the full technical report [4].

3 Small-step Statement Semantics

The statements of sequential Cminor are:

s : stmt ::= x := e | [e1]ch :=e2 | loop s | block s | exit n

| call xl e el | return el | s1; s2 | if e then s1 else s2 | skip.

The assignment x := e puts the value of e into the local variable x. The store
[e1]ch :=e2 puts (the value of) e2 into the memory-chunk ch at address given
by (the value of) e1. (Local variables are not addressable; global variables and
heap locations are memory addresses.) To model exits from nested loops, block s

runs s, which should not terminate normally but which should exitn from the
(n+1)th enclosing block, and loop s repeats s infinitely or until it returns or exits.
call xl e el calls function e with parameters (by value) el and results returned back
into the variables xl . return el evaluates and returns a sequence of results, (s1; s2)
executes s1 followed by s2 (unless s1 returns or exits), and the statements if and
skip are as the reader might expect.

Combined with infinite loops and if statements, blocks and exits suffice to
express efficiently all reducible control-flow graphs, notably those arising from
C loops. The C statements break and continue are translated as appropriate exit

statements. Blazy et al. [5] detail the translation of these C statements into
Cminor.

Function Definitions. A program Ψ comprises two mappings: a mapping from
function names to memory blocks (i.e., abstract addresses), and a mapping from
memory blocks to function definitions. Each function definition may be written as
f = (xl , yl , n, s), where params(f) = xl is a list of formal parameters, locals(f) =
yl is a list of local variables, stackspace(f) = n is the size of the local stack-block
to which sp points, and the statement body(f) = s is the function body.

Operational Semantics. Our small-step semantics for statements is based on
continuations, mainly to allow a uniform representation of statement execution
that facilitates the design of lemmas. Such a semantics also avoids all search

6

rules (congruence rules), which avoids induction over search rules in both the
Hoare-Logic soundness proof and the compiler correctness proof.3

Definition 1. A continuation k has a state σ and a control stack κ. There are
sequential control operators to handle local control flow (Kseq, written as ·), in-
traprocedural control flow (Kblock), and function-return (Kcall); this last carries
not only a control aspect but an activation record of its own. The control operator
Kstop represents the safe termination of the computation.

κ : control ::= Kstop | s · κ | Kblock κ | Kcall xl f sp ρ κ

k : continuation ::= (σ, κ)

The sequential small-step function takes the form Ψ ⊢ k 7−→ k′ (see Fig. 2),
and we define as usual its reflexive transitive closure 7−→∗. As in C, there is no
boolean type in Cminor. In Fig. 2, the predicate is true v holds if v is a pointer or
a nonzero integer; is false holds only on 0. A store statement [e1]ch :=e2 requires
the corresponding store permission φσ ⊢ storech v1.

Given a control stack block s · κ, the small-step execution of the block state-
ment block s enters that block: s becomes the next statement to execute and the
control stack becomes s · Kblock κ.

Exit statements are only allowed from blocks that have been previously en-
tered. For that reason, in the two rules for exit statements, the control stack
ends with (Kblock κ) control. A statement (exit n) terminates the (n + 1)th en-
closing block statements. In such a block, the stack of control sequences s1 · · · sj

following the exit statement is not executed. Let us note that this stack may be
empty if the exit statement is the last statement of the most enclosing block.
The small-step execution of a statement (exit n) exits from only one block (the
most enclosing one). Thus, the execution of an (exit 0) statement updates the
control stack (exit 0 · s1 · · · · sj ·Kblock κ) into κ. The execution of an (exit n +1)
statement updates the control stack (exit (n+1)·s1 ·· · · sj ·Kblock κ) into exit n·κ.

Lemma 3. If Ψ ; σ ⊢ e ⇓ v then Ψ ⊢ (σ, (x := e) · κ) 7−→ k′ iff Ψ ⊢ (σ, (x :=
Eval v) ·κ)) 7−→ k′ (and similarly for other statements containing expressions).

Proof. Trivial: expressions have no side effects. A convenient property nonethe-
less, and not true of Leroy’s original Cminor. �

Definition 2. A continuation k = (σ, κ) is stuck if κ 6= Kstop and there does
not exist k′ such that Ψ ⊢ k 7−→ k′.

Definition 3. A continuation k is safe (written as Ψ ⊢ safe(k)) if it cannot
reach a stuck continuation in the sequential small-step relation 7−→∗.

3 We have proved in Coq the equivalence of this small-step semantics with the big-step
semantics of CompCert (for programs that terminate).

7

Ψ ⊢ (σ, (s1; s2) · κ) 7−→ (σ, s1 · s2 · κ)
Ψ ; σ ⊢ e ⇓ v ρ′ = ρσ[x := v]

Ψ ⊢ (σ, (x := e) · κ) 7−→ (σ[:= ρ′], κ)

Ψ ; σ ⊢ e1 ⇓ v1 Ψ ; σ ⊢ e2 ⇓ v2 φσ ⊢ storech v1 m′ = mσ[v1

ch
:= v2]

Ψ ⊢ (σ, ([e1]ch :=e2) · κ) 7−→ (σ[:= m′], κ)

Ψ ; σ ⊢ e ⇓ v is true v

Ψ ⊢ (σ, (if e then s1 else s2) · κ) 7−→ (σ, s1 · κ)

Ψ ; σ ⊢ e ⇓ v is false v

Ψ ⊢ (σ, (if e then s1 else s2) · κ) 7−→ (σ, s2 · κ)
Ψ ⊢ (σ, skip · κ) 7−→ (σ, κ)

Ψ ⊢ (σ, (loop s) · κ) 7−→ (σ, s · loop s · κ) Ψ ⊢ (σ, (block s) · κ) 7−→ (σ, s · Kblock κ)

j ≥ 1

Ψ ⊢ (σ, exit 0 · s1 · · · · sj · Kblock κ) 7−→ (σ, κ)

j ≥ 1

Ψ ⊢ (σ, exit (n + 1) · s1 · · · · sj · Kblock κ) 7−→ (σ, exit n · κ)

Fig. 2. Sequential small-step relation. We omit here call and return, which are in the
full technical report [4].

4 Separation Logic

Hoare Logic uses triples {P} s {Q} where P is a precondition, s is a statement of
the programming language, and Q is a postcondition. The assertions P and Q are
predicates on the program state. The reasoning on memory is inherently global.
Separation Logic is an extension of Hoare Logic for programs that manipulate
pointers. In Separation Logic, reasoning is local [15]; assertions such as P and
Q describe properties of part of the memory, and {P} s {Q} describes changes
to part of the memory. We prove the soundness of the Separation Logic via a
shallow embedding, that is, we give each assertion a semantic meaning in Coq.
We have P, Q : assert where assert = prog → state → Prop. So PΨσ is a
proposition of logic and we say that σ satisfies P .

Assertion Operators. In Fig. 3, we define the usual operators of Separation Logic:
the empty assertion emp, separating conjunction ∗, disjunction ∨, conjunction
∧, implication ⇒, negation ¬, and quantifier ∃. A state σ satisfies P ∗ Q if its
footprint φσ can be split into φ1 and φ2 such that σ[:= φ1] satisfies P and
σ[:= φ2] satisfies Q. We also define some novel operators such as expression
evaluation e ⇓ v and base-logic propositions ⌈A⌉.

O’Hearn and Reynolds specify Separation Logic for a little language in which
expressions evaluate independently of the heap [15]. That is, their expressions
access only the program variables and do not even have read side effects on the

8

emp =def λΨσ. φσ = ∅

P ∗ Q =def λΨσ. ∃φ1.∃φ2. φσ = φ1 ⊕ φ2 ∧ P (σ[:= φ1]) ∧ Q(σ[:= φ2])

P ∨ Q =def λΨσ. Pσ ∨ Qσ

P ∧ Q =def λΨσ. Pσ ∧ Qσ

P ⇒ Q =def λΨσ. Pσ ⇒ Qσ

¬P =def λΨσ. ¬(Pσ)

∃z.P =def λΨσ. ∃z. Pσ

⌈A⌉ =def λΨσ. A where σ does not appear free in A

true =def λΨσ.True false =def ⌈False⌉

e ⇓ v =def emp ∧ ⌈pure(e)⌉ ∧ λΨσ. (Ψ ; σ ⊢ e ⇓ v)

⌈e⌉expr =def ∃v. e ⇓ v ∧ ⌈is true v⌉

defined(e) =def ⌈e
int

== e⌉expr ∨ ⌈e
float

== e⌉expr

e1

ch
7→ e2 =def ∃v1.∃v2.(e1 ⇓ v1) ∧ (e2 ⇓ v2) ∧ (λσ, mσ ⊢ v1

ch
7→ v2 ∧ φσ ⊢ storech v1) ∧ defined(v2)

Fig. 3. Main operators of Separation Logic

memory. Memory reads are done by a command of the language, not within
expressions. In Cminor we relax this restriction; expressions can read the heap.
But we say that an expression is pure if it contains no Eload operators—so that
it cannot read the heap.

In Hoare Logic one can use expressions of the programming language as
assertions—there is an implicit coercion. We write the assertion e ⇓ v to mean
that expression e is pure and evaluates to value v in the operational semantics.
This is an expression of Separation Logic, in contrast to Ψ ; σ ⊢ e ⇓ v which is
a judgment in the underlying logic. In a previous experiment, our Separation
Logic permitted impure expressions in e ⇓ v. But, this complicated the proofs
unnecessarily. Having emp ∧ ⌈pure(e)⌉ in the definition of e ⇓ v leads to an
easier-to-use Separation Logic.

Hoare Logic traditionally allows expressions e of the programming language
to be used as expressions of the program logic. We will define explicitly ⌈e⌉expr

to mean that e evaluates to a true value (i.e. a nonzero integer or non-null
pointer). Following Hoare’s example, we will usually omit the ⌈ ⌉expr braces in
our Separation Logic notation.

Cminor’s integer equality operator, which we will write as e1
int
== e2, applies

to integers or pointers, but in several cases it is “stuck” (expression evaluation
gives no result): when comparing a nonzero integer to a pointer; when comparing

Vundef or Vfloat(x) to anything. Thus we can write the assertion ⌈e
int
== e⌉expr

(or just write e
int
== e) to test that e is a defined integer or pointer in the current

state, and there is a similar operator e1
float
== e2.

Finally, we have the usual Separation Logic singleton “maps-to”, but anno-

tated with a chunk-type ch. That is, e1
ch
7→ e2 means that e1 evaluates to v1, e2

evaluates to v2, and at address v1 in memory there is a defined value v2 of the
given chunk-type. Let us note that in this definition, defined(v1) is implied by

9

the third conjunct. defined(v2) is a design decision. We could leave it out and
have a slightly different Separation Logic.

The Hoare Sextuple. Cminor has commands to call functions, to exit (from
a block), and to return (from a function). Thus, we extend the Hoare triple
{P} s {Q} with three extra contexts to become Γ ; R; B ⊢ {P}s{Q} where:

Γ : assert describes context-insensitive properties of the global environment;
R : list val→assert is the return environment, giving the current function’s post-

condition as a predicate on the list of returned values; and
B : nat → assert is the block environment giving the exit conditions of each

block statement in which the statement s is nested.

Most of the rules of sequential Separation Logic are given in Fig. 4. In this
paper, we omit the rules for return and call, which are detailed in the full tech-
nical report. Let us note that the Γ context is used to update global function
names, none of which is illustrated in this paper.

P ⇒ P ′ Γ ; R;B ⊢ {P ′}s{Q′} Q′ ⇒ Q

Γ ; R; B ⊢ {P}s{Q}
Γ ; R;B ⊢ {P}skip{P}

Γ ; R;B ⊢ {P}s1{P
′} Γ ;R; B ⊢ {P ′}s2{Q}

Γ ;R; B ⊢ {P}s1; s2{Q}

ρ′ = ρσ[x := v] P = (∃v. e ⇓ v ∧ λσ. Qσ[:= ρ′])

Γ ;R; B ⊢ {P}x := e{Q}

pure (e) pure (e2) P = (e
ch
7→ e2 ∧ defined(e1))

Γ ; R;B ⊢ {P}[e]
ch

:=e1{e
ch
7→ e1}

pure (e) Γ ; R; B ⊢ {P ∧ e}s1{Q} Γ ; R; B ⊢ {P ∧ ¬e}s2{Q}

Γ ;R; B ⊢ {P}if e then s1 else s2{Q}

Γ ; R;B ⊢ {I}s{I}

Γ ;R; B ⊢ {I}loop s{false}

Γ ; R; Q · B ⊢ {P}s{false}

Γ ;R; B ⊢ {P}block s{Q}

Γ ; R;B ⊢ {B(n)}exit n{false}

Γ ; R;B ⊢ {P}s{Q} modified vars(s) ∩ free vars(A) = ∅

Γ ; (λvl .A ∗ R(vl)); (λn.A ∗ B(n)) ⊢ {A ∗ P}s{A ∗ Q}

Fig. 4. Axiomatic Semantics of Separation Logic (without call and return)

The rule for [e]ch :=e1 requires the same store permission than the small-step

rule, but in Fig. 4, the permission is hidden in the definition of e
ch
7→ e2. The

rules for [e]ch :=e1 and if e then s1 else s2 require that e be a pure expression. To
reason about an such statements where e is impure, one reasons by program
transformation using the following rules. It is not necessary to rewrite the actual

10

source program, it is only the local reasoning that is by program transformation.

x, y not free in e, e1, Q Γ ; R; B ⊢ {P} x := e; y := e1; [x]ch :=y {Q}

Γ ; R; B ⊢ {P}[e]ch :=e1{Q}

x not free in s1, s2, Q Γ ; R; B ⊢ {P} x := e; if x then s1 else s2 {Q}

Γ ; R; B ⊢ {P} if e then s1 else s2 {Q}

The statement exit i exits from the (i+1)th enclosing block. A block environ-
ment B is a sequence of assertions B0, B1, . . . , Bk−1 such that (exit i) is safe as
long as the precondition Bi is satisfied. We write nilB for the empty block envi-
ronment and B′ = Q ·B for the environment such that B′

0 = Q and B′

i+1 = Bi.
Given a block environment B, a precondition P and a postcondition Q, the

axiomatic semantics of a (block s) statement consists in executing some state-
ments of s given the same precondition P and the block environment Q · B

(i.e. each existing block nesting is incremented). The last statement of s to be
executed is an exit statement that yields the false postcondition. An (exit n)
statement is only allowed from a corresponding enclosing block, i.e. the precon-
dition B(n) must exist in the block environment B and it is the precondition of
the (exit n) statement.

Frame Rules. The most important feature of Separation Logic is the frame rule,
usually written

{P} s {Q}

{A ∗ P} s {A ∗ Q}

The appropriate generalization of this rule to our language with control flow is
the last rule of Fig. 4. We can derive from it a special frame rule for simple
statements s that do not exit or return:

∀R, B.(Γ ; R; B ⊢ {P} s {Q}) modified vars(s) ∩ free vars(A) = ∅

Γ ; R; B ⊢ {A ∗ P} s {A ∗ Q}

Free Variables. We use a semantic notion of free variables: x is not free in as-
sertion A if, in any two states where only the binding of x differs, A gives the
same result. However, we found it necessary to use a syntactic (inductive) defini-
tion of the variables modified by a command. One would think that command c

“modifies” x if there is some state such that by the time c terminates or exits, x

has a different value. However, this definition means that the modified variables
of if false then B else C are not a superset of the modified variables of C;
this lack of an inversion principle led to difficulty in proofs.

Auxiliary Variables. It is typical in Hoare Logic to use auxiliary variables to
relate the pre- and postconditions, e.g., the variable a in {x = a} x := x+1 {x =
a + 1}. In our shallow embedding of Hoare Logic in Coq, the variable a is a
Coq variable, not a Cminor variable; formally, the user would prove in Coq
the proposition, ∀a, (Γ ; R; B ⊢ {P}s{Q}) where a may appear free in any of

11

Γ, R, B, P, s, Q. The existential assertion ∃z.Q is useful in conjunction with this
technique.

Assertions about functions require special handling of these quantified aux-
iliary variables. The assertion that some value f is a function with precondition
P and postcondition Q is written f : ∀x1∀x2 . . . ∀xn, {P}{Q} where P and Q

are functions from value-list to assertion, each ∀ is an operator of our separation
logic that binds a Coq variable xi using higher-order abstract syntax.

Application. In the full technical report [4], we show how the Separation Logic
(i.e. the rules of Fig. 4) can be used to prove partial correctness properties of
programs, with the classical in-place list-reversal example. Such proofs rely on
a set of tactics, that we have written in the tactic definition language of Coq, to
serve as a proof assistant for Cminor Separation Logic proofs [3].

5 Soundness of Separation Logic

Soundness means not only that there is a model for the logic, but that the
model is the operational semantics for which the compiler guarantees correctness!
In principle we could prove soundness by syntactic induction over the Hoare
Logic rules, but instead we will give a semantic definition of the Hoare sextuple
Γ ; R; B ⊢ {P} s {Q}, and then prove each of the Hoare rules as a derived lemma
from this definition.

A simple example of semantic specification is that the Hoare Logic P ⇒ Q

is defined, using the underlying logical implication, as ∀Ψσ. P Ψ σ ⇒ Q Ψ σ.
From this, one could prove soundness of the Hoare Logic rule on the left (where
the ⇒ is a symbol of Hoare Logic) by expanding the definitions into the lemma
on the right (where the ⇒ is in the underlying logic), which is clearly provable
in higher-order logic:

P ⇒ Q Q ⇒ R

P ⇒ R

∀Ψσ.(PΨσ ⇒ QΨσ) ∀Ψσ.(QΨσ ⇒ RΨσ)

∀Ψσ.(PΨσ ⇒ RΨσ)

Definition 4. (a) Two states σ and σ′ are equivalent (written as σ ∼= σ′) if
they have the same stack pointer, extensionally equivalent environments, iden-
tical footprints, and if the footprint-visible portions of their memories are the
same. (b) An assertion is a predicate on states that is extensional over equivalent
environments (in Coq it is a dependent product of a predicate and a proof of
extensionality).

Definition 5. For any control κ, we define the assertion safe κ to mean that
the combination of κ with the current state is safe:

safe κ =def λΨσ. ∀σ′. (σ ∼= σ′ ⇒ Ψ ⊢ safe (σ′, κ))

Definition 6. Let A be a frame, that is, a closed assertion (i.e. one with no free
Cminor variables). An assertion P guards a control κ in the frame A (written
as P ⊓⊔A κ) means that whenever A ∗ P holds, it is safe to execute κ. That is,

P ⊓⊔A κ =def A ∗ P ⇒ safe κ.

12

We extend this notion to say that a return-assertion R (a function from value-
list to assertion) guards a return, and a block-exit assertion B (a function from
block-nesting level to assertions) guards an exit:

R r⊓⊔A κ =def ∀vl .R(vl)⊓⊔A return vl ·κ B b⊓⊔A κ =def ∀n.B(n)⊓⊔A exitn ·κ

Lemma 4. If P ⊓⊔A s1 · s2 · κ then P ⊓⊔A (s1; s2) · κ.

Lemma 5. If R r⊓⊔A κ then ∀s, R r⊓⊔A s · κ. If B b⊓⊔A κ then ∀s, B b⊓⊔A s · κ.

Definition 7 (Frame). A frame is constructed from the global environment Γ ,
an arbitrary frame assertion A, and a statement s, by the conjunction of Γ with
the assertion A closed over any variable modified by s:

frame(Γ, A, s) =def Γ ∗ closemod(s, A)

Definition 8 (Hoare sextuples). The Hoare sextuples are defined in “contin-
uation style,” in terms of implications between continuations, as follows:

Γ ; R; B ⊢ {P} s {Q} =def ∀A, κ.

R r⊓⊔frame(Γ,A,s) κ ∧ B b⊓⊔frame(Γ,A,s) κ ∧ Q ⊓⊔frame(Γ,A,s) κ ⇒ P ⊓⊔frame(Γ,A,s) s · κ

From this definition we prove the rules of Fig. 4 as derived lemmas.
It should be clear from the definition—after one gets over the backward

nature of the continuation transform—that the Hoare judgment specifies partial
correctness, not total correctness. For example, if the statement s infinitely loops,
then the continuation (σ, s · κ) is automatically safe, and therefore P ⊓⊔A s · κ

always holds. Therefore the Hoare tuple Γ ; R; B ⊢ {P}s{Q} will hold for that
s, regardless of Γ, R, B, P, Q.

Sequence. The soundness of the sequence statement is the proof that if the
hypotheses H1 : Γ ; R; B ⊢ {P} s1 {P ′} and H2 : Γ ; R; B ⊢ {P ′} s2 {Q} hold,
then we have to prove Goal : Γ ; R; B ⊢ {P} s1; s2 {Q} (see Fig. 4). If we unfold
the definition of the Hoare sextuples, H1, H2 and Goal become:

(∀A, κi)
R r⊓⊔frame(Γ,A,si) κi B b⊓⊔frame(Γ,A,si) κi P ′ ⊓⊔frame(Γ,A,si) κi

P ⊓⊔frame(Γ,A,si) si · κi
Hi, i = 1, 2

(∀A,κ)
R r⊓⊔frame(Γ,A,(s1;s2)) κ B b⊓⊔frame(Γ,A,(s1;s2)) κ Q ⊓⊔frame(Γ,A,(s1;s2)) κ

P ⊓⊔frame(Γ,A,(s1;s2)) (s1; s2) · κ
Goal

We prove P ⊓⊔frame(Γ,A,(s1;s2)) (s1; s2) · k using Lemma 4:4

R r⊓⊔ k

R r⊓⊔ s2 · k
Lm. 5

B b⊓⊔ k

B b⊓⊔ s2 · k
Lm. 5

R r⊓⊔ k B b⊓⊔ k Q ⊓⊔ k

P ′ ⊓⊔ s2 · k
H2

P ⊓⊔ s1 · s2 · k

P ⊓⊔ (s1; s2) · k
Lm. 4

H1

4 We will elide the frames from proof sketches by writing ⊓⊔ without a subscript;
this particular proof relies on a lemma that closemod(s1, closemod((s1; s2), A)) =
closemod((s1; s2), A).

13

Loop Rule. The loop rule turns out to be one of the most difficult ones to prove. A
loop continues executing until the loop-body performs an exit or return. If loop s

executes n steps, then there will be 0 or more complete iterations of n1, n2, . . .

steps, followed by j steps into the last iteration. Then either there is an exit
(or return) from the loop, or the loop will keep going. But if the exit is from an
inner-nested block, then it does not terminate the loop (or even this iteration).
Thus we need a formal notion of when a statement exits.

Consider the statement s = if b then exit 2 else (skip; x := y), executing in state
σ. Let us execute n steps into s, that is, Ψ ⊢ (σ, s · κ) 7−→n (σ′, κ′). If n is small,
then the behavior should not depend on κ; only when we “emerge” from s is
κ important. In this example, if ρσb is a true value, then as long as n ≤ 1 the
statement s can absorb n steps independent of κ; if ρσb is a false value, then s can
absorb up to 3 steps. To reason about absorption, we define the concatenation
κ1 ◦ κ2 of a control prefix κ1 and a control κ2 as follows:

Kstop ◦ κ =def κ (Kblock κ′) ◦ κ =def Kblock (κ′ ◦ κ)
(s · κ′) ◦ κ =def s · (κ′ ◦ κ) (Kcall xl f sp ρ κ′) ◦ κ =def Kcall xl f sp ρ (κ′ ◦ κ)

Kstop is the empty prefix; Kstop ◦ κ does not mean “stop,” it means κ.

Definition 9 (absorption). A statement s in state σ absorbs n steps (written
as absorb(n, s, σ)) iff ∀j ≤ n. ∃κprefix.∃σ′. ∀κ. Ψ ⊢ (σ, s · κ) 7−→j (σ′, κprefix ◦ κ).

Example 1. An exit statement by itself absorbs no steps (it immediately uses its
control-tail), but block (exit 0) can absorb the 2 following steps:
Ψ ⊢ (σ, block (exit 0) · κ) 7−→ (σ, exit 0 · Kblock κ) 7−→ (σ, κ)

Lemma 6. 1. absorb(0, s, σ).
2. absorb(n + 1, s, σ) ⇒ absorb(n, s, σ).
3. If ¬absorb(n, s, σ), then ∃i < n.absorb(i, s, σ) ∧ ¬absorb(i + 1, s, σ). We say

that s absorbs at most i steps in state σ.

Definition 10. We write (s;)ns′ to mean s; s; . . . ; s;
︸ ︷︷ ︸

n

s′.

Lemma 7.
Γ ; R; B ⊢ {I}s{I}

Γ ; R; B ⊢ {I}(s;)nloop skip{false}

Proof. For n = 0, the infinite-loop (loop skip) satisfies any precondition for par-
tial correctness. For n + 1, assume κ, R r⊓⊔ κ, B b⊓⊔ κ; by the induction hypothesis
(with R r⊓⊔κ and B b⊓⊔κ) we know I⊓⊔(s;)nloop skip·κ. We have R r⊓⊔(s;)nloop skip·κ
and B b⊓⊔ (s;)nloop skip ·κ by Lemma 5. We use the hypothesis Γ ; R; B ⊢ {I}s{I}
to augment the result to I ⊓⊔ (s; (s;)nloop skip) · κ. �

Theorem 1.
Γ ; R; B ⊢ {I}s{I}

Γ ; R; B ⊢ {I}loop s{false}

Proof. Assume κ, R r⊓⊔ κ, B b⊓⊔ κ. To prove I ⊓⊔ loop s · κ, assume σ and Iσ

and prove safe (σ, loop s · κ). We must prove that for any n, after n steps we
are not stuck. We unfold the loop n times, that is, we use Lemma 7 to show

14

safe (σ, (s;)nloop skip · κ). We can show that if this is safe for n steps, so is
loop s · κ by the principle of absorption. Either s absorbs n steps, in which case
we are done; or s absorbs at most j < n steps, leading to a state σ′ and a control
(respectively) κprefix ◦ (s;)n−1loop skip · κ or κprefix ◦ loop s · κ. Now, because s

cannot absorb j + 1 steps, we know that either κprefix is empty (because s has
terminated normally) or κprefix starts with a return or exit, in which case we
escape (resp. past the loop skip or the loop s) into κ. If κprefix is empty then we
apply strong induction on the case n − j steps; if we escape, then (σ′, κ) is safe
iff (σ, loop s · κ) is safe. (For example, if j = 0, then it must be that s = return

or s = exit , so in one step we reach κprefix ◦ (loop s · κ) with κprefix = return or
κprefix = exit .) �

6 Sequential Reasoning about Sequential Features

Concurrent Cminor, like most concurrent programming languages used in prac-
tice, is a sequential programming language with a few concurrent features (locks
and threads) added on. We would like to be able to reason about the sequential
features using purely sequential reasoning. If we have to reason about all the
many sequential features without being able to assume such things as determi-
nacy and sequential control, then the proofs become much more difficult.

One would expect this approach to run into trouble because critical assump-
tions underlying the sequential operational semantics would not hold in the
concurrent setting. For example, on a shared-memory multiprocessor we can-
not assume that (x:=x+1; x:=x+1) has the same effect as (x:=x+2); and on
any real multiprocessor we cannot even assume sequential consistency—that the
semantics of n threads is some interleaving of the steps of the individual threads.

We will solve this problem in several stages. Stage 1 of this plan is the current
paper. Stages 2, 3, and 4 are work in progress; the remainder is future work.

1. We have made the language, the Separation Logic, and our proof extensible:
the set of control-flow statements is fixed (inductive) but the set of straight-
line statements is extensible by means of a parameterized module in Coq.
We have added to each state σ an oracle which predicts the meaning of the
extended instruction (but which does nothing on the core language). All the
proofs we have described in this paper are on this extensible language.

2. We define spawn, lock, and unlock as extended straight-line statements. We
define a concurrent small-step semantics that assumes noninterference (and
gets “stuck” on interference).

3. From this semantics, we calculate a single-thread small-step semantics equip-
ped with the oracle that predicts the effects of synchronizations.

4. We define a Concurrent Separation Logic for Cminor as an extension of the
Sequential Separation Logic. Its soundness proof uses the sequential sound-
ness proof as a lemma.

5. We will use Concurrent Separation Logic to guarantee noninterference of
source programs. Then (x:=x+1; x:=x+1) will have the same effect as (x:=x+2).

15

6. We will prove that the Cminor compiler (CompCert) compiles each footprint-
safe source thread into an equivalent footprint-safe machine-language thread.
Thus, noninterfering source programs will produce noninterfering machine-
language programs.

7. We will demonstrate, with respect to a formal model of weak-memory-
consistency microprocessor, that noninterfering machine-language programs
give the same results as they would on a sequentially consistent machine.

7 The Machine-checked Proof

We have proved in Coq the soundness of Separation Logic for Cminor. Each
rule is proved as a lemma; in addition there is a main theorem that if you prove
all your function bodies satisfy their pre/postconditions, then the program “call
main()” is safe. We have informally tested the adequacy of our result by doing
tactical proofs of small programs [3].

Lines Component
41 Axioms: dependent unique choice, relational choice, extensionality

8792 Memory model, floats, 32-bit integers, values, operators, maps (ex-
actly as in CompCert [12])

4408 Sharable permissions, Cminor language, operational semantics
462 Separation Logic operators and rules

9874 Soundness proof of Separation Logic
These line counts include some repetition of specifications (between Modules
and Module Types) in Coq’s module system.

8 Conclusion

In this paper, we have defined a formal semantics for the language Cminor. It
consists of a big-step semantics for expressions and a small-step semantics for
statements. The small-step semantics is based on continuations mainly to allow
a uniform representation of statement execution. The small-step semantics deals
with nonlocal control constructs (return, exit) and is designed to extend to the
concurrent setting.

Then, we have defined a Separation Logic for Cminor. It consists of an as-
sertion language and an axiomatic semantics. We have extended classical Hoare
triples to sextuples in order to take into account nonlocal control constructs.
From this definition of sextuples, we have proved the rules of axiomatic seman-
tics, thus proving the soundness of our Separation Logic.

We have also proved the semantic equivalence between our small-step seman-
tics and the big-step semantics of the CompCert certified compiler, so the Cminor
programs that we prove in Separation Logic can be compiled by the CompCert
certified compiler. We plan to connect a Cminor certified compiler directly to
the small-step semantics, instead of going through the big-step semantics.

Small-step reasoning is useful for sequential programming languages that will
be extended with concurrent features; but small-step reasoning about nonlocal
control constructs mixed with structured programming (loop) is not trivial. We

16

have relied on the determinacy of the small-step relation so that we can define
concepts such as absorb(n, s, σ).

References

1. The Coq proof assistant. http://coq.inria.fr.
2. American National Standard for Information Systems – Programming Language –

C. American National Standards Institute, 1990.
3. Andrew W. Appel. Tactics for separation logic. http://www.cs.princeton.edu/

∼appel/papers/septacs.pdf, January 2006.
4. Andrew W. Appel and Sandrine Blazy. Separation logic for small-step Cminor

(extended version). Technical Report RR 6138, INRIA, March 2007. https://

hal.inria.fr/inria-00134699.
5. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C

compiler front-end. In Symp. on Formal Methods (FM’06), volume 4805 of Lecture
Notes in Computer Science, pages 460–475, 2006.

6. Sandrine Blazy and Xavier Leroy. Formal verification of a memory model for C-
like imperative languages. In Formal Engineering Methods, volume 3785 of Lecture
Notes in Computer Science, pages 280–299, 2005.

7. Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Per-
mission accounting in separation logic. In POPL ’05, pages 259–270, 2005.

8. Zaynah Dargaye. Décurryfication certifiée. In JFLA (Journées Françaises des
Langages Applicatifs), pages 119–133, 2007.

9. Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data
structures. In POPL’01, pages 14–26. ACM Press, January 2001.

10. Gerwin Klein, Harvey Tuch, and Michael Norrish. Types, bytes, and separation
logic. In POPL’07, pages 97–108. ACM Press, January 2007.

11. Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal verifica-
tion of a C0 compiler: Code generation and implementation correctness. In IEEE
Conference on Software Engineering and Formal Methods (SEFM’05), 2005.

12. Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In POPL’06, pages 42–54. ACM Press, 2006.

13. J Strother Moore. A mechanically verified language implementation. Journal of
Automated Reasoning, 5(4):461–492, 1989.

14. Zhaozhong Ni and Zhong Shao. Certified assembly programming with embedded
code pointers. In POPL’06, pages 320–333. ACM Press, January 2006.

15. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In CSL’01, volume 2142 of Lecture Notes in
Computer Science, pages 1–19, September 2001.

16. Matthew J. Parkinson. Local Reasoning for Java. PhD thesis, University of Cam-
bridge, 2005.

17. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2006.

17

