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Abstract

Soundness proofs of program logics such as Hoare logics and typ
systems are often made easiedegoratingthe operational seman-
tics with information that is useful in the proof. However, modify-

ing the operational semantics to carry around such information can

make it more difficult to show that the operational semantics corre-
sponds to what actually occurs on a real machine.

In this work we present a program logic framework targeting
operational semantics iBurry-style—that is, operational seman-

tics without proof decorations such as separation algebras, shar
models, and step indexes. Although we target Curry-style oper-
ational semantics, our framework permits local reasoning via the
frame rule and retains expressive assertions in the program logic.

Soundness of the program logic is derived mechanically from sim-
ple properties of primitive commands and expressions.

We demonstrate our framework by deriving a separation logic
for the model of a core imperative programming language with
external function calls. We also apply our framework in a more
realistic setting in the soundness proof of a separation logic for
CompCert's Cminor. Our proofs are machine-checked in Coq.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES$ Formal Definitions and Theory — Semantics;
F.3.1 LOGICS AND MEANINGS OF PROGRAMSpecifying
and Verifying and Reasoning about Programs — Logics of pro-
grams; F.4.1 MATHEMATICAL LOGIC AND FORMAL LAN-
GUAGES: Mathematical Logic — Mechanical theorem proving

General Terms Languages, Theory, Verification

Keywords Curry-style Operational Semantics, Local Actions,
Separation Logic

1. Introduction

Decorating an operational semantics with extra information often

makes soundness proofs of program logics such as Hoare logics an
type systems easier. This extra information might include, e.g., lock
invariants, step indexes, or forms of ghost state. However, modi-

fying the operational semantics to include this extra information

comes at a price: one must show that the decorated semantics co
responds to the original intuitive semantics. Otherwise, properties
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proved with respect to the decorated semantics might not hold of
the intuitive semantics.

We faced this problem while attempting to prove the soundness
of a separation logic for Cminor, an intermediate language in the
CompCert certified compiler stack [14]. CompCert’s compiler cor-
rectness proof is dependent on the specific memory model used
to define the operational semantics of Cminor and the other lan-
guages in the stack. Because this memory model makes the formu-
lation of these operational semantics quite natural and well-suited

€

do proofs by bisimulation, we found it undesirable from an engi-

neering standpoint to modify the memory model and the opera-
tional semantics of Cminor to support the sorts of extra informa-
tion useful in our proof of soundness of the separation logic. In-
stead, we chose to prove our separation logic sound with respect to
a decorated semantics and then show that the decorated semantics
corresponds to the intuitive semantics already used in CompCert.
This paper presents our solution to the general problem of con-
structing program logics targetir@urry-styleoperational seman-
tics, that is, those without proof decorations. We call such seman-
tics Curry-style by analogy to Curry-style formulations of the sim-
ply typed lambda calculus in which types are seen as decorations of
untyped lambda terms. The outline of our approach is as follows:
First, we isolate the components of the program logic: (1)ae
erational semanticef the programming language with respect to
which the logic is proved sound; (2Jorlds of the program logic;
and, in the case of separation logic, (3sgparation algebran
worlds. Then, we reassemble these three components in a way that
exposes the right interfaces. This principled reassembly enables us
to construct models of state at the level of the program logic that
are resilient to changes in the target language. Conversely, sophisti-
cated models of state at the level of the program logic need not com-
plicate the data model of the programming language in our frame-
work. This has a twofold benefit: (1) the operational semantics of
the programming language can be stated more simply, making it
asier to understand; and (2) undecorated operational semantics are
etter suited to compiler correctness proofs by bisimulation, e.g. in
CompCert. In Section 9, we demonstrate that our approach works
for the core of an imperative programming language with external

/function calls. We also apply our framework in a more realistic set-

ting in the soundness proof of a separation logic for undecorated
Cminor.

Contributions.

e We present a separation logic framework targeting generic
Curry-style operational semantics. Because worlds of the pro-
gram logic are distinct from states of the operational semantics
in our framework, the operational semantics of the target lan-
guage can be given without decoration. Soundness of the sepa-
ration logic is a consequence of simple erasure and safety facts
proved about primitive commands and expressions.

e Our framework forms the core of the soundness proof of a
separation logic for undecorated Cminor.



e We show how to prove functional correctness properties in a unsafe optimizations, such as hoisting loads and stores past lock
program logic for safety without requiring semantic assertions synchronizations. Such permissions don’t, however, support the

in the target language. sort of resource accounting required to construct a separation al-
* We present a reusable Coq library implementing our frame- gebra! For example, CompCerti®ad permission, which models
work: http://www.cs.princeton.edu/~ jsseven/local. situations in which a program can read a location in the heap but
e Our proofs are machine-checked in Coq. not modify or free it, doesn'’t satisfy theancellativityaxiom of
separation algebras: in a natural formulatiorgofor CompCert's
2. Background permission lattice, both the empty permission andréiael permis-

. . sion join with read to produceread, thus violating cancellativity
We set the stage for a more detailed description of our approach (read # the empty permission).
by first reviewing separation algebras and the theor_y of local ac- Additionally, permissions in CompCert don’t have the conve-
tion, both introduced by Calcagno et al. [7] to describe a class of piant properties of share models, such as those of Dockins et al.
models of separation logic. We .the.n prpwde a short introduction to [10], Parkinson [20], and Bornat et al. [6], that allow infinite split-
CompCert, share models, and indirection theory. CompCert servesing of shares and token counting. Infinite share splitting is useful
as our motivating example of a case in which itis importantwhether i, hroofs of arbitrary-depth divide-and-conquer algorithms. Token
we can isolate the program logic from the definition of the opera- ¢onting can be used to verify that outstanding readers on a lock
tional semantics. Share models and indirection theory illustrate two p5ye 3| completed. We would like to support such proof idioms in
parts of the proof apparatus that we would like to isolate from the ., program logic but don’t want to burden the operational seman-

operational semantics, but which are useful in the construction of e \ith the additional complexity of the required share models.
separation logic proofs and separation logics themselves. If they

were naively added to CompCert, both share models and indirec-Indirection. An even more compelling reason to enforce a clear
tion theory would present complications for the CompCert model: distinction between worlds of the program logic and states of the
share models would unduly burden CompCert with too much in- operational semantics is the need to reason about challenging lan-
formation, while indirection theory would complicate bisimulation guage features such as function pointers, Pthreads-style locks, and
proofs used to prove compiler correctness. ML-style reference types. Semantic approaches to reasoning about
. . ) such features, such as indirection theory [13]—which generalizes
Separation Algebras and Local Action. Separation algebras — hrevious step-indexing approaches to reasoning about recursion
are mathematical structures (partial, cancellative, commutative [1, 2—and Kripke models of modal logics [4, 9] appear to work
monoids) that describe in a general way what it means for tWo || byt require significant machinery to implement. For example,
heaplets to be disjoint. They were first used by Calcagno et al. [7] j step-indexed models of locks with higher-order resource invari-
to construct an abstract model of separation logic. In this work we 4nis in the heap, we must keep track of the level, or “age,” of the
use a formalization of separation algebras in Coq due to Dockins 0114 at each cémputation step aade the world éppropriétely
et al. [10], called multi-unit separation algebras, that replaces the i, orger to prove the soundness of the Hoare rulesfdock. Such
partial binary operator of the monoid with a three-place relation oy keeping is necessary in the soundness proof of the Hoare logic
calledjoin and allows multiple identity elements. A three-place re- p,,t there’s no reason to allow this information to leak into the op-
lation is used in order to express noncomputable join relations in g4tional semantics and the compiler correctness proof.
Cog. We write that  joins with y to producez” with the notation
x D y==z.
The theory of local action provides a second useful abstraction. 3. Our Approach
Local actions are commands (1) whose effects on the program state
can be tracked back to “smaller” states (this is often called the
frame property in the literature [7, 21]); and (2) whose safety in Abstract
small states guarantees safety in extensions of safe small states. It
can be shown that a command has both of these properties iff the
frame rule is sound for it [7]. € a

The CompCert Memory Model. CompCert is an optimizing C

compiler developed by Leroy with formal operational semantics of -

source, target, and compiler intermediate languages and machine- Sce%lg;‘teltgs Silfgg?)tr‘gn

checked proofs of correctness in Coq of each compiler stage [14].

The main features of CompCert’s memory model [15] are general-

ity (the same memory model is used at all levels of the compiler

stack) and relocatability (the memory model supports a notion of Figure 1: Overview of the Framework

memory injectiorthat is critical in the proofs of many program

transformations performed by the compiler). The central insight of our work is synthetic: within an appro-

CompCert memories are byte-addressable. Data in the Comp-priately stratified framework (depicted in Figure 1), one can de-
Cert model includes integers and floats, in various bit sizes, as well rive a separation logic for a Curry-style semantics without adapt-
as pointers. To support these features, CompCert's memory modeling the semantics to support the usual required machinery, such as
includes theorems for reasoning about encoding and decoding val-a separation algebra. The technique, which is a form of proof by

ues to and from lists of bytes, calledemvalsn CompCert par- refinement, requires that one define an appropriate abstract com-
lance, with support for big- and little-endian architectures, and a mand or expression for each primitive command and expression in
realistic model of fixed-width machine integers. the Curry-style semantics. Abstract commands and expressions are

Permissions vs. S’hares. We have been working with Leroy 0 1\ye do not mean to imply that the permission model of CompCert is
adapt CompCert's memory model to includermissionsat each deficient and should be changed, only that the minimally déedmraemory
memory cell. These permissiorfseg, write, etc.) are the minimal model that is convenient for proofs by bisimulation and islgasiderstood
decoration needed to ensure the compiler never performs thread-is not the right model for use in the program logic.



appropriate when their concrete counterparts refine, or implement,  We say that two primitive commands, u) : vy correspond
them. In order to prove the soundness of the frame rule, each suchto constitute atratified primitive commandhenv andu have the
pair of commands must be local in the sense of Calcagno et al. [7]. following properties, expressed as commutative diagrams:
The worlds and states of the abstract and concrete semantics
are related by a collection efrasure relationgairing worlds with w—"" w—""% w
states, and primitive commands and expressions of the abstract
semantics with corresponding primitive commands and expressions EJ JE EJ J
of the concrete semantics. In Figure 1, we represent this collection
of erasure relations with.
The worlds of the abstract semantics induce worlds of the sepa-
ration logic via gprojection functionwhich we calle. The function Erasure Safety
« maps abstract worlds to separation algebra elements supporting
the predicates of separation logic. We choose not to define a sep-Erasure states that if world erases to state, (w,w’) is a state
aration algebra directly on worlds of the abstract semantics just to transition permitted by, and(s, s’) is a state transition permitted
increase the generality of our system: there are cases in which we'dby u, thenw’ must erase t@’. Because is a function, primitive
like abstract worlds to contain extra information that we don't want command erasure entails that primitive commandse determin-
to pass to predicates of the separation logic: for example, the threadistic.
schedule in the model of a concurrent programming language. Safety states that if worldy erases to state and (w,w’) is
This stratification—of data, primitive expressions, and primitive a state transition permitted hy then there exists ans.t. (s, s')
commands—enables us to couple Curry-style operational seman-s a state transition permitted by Primitive expressiongg, f) :
tics with an expressive program logic. € r must satisfy correspondirexpression erasur@ndexpression
safetyproperties.
An easy consequence of primitive command erasure and safety
are the following extensions to the step relations of the abstract and
concrete languages:

s—— 5 §--=--- > 8
u u

Technical Development. We now describe the framework in
more detail (Figure 2).

(W, V, G) Abstract

Semantics ~ , ~s ,
wW— W w—w
&ws &vu Ecr Owa\ Ene EJ JE EJ J
STS/ sff;;%s'

Concrete Separation
Semantics| & U P (A & H) Algebra Step Erasure Step Safety

Step erasure states that steps in the abstract semantics commute
under erasure with steps from corresponding states in the concrete
semantics. Step safety states that whenever we can take a step in
Here, 1 and S are (resp.) the types of worlds of the pro- the abstract semantics we can take a step in the concrete semantics,

gram logic and states of the operational semantics. The structurei'e' abstract steps ensure g:or(esponding concrete steps arechonstu
(S, U, F) defines the operational semantics of the object language We use these two properties in th_e proof O.f soundnes; of the Hoare
(also called the concrete languagg)is a set ofprimitive concrete logic rule for primitive command introduction. In Section 5.1, we
commandswhile ' iis a set oprimitive concrete expressiorrim- prove a corollary simulation theorem relating abstract and concrete
itive commands are deterministic binary relationsSrprimitive semantics, though this theorem is not necessary in the soundness

expressions are partial functions fraito boolean values. On top proof of the Hoare |ogic.

of U and F' we define the operational semantics of a conventional resg?g'?&ge;?)ﬁ::u;éé [S)?g\?ergt:zrlll(;g;%?)g?aﬁg%vﬁ)gizoa?rgdtmgh

while-language, in continuation-passing style. Vg L . '

' ) . . up to erasure and the-projection, of programs ifS, U, F'). Be-

The structure(W, V, G) defines the opgratlonal semantics of cguse of how we intergrejt the Hoarg tr?[b’re{P}loc {Q}) each

the abstrac_t Ir_:mguageV Is a set of (potennally nondeter_ml_n!stlc) primitive command with a valid Hoare rule in the separétion logic

abstract primitive commandsshile G is a set ofabstract primitive must satisfy the frame ruland is thus a local action. Because of

expressionsz vy is a predicate defining the set of corresponding > : o o~

pairs of abstract and concrete commands;, in turn, defines the the erasure and safety properties, the introduction rule for prim

set of corresponding pairs of abstract and concrete expresgiens. 23’&?%‘;{3& C:tg?::chsnmi tticg ;‘?ﬁafgﬁerggﬁ;ﬁseé)gg ;hartogf
explain what we mean bgorrespondingyelow. P 9 P P

The world erasureprojectione ws, which we'll often just call witness. This greatly simplifies the soundness proofs of Hoare rules

€, maps worlds of the program logic to states of the operational for primitive commands.
semantics.

The structuré A, @) defines a separation algebra over elements Notation. In what follows, we denote abstract worlds with €
of type A. Thea-projectiona wa maps elements di to elements W, and concrete states withe S. Elements: € A are elements
of A. We'll often call «wa just a. H defines a set of primitive of the separation algebrig4, ®). The functione : W — S'is
expressions operating on elements Afwhile ey defines the an erasure function mapping abstract worlds to concrete states.
set of corresponding expressionsihand G. We need primitive The functiona : W — A projects a separation algebra element
expressiondd in order to express separation logic assertions such from an abstract world. We use the “forces” notatiefw) = P to
asassert_expr(e), which is satisfied by elements: A in which express the fact that the projection of worldw satisfies separation
e evaluates tarue. Such assertions appear in the proof rules for logic predicateP. The assertiony(w) £ P is equivalent to the
conditionals and while loops. propositionP (a(w)).

Figure 2: Detailed Overview of the Framework



4. Generic Operational Semantics

We start with the rather conventional notion méndeterministic
operational semanticsSuch semantics are well-understood and
highly expressive: the dynamic behavior of most programming lan-
guages can be expressed in such a framework. We say an oper
tional semantics igenericwhen the set of primitive commands is
left abstract.

Because we are concerned primarily with modeling data and not
control, we present generic operational semantics in continuation-
passing style (thus isolating data from control) and we use a con-

ventional expression language evaluating expressions to boolean

values in control-flow constructs, with the standard operators for
conjunction, disjunction, and negation. Unlike in some models of
separation logic [16, 21], expression evaluation in our framework

is partial, meaning expressions can get stuck. We assume a separa-

tion logic proof will show that the expressions in a particular code

a_

to denote that: is of type U or thatu is an element olJ. skip
andseq denote nops and the sequential composition of commands,
respectively. Conditionals and while loops are standard.

Following Appel and Blazy [3], we separate data from control
y defining the step relation of generic operational semantics in
continuation-passing style (Figure 5).

b

Step Relation (s, k) ~ (s', k)
(s, skip - k) ~ (s, K)

s, (c15¢2) - K) ~ (s, c1-c2 - K)

s, primcom(u) - k) ~ (s', K)

s, (if e then ¢ else c2) -

s, (if e then ¢ else ¢2) -

if weU and srs s’
if Ftels|true]
if FFels|false]

K) ~ (s, c1 - K)

K) ~ (s, c2 - K)

o~~~ o~ o~

s, while e do ¢ - k)
~ (s, (if e then (c; while e do c) else skip) - k)

fragment are safe to evaluate. We present the syntax and excerpted

semantics of our expression language in Figure 3. The elided rules
are for disjunction and negation.

Syntax
e

val(b) | primexpr(f) | —e | e1 && ea | e1 || e2

Evaluation F el |b]
F Fval(b) s |b]

F F primexpr(f){s [b] if f€F and f(s) = |b]
F  primexpr(f) {s none if f € F and f(s) = none
Flep &&eals LbJ if Flepls Lle

and F + eals [b2]
and by ANby =b

Figure 3: Expression Syntax and Evaluation (excerpted)

We write F' + e |}s |b] to denote that in contexi’ (a set
of primitive expressions} evaluates in state to boolean value
b. FF + e |s none meanse is undefined in state and con-
text F. We writee |}s |b] when the context is understood. Let-
ting states be partial functions from local variables to booleans
(more realistically, states mighicludestores that are partial func-
tions from local variables to booleans), we can encode local vari-
ables in this abstract framework with a special primitive expres-

. def L .

sionevar(z) = As. s(z). By the rule for primitive expressions,
primexpr(evar(xz)) s |b] whenever is defined to equdl in state
S.

Definition 1 (Generic Operational Semanticsi\ generic opera-
tional semanticss a tripleS = (S, U, F'), whereS is the type of
states of the programming languadé,C P(S x S) is a set of bi-
nary relations onS modeling the set oprimitive commandsand
F C P(S — bool) is a set of partial functions modelingimitive
expressions

The syntax of languages in this framework is given in Figure 4.
primcom(u) denotes primitive commands € U. In the rest of

c primcom (u)

skip

C1; C2

if e then c; else co

while e do c.

Figure 4: Syntax of the While-language

this paper, we use the syntax: U andu € U interchangeably

Figure 5: Operational Semantics in the contextSof

We write s +% s’ to denote thai(s, s') is a state transition
permitted byu. That is,(s, s’) € u. Note that although we write
in lower-case to distinguish it froy, w is itself a set. A controk
is eitherKstop, which indicates the successful end of execution, or
Kseq(c, k) (writtenc- ), which first runs statementin the current
state, then in the resulting state continues execution with casitrol

Configurations(s, ) of the operational semantics, which we
also call continuations or programs, are tuples of a state and the
current control. Note that only primitive commands can modify the
data component of a configuration; all other operational rules up-
date just the control. Also, the only way to introduce nondetermin-
ism in this framework is via primitive commands.

As an example of a primitive command, assume states are tu-
ples of a store and a heap, where stores and heaps are just par-
tial functions from program variables (resp. addresses) to values.
In this setup, we can define thessign primitive command as
assign(z, e) Y ro. Ao’. Tb. e o 1b] A o = (os[z +
b], on). That is,assign(x,e) evaluates expressianin the cur-
rent state to valué, then updates program variabteo b. o and
o, project the store and heap components of state

4.1 Safety

We now define a notion o$afety semantically with respect to
generic operational semantics. Safety is used to define the Hoare
triple of our separation logic. Intuitively, a program dsfe in a
generic operational semantics if either the program 1) infinitely
loops, or 2) terminates normally, that is, without going wrong in
some way. Calcagno et al. model wrong behavior with a distin-
guishedfault state. We take a slightly more operational approach
in this work and say that a programsisfe if no terminating execu-
tion of the program getstuck. Stuckness is defined in the standard
way (i.e. a program istuck if it can’t take a step in the operational
semantics).

Definition 2 (Immediate Safety)A program(s, ) isimmediately
safe iff

K Kstop
or
3s’. 3K’ (s, k) ~ (s, K).

Definition 3 (Safety) A program(s, ) is safe iff for all s’, '

I

(s, k) =" (s, &)

immediately safe (s’, k).



This definition corresponds to the informal definition of safety
we gave above: if a progrags, x) is safe, it may either infinitely
loop or terminate safely, but safety ensures it wéler get stuck.

It follows immediately from the definition of safety thafe
configurations can only step tafe configurations.

Lemma 1 (Step Safety) For all safe configurations (s, k),
(s, k) ~ (', k') implies that(s’, ') is safe. O

The natural converse theorem, that configurations stepping to

safe configurations are themselvesfe, is true, however, only
when the initial configuration is deterministic.

Definition 4 (Deterministic Configuration)A configuration(s, x)
is deterministic iff

(s, k) ~ (8", K'Y N (s, k) = (8", k") = ' =" A = K",

Lemma 2 (Deterministic Step Safety)For all safe configura-
tions (s’, ') and deterministic configurations(s, x), (s, k) ~
(s, k") implies that(s, &) is safe.

Lemma 2 is useful for showing that control steps, all of which
aredeterministic, preserve safety.

Finally, we prove that~ is a compatible relation, in the sense
of [5], p. 50. Intuitively, compatibility means that executing a com-
mand to completion in one step in the empty continuation is the

same as executing that command to completion in any larger con-

tinuation. We use compatibility later on to prove a convenient in-
troduction rule in our separation logic for primitive commands.

Lemma 3 (Step Compatibility) (s, c - Kstop) ~ (s’, Kstop) —
(s, c- k) ~ (s, K).

5. Stratified Semantics

Generic operational semantics are adequate for modeling programs
in a single language. However, we're interested in something more:
showing that programs in the object (concrete) language refine pro-

We are justified in requiring that world erasure total because

we expect that worlds contain at least as much structure as states;
each world should be able to reconstruct a corresponding state of
the concrete semantics. We are justified in requiring that world
erasure béunctionalbecause we don’t expect more than one state
to correspond to a single worfdWe formalize these notions here.

Definition 5 (Primitive Command Erasuréy, u) : evy). v erases
to w iff

cw)y=s wdw 558

e(w')=s"

Primitive command erasure requires that executions of primitive
command pairs in stratified semantics preserve world erasure; this
is a type of monotonicity property. An important consequence of
this property is the fact that primitive commands, and by extension
the step relation, of the concrete semantics must be deterministic.
This follows from the fact that is a function.

Definition 6 (Primitive Command Safetyp, v) : evy). v makes
u safe iff

ew)=s ww

I’ s ¢
That is, primitive command executions in the abstract semantics
imply the existence of corresponding (nonstuck) primitive com-
mand executions in the concrete semantics.
Primitive expressions must satisfy corresponding erasure and
safety properties.

Definition 7 (Primitive Expression Erasurég, f) : eqr). Primi-
tive expressiog erases tof iff

primexpr(g) {uw b1 ]
by = by
Definition 8 (Primitive Expression Safetyyg, f) :

e(w)=s primexpr(f) s [b2 ]

€GF)- Primi-

grams in an abstract language operating on worlds of the programtive expressiog makesf safe iff

logic, at least up to erasure. It’s for this purpose that we introduce

the notion ofstratified semantics.
Informally, one can think of a stratified semantics as the Carte-

sian product of two generic operational semantics. The construction

is as follows: let(W,V,G) and (S, U, F') be generic operational
semantics(S, U, F') defines the object language whil&/, V, G)

primexpr(g) hw [b1] e(w) =s
Tbs. primexpr(f) s [b2]
Primitive expression erasure and safety are especially important
for preserving control flow during program erasure.

defines a corresponding abstract programming language operatind?€finition 9 (Stratified Semantics)The tupleWs = (W, S,evu,
on worldsI¥. The resulting stratified semantics, to a first approxi- £cr, €) is astratified semanticwhen

mation, is the structur@¥V, S, evu,ecr), Wheresyy : P(V xU)
andegr : P(G x F) aresetsof command and expression pairs,
respectively. The way to think abosity ande ¢ r is aspredicates
defining the primitive commands: V andw : U that can be run
in the same control.

This really is just a first approximation, however. In particular,
taking anyevy : P(V x U) oregr : P(G x F) isn't quite
right, since a particular set of state transitians, : V' (modeling

all possible load operations in the abstract semantics) may not cor- 6-

respond to another set of state transitiang,. : U (modeling all

possible stores in the concrete semantics). In this case, we wouldn't 7.

expectv;,.q to makeus.r. Safe, since the resource requirements of
loads are clearly different from those of stores.

The solution to this problem is to require that the pairs of rela-
tions ine vy satisfyerasureandsafetyproperties, as we described
in Section 3. The pairs of functions én; » must satisfy correspond-
ing expression erasurandexpression safefyroperties.

But to formalize these properties we first need to equip stratified

1. W = (W, V,G) is a generic operational semantics;

2.S = (S,U, F) is a generic operational semantics;

3. evv : P(V x U) gives the pairs of corresponding abstract and
concrete primitive commands;

ecr : P(G x F) gives the pairs of corresponding abstract and
concrete primitive expressions;

5.e: W — Sis aworld erasure function;

Pairs (v,u) : eyy satisfy primitive command erasurand
primitive command safetwith respect te; and

Pairs (g, f) : eqr satisfy primitive expression erasurend
primitive expression safetyith respect tc.

4.

2|n most cases we wouldn't expect world erasure to be injectivany
worlds might map to the same state if, for example, worlds tragKedtely
splittable read shares at heap cells while states trackigdacsingle read
permission, as in CompCert. Also, we believe world erasurddcbe
generalized taelationson worlds and states, although we have no reason
to do so in this paper since our applications are to detertiai@guages

semantics with a little more structure: an erasure function mapping (e.g. sequential Cminor). Generalizing world erasure tatiais would

worlds W to statesS. We'll call this functionworld erasureand
we'll write e(w) = s to denote that worldv erases to state.

require a full bisimulation proof in Corollary 3 instead o&thnidirectional
simulation presented there, among other changes.



Note that although we use lower-case lettersdoand v to
distinguish them from the sel§ andU, v andu are themselves
sets of world and state transition pairs (that is, relations on worlds
and states). Also note that because; : P(V x U), v : V and
u:U.

In the context of a stratified semantics, the following theorems
are simple corollaries of primitive command and expression erasure
and safety.

Corollary 1 (Primitive Command Erasure and Safetygiven a
stratified semantic8s and a primitive command paifv, u) :
EVU,

ew)=s5 ww

s’ s s’ A e(w') =5

d

Corollary 2 (Primitive Expression Erasure and Safet@iven a
stratified semantic¥VS and a primitive expression paify, f) :
EGQF,

primexpr(g) b [b]  £(w) =

primexpr(f) {5 ]

5.1 Program Erasure and Refinement
In this section, we define what it means for an abstract program

to correspond to a concrete one by defining an erasure relation on
program syntax. Then, we extend the erasure and safety proper-

ties satisfied by primitive commands and primitive expressions to

the step relations of generic semantics (step erasure and safety).

Finally, we prove as a corollary of step erasure and safety that con-
crete programs simulate corresponding abstract programs.

Let W andS be generic operational semantics defining (resp.)
abstract and concrete programming languagesW®be a strati-
fied semantics deriving fro andsS, in the sense of Definition 9.
Abstract programw, k.,) erases to concrete prograg(w), Fuw)
under the following conditions.

Definition 10 (Program Erasure)Program erasurés the least
relation satisfying:

(e(w), Fuw).
Here, we overload to denote program erasure and control

erasure. We define control erasure, in terms of command erasure
as follows:

<w7 Kw)

Definition 11 (Control Erasure) Control erasurés the least rela-
tion satisfying:

Kstop = Kstop

C R = C-'KR
Definition 12 (Command Erasure)Command erasuris the least

relation satisfying:

primcom(v) = primcom(u) ((v,u) s evy).

We elide the standard structural rules4kip, seq, conditionals,
andwhile. Expression erasure= ¢’ is defined in the obvious way.
Primitive expressions erase whén f) : eqr. Other rules are the
expected search rules.

Now that we've defined program erasure, we can extend erasure
and safety to the step relations of abstract and concrete semantics.
Lemma 4 (Step Erasure)

(w, Kw) ~ (W', Ky) (s, Ks) ~ (8, KL)

(s',

(w, Kw) = (s, Ks)

(W', k) = )

K

Proof. By case analysis or~, primitive command erasure and
expression erasure. O

Lemma 5 (Step Safety)

(w, kw) = (s, 8s)  (w, Ku) ~ (W, Ku)

38/. EK,‘/S <S7 :‘65> ~ <5/7 "i\/5>

Proof. By case analysis or-, primitive command safety and ex-
pression safety. O

Step erasure and safety are used in the soundness proof of our
Hoare logic rule for primitive commands. The idea is straightfor-
ward: because abstract commands imply corresponding concrete
commands are safe and because abstract commands commute un-
der erasure with corresponding abstract commands, one can prove
the soundness of a Hoare rule forcancretecommand just by
showing that itsabstractcounterpart meets the intended specifi-
cation.

As a corollary of step erasure and safety, we show that programs
in the concrete semantics simulate corresponding abstract ones.
The statement of the simulation theorem is most easily given as
a commutative diagram.

Corollary 3 (Refinement Simulation) The following diagram
commutes:

*
~

(w, Kuw) —— (W', KY)

Proof. By induction on~*, and Lemmagd and5. O

Refinement simulation states that for any execution in the ab-
stract semantics, there is an execution in the concrete semantics
that commutes with erasure. (In the diagrars overloaded to de-
note program erasure.) Because the concrete semantics is required
to be deterministic by primitive command erasure, this commuting
execution is the only such execution.

6. Stratified Semantics with Separation

The stratified semantics we've considered so far were derived from
generic semantic® andS. We said tha modeled programs of an
object language, one we'd like to reason about, whilenodeled
programs of an abstract language whose states werevatids of

a program logic—more precisely, a separation logic. The product
of these two generic semantics was the structife a stratified
semantics. Such a structure was useful for proving simulation prop-
erties but lacked the scaffolding necessary to construct a separation
logic.

In this section, we show how to adtkeparation algebrago
stratified semantics in order to constrsttatified semantics with
separation A stratified semantics with separation can be used to
mechanically derive a separation logic £¢§ 7).

Adding Separation to WS. We first define the set afeparation
algebra elementby providing a typeA. On top of A we define a
partialjoin operatorg®, satisfying the separation algebra axioms:

rThy=21 > xBYy=22 = 21 =22

r1DY=2 — 22DY=2 — T1 =22

rPY=2z - ybr==z

rhy=a > a®z=b — Je.y®z=cAzdc=>b

Ve. u.ud®x==x



a F emp iff a®a=a
a F true iff always
a F false iff never
aEPxQ iff  Fao. Jax.
ao ®ar=a N aFP AN aFQ
a1 EP — Q iff Vao. Va.
ao ®ar=a—>aFP—=>aFEQ
aEPAQ iff aEP and aFEQ
aEP—Q iff aEP—aEQ
akE3b. P if 3b.aE P(b)
a F expreval(e,b) iff ela|b]
a F safe_expr(e) iff aF 3b. expreval(e,b)

a F assert_expr(e) a = expr_eval(e, true)

Figure 6: Forcing Semantics of Separation Logic Assertions (excdjpte

That is,® must be functional, cancellative, commutative, and asso-
ciative, and every element of must have a unit.

Next, we define grojectiona : W — A mapping worlds
W to SA elements, and a set of primitive expressiofs, C
P(A — bool). The primary purpose off is to support separation
logic assertions, such assert_expr(e), that deal with expression
evaluation. The meaning of the assertigssert_expr(e) is “in
the current world (more precisely, theprojection of the current
world), e is not stuck and evaluates to a true value.”

We'd like thee's in such assertions to correspond to expressions

actually evaluated in the object language. In the proof of the Hoare

rule for conditionals, for examplessert_expr(e) (and symmetri-
cally, assert_expr(—e)) mustimply that evaluating some expression

¢’ inthe object language program in a corresponding control is safe,

and produces the left (or right) branch of the conditional. For this
purpose, we introduce a predicates : P(H x G) very similar to

the e predicate of stratified semantics that determines whether

two primitive expressions andg can be evaluated in the same con-
trol. Pairs(h, g) : eue must satisfy the same primitive expression
erasure and safety conditions satisfied by p&jtsf) : eqr. We
define the transitive closure of;¢ andecr (e r) in the standard
way.

The final, somewhat unwieldy structure WWSA = (W, S, A,
EVU,EGF,EHG,E, O, B).

Definition 13 (Stratified Semantics with Separatiorn) stratified
semantics with separationa tupleWSA = (W, S, A,evu,ear,
eng,&,a,®) s.t. (W, S,evu,eqr,e) is a stratified semantics,
(A, ®) is a separation algebragx : W — A is a projection
mapping worlds to SA elements, angde : P(H x G) is a
predicate defining the set of corresponding primitive expression
pairs (h,g). H C P(A — bool).

Now that we've equipped stratified semantics with a separation

F {P} ¢ {Q} is interpreted semantically as a proposition of
higher-order logic. Inference rules of the form

F{P:} e {Qi}
H{P} c{Q}
are then proved as derived rules from this interpretation.

We follow Appel and Blazy [3] in giving the interpretation
of the Hoare triple in continuation-passing style. In outline, we
first define what it means for a separation logic predicat¢o
guard a control; then, we give the semantics of the Hoare triple
F {P} ¢ {Q} in terms ofguards. Finally, we prove the soundness
of some common inference rules of separation logic with respect to
this interpretation.

7.1 Guards
Definition 14. A predicateP guards concrete controk iff
Vw. a(w) E P — safe (e(w), k).

a(w) is thea-projection of abstract world; hence the forcing
assertiom(w) F P is well-defined. Remember thafw) erases
world w to a states : S.

7.2 The Hoare Triple - {P} ¢ {Q}

We give a semantic interpretation bf { P} ¢ {Q} in terms of
guards:

Definition 15. + {P} ¢ {Q} iff
Vk.VF. (Q % F) guards k — (P * F') guards (¢ k).

Unpacking the definitions, it should be clear that this interpre-
tation of the Hoare triple is satisfied by nonterminating executions
of ¢ for any preconditiong® and postconditiong). Proof: nonter-
minating executions arefe, thusc - « is safe, for all k.

What should also be clear is that because the predicéeini-
versally quantified in the definition of the triple, and because we
require thatF' be separating conjoined with the pre- and postcon-
ditions in the guards, the frame rule is sound for every command
with a valid Hoare triple in the logic:

Theorem 1 (Soundness of the Frame Ruldjor all commands:
and framesF”,
F{P}c{Q}
F{P«F}c{QxF}.

Proof. By associativity of« in the guards predicates. O

One implication of this theorem is that primitive commands
primcom(u) with a valid axiomatic semantics satisfy the frame
rule. That is, if we can prove {P} primcom(u) {Q} for someP
and@), then itimmediately follows that { P« F'} primcom(u) {Qx
F'} by the soundness of the frame rule. There is no trickery here:
the proof thaprimcom(u) is local is just built in to the soundness
proof of - { P} primcom(u) {Q}.

Since the frame rule is sound fprimcom(u), we are justified

algebra, we can give the forcing semantics of some common sepa-n calling primcom(u) a local action. When all the primitive com-

ration logic assertions (Figure @xpr_eval(e, b) asserts that in the
a-projection of the current world, expressiervaluates to boolean
valueb. safe_expr(e) asserts that evaluation efn the a-projection
of the current world will not get stuck. Thein the assertioab. P

mandsu : U of a stratified semantics with separation are local in
this way, we say that the semantics is a stratified local action se-
mantics.

quantifies over any Coq type, not just values. The other assertionsDefinition 16. A stratified local action semantids a stratified

are standard.

7. A Separation Logic forS

semantics with separatioWSA deriving fromW and S s.t. all
primitive commands : U are local actions.

7.3 Functional Correctness Specifications

We now have all the machinery we need to construct a separationThe semantic interpretation we gave the Hoare ttipleP} ¢ {Q}

logic for S. The construction is aemanticone: the Hoare triple

in Section 7.2 was for safety and not functional correctness. That



is, = {P} ¢ {Q} did not imply that@ held afterc was executed We have a more direct way of derivifig{ P} ¢ {Q}, however:

in states satisfyingP. It just said thatc was safe in any state exhibiting a primitive command in the abstract semantics with a
satisfying P. This contravenes the usual functional correctness parallel specification. Indeed, this is one of the primary reasons we
interpretation of Hoare triples in separation logic. Appel and Blazy constructed an abstract semantics in the first place.

hinted at how functional correctness properties could be proved in  For this purpose, we define a new version of the Hoare triple,
their separation logic for Cminor, but didn't make the connection called theprimitive Hoare triple This Hoare triple is in direct
between proofs of safety and proofs of full functional correctness style and is used only to derive standard Hoare triples for primitive
explicit. commands. We give its definition here.

We demonstrate here that safety is in fact enough to achieve _ . .. o . .
functional correctness. First, we take a slight detour to show that Pefinition 17 (Primitive Hoare Triple) Fprim {P} v {Q} iff

the primitive command mechanism of our framework is powerful Vw. VF.
enough to support semantic, even noncomputable assertions in the a(w)F PxF
syntax of programs. Juw'. ww A a(w)EQxF.

Primitive Assertions. Although the syntax of our while-language With this definition in hand, we can state the introduction rule
is limited, the primitive command mechanism—which makes it for primitive commands quite directly.

possible to inject arbitrary relations into the syntax of programs—is
quite powerful. For example, we can easily define a semantic asser-Theorem 3 (Primitive Command IntroductionRrimcom)).

tion statement for any given model of the framework. A semantic (v,u) : e Forim {P} v {Q}
assertion is like a Gssert statement except that the assertion lan- e
guage is the language of propositions of the metalogic instead of = {P} primcom(u) {Q}

C expressions; and instead of producing a runtime error when an

asserted expression evaluates to 0, as in C, semantic assertions 9#k00f. By step erasure. step safety. and step compatibility. O
stuck when they are not satisfied by the state in which they are as- ystep » Step Y. P P y

serted.

The construction is as follows: I8VSA be a stratified semantics Figures 7 and 8 present the inference rules (excerpted) of the
with separation deriving fronW andsS. Defineassert(P) in the separation logic fof, including the introduction rule for primitive
abstract semantics asimcom(v) andassert(P) in the concrete commands. All of the rules in the figures except the rule for while-
semantics aprimcom(u) S.t. loops are proved sound in Cog w.r.t. the semantic interpretation of

def the Hoare judgment given k7. We have proved the Hoare rule for

=2 w2 a(w)EP A w=w', and while-loops sound informally and do not expect the formal proof

4 g A s—s' will cause much trouble since we have already formally proved a

u = S.AS.8=S§. . . .
more general rule for loops with arbitrary block nesting and breaks

It should be clear from these definitions thatvill get stuck in in the context of the larger program logic for Cminor. Rules in
any world w whose a-projection doesn't satisfy”, and thatu Figure 7 are proved directly from the definition of the Hoare triple.
is equivalent toskip. It should also be clear that becauBeis a Rules in Figure 8 are proved as derived lemmas from the rules in
proposition of the metalogic (i.e. Coq), the commanukeed notbe  Figure 7. In the proof rules prefixed witR (e.g. PConj,), [-]
computable. Fortunately, we can always erasew. denotes pure predicates, that is, propositions lifted into the domain

Theorem 2. v erases tou and makes. safe. Furthermore, the ~ Of predicates via the lifting functiohA. Aa. A.

construction given here generalizes to any stratified semantics with Most of the inference rules in the figures are straightforward. In
separation. the rules for while loops and conditionalgfuitionistic e means

evaluation of expressianis invariant under extensions of the state.
Proof. Erasure: We assume world erasure holds for initial warld ~ intuitionistic e holds for the various expression operators, e.g.

and initial states. Therefore, erasure must hold fef ands’ since &&, ||, if their operands are intuitionistic but must be proven for
w = w’ ands = s’. Safety:skip is never stuck. Generality: We  each primitive expressioi. = ¢’ denotes the transitive closure of
make no assumptions aboWiSA. O expression erasure undef r.

Such assertions are sufficient for proving functional correctness

properties: the idea is simply to sequentially compose assertions9. A Concrete Model

with commands. For example,lif { P} ¢ {Q}, then we can prove  |n this section we construct a model of the framework for a sim-
that executing: in states satisfying® does actually result in states ple programming language with external function calls, and use
satisfying@ (assuming: terminates) by proving the slightly more  this model to build the core of a variables-as-resources [19] separa-
involved triplet- { P} ¢; assert(Q) {Q}. If cresults in a state that  tion logic. A variables-as-resources separation logic is one in which
does notsatisfy @, assert(Q2) will not be safe and the extended  program variables are modeled as separating resources, much like
Hoare triple will be unsound. If the Hoare tripesound, then we  heap cells in a conventional separation logic. The primary advan-
know that the propositio) holds immediately after is executed  tage of a variables-as-resources logic is that it permits the concise

(again assuming terminates). statement of inference rules without side conditions concerning
program variables. We model the following primitive commands:
8. Inference Rules assign, load, store, andext_fung, and one primitive expres-

sion:evar, the purpose of which is to look up variables in the local
environment. Although this language is extremely simple, its for-
mulation touches on every aspect of the framework.

We could derive Hoare rulegs {P} primcom(u) {Q} for prim-
itive commands: directly from the definition of the Hoare triple.
This would involve unpacking the definitions of the Hoare triple
and guards and then proving thatw) E P implies primcom(u)
can step froms, wheree(w) = s, to some states’ such that 9.1 Concrete Statess

e(w') = s anda(w’) E Q, for somew’. Such proofs would be In order to express the operational behavior of the primitive com-
tedious. mands and oévar, we first need to construct a concrete memory



(v,u) revu  Fprim {P} v {Q} _ F{P}c1 {P'} F{P'}c2{Q}

- {P} primcom(u) {Q} Primeom by o Py TP F{P} c1; e2 {Q} 5e
F {P Aassertexpr(e)} c1 {Q} P = safeexpr(e) e=¢€' intuitionistice F {P A assert_expr(—e)} c2 {Q} -
F {P} if ¢/ then ¢ else c2 {Q} Conditional
F {P A assert_expr(e)} ¢ {P} P = safe_expr(e) e=¢ intuitionistic e '
F {P} while ¢’ do ¢ {P A assert_expr(—e)} While
P =P F{P}c{Q} Q =Q . FH{P} c{Q} ” F{Pi} c{Q} F{P}c{Q} D
F{PYe{Q) S Py Fy @ FY T - (P V P2 e (@) Y
H{P}c{Q} ,
FUATAPY e TATAQY T
Figure 7: Core Inference Rules in the contextWiSA (excerpted)
F{TAIAP}c{[ATAQ} A PConi F{Pi}ci {@1} F{P}c2{Q2} o
oNnjg ompose
H{P} c{Q} v F{P1 « P2} c1; c2 {Q1 % Q2} P
F{P}c{Q} Q=4 ,
Cony
F{AAP}c{ANQ}
Figure 8: Derived Inference Rules in the contextWiSA (excerpted)
evar(z) Y oo (z)
assign(z, e) Y No Ao’ B el [b] A o' = (oq, os[z Y], on)
load(w, 1) “ No. Ao’ 0. on(l) = |b] A o' = (oq, os[z < V], on)
store(l, x) “ No. Ao’ 3b. T, os(z) =[] A on(l) = |b] A o' = (0oq, os, on[l < b])
ext_funp S P e S
Figure 9: Concrete Primitive Commands aadar
evar(x) Y \6. case 6s(x) of [(b, )| = |b] | none = none
assign(z, e) Y26 A6 T, T ells '] A 6s(x)=1[(b,T)| A 6" = (0o, ds[x < (b, T)], 6n)
load(z, 1) “ 26, A6 Tb. 3. I os(x) = (b, T)|] A or(l) = |, m)] A &' = (0q,6s[x+ (', T)], 6n)
store(l, ) Y 26, A6 Tb. . I os(x) =, m)] AN en(l) = (b, T)] A &' = (0q,ds, onll < ', T)])

- d R -
extfun, = M6.A6. 6 R PY

Figure 10: Abstract Primitive Commands argrar

d

hel Sy “

sEx b

VI'.if I =1’ then h(I') = | (b, 7)] else h(I") = none
Vz'. if £ = x’ then s(z’) = [ (b, 7)] else s(z’) = none
Jb.sEx b

def

s F owng () o

s F own(z) o5k ownT ()
aE TP = as EP N ap Femp
abtP Y g Eemp A apE P

F {t*own(z) A expr_eval(e,b) A [€ = €] A [intuitionistic €]} primcom(assign(z,€’)) {1°z Ky b}
F {t%own(z) * "5 b} primcom(load(z, 1)) {1z Wb o S b}
{1z S Y % AP b) primcom(store(l, z)) {15z S b % 11V b}
F {Pest } primcom(ext_fung) {Qest }

Figure 11: Forcing Semantics of Assertions, and Hoare Rules for the fv@rCommands ir§ 9



modelX. The basic types of the concrete memory model are: that the abstract commands ase¢hr correspond to their concrete
def counterparts.
val = bool

def

var, address < N. Abstract Stores, Heaps, and Worlds. We let abstract stores and

) ~ heaps be partial maps from local variables (resp. locations) to
To keep the model simple, we assume boolean values and defing3| x pshare:
local variables and addresses as natural numbers.
~ def
store = var — val X pshare;

Concrete Stores.  Now, we can define stores simply as partial def

maps from variables to values: heAap = address — val X pshare.
store < var — val. Positive share:?r_ : pshare range over nonempty shargsshare
o . . stands for “positive share.”
Note that in this store model, we don't include sshares—which Shares represent the amount of access to a location in the heap,

could be used to model the level of access to local variables—evengy tg g variable in the store in a variables-as-resources separation
though the assertions of our variables-as-resources separation logiggic, and are convenient for expressing sharing patterns among
will need to be able to express ownership of local variables. This is threads, especially in proofs of concurrent programs. We require
because our concrete memory model represents states&B8®  ghares at defined locations and in defined local variables to be

semantics. Storing shares in thlestractstore will be sufficientfor — 5nempty as a well-formedness condition. In the formalization, we
proving the soundness of a Hoare rule for assignment in a variables-,sa the share model of Dockins et al.

as-resources style, i.e. without side conditions. Worlds 6 € ¥ are just the products of oracle states, abstract
Heaps. Heaps in this simple model are just the same as stores, Stores, and abstract heaps.
except that we map addresses—instead of identifiers—to values: f o def . .

¥ = xstore X heap.

dﬁf —\
heap = address — val. Note that we use the sanie in both the concrete and abstract

Concrete States. Concrete states are tuples of a heap, a store, semantics. This is for convenience only; we could assume two

and special component that we call thacle stateand denote?. different types of oracle state and an erasure function relating them
The oracle state represents the state of the external world, or thebut that would complicate the example presented here.

context in which concrete programs execute. Concrete programs  Figure 10 presents the abstract primitive commands and expres-
can compute with the oracle state through a special primitive com- sionevar. These commands, like their concrete counterparts, form

mand we calkxt_fung, or external function call. The semantics of a generic semantics.

ext_fung is given by a relatiorR on concrete states. Although we i N - .
leaveext_funyx unspecified, the external function call mechanism Theorem 5(Abstract Semantics).etV’ = {assign, load, store,
could be used to implement, e.g., the system calls of an operatingext-funz} andG = {evar}. (X, V, G) is a generic operational
system, or preemptive context switching in a thread library. semantics. g

v M Qx store x heap. 9.3 A Stratified Semantics
We equip our model with projections,, o, andoy, for accessing Constructing a stratified semantics faz, U, F) and(i, V,G) is
the oracle state, store, and heap components of concrete'state  straightforward. We first define an erasure function & — &

Concrete Primitive Commands. With these preliminary defini- mapping worlds to states:

tions out of the way, we are ready to give the definitions of the

primitive commands (Figure 9). Read[z «+ 3] as “set the value

of variablex in storeo; to 3". We use the same notation for heaps. e(h) 2f N\l case h(l) of | (b, 7)] = |b] | none = none
assign(z, e) evaluates in the current state and updateso o def . R R

the resulting valueload(z, 1) setsr to the current value at location (@) = (59, £(8s), e(on))

I store(l, z) stores the value of at locationl. ext funr passes ¢ js overloaded to operate on abstract stores and heaps as well as

control to the program context to execute a state transition speci-yorids.

fied by the relationf?. ext_funy takes no arguments; instead we Next, we show that commands and expressions of the abstract

assume that the client and context have agreed on an ad hoc callsemantics satisfy erasure and safety when paired with correspond-

ing convention in which the external function identifier, the argu- jng commands of the concrete semantics. The predieatesand

ments to the external function, and its result are passed somewhere. .. define when commands and expressions of the two semantics

e(s) © g case s(z) of | (b, w)] = |b] | none = none

in client-modifiable state, such as the store. correspond. For examplez. Ve. Ve'.
Note thatassign(z, e) will succeed only if it's safe to evaluate , ) ,
e in the current stateload(x, ) will succeed only if the heap is €=c¢ — (assign(z, e),assign(z, €')) 1 evu

defined at; andstore(l, z) will succeed only ifz is defined and
the heap is defined dt ext_fung will succeed wheneveR is
defined in the state in which the external function is called.

We construct a generic semantics using these four commands.

gives thes vy rule for assignment v is defined inductively with
similar rules for loads and stores. The same is done §gr (with
only one constructor). Erasure and safety follow, for each rule of
eyu ande g except the one for external function calls, from the

Theorem 4(Concrete Semantics).etU = {assign, load, store, definitions of the abstract and concrete primitive commands and
ext_fung} and F' = {evar}. (X, U, F) is a generic operational expressions. In the case of external function calls, we assume that
semantics. U R and R satisfy erasure and safety. This assumption is realistic: it

& merely reflects the fact that and R give consistent (abstract and
9.2 Abstract Worlds X R concrete) definitions of the environment.
Next, we construct an abstract memory modgl redefine the

primitive commands and expressiemar in this model, and show ~ Theorem 6. (X, X, evu,ecr,€) is a stratified semantics. [



9.4 Deriving a Separation Logic for(X, U, F') dealing with arbitrary patterns of interference in a clean way, might
provide the right foundation for such an approach. Although we
agree in sentiment, we take a different approach in this work by
facilitating the construction of new separation logics from retar-
getable components such as command specifications given under
an abstract model of program state. One of our primary goals was to
o - . . ) . ._prove our separation logics sound with respect to undecorated op-
ified semantics with separation, and then derive a separation 10giCe ational semantics; Parkinson does not address this issue. Because
for (3, U, F). R R . o we never resort to proof-theoretic arguments in the soundness proof
Let A = store x heap. Leta : ¥ — A be the projection  of our general logic, our logic retains a measure of extensibility.
A6. case & of (_,s,h) = (s,h). The oracle state is intended Dinsdale-Young et al. [8] relate abstract module specifications
to Contain priva'[e imp|ementati0n data ||ke a thread SChedUIe; we to concrete imp|ementations Of those modu|esl Un“ke our own
don'tinclude oracle states in worlds of the program logic because work, which is more operational in nature, the translations of
the user Of the |OgiC Sh0u|d not be able to deﬁne Sepal’ation |OgiC Dinsda|e_Y0ung et all are performed miomatic descriptions
predicates that refer to this private state. We define a new expressiornyf the source and target languages expressed in terrosnbéxt

All that’s left to do now is to construct a separation algefpta @),
define a projection mapping worlds to elements of4, and con-
struct the set of primitive expressiois evaluated inA that corre-
spond to the expressions (. We use these three components to
construct the structur@i, Y, Ajevu,ecr,na, €, o, ), a strat-

evar 4, evaluated i and corresponding tevar, and define ¢ algebras Context algebras generalize separation algebras by defin-

in the obvious way (with = {evar.}). Because the projection  jng a set ofstate contextand two partial noncommutative binary

a preserves the store component of worlds, expressiofs amd operators: @ontext compositionperator that inserts a context into

G satisfy primitive expression erasure and safety. a one-hole context; and applicationoperator that inserts a state
We define a separation algebra fdrusing the SA operators  into a one-hole context. They describe bimttality-preservingand

of Dockins et al. Unpacking its definition, we know that = locality-breakingmodule translations in this framework, the intu-

(var — val x pshare) x (address — val x pshare). Therefore, jtion being that locality-preserving translations faithfully translate

our goal is to construct a separation algebra that matches this typefootprints of an abstract module specification to footprints of a con-
To do so, we first need to construct a separation algebra for the crete implementation while locality-breaking translations do not. In
type of datapption (val x pshare). In the Coq formalization, we  |ocality-preserving translations, frame rules that hold in the abstract
use the SA bijection operator to construct a separation algebra for context are also sound in the implementation context. It could be in-
this type via a bijection witloption (val x share) . The subscript  teresting in future work to experiment with context algebras in the
+ notation here indicates that we're taking the subset of positive stratified framework we present here. In principle, context algebras

(i.e. nonidentity) elements okl x share. none then becomes our  ¢ouyld be substituted relatively easily for the separation algebras of
distinguished unit. Once we've constructed a separation algebra forstratified semantics with separation.

the type of data, we can lift this SA to an SA on functions via
the usual extensional lifting. That is, two functiorisand g join P
wheneverf (1) andg(l) join for everyl in the domain off andg. 11. Application to CompCert

With these constructions out of the way, we can now define a Appel, Hobor, and Zappa Nardelli [12] showed how a soundness

stratified semantics with separation. proof for a Concurrent Separation Logic for Cminor could be de-
. . » composed into (1) soundness of a sequential separation logic for
Theorem 7. (X, %, A,evu,ecr,enc, €, o, @) is astratified se- 5 gecorated operational semantics with (2) soundness of a concur-
mantics with separation. U rency oracle. By 2009 the first of these two proofs was complete
We give Hoare rules fosssign, load, andstore in Figure and machine-checked in Cog, and the second part was nearly com-
11. Since the external function call primitieet_funr is uninter- plete. But the operational semantics of the “real” CompCert Cmi-
preted, we just assume it has a valid specificationP..; } nor is undecorated, not decorated. The present work closes the gap
ext_fung {Qe} in the separation logic. Her®,., gives the pre-  We have refactored the soundness proof for sequential separation
condition for making an external function call aftl.; gives the logic according to the recipe given here. The refactored proof is
external function call postcondition. To prove that iaterpreted more than 98% complete (measured by the number of admitted

version ofext_funp, satisfies such a specification, one would have !émmas in the approximately 40,000 line proof); we don't foresee
to show, e.g., thait pim {Pest} R {Qext}. The framework gives any problems completing the final 2% of the proof.

us the Hoare rules in figures 7 and 8 for free, as a consequence of

the fact that(, 2, A, e vu, ear, ena, e, o, @) is a stratified se-  Acknowledgments
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predicates on stores and heaps (which are well-defined because wegye ppy anonymous reviewers for invaluable suggestions and
defined separation algebras for stores and heaps in the process ofomments on this work.
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We overload the world projections defined above to operatéon

Every primitive command iV has a specification in the sepa- References

ration logic. Therefore: [1] A. Ahmed, M. Fluet, and G. Morrisett. A step-indexed model

. of substructural state. IACFP ’'05: Proceedings of the tenth
Theorem 8. (X,%, A,evu,eqr,€na, €, o, ®) is a stratified lo- ACM SIGPLAN International Conference on Functional pro-
cal action semantics. O gramming pages 78-91, 2005. ISBN 1-59593-064-7.  doi:

http://doi.acm.org/10.1145/1086365.1086376.
[2] A. J. Ahmed. Semantics of Types for Mutable Stat€hD thesis,

10. Related Work Princeton University, Princeton, NJ, Nov. 2004. Tech Rep&-713-
Parkinson [18] makes the case foc@e separation logiin which 04.

it is possible to define new axiomatic semantics for new language [3] A. W. Appel and S. Blazy. Separation logic for small-stepr@ior.
features without recourse to meta-theoretic arguments. He suggests  |n 20th Int'| Conference on Theorem Proving in Higher-Ordenias,
that deny-guarantee logics [11], which provide mechanisms for pages 5-21, 2007.



[4] A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. Pioc.
34th Annual Symposium on Principles of Programming Langsag
(POPL'07), pages 109-122, Jan. 2007.

H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics
North-Holland, Amsterdam, 1981.

R. Bornat, C. Calcagno, P. O’'Hearn, and M. Parkinson.nff&sion
accounting in separation logic. FOPL'05: The 32nd ACM Symp. on
Principles of Programming Languaggsages 259-270, 2005.

C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action abstract
separation logic. Ii.ICS '07: Proceedings of the 22nd Annual IEEE
Symposium on Logic in Computer Scignpages 366—378, 2007.
ISBN 0-7695-2908-9. doi: http://dx.doi.org/10.1109/192007.30.

T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Absta
and refinement for local reasoning. WSTTE’10: Verified Software:
Theories, Tools and Experimen2910.

R. Dockins, A. W. Appel, and A. Hobor. Multimodal sepamatilogic
for reasoning about operational semantics24th Conference on the
Mathematical Foundations of Programming Semantics (MFR8/X
pages 5-20. Springer Electronic Notes in Theoretical Coarbii-
ence (ENTCS), 2008.

[10] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at segi#on
algebras and share accounting. The 7th Asian Symposium on
Programming Languages and Systepgringer ENTCS, 2009. URL
http://msl.cs.princeton.edu/fresh-sa.pdf.

[11] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Dguarantee
reasoning. Inn ESOP09: European Symposium on Programming,
volume 5502 of LNC$ages 363-377. Springer, 2009.

[12] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle seiznfor
concurrent separation logic. Froc. European Symp. on Program-
ming (ESOP 2008) (LNCS 496(@ages 353-367. Springer, 2008.

[13] A. Hobor, R. Dockins, and A. W. Appel. A theory of inditan via
approximation. IrProc. 37th Annual ACM Symposium on Principles
of Programming Languages (POPL'1@ages 171-185, Jan. 2010.

[14] X. Leroy. Formal verification of a realistic compil&Eommunications
of the ACM 52(7):107-115, 2009.

[15] X. Leroy and S. Blazy. Formal verification of a C-like memanpdel
and its uses for verifying program transformations. Automated
Reasoning41(1):1-31, 2008.

[16] P. O’'Hearn, J. Reynolds, and H. Yang. Local reasoningualpro-
grams that alter data structures.@8L'01: Annual Conference of the
European Association for Computer Science Lpgages 1-19, Sept.
2001. LNCS 2142.

[17] P. W. O’Hearn. Resources, concurrency and local reagofiheoret-
ical Computer Scien¢875(1):271-307, May 2007.

[18] M. Parkinson. The next 700 separation logics. In G. lezesy
P. OHearn, and S. Rajamani, editok&rified Software: Theories,
Tools, Experiments/olume 6217 olecture Notes in Computer Sci-
ence pages 169-182. Springer Berlin / Heidelberg, 2010.

[19] M. Parkinson, R. Bornat, and C. Calcagno. Variablesessurce in
Hoare logics.Proc. of 21st Annual IEEE Symp. on Logic in Computer
Science0:137-146, 2006. ISSN 1043-6871.

[20] M. J. ParkinsonLocal Reasoning for JavaPhD thesis, University of
Cambridge, 2005.

[21] H. Yang and P. O’'Hearn. A semantic basis for local reaspniln
Proc. of Foundations of Software Science and Computatiarcires
2002.

5

[6

[7

8

[9



