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Abstract. Proof-Carrying Code (PCC) and other applications in compsecurity require
machine-checkable proofs of properties of machine-laggymograms. The main advantage
of the PCC approach is that the amount of code that must beiiyrusted is very small: it
consists of the logic in which predicates and proofs areesqed, the safety predicate, and the
proof checker. We have built a minimal proof checker, and wgaén its design principles,
and the representation issues of the logic, safety predieatd safety proofs. We show that
the trusted computing base (TCB) in such a system can indeeéry small. In our current
system the TCB is less than 2,700 lines of code (an order ohinatg smaller even than other
PCC systems) which adds to our confidence of its correctness.

1. Introduction

Machine-verified proofs have applications in computer §ggyprogram ver-
ification, and the formalization of mathematics. We areipaldrly interested
in security applications such as proof-carrying code, inctvtan untrusted
program provider must send a proof that the machine-largpaggram is
safe to execute; or proof-carrying authorization, in whachuntrusted client
must send a proof that some desired server operation cosftaran autho-
rization policy. The recipient doesn't trust the proof pomr, so the recipi-
ent’s proof checker is an essential component of the truegisgputing base: a
bug in the proof checker can be a security hole in the largstesy. Therefore,
the checker must be trustworthy: it must be small, simpkjable, and based
on well-understood engineering and mathematical prigsipl

In contrast, theorem provers are often large and ugly, asresby the
incompleteness results of Godel and Turing: no prover ainded size is
sufficiently general, but one can always hack more featuresthe prover
until it proves the desired class of theorems. It is diffi¢alfully trust such
software, so some proving systems use technical meansuceethat buggy
provers cannot produce invalid proofs: the abstract dgtatheoremof LCF
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(Gordon et al., 1979), or the proof-witness objects of Caay(8s et al., 1998)
or Twelf (Pfenning and Schirmann, 1999). With these meanly, a small
part of a large system must be examined and trusted.

How large is the proof checker that must be examined andeti@sTo
answer this question we have tried the experiment of cortstigiand mea-
suring thesmallest possibleiseful proof checker for some real application.
Our checker receives, checks the safety of, and executes; gairrying code:
machine code for the Sparc with an accompanying proof ofysafae proof
is in higher-order logic represented in LF notation.

The checker would also be directly useful for proof-cargymuthoriza-
tion (Appel and Felten, 1999; Bauer et al., 2002), that iscking proofs of
authentication and permission according to some dis&tbpblicy.

A useful measure of the effort required to examine, undedstand trust
a program is its size in (non-blank, non-comment) lines ofse code. Al-
though there may be much variation in effort and complexdylme of code,
a crude guantitative measure is better than none. We ward s@asure that
corresponds to the difficulty for a human to understand,yaealand (per-
haps) to trust the system. The executable source code ighehlatiman must
trust; any comment lines in the code just provide evidenckexplanation,
not (in principle) additional complexity.

It is also necessary to count, or otherwise account for, amypder, li-
braries, or supporting software used to execute the pragi@eraddress this
issue explicitly by avoiding the use of libraries and by nmakthe checker
small enough so that it can be examined in machine language.

Thetrusted computing basd CB) of a proof-carrying code system con-
sists of all code that must be explicitly trusted as corrgcthe user of the
system. In our case the TCB consists of two pieces: first,fibeiication of
the safety predicate in higher-order logic, and secondpthef checker, a
small C program that checks proofs, loads, and executepeajeams.

In their investigation of Java-enabled browsers Dean,.€1887), found
that the first-generation implementations averaged ongriggcelevant bug
per 3,000 lines of source code (Felten, 2002). These breywasrmobile-
code host platforms that depend on static checking for ggcexemplify
the kind of application for which proof-carrying code is Wwelited. Wang
and Appel (2002) measured the TCBs of various Java Virtuathitees at
between 50,000 and 200,000 lines of code. The SpecialJ J\dibyt al.,
2000) uses proof-carrying code to reduce the TCB to 36,0@3 li

In this work, we show how to reduce the size of the TCB to ungédo@
lines (see figure 1), and by basing those lines on a well utatetdogical
framework, we have produced a checker which is small enoaghad it can
be manually verified; and as such it can be relied upon to aareyp valid
proofs. Since this small checker “knows” only about machirstructions,
and nothing about the programming language being compitedita type

paper.tex; 29/09/2003; 11:25; p.2



TCB sizes of various JVMs

140 T T T

Core Runtime
Compiler or Checker

120

100

80

60

1000s of lines

40

20

0
Kaffe BulletTrain Speciald FPCC

Figure 1. The TCB sizes of various JVMs (in thousands of lines of codgffe is an
open-source non-optimizing Java JBulletTrain is a highly optimizing Java compiler,
Speciald is a classical PCC system, af@PCCis our foundational PCC system. Core
runtime is the minimal runtime necessary just to run the obrthe programming language
(without APIs for such things as I/0 for example).

system, the semantic techniques for generating the prbafdhie TCB will
check can be involved and complex (Appel, 2001), but the ldrecan be
simple.

2. The LF logical framework

For a proof checker to be simple and correct, it is helpfulde a well de-
signed and well understood representation for logics,rémes, and proofs.
We use the LF logical framework.

LF (Harper et al., 1993) provides a means for defining andeprtasy
logics. The framework is general enough to represent a graatber of
logics of interest in mathematics and computer scienceilf&tance: first-
order, higher-order, intuitionistic, classical, modahiporal, and others). The
framework is based on a general treatment of syntax, rutespeoofs by
means of a typed first-order-calculus with dependent types. The LF type
system has three levels of terms: objects, types, and kingwes classify
objects and kinds classify families of types. The formalarobf definitional
equality is taken to bgn-conversion.

A logical system is presented by a signature, which assigpsstand
kinds to a finite set of constants that represent its syntsjidlgments, and
its rule schemes. The LF type system ensures that objeicttiegns are well
formed. At the proof level, the system is based on jtidgments-as-types
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principle: judgments are represented as types, and proefsepresented
as terms whose type is the representation of the theoremptios¢. Thus,
there is a correspondence between type-checked terms emenis of the
object logic. In this way proof checking of the object logiaréduced to type
checking of the LF terms.

For developing our proofs, we use Twelf (Pfenning and Stiaiinn, 1999),
an implementation of LF by Frank Pfenning and his studenigelfTis a
sophisticated system with many useful features: in additidban LF type
checker, it contains a type-reconstruction algorithm pleanits users to omit
many explicit parameters, a proof-search algorithm (wligclike a higher-
order Prolog interpreter), constraint regimes (e.g.aingogramming over
the exact rational humbers), mode analysis of parametargta-theorem
prover, a pretty-printer, a module system, a configurati@tesn, an interac-
tive Emacs mode, and more. We have found many of these featigedul
in proof development, but Twelf is certainly not a minimabpf checker.
However, since Twelf does construct explicit proof objenternally, we can
extract these objects to send to our minimal checker.

In LF one declares the operators, axioms, and inference afilanobject
logic as constructors. For example, we can declare a fragmenisobfier
logic with the typeform for formulas and a dependent type construgtor
for proofs, so that for any formulé, the typepf(A) contains values that are
proofs of A. Then, we can declare an “implies” constructop (infix, so it
appears between its arguments), so that é&dB are formulas then so is
A imp B. Finally, we can define introduction and elimination rulesifnp .1

form : type.

pf : form -> type.

imp : form -> form -> form.

%infix right 10 imp.

imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

All the above are defined as constructors. In general, agstetis have the
form name : 7 and declare thatame is a value of typer.

It is easy to declare inconsistent object-logic constmsctéor example,
invalid: pf A is a constructor that acts as a proof of any formula, so using
it we could easily prove the false proposition:

logic_inconsistent : pf (false) = invalid.

So the object logic should be designed carefully and mustusésd.

1 Here, for example, thémp _i axiom states that if you have an LF function that can
transform proofs ofA to proofs ofB, then applying the rule produces a proofffimp B.
The ruleimp _e (generally known asnodus ponensgoes the other way: given a proof of
A imp B and a proof ofA, applying the rule produces a proof Bf
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Once the object logic is defined, theorems can be proved. Werae
for instance that implication is transitive:

imp_trans: pf (A imp B) -> pf (B imp C) -> pf (A imp C) =
[pl: pf (A imp B)][p2: pf (B imp C)]
imp_i [p3: pf A] imp_e p2 (imp_e pl p3).

In general, definitions (including predicates and theojehave the form
name : T = exp, Which means thatame is now to stand for the valuerp
whose type is. In this example, thezp is a function with formal parameters
pl andp2, and with bodyimp _i [p3] imp e p2 (imp e pl p3) .

Definitions need not be trusted, because the type-checkefecdy whether
exp does have type. In general, if a proof checker is to check the préof
of theoremT in a logic £, then the constructors (operators and axiomsj of
must be given to the checker in a trusted way (i.e., the adweraust not be
free to install inconsistent axioms). The statement’ghust also be trusted
(i.e., the adversary must not be free to substitute an wtaateor vacuous
theorem). The adversary provides only the prBoand then the checker does
the proof checking (i.e., it type-checks in the LF type systhe definition
t: T = P, for some arbitrary namg).

3. Application: Proof-carrying code

Our checker is intended to serve a purpose: to check safetyams about
machine-language programs. It is important to include iegfbn-specific
portions of the checker in our measurements to ensure thdiawe ade-
guately addressed all issues relating to interfacing toghkbworld.

The most important real-world-interface issue is, “is theved theorem
meaningful?” An accurate checker does no good if it checkswtong theo-
rem. As we will explain, the specification of the safety theoris larger than
all the other components of our checker combined!

Given a machine-language progrdmthat is, a sequence of integers that
code for machine instructions (on the Sparc, in our case)thborem is,
“when run on the Spard? never executes an illegal instruction, nor reads or
writes from memory outside a given range of addresses.” fimdbze this
theorem it is necessary to formalize a description of i$ibn execution
on the Sparc processor. We do this in higher-order logic aunged with
arithmetic.

In our model (Michael and Appel, 2000), a machine state c@apra
register bankr), and anemory(m), each of which is a function from integers
(register numbers and addresses) to integers (contenes)y Eegister of the
instruction-set architecture (ISA) must be assigned a muritbthe register
bank: the general registers, the floating-point registles condition codes,
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and the program counter. Where the ISA does not specify a eufabch as
for the PC) or when the numbers for two registers conflict l{sag for the
floating point and integer registers) we use an arbitrarysedundex:

r m
0:[ 10 0:
| n 1
2:
31: r3l
32:| fpoO
63:| fp31
64: cc
65: PC
unused

A single step of the machine is the execution of one instactiVe can
specify instruction execution by giving a step relationm) — (r,m’)
that maps the prior stafe, m) to the next statér’, m’) that holds after the
execution of the machine instruction.

For example, to describe the add instructign— r + r3 we might start
by writing,

(7, m) — (7"/7 m/) =
(1) =r2)+rB)A Nz #£ 1.7 (x) =r(x)) Am'=m
In fact, we can parameterize the above on the three regiat@ised and
defineadd(s, j, k) as the following predicate on four argumetitsm, ', m’):

add(i, j, k) =
Ar,myr'om/s (i) = r(g) +r(k) A Ve £ir(x) =r(@) A m=m

Similarly, for the load instructiom; < m[r; + ¢| we define its semantics to
be the predicate:

load (i, j,¢) =
Arymyr',m!. o' (i) = m(r(j) + )
A NVx #i.r(x) =r(x) Am'=m

To enforce memory safety policies, we will modify the defomitofload(z, 7, ¢)
to require that the loaded address is legal (Appel, 200X)weuomit those
details here.
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But we must also take into account instruction fetch and dec8uppose,
for example, that the add instruction is encoded as a 324vitl wcontaining
a 6-bit field with opcode 3 denotirgdd,a 5-bit field denoting the destination
registeri, and 5-bit fields denoting the source registgrs

(3l il [ o [k |
26 21 16 5 0
The load instruction might be encoded as:
L12] i | | c |
26 21 16 0

Then we can say that some numhedecodes to an instructiamstr iff,

decode(w, instr) =
(3i, j, k.
0<i<2 A0<j<2 A0<k<2 A
w=3-22044.221 1 5.216 4 .20 A
instr = add(i, j, k))
V (31, 7, c.
0<i<2 A 0<j<2 A 0<c<2!6 A
w=12-2%644.220 4 j.216 1 .20 A
instr = load(i, j, c))
VoL

with the ellipsis denoting the many other instructions @& thachine, which
must also be specified in this formula.

We have shown (Michael and Appel, 2000) how to scale this ige#o
the instruction set of a real machine. Real machines hage laut semi-
regular instruction sets; instead of a single global disjiam, the decode
relation can be factored into operands, addressing modédss@on. Real
machines don't use integer arithmetic, they use moduldnragtic, which
can itself be specified in our higher-order logic. Some reathines have
multiple program counters (e.g., Sparc) or variable-lerigstructions (e.g.,
Pentium), and these can also be accommodated.

Our description of the decode relation is heavily factorgdhigher-order
predicates (this would not be possible without higher-pitdgic). We have
specified the execution behavior of a large subset of thecSpahitecture,
and we have built a prototype proof-generating compiletrtdngets that sub-
set. For proof-carrying code, it is sufficient to specify aset of the machine
architecture; any unspecified instruction will be treatgdhe safety policy
as illegal. While this may be inconvenient for compilerstthiant to generate
that instruction, it does ensure that safety cannot be comiged.
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4. Specifying safety

Our step relatior(r,m) — (r',m’) is deliberately partial; some states have
no successor state. In these states the program cow(mey points to an
illegal instruction. Using this partial step relation, wancdefine safety. A
safe program is one that will never execute an illegal irsibn; that is, a
given state is safe if, for any state reachable in the Kle@muce of the step
relation, there is a successor state:

safe-statér,m) =
vr'om!. (r,m) —* (r',m') = I om0 (' ,m!) — (r" m")

A program is just a sequence of integers (each representingchine
instruction); we say that a programis loaded at a locatiohin memorym if

loaded(p,m,l) = Vi € dom(p). m(i + ) = p(1)

Finally (assuming that programs are written in positiodeipendent code), a
program issafeif, no matter where we load it in memory, we get a safe state:

safe(p) =
Vr,m, start. loaded(p, m, start) A r(PC) = start = safe-statér, m)

Let; be a “cons” operator for sequences of integers (easily d#éria
higher-order logic); then for some program

8420 ; 2837 ; 2938 ; 2384 ; nil

the safety theorem is simply
safe ( 8420 ; 2837 ; 2938 ; 2384 ; nil )

and, given a prooP, the LF definition that must be typechecked is
t: pf(safe(8420;2837;2938;2384;nil)) = P.

Though we wrote in section 2 that definitions need not beddibecause
they can be type-checked, this is not strictly true. Any dtdin that is used
(directly or indirectly) in the statement of the theorem mois trusted, be-
cause the wrong definition will lead to the proof of the wrohgdrem. Thus,
all the definitions leading up to the definition sffe (includingadd, load ,
safe-state  , step , loaded , etc.) must be part of the trusted checker. Since
we have approximately 1,600 lines of such definitions, aeg #re a compo-
nent of our “minimal” checker, one of the most important esswe faced is
the representation of these definitions; we discuss thisdtia 7.

On the other hand, a large proof will contain hundreds ofrivekdefini-
tions. These are predicates and internal lemmas of the fmobbf the state-
ment of the theorem), and are at the discretion of the proofiger. Since
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Logic: 7% Safety Predicate:6%

Avrithmetic: 9%

Machine
Syntax:25%

Machine
Semantics: 54%

Figure 2. The relative component sizes of the Safety SpecificatiothfoSparc. The Machine
Semantics take the lion’s share of the Specification.

each is type checked by the checker before it is used in fudigfenitions and
proofs, they don't need to be trusted.

In the table below we show the various pieces needed for #nfamtion
of the safety theorem in our logic. Every piece in this talslgpart of the
TCB. Column two shows the number of lines of Twelf code neededhe
specification and column three the number of definitions & specification.
The first two lines show the size of the logical and arithmetinnectives (in
which theorems are specified) as well as the size of the lbgmcharithmetic
axioms (using which theorems are proved). The Sparc speagichas two
components, a “syntactic” part (the decode relation) areh@asitic part (the
definitions ofadd, load,etc.); these are shown in the next two lines. The size
of the safety predicate is shown last. The relative sizeadfheomponent are
shown in figure 2.

Safety Specification Lines | Definitions
Logic 135 61
Arithmetic 160 94
Machine Syntax 460 334
Machine Semantics 1,005 692
Safety Predicate 105 25
Total 1,865 1,206

From this point on we will refer to everything in the table & tafety
specificationor simply thespecification
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10
5. Eliminating redundancy

Typically an LF signature will contain much redundant imf@tion. Consider
for example the rules foimp presented previously; in fully explicit form,
their representation in LF is as follows:
imp_i: {A : formKB : form}
(pf A -> pf B) -> pf (A imp B).
imp_e: {A : form}{B : form}
pf (A imp B) -> pf A -> pf B.

The fact that botta andB are formulas can be easily inferred by the fact they
are given as arguments to the construétay, which has been previously
declared as an operator over formulas.

On the one hand, eliminating redundancy from the representaf proofs
benefits both proof size and type-checking time. On the dtaed, it requires
performing term reconstruction, and thus it may dramdticimicrease the
complexity of type checking, driving us away from our goallofilding a
minimal checker.

Twelf deals with redundancy by allowing the user to declamme pa-
rameters agnplicit. More precisely, all variables which are not quantified in
the declaration are automatically assumed implicit. Wkienan operator is
used, Twelf’s term reconstruction will try to determine tiogrect substitution
for all its implicit arguments. For example, in type-cheakithe lemma

imp_refl : pf (A imp A) = imp_i ([p : pf A] p).

Twelf will automatically reconstruct the two implicit arments ofimp i to
be both equal te.

While Twelf’s notion of implicit arguments is effective itiminating most
of the redundancy, type reconstruction adds considerabiglexity to the
system. Another drawback of Twelf’s type reconstructioiitssreliance on
higher-order unification, which is undecidable. Becaudhisf type checking
of some valid proofs may fail.

Since full type reconstruction is too complex to use in atedschecker,
one might think of sending fully explicit LF proof terms; baifully explicit
proof in Twelf syntax can be exponentially larger than itplitit representa-
tion. To avoid these problems, Necul&®'; (Necula, 1997) uses partial type
reconstruction and a simple algorithm to determine whicthefarguments
can be made implicit. Implicit arguments are omitted in thpresentation,
and replaced by placeholders. Oracle-based checking [&end Rahul,
2001) reduces the proof size even further by allowing thewseaof subterms
whose reconstruction is not uniquely determined. Spedifiéga cases when
the reconstruction of a subterm is not unique, but there isita fiand usually
small) list of candidates, it stores an oracle for the rigimdidate number
instead of storing the entire subterm.
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These techniques use clever syntactic representation®afispthat min-
imize proof size; checking these representations is notoamplex as full
Twelf-style type reconstruction, but is still more compkian is appropri-
ate for a minimal proof checker. We are willing to toleratensovhat larger
proofs in exchange for a really simple checking algorithnstéad of using
a syntactic representation of proofs, we avoid the needh®rchecker to
parse proofs by using a data-structure representationetywve still need
to avoid exponential blowups, so we reduce redundancy ligtsiie shar-
ing. Therefore, we represent and transmit proofs as LF témrtise form of
directed acyclic graphs (DAGSs), with structure sharing @feon subex-
pressions to avoid exponential blowup.

A node in the DAG can be one of ten possible types: one for kifigs
for ordinary LF terms, and four for arithmetic expressioBach node may
store up to three integerargl , arg2 , andtype . This last one, if present,
will always point to the sub-DAG representing the type ofélxpression.

argl arg2 type
U

kind

constant
variable
application
product
abstraction
number

addition proof obj
mult proof obj

div proof obj

* + ¥ —T 9 < O S

OO0OO0OO0O0O0O0OZXL<ZC

=TI cCcLL L CcC

=TI C

~

M = mandatory
O = optional
U = unused

The content ofirgl andarg?2 is used in different ways for different node
types. For all nodes representing arithmetic expressigts'{’, *', and
‘'), they contain integer values; in particular, for thedes corresponding to
meta-level numbers (‘#) onlargl is used. For products and abstractions
(‘p’and TI"), argl points to the bound variable, aaeg2 to the term where
the binding takes place. For variable nodes (‘a)gl andarg2 are used
to make sure that the variable always occurs within the sobge quanti-
fier. For application nodes (‘a’grgl andarg2 point to the function and
its argument, respectively. Finally, constant declaratiodes (‘c’), and kind
declaration nodes (‘n’) use neither of the two.
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For a concrete example, consider the LF signature:

form : type.
pf : form -> type.
imp : form -> form -> form.

We present below the DAG representation of this signature. N&ttened”
the DAG into a numbered list, and, for clarity, we also addedmment on
the right showing the corresponding LF term.

1l n00O ; type Kind

2lc001 ; form: type

3 voO0O2 o x: form

4 p310 i {x: form} type

5/c004 7 pf: {x: form} type

6l vOo0O2 ;y: form

7l p 620 ; {y: form} form

8v0o0O2 ; x form

99 p870 i {x: form}{y: form} form

100 c 00 9 ; imp: {x: formHy: form} form

6. Dealing with arithmetic

Since our proofs reason about encodings of machine ingtnsc{opcode
calculations) and integer values manipulated by prograhes problem of
representing arithmetic within our system is a critical .oAgourely logical
representation based on 0, successor and predecessorsigitabte to us,
since it would cause proof size to explode. Even a binaryesprtation
(using 0,x2, and x2 + 1) is not attractive, because in our PCC application
there are many 32-bit constants (representations of maamstructions) that
would then take 32 operators each.

The latest releases of Twelf offer extensions that dealelgtivith infinite-
precision integers and rationals. While these extensioas/ery powerful
and convenient to use, they offer far more than we need, aralibe of their
generality they have a very complex implementation (thimmat extension
alone is 1,950 lines of Standard ML). What we would like for ohecker is
an extension built in the same spirit as those, but much singpid lighter.

There are essentially two properties that we require froaol sun exten-
sion:

1. LF terms for all the numbers we use; moreover, the sizesf.thterm
for n should be constant and independent. of

2. Proof objects for single-operation arithmetic factdsas “10+2 = 12";
again, we require that such proof objects have constant size
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Our arithmetic extensions to the checker are the smallabtsanplest
ones to satisfy (1) and (2) above. We add tled32 type to the TCB,
(representing integers in the rangg 4*2 — 1]) as well as the following
axioms:

word32 : type.

+ @ word32 -> word32 -> word32 -> type.
* . word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.

We also modify the checker to accept arithmetic terms such as

567 : word32.
456+25 : + 456 25 481.
32*4 : * 32 4 128.
56/5 ./ 56 5 11.

This extension does not modify in any way the standard LF tyeking:
we could have obtained the same result (although much mefficiently) if
we added all these constants to the trusted LF signature rny. tfowever,
granting them special treatment allowed us to save literalllions of lines
in the axioms in exchange for an extra 55 lines in the checker.

To embed and use these new constants in our object logic sevelatlare:

c: word32 -> tm num.
eval_plus: + A B C -> pf (eq (plus (c A) (c B)) (c Q).
eval_times: * A B C -> pf (eq (times (c A) (c B)) (c Q)).
eval div: / M N Q ->
pf ((geq (c M) (times (c N) (c Q)) and
(not (geq (c M) (times (c N) (plus one (c Q)))).

This embedding fronword32 to numbers in our object logic is not sur-
jective. Numbers in our object logic are still unboundedird32 merely
provides us with handy names for the ones used most often.

With this “glue” to connect object logic to meta logic, numdand proofs
of elementary arithmetic properties, are just terms of sime For example,
the representation &634in the object logic, igc 5634) , which, by virtue
of these additional axioms, can be easily verified to be alvalim of type
num.

7. Representing axioms and trusted definitions
Since we can represent axioms, theorems, and proofs as DiA@ght seem
that we need neither a parser nor a pretty-printer in ourmahichecker. In

principle, we could provide our checker with an initial e DAG repre-
senting the axioms and the theorem to be proved, and thenld ceceive

paper.tex; 29/09/2003; 11:25; p.13



14

and check an untrusted DAG representing the proof. ThestlUSAG could
be represented in the C language as an initialized arrayaphgnodes.

This might work if we had a very small number of axioms and teds
definitions, and if the statement of the theorem to be proveiwery small.
We would have to read and trust the initialized-array statsin C, and un-
derstand their correspondence to the axioms (etc.) as wielwioite them in
LF notation. For a sufficiently small DAG, this might be sirapthan reading
and trusting a parser for LF notation.

However, even a small set of operators and axioms (especiatle the
axioms of arithmetic are included) requires hundreds oplgreodes. In ad-
dition, as explained in section 4, our trusted definitiortduide the machine-
instruction step relation of the Sparc processor. Thesg51lj@es of Twelf
expand to 22,270 DAG nodes. Clearly it is impossible for a anno directly
read and trust a graph that large.

Therefore, we require a parser or pretty-printer in the malichecker; we
choose to use a parser. Our C program will parse the 1,865direxioms and
trusted definitions, translating the LF notation into DAGIas. The axioms
and definitions are also part of the C program: they are a aphstring to
which the parser is applied on startup.

This parser is 428 lines of C code; adding these lines to thnmai
checker means our minimal checker can use 1,865 lines of &feéad of
22,270 lines of graph-node initializers, clearly a goodéaf.

Our parser accepts valid LF expressions, written in the samtax used
by Twelf. In addition to those, it will also parse nonnegatiwumbers below
232 and type them aword32 objects.

Two extra features we added to our parser are infix operatioesfikity
information is passed to the parser using the saimex directive used by
Twelf), and single-line comments. While these are notthrivecessary, im-
plementing them did not significantly affect the complexifithe parser, and
their use greatly improved the readability of the speciiicatand therefore
its trustworthiness.

7.1. ENCODING HIGHER-ORDER LOGIC INLF

Our encoding of higher-order logic in LF follows that of Harget al. (1993)
and is shown in figure 7. Theonstructorsgenerate the syntax of the object
logic and theaxiomsgenerate its proofs. A meta-logical typeype and an
object-logic type istp . Object-logic types are constructed frdorm (the
type of formulas),num (the type of integers), and th@row constructor.
So the object-logic predicateven? , for instance, would have object type
(num arrow form) . The LF termtm maps an object type to a meta type,
so an object-level term of typehas typetm T) in the meta logic.
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Logic Constructors
tp . type.
tm © tp -> type.
form Do tp.
num ©otp.
arrow otp > tp -> tp.
pf : tm form -> type.
lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).
@ : tm (T1 arrow T2) -> tm T1 -> tm T2.
forall : (tm T -> tm form) -> tm form.
imp : tm form -> tm form -> tm form.

Logic Axioms
beta _e :opf (P (lam F) @ X)) -> pf (P (F X)).
beta _i o pf (P (F X)) -> pf (P (lam F) @ X).
imp _i . (pf A -> pf B) -> pf (A imp B).
imp _e : pf (A imp B) -> pf A -> pf B.
forall i : ( {X:tm T} pf (A X)) -> pf (forall A).
forall _e : pf (forall A) -> {X :tm T} pf (A X).

Figure 3. Higher-Order Logic in Twelf

Abstraction in the object logic is expressed by tha term. The term
(lam [x] (F X)) is the object-logic function that mapsto (F x) . Ap-
plication for such lambda terms is expressed via@uwperator. The quan-
tifier forall  is defined to take as input a meta-level (LF) function of type
(tm T -> tm form) and produce &n form . The use of the LF functions
here makes it easy to perform substitution when a proéérafi  needs to
be discharged, since equality in LF is juBj-conversion.

Notice that most of the standard logical connectives arerglfsom fig-
ure 7. This is because we can produce them as definitions freroanstruc-
tors we already have. For instance, #ne andor connectives can be defined
as follows:

and = [A][B] forall [C] (A imp B imp C) imp C.
or = [A][B] forall [C] (A imp C) imp (B imp C) imp C.

It is easy to see that the above formulae are equivalent tstémelard def-
initions of and andor . What is in fact required in order to assert this, is to
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derive the standard introduction and elimination rulesfch of them. These
rules are proven as lemmas (from the definitions of the cdivescand the

existing axioms), so they need not be part of the trusted atimgpbase. On

the other hand, since the constructors are used in the dwmfiot the safety

predicate, they must be part of the TCB.

Object-level equalit§is also easy to define:

eq:tm T ->tm T -> tm form =
[A:tm T][B : tm T] forall [P] P @ B imp P @ A.

This states that objectsandB are considered equal iff any predic&éhat
holds onB also holds orA.

Terms of type ff A) are terms representing proofs of object formala
Such terms are constructed using the axioms of figure 7. Aximta _e and
beta _i are used to provg-equivalence in the object logic. The first states
that for any meta-level predicate(of typetm T -> tm form ), if P holds
on the term((lam F) @ X) then it also holds oifF X) . Axiom beta _i
takes one in the other direction. Axiormsp _i andimp _e transform a meta-
level proof function to the object level and vice-versa. dfliy) forall i
introduces thdorall ~ statement if it is presented with a meta-level function
from X to pf (A X) , andforall _e discharges #dorall by applying the
meta-level functiom to an instancex of its domain to producef (A X) .
Notice how the higher-order abstract syntax of LF makes digsharging
(and the term substitution ofin the body ofA) completely painless for the
designer of the logic.

As an example of a simple proof we show how to prove the refigxiv
lemmarefl , which states that all objects equal themselves. By theitiefin
of eq, if X is to equal itself, we must to show that for any predicati
(P @ X)then(P @ X)—which is obvious. Here is the proof:

refl : pf (eq X X) =
forall i [P] imp_i [q : pf (P @ X)] q.

7.2. “POLYMORPHIC" PROGRAMMING IN TWELF

ML-style implicit polymorphism allows one to write a funeti usable at
many different argument types, and ML-style type inferedoes this with

2 The equality predicate is polymorphic Th The objectsA andB have object typd and
so they could beunms, form s or even object level functionarfow types). The object type
T is implicit in the sense that when we use @ predicate we do not have to specify it;
Twelf can automatically infer it. So internally, the met| type ofeq is not what we have
specified above but the following:

{T:tp}tm T ->tm T -> tm form.

We will have more to say about this in section 7.2.
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a low syntactic overhead. We are writing proofs, not prograat we would
still like to have polymorphic predicates and polymorplammas. LF is not
polymorphic in the ML sense, but Harper et al. (1993) show lowse
LF’s dependent type system to get the effect and (most ofydiieenience
of implicit parametric polymorphism with an encoding trjakhich we will
illustrate with an example.

Suppose we wish to write the lemmangr that would allow us to sub-
stitute equals for equals:

congr : {H : type -> tm form}
pf (eq X 2) > pf (H 2) -> pf (H X) = ...

The lemma states that for any predicetdf H holds onZz andz = X thenH
also holds orx. Unfortunately this is ill-typed in LF since LF does not allo
polymorphism. Fortunately though, there is way to get pagphism at the
object level. We rewriteongr as:

congr : {H : tm T -> tm form}
pf (eq X 2) > pf (H 2) -> pf (H X) = ...

and this is now acceptable to Twelf. Functidmow judges objects of meta-
type (tm T) for any object-level typel, and socongr is now “polymor-
phic” in T. We can apply it on any object-level type, suchrasn, form ,
num arrow num, num arrow form , etc. This solution is general enough
to allow us to express any polymorphic term or lemma with eAsgoms
forall i andforall _e infigure 7 are likewise polymorphic in.

7.3. HOW TO WRITE EXPLICIT TWELF

In the definition of lemmeacongr above, we have left out many explicit
parameters since Twelf's type-reconstruction algorittan mfer them. The
actual LF type of the termongr is:

congr : {T: tpH{X: tm THZ: tm TH{H: tm T -> tm form}
pf (eq T X Z2) > pf (H 2Z2) > pf (H X) = ...

(here we also make use of the explicit version of the equpliggicate eq).
Type reconstruction in Twelf is extremely useful, espégia a large system
like ours, where literally hundreds of definitions and lensrhave to be stated
and proved.

Our safety specification was originally written to take attege of Twelf's
ability to infer missing arguments. Before proof checkiran degin, this
specification needs to be fed to our proof checker. In chgotien what
would be in our TCB we had to decide between the followingraltves:

1. Keep the implicitly-typed specification in the TCB and rtithrough
Twelf to produce an explicit version (with no missing argunseor types).
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Object Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
lam6 (arrow T1 (arrow T2 form))
(arrow T3 (arrow T2 form))
(arrow T2 form)
(arrow T1 (arrow T3 T4))
T4 T2 form
[fO][f1][p_pi][icons][ins][w]
(@ T2 form p_pi w) and
(exists2 T1 T3 [gO:tm T1] [gl:itm T3]
(@ T2 form
(&& T2 (@ T1 (arrow T2 form) fO g0)
(@ T3 (arrow T2 form) f1 g1)) w) and
(eq T4 ins (@ T3 T4 (@ T1 (arrow T3 T4) icons g0) gl))).

Meta Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
[fO][f1][p_pi][icons][ins][w]
(p_pi w) and
(exists2 [g0:tm T1][gl:tm T3]
(fo g0 && f1 gl) w) and (eq ins (icons g0 gl)).

Figure 4. Abstraction & Application in the Object versus Meta Logic.

This explicit version would be fed to our proof checker. Tapproach
allows the specification to remain in the implicit style. dleur proof
checker would remain simple (with no type reconstructitfiefience ca-
pabilities) but unfortunately we now have to add to the TCBelfis

type-reconstruction and unification algorithms, which ab®ut 5,000
lines of ML code.

2. Run the implicitly typed specification through Twelf totga explicit
version. Now instead of trusting the implicit specificatiand Twelf’s
type-reconstruction algorithms, we keep them out of the BDB pro-
ceed to manually verify the explicit version. This approatdo keeps the
checker simple (without type-reconstruction capabdgitieJnfortunately
the explicit specification produced by Twelf explodes iredstom 1,700
to 11,000 lines, and thus the code that needs to be verifiedlatds huge.
The TCB would grow by a lot.

3. Rewrite the trusted definitions in an explicit style. Now do not need
type reconstruction in the TCB (the problem of choice 1), &ntthe
rewrite from the implicit to the explicit style can avoid thize explosion
(the problem of choice 2), then we have achieved the besttbfiborlds.
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Since neither of choices 1 and 2 above were consistent witgaal of a
small trusted computing base, we followed choice 3 and rewtiee trusted
definitions in an explicit style while managing to avoid theesexplosion.
The new safety specification is only 1,865 lines of expleitiped Twelf.
It contains no terms with implicit arguments — everythingeigplicit and
every quantified variable is explicitly typed. Thus, we dd need a type-
reconstruction/type-inference algorithm in the proofcites. The rewrite solves
the problem while maintaining the succinctness and bresfitihe original
TCB, the penalty of the explicit style being an increase e %if 124 lines.
The remainder of this section explains the problem in detad the method
we used to bypass it.

To see why there is such an enormous difference in size (178 vs
11,000) between the implicit specification and its expliefiresentation gen-
erated by Twelf's type-reconstruction algorithm, consitte following ex-
ample. LetF : tm (num arrow num arrow form) be a two-argument
object-level predicate (a typical case when describingypperators in an
instruction set). When such a predicate is applied, &8 i@ X @ Y)Twelf
has to infer the implicit arguments to the two instances @rafor @ The
explicit representation of the application then becomes:

@ num form (@ num (num arrow form) F X) Y

It is easy to see how the explicit representation explodaszinfor terms of
higher order. Since the use of higher-order terms was eéak@antachieving
maximal factoring in the machine descriptions (Michael aqgbel, 2000),
the size of the explicit representation quickly becomesamageable.

Here is another more concrete example fromdbende relation of sec-
tion 3. This one shows how the abstraction operatarsuffers from the same
problem. The predicate below (given in implicit form) is dsa specifying
the syntax of all Sparc instructions of two arguments.

fld2 = lam6 [fO][f1][p_pi][icons][ins][w]

p_pi @ w and

exists2 [g0][gl] (f0 @ g0 && f1 @ gl) @ w and
eq ins (icons @ g0 @ gl).

Predicate$0 andfl specify the input and the output registgrsi decides
the instruction opcodédgons is the instruction constructomms is the in-
struction we are decoding, amds the machine-code worn explicit form

3 As we mentioned before, our specifications are highly fatt@nd this is an example
of such factoring — any instruction of two arguments can lee#ied using this predicate. To
define, for instance, the predicate that decidest®Vgfloating-point move) instruction on
the Sparc, we would say:

ins_MOVs = fld2 @ f fs2 @ f fd @ p_FMOVs @ i_FMOVs.

where the arguments are as described above.

paper.tex; 29/09/2003; 11:25; p.19



20

this turns into what we see on the left-hand side of figure 7aB explicitly
typed definition 16 lines long.

The way around this problem is the following: We avoid usirigjeot-
logic predicates whenever possible. This way we need naifgpbe types
on which object-logic application and abstraction are used example, the
fld2 predicate above now becomes what we see on the right-haadstid
figure 7.3. This new predicate has shrunk in size by more thién h

Sometimes moving predicates to the meta-logic is not plessHor in-
stance, we represeinstructionsas predicates from machine states to ma-
chine states (see section 3). Such predicates must be ibjiée gic since
we need to be able to use them in quantifiesssfs [ins : tm instr]

...). Thus, we face the problem of having to supply all thelioitgypes when
defining such predicates and when applying them. But sinesettypes are
always fixed we can factor the partial applications and atloédrepetition.
So, for example, when defining some Sparc machine instruesan:

i_anylnstr = lam2 [rs : tnum][rd : thum]
lam4 registers memory registers memory form
[r : tregs]lm : tmem] [r : tregs][m’ : tmem]

we define the predicaiestr _lam as:
instr_lam = lam4 registers memory registers memory form.
and then use it in defining each of the 250 or so Sparc insbngs below:

i_anylnstr = [rs : tnum][rd : tnum]
instr_lam [r : tregs][m : tmem]
[r : tregs][m’ : tmem]

This technique turns out to be very effective because outhimacsyntax
and semantics specifications were highly factored to begm(lichael and
Appel, 2000).

So by moving to the meta logic and by clever factoring we haesed
the TCB from implicit to explicit style with only a minor inease in size.
Now we don'’t have to trust a complicated type-reconstrudtygpe-inference
algorithm. What we feed to our proof checker is preciselysbieof axioms
we explicitly trust.

7.4. THE IMPLICIT LAYER

When we are building proofs, we still wish to use the implititle because of
its brevity and convenience. For this reason we have builngficit layer on
top of our explicit TCB. This allows us to write proofs and ddéfons in the
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implicit style and LF'sgn-conversion takes care of establishing meta-level
term equality. For instance, consider the object-logicliapfion operator@
given below:

_@ : {T1: tpKT2: tp}
tm (T1 arrow T2) -> tm T1 -> tm T2.

In the implicit layer we now define a corresponding applmatperator@in
terms of_@as follows:

@ :tm (T1 arrow T2) > tm T1 ->tm T2 = _@ T1 T2

In this term the type variable&l andT2 are implicit and need not be specified
when @is used. Becaus@is a definition used only in proofs (not in the
statement of the safety predicate), it does not have to beetiu

8. The proof checker

The total number of lines of code that form our checker is &,&8f these,
1,865 are used to represent the LF signature containingotteeaxioms and
definition, which is stored as a static constant string.

The remaining 803 lines of C source code, can be broken dofaliass:

Component Lines
Error messaging 14
Input/Output 29
Parser 428

DAG creation and manipulation 111
Type checking and term equality 167
Main program 54
Total 803

In designing the components listed above, we make sure nateany
library functions. Libraries often have bugs, and by avwmidtheir use we
eliminate the possibility that some adversary may explo#é of these bugs
to disable or subvert proof checking. However, we do maketiseo POSIX
calls:read , to read the program and proof, anexit , to quit if the proof
is invalid. This seems to be the minimum possible use of patdibraries.

8.1. TYPE CHECKING AND TERM EQUALITY

The checker implements the syntax-directed algorithmrgiwethe inference
rules of Figure 8.1, which is essentially the same as a stdralgorithm
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(Harper and Pfenning, 2000, Section 6). The rules deriveiessgg of the
form X, T F X : A, whereX is the trusted signaturé; is a typing context
holding variables introduced by- or II-abstractions when computing the
types of subexpressions of such abstractighss a term whose classifier we
must compute; andl is the classifier computed foX. Given X, the rules
are applied bottom-up to computg, wherel is initially empty. Note that
the signature® is not type checked, which is reasonable since it is trusted.
Symbols may be bound more than oncdbin sequents; thivokupfunction

is used to find the most recently added binding ifor a symbol. Thusl’
holds a stack of bindings. This stack is implemented by thestack created
during recursive calls in the checker. In several ruless a meta-variable
ranging over{type kind}. In (app),[/V/x] B is written to denote the result of
safely substitutingV for z in B.

While the algorithm of Figure 8.1 is essentially the same asper and
Pfenning’s, there are a few differences that should be nétest, the algo-
rithm is presented slightly more concisely here, by cormgjrseveral rules
from Harper and Pfenning’s presentation of their algoriti$acond, Harper
and Pfenning’s algorithm compares expressions for eqreal uses type
information, where here we use Coquand’s algorithm, whadschot use any
type information, for our relation (Coquand, 1991). The one significant dif-
ference is that Harper and Pfenning’s algorithm is for LFhwitt type-level
A-abstractions. The PCC application makes use of type-leadistractions,
so an extension to the algorithm is needed. In (app), we reeeduce the

type of M to weak head normal form. This is indicated wr. The weak
head normal form o is X if X is not of the form(Ax : E. F') G, and oth-
erwise, it is the weak head normal form[6f/x] F'. This is similar to what is
done is Huet's Constructive Engine for the Calculus of Catsions (Huet,
1989). Note that the resulting algorithm is complete for iRce this change
to the (app) rule merely allows more classifications to bévddrthan in LF.

Given a proof termX and a theorenH, the checker first computes the
classifier of X with respect to the trusted signaturein the empty context.
If X indeed has a classified’, then the checker checks ~ A. If X is not
classifiable or its classifier is not equivalent4pthe checker reports that the
proof is invalid and exits. Otherwise, it returns 0, indiogtthatX is indeed
a valid proof ofA.

8.2. TRUSTING THEC COMPILER

These 803 lines of C need to be compiled by a C compiler, antvsouild

appear that this compiler would need to be included in our T3 C com-
piler could have bugs that may potentially be exploited byadwersary to
circumvent proof checking. More dangerously perhaps, ther@piler could
have been written by the adversary so while compiling ouckée it could

paper.tex; 29/09/2003; 11:25; p.22



23
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ax) YT Fv:A A=lookupv, X,T)

>I,z:A+- M:B
(lam) X I'F- A:type Y TI''z:AF B:«
STF Az:AM:1lz: A B
sTEM:X x"rs.4B
(@p) ST FN:A A~A
S.TF (MN):[N/z]B

(|) E,FFAtype E,F,"I}A}_BO(
P STFHz:AB:

Figure 5. The LF type-checking algorithm

insert a Thompson-style (Thompson, 1984) Trojan horsethrgexecutable
of the checker.

All proof verification systems suffer from this problem. Os@ution (as
suggested by Pollack (1996)) is that of independent chgckinite the proof
checker in a widely used programming language and then tfseetit com-
pilers of that language to compile the checker. Then, ruryalr checkers
on the proof in question. This is similar to the way matheoztproofs are
“verified” as such by mathematicians today.

The small size of our checker suggests another solutiorerGanough
time one may read the output of the C compiler (assembly kaggwr ma-
chine code) and verify that this output faithfully implentgthe C program
given to the compiler. Such an examination would be tediaatsitds not
out of the question for a C program the size of our checker 39parc
instructions, as compiled), and it could be carried out flsa high level
of assurance was necessary. Such an investigation woubdrdgruncover
Thompson-style Trojan horses inserted by a malicious demprhis ap-
proach would not be feasible for the JVMs mentioned in theothiction;
they are simply too big.

One might consider writing the checker in a more sophisitarogram-
ming language. For example, it might be easier to reasontabelcorrect-
ness of ML programs than C programs. However, there woulldbstithe
need to trust an ML compiler and its associated runtime Bysitecluding
garbage collector. We could take the same approach with MitisC —
don't trust the compiler but examine the compiled code to uadn verify
the faithfulness of the translation — but this might be maffecdlIt with ML
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than with C. In this context, the advantage of C is its low l@febstraction
— the machine language corresponds closely to the souree cod

Pollack (1996) writes, “it is unlikely that a bug in the contipg platform
[e.g., the compiler] causes a proof checker to erroneoustem a proof.”
However, the application of machine-checked proof in co@psecurity is
an adversarial situation. For example, Proof-Carrying eCisddesigned so
that an adversary can send a program to execute, with a fraioit tespects
its interfaces. The adversary will have had the opportuwitstudy a copy of
the proof checker, and the ML or C compiler that compiles tto®fchecker.
If the adversary finds a bug, he can try to design a proof thatceses this
bug, in such a way that a proof of a false safety predicatecis@ied. Though
this scenario may seem far-fetched, it is similar to somb@attacks on Java
Virtual Machines reported by Dean et al. (1997).

Independent implementationsAnother way that we can gain confidence in
a proof is to check it in independently implemented proofollees. For sev-
eral years we have used Twelf to check our proofs, and whilbave found
bugs in Twelf from time to time, these have always been indetapess bugs
rather than soundness bugs: we have never observed Twetiptaan invalid
proof. However, we have not tested Twelf in the adversariay @escribed
in the previous paragraph (such adversarial attacks areasyt). By using
our own independent checker (perhaps in addition to Twedf)oould gain
confidence in adversarially supplied proofs.

It's not difficult to send the same proof through both Twelddnrough our
checker. But the LF proof-checker is only 1/3 of our trusteddy the other
2/3 is the specification of the logical inference rules antheftheorem to be
proved, and we have no independent implementation of tiasthermore,
proofs with respect to the original specification will not\@did for the new
logic and theorem, unless adequacy results are proved @ckeazh

8.3. PRROOFCHECKING MEASUREMENTS

In order to test the proof checker, and measure its perfartmane wrote a
small Standard ML program that converts Twelf internal ddtactures into
DAG format, and dumps the output of this conversion to a figady for
consumption by the checker.

We performed our measurements on a sample proof of nontsizie, that
proves a substantial set of lemmas that will be used in probfeal Sparc
programs. The proof in its fully explicit form is 287,285 dis of Twelf. Its
DAG representation consists of 4,212,104 nodes. The Tystiém can check
this proof in 43.8 seconds.

Checking the sample proof consists of the four steps: paaitd type-
checking the TCB (0.2 sec), loading the proof from disk (&@&)schecking
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the DAG for well-formedness, and type-checking the prosélit(9.4 sec).
Flitis about four times faster than Twelf—although it relien Twelf to digest
the proof and construct the DAG. During type checking of gisof the

number of temporary nodes generated is 6,744,899. The negasots above
were made on a 1 GHz Pentium Il PC with 256MB of memory.

In our original implementation of the proof-checker we fduhat most of
proof-checking time was spent performing substitutionth® lemmas and
definitions we use in our proofs are closed expressions,lardfore they do
not need to be traversed when substituting for a variablema@ified our
checker to keep track of such closed terms and to avoid treeiertsal dur-
ing substitutions. This simple optimization drasticakyguced type-checking
time by more than an order of magnitude.

9. Related Work

There has been a large amount of work in the area of proofs chima
language programs using both first order (Boyer and Yu, 1888)higher
order logics (Wahab, 1998; Gordon, 1994). Some of this wag fecused on
proving the correctness of the compiler or the code genefsee for instance
Milner and Weyhrauch, 1972). For a historical survey seen@tr-Calvert
(1998).

Specifying machine architecturesTwo pieces of work are most related to
our work as far as the safety specification is concerned. Wéha98) is
concerned with correctness (not just safety) of assemhlyulage programs.
He defines a flow-graph language expressive enough to deszipential
machine code programs (he deals with the Alpha AXP procedd@ logic
is non-standard in that substitution is taken as a primitiperator and the
logic contains rules detailing term equality under it. Heyars the Hoare-
logic rules as theorems and uses abstraction in order toagagke code
stream and get shorter correctness proofs. The transfationmachine code
to the flow-graph language does not go through a “decodetioala.e., he
proves the safety of assembly language programs not maabiegprograms.
Thus he assumes that the assembler (translating assemplyatze to ma-
chine code) is correct (it is part of the trusted base) whiawg his TCB
substantially.

Boyer and Yu (1992) formally specify a subset of the MC680246rm
processor within the logic of the Boyer-Moore Theorem PrdBmyer and
Moore, 1988), a quantifier-free first order logic with eqtyali heir specifica-
tion of the step relation is similar to ours (they also inéwddecode relation)
but in their approach these relations are functions. Theréme prover they
use allows them to “run” the step function on concrete da¢adince the step
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function is specified they automatically have a simulatotfie CPU). Their
logic, albeit first-order, is much larger than ours mainlgdngse of its wealth
of arithmetic operators (decoding can be done directly fitoerspecification).
Also their machine descriptions are larger than ours; tihsefuof the 68020
machine description is about 128K bytes while our desaniptif the Sparc is
less than half that size. Admittedly, the Motorola chip isammore complex
than the Sparc, but we suspect that most of the size differsmattributed to
our extensive use of factoring facilitated by higher orasyid.

Small, trustworthy proof checkersWatson (2001) surveys proof represen-
tations in 16 different theorem-proving systems. Rel&tifew of these sys-
tems support the export of proofs for independent checKirtys feature has
generally been added to the prover when mature.” One exaofiglgrover
that supports proof export is HOL.

The HOL system is an theorem prover for higher-order logior(®n,
2000). Historically, HOL did not have a facility to produceopf objects that
could be independently verified; it relies on abstract daped to prevent
confusing formulas with theorems.

Harrison and Slind (1994) implemented a reference verdibid, called
gtt . Thegtt kernel, plus a parser and other code to handle I/O issues,
could in principle be used to check HOL proofs, though HOLhat time did
not have an external proof representation. The kernel isital®80 lines of
Standard ML (compared to our 278 lines of C for DAG manipolatitype
checking, term equality). The size of the parser is not given

Wright (1994) implemented and formally verified a proof dkescfor a
higher-order logic (it was “intended to model proofs thatildobe output by
the HOL system”). The program was written in ML; the compdseetihat
would be relevant to the independent checking of proofs leegoarser (for
parsing axioms), i/o interface, and the “core.” The corepigraximately 530
lines of ML, the size of the other components are not given.

Wong (1995) designed a representation language for HOLf@remd
built an independent checker for HOL, larger than Wrightisrnore efficient.
His parser is 2297 lines of ML, his core checker is 5715 limesl there are
2905 lines of auxiliary modules, a total of 10,917 lines aledWong, 2003).

It is not clear why these checkers for HOL are larger than backer for
LF (which, in principle, is more general than HOL). It is @iy not the
conciseness and expressiveness of C (which we used) vets(shith they
used); a general rule of thumb is that for symbolic appl@#isuch as this,
ML is about twice as concise as C. HOL just has more operatatsancepts
than LF, and it appears to be more efficient to represent HQIFiand then
check the LF. Or it may be that we pursued the (perhaps aat)fidesign goal
of mimizing the size of our checker, and others had diffegimhary design
goals.

paper.tex; 29/09/2003; 11:25; p.26



27

10. Future work

The DAG representation of proofs is quite large, and we wdikkl to do
better. One approach would be to compress the DAGs in somganayher
approach is to use a compressed form of the LF syntacticiootdiowever,
we believe that the most promising approach is neither afethe

Our proofs of program safety are structured as follows: fesprove (by
hand, and check by machine) many structural lemmas aboutinginstruc-
tions and semantics of types (Appel and Felty, 2000; AppdIMpAllester,
2001; Ahmed et al., 2002). Then we use these lemmas to prgvhaid,
as derived lemmas) the rules of a low-level typed assemhlyuage (TAL).
Our TAL has several important properties:

1. Each TAL operator corresponds to exactly 0 or 1 machinguicons
(O-instruction operators are coercions that serve as tarite TAL type
checker and do nothing at runtime).

2. The TAL rules prescribe Sparc instruction encodings dkasg¢he more
conventional (Morrisett et al., 1998) register names, $ypad so on.

3. The TAL typing rules are syntax-directed, so type-chegka TAL ex-
pression is decidable by a simple tree-walk without backiray.

4. The TAL rules can be expressed as a set of Horn clauses.

Although we use higher-order logic to state and prove lemeading up
to the proofs of the TAL typing rules, and we use higher-oidgic in the
proofs of the TAL rules, we take care to make all the statemehthe TAL
rules first-order Horn clauses. Consider such a clause,

head :- goall , goal2 , goal3.

In LF (using our object logic) we could express this as a lemma

n: pf(goal3) -> pf(goal2) -> pf(goall) -> pf(head) =
pr oof .

Insidepr oof there may be higher-order abstract syntax, quantificatiad,
so on, but theyoal s are all Prolog-style. The namddentifies the clause.

Our compiler produces Sparc machine code using a serieped tynter-
mediate languages, the last of which is our TAL. Our proverstaicts the
safety proof for the Sparc program by “executing” the TAL Hatauses as
a logic program, using the TAL expression as input data. Thefps then a
tree of clause names, corresponding to the TAL typing diéoia

We can make a checker that takes smaller proofs by just ingléng a
simple Prolog interpreter (without backtracking, sinceLT&syntax-directed).
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But then we would need to trust the Prolog interpreter andPitedog pro-

gram itself (all the TAL rules). This is similar to what Neau{1997) and
Morrisett et al. (1998) do. The problem is that in a full-gcalystem, the
TAL comprises about a thousand fairly complex rules. Neaud Morrisett

have given informal (i.e., mathematical) proofs of the simess of their type
systems for prototype languages, but no machine-checkead, @nd no proof
of a full-scale system.

The solution is to use the technology we have described ipt&dous
sections of this paper to check the derivations of the TAlesurom the
axioms of logic (and the specification of the Sparc). Thenadoha simple
(non-backtracking) Prolog interpreter to our minimal dkexcwhich will no
longer be minimal. In their preliminary report on this exd&m, Wu, Appel,
and Stump (2003) report that an additional 366 lines of C @wdeequired.

The proof producer (adversary) will first send to our checkisra DAG,
the definitions of Horn clauses for the TAL rules, which will bF-typechecked.
Then, the “proofs” sent for machine-language programshwiiin the form of
TAL expressions, which are much smaller than the proof DA@sweasured
in section 8.

A further useful extension would be to implement oracleeiashecking
(Necula and Rahul, 2001). In this scheme, a stream of “okatdéguides the
application of a set of Horn clauses, so that it would not leessary to send
the TAL expression — it would be re-derived by consulting énacle. This
would probably give the most concise safety proofs for masfédnguage
programs, and the implementation of the oracle-streamdigagould not be
too large. Again, in this solution the Horn clauses are fingtoked (using a
proof DAG), and then they can be used for checking many saseeJAL
programs.

Although this approach seems very specific to our applinatioproof-
carrying code, it probably applies in other domains as wellr semantic
approach to distributed authentication frameworks (Al Felten, 1999)
takes the form of axioms in higher-order logic, which arenthsed to prove
(as derived lemmas) first-order protocol-specific rulesilg\ih that work we
did not structure those rules as Horn clauses, more receaktiwdistributed
authentication (DeTreville, 2002) does express secumticies as sets of
Horn clauses. By combining the approaches, we could havehmaker first
verify the soundness of a set of rules (using a DAG of higideplogic) and
then interpret these rules as a Prolog program.

10.1. (HECKING THE CHECKER
Can we mechanically prove that our checker is sound? Any stadf would

have to be checked by some mechanical checker, with respsonte set of
axioms and specifications. But we believe that we have refiiheesize of the
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trusted base (specifications and proof checking algorition@pproximately
the smallest possible size, so any mechanical soundnesswpoald have to
be with respect to a larger trusted base.

However, mechanical validation of our trusted base couldbst useful.
For example, one could derive a simulator from the spedcificabf ma-
chine instructions, and compare the execution of progranikd simulator
to programs running on the real machine. One could compareutput of
a Sparc disassembler to the evaluation of our instruaiecode relation.
And, indeed, one could construct a program correctness prmbcheck it in
a standard system such as Cog or HOL. These activities watlshcrease
the size of the trusted base; instead, they would give masores to trust the
trusted base.

What we have done is not to mechanically prove the trustwuoeds of our
trusted base; instead, we have, by construction, measuarépproximate)
lower bound for the size of what needs to be validated.

11. Conclusion

Proof-carrying code has a number of technical advantages ather ap-
proaches to the security problem of mobile code. One of thst imgportant
of these is that the trusted code of such a system can be mak ¥fa
have quantified this and have shown that the trusted code eanders of
magnitude smaller than in competing systems (e.g., Javaa¥iMachines).

We have also analyzed the representation issues of theal@pecifica-
tion and shown how they relate to the size of the safety pa¢eliand the
proof checker. In our system the trusted code itself is baseal well under-
stood and analyzed logical framework, which adds to our denfie of its
correctness.
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