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Abstract. Proof-Carrying Code (PCC) and other applications in computer security require
machine-checkable proofs of properties of machine-language programs. The main advantage
of the PCC approach is that the amount of code that must be explicitly trusted is very small: it
consists of the logic in which predicates and proofs are expressed, the safety predicate, and the
proof checker. We have built a minimal proof checker, and we explain its design principles,
and the representation issues of the logic, safety predicate, and safety proofs. We show that
the trusted computing base (TCB) in such a system can indeed be very small. In our current
system the TCB is less than 2,700 lines of code (an order of magnitude smaller even than other
PCC systems) which adds to our confidence of its correctness.

1. Introduction

Machine-verified proofs have applications in computer security, program ver-
ification, and the formalization of mathematics. We are particularly interested
in security applications such as proof-carrying code, in which an untrusted
program provider must send a proof that the machine-language program is
safe to execute; or proof-carrying authorization, in whichan untrusted client
must send a proof that some desired server operation conforms to an autho-
rization policy. The recipient doesn’t trust the proof provider, so the recipi-
ent’s proof checker is an essential component of the trustedcomputing base: a
bug in the proof checker can be a security hole in the larger system. Therefore,
the checker must be trustworthy: it must be small, simple, readable, and based
on well-understood engineering and mathematical principles.

In contrast, theorem provers are often large and ugly, as required by the
incompleteness results of Gödel and Turing: no prover of bounded size is
sufficiently general, but one can always hack more features into the prover
until it proves the desired class of theorems. It is difficultto fully trust such
software, so some proving systems use technical means to ensure that buggy
provers cannot produce invalid proofs: the abstract data typetheoremof LCF
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(Gordon et al., 1979), or the proof-witness objects of Coq (Barras et al., 1998)
or Twelf (Pfenning and Schürmann, 1999). With these means,only a small
part of a large system must be examined and trusted.

How large is the proof checker that must be examined and trusted? To
answer this question we have tried the experiment of constructing and mea-
suring thesmallest possibleuseful proof checker for some real application.
Our checker receives, checks the safety of, and executes, proof-carrying code:
machine code for the Sparc with an accompanying proof of safety. The proof
is in higher-order logic represented in LF notation.

The checker would also be directly useful for proof-carrying authoriza-
tion (Appel and Felten, 1999; Bauer et al., 2002), that is, checking proofs of
authentication and permission according to some distributed policy.

A useful measure of the effort required to examine, understand, and trust
a program is its size in (non-blank, non-comment) lines of source code. Al-
though there may be much variation in effort and complexity per line of code,
a crude quantitative measure is better than none. We want some measure that
corresponds to the difficulty for a human to understand, analyze, and (per-
haps) to trust the system. The executable source code is whatthe human must
trust; any comment lines in the code just provide evidence and explanation,
not (in principle) additional complexity.

It is also necessary to count, or otherwise account for, any compiler, li-
braries, or supporting software used to execute the program. We address this
issue explicitly by avoiding the use of libraries and by making the checker
small enough so that it can be examined in machine language.

The trusted computing base(TCB) of a proof-carrying code system con-
sists of all code that must be explicitly trusted as correct by the user of the
system. In our case the TCB consists of two pieces: first, the specification of
the safety predicate in higher-order logic, and second, theproof checker, a
small C program that checks proofs, loads, and executes safeprograms.

In their investigation of Java-enabled browsers Dean, et al. (1997), found
that the first-generation implementations averaged one security-relevant bug
per 3,000 lines of source code (Felten, 2002). These browsers, as mobile-
code host platforms that depend on static checking for security, exemplify
the kind of application for which proof-carrying code is well suited. Wang
and Appel (2002) measured the TCBs of various Java Virtual Machines at
between 50,000 and 200,000 lines of code. The SpecialJ JVM (Colby et al.,
2000) uses proof-carrying code to reduce the TCB to 36,000 lines.

In this work, we show how to reduce the size of the TCB to under 2,700
lines (see figure 1), and by basing those lines on a well understood logical
framework, we have produced a checker which is small enough so that it can
be manually verified; and as such it can be relied upon to accept only valid
proofs. Since this small checker “knows” only about machineinstructions,
and nothing about the programming language being compiled and its type
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Figure 1. The TCB sizes of various JVMs (in thousands of lines of code):Kaffe is an
open-source non-optimizing Java JIT,BulletTrain is a highly optimizing Java compiler,
SpecialJ is a classical PCC system, andFPCC is our foundational PCC system. Core
runtime is the minimal runtime necessary just to run the coreof the programming language
(without APIs for such things as I/O for example).

system, the semantic techniques for generating the proofs that the TCB will
check can be involved and complex (Appel, 2001), but the checker can be
simple.

2. The LF logical framework

For a proof checker to be simple and correct, it is helpful to use a well de-
signed and well understood representation for logics, theorems, and proofs.
We use the LF logical framework.

LF (Harper et al., 1993) provides a means for defining and presenting
logics. The framework is general enough to represent a greatnumber of
logics of interest in mathematics and computer science (forinstance: first-
order, higher-order, intuitionistic, classical, modal, temporal, and others). The
framework is based on a general treatment of syntax, rules, and proofs by
means of a typed first-orderλ-calculus with dependent types. The LF type
system has three levels of terms: objects, types, and kinds.Types classify
objects and kinds classify families of types. The formal notion of definitional
equality is taken to beβη-conversion.

A logical system is presented by a signature, which assigns types and
kinds to a finite set of constants that represent its syntax, its judgments, and
its rule schemes. The LF type system ensures that object-logic terms are well
formed. At the proof level, the system is based on thejudgments-as-types
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principle: judgments are represented as types, and proofs are represented
as terms whose type is the representation of the theorem theyprove. Thus,
there is a correspondence between type-checked terms and theorems of the
object logic. In this way proof checking of the object logic is reduced to type
checking of the LF terms.

For developing our proofs, we use Twelf (Pfenning and Schürmann, 1999),
an implementation of LF by Frank Pfenning and his students. Twelf is a
sophisticated system with many useful features: in addition to an LF type
checker, it contains a type-reconstruction algorithm thatpermits users to omit
many explicit parameters, a proof-search algorithm (whichis like a higher-
order Prolog interpreter), constraint regimes (e.g., linear programming over
the exact rational numbers), mode analysis of parameters, ameta-theorem
prover, a pretty-printer, a module system, a configuration system, an interac-
tive Emacs mode, and more. We have found many of these features useful
in proof development, but Twelf is certainly not a minimal proof checker.
However, since Twelf does construct explicit proof objectsinternally, we can
extract these objects to send to our minimal checker.

In LF one declares the operators, axioms, and inference rules of anobject
logic as constructors. For example, we can declare a fragment of first-order
logic with the typeform for formulas and a dependent type constructorpf
for proofs, so that for any formulaA, the typepf(A) contains values that are
proofs ofA. Then, we can declare an “implies” constructorimp (infix, so it
appears between its arguments), so that ifA and B are formulas then so is
A imp B. Finally, we can define introduction and elimination rules for imp .1

form : type.
pf : form -> type.
imp : form -> form -> form.
%infix right 10 imp.
imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

All the above are defined as constructors. In general, constructors have the
form name : τ and declare thatname is a value of typeτ .

It is easy to declare inconsistent object-logic constructors. For example,
invalid: pf A is a constructor that acts as a proof of any formula, so using
it we could easily prove the false proposition:

logic_inconsistent : pf (false) = invalid.

So the object logic should be designed carefully and must be trusted.

1 Here, for example, theimp i axiom states that if you have an LF function that can
transform proofs ofA to proofs ofB, then applying the rule produces a proof ofA imp B.
The rule imp e (generally known asmodus ponens) goes the other way: given a proof of
A imp B and a proof ofA, applying the rule produces a proof ofB.

paper.tex; 29/09/2003; 11:25; p.4



5

Once the object logic is defined, theorems can be proved. We can prove
for instance that implication is transitive:

imp_trans: pf (A imp B) -> pf (B imp C) -> pf (A imp C) =
[p1: pf (A imp B)][p2: pf (B imp C)]
imp_i [p3: pf A] imp_e p2 (imp_e p1 p3).

In general, definitions (including predicates and theorems) have the form
name : τ = exp, which means thatname is now to stand for the valueexp
whose type isτ . In this example, theexp is a function with formal parameters
p1 andp2, and with bodyimp i [p3] imp e p2 (imp e p1 p3) .

Definitions need not be trusted, because the type-checker can verify whether
exp does have typeτ . In general, if a proof checker is to check the proofP
of theoremT in a logicL, then the constructors (operators and axioms) ofL
must be given to the checker in a trusted way (i.e., the adversary must not be
free to install inconsistent axioms). The statement ofT must also be trusted
(i.e., the adversary must not be free to substitute an irrelevant or vacuous
theorem). The adversary provides only the proofP , and then the checker does
the proof checking (i.e., it type-checks in the LF type system the definition
t : T = P , for some arbitrary namet).

3. Application: Proof-carrying code

Our checker is intended to serve a purpose: to check safety theorems about
machine-language programs. It is important to include application-specific
portions of the checker in our measurements to ensure that wehave ade-
quately addressed all issues relating to interfacing to thereal world.

The most important real-world-interface issue is, “is the proved theorem
meaningful?” An accurate checker does no good if it checks the wrong theo-
rem. As we will explain, the specification of the safety theorem is larger than
all the other components of our checker combined!

Given a machine-language programP , that is, a sequence of integers that
code for machine instructions (on the Sparc, in our case), the theorem is,
“when run on the Sparc,P never executes an illegal instruction, nor reads or
writes from memory outside a given range of addresses.” To formalize this
theorem it is necessary to formalize a description of instruction execution
on the Sparc processor. We do this in higher-order logic augmented with
arithmetic.

In our model (Michael and Appel, 2000), a machine state comprises a
register bank(r), and amemory(m), each of which is a function from integers
(register numbers and addresses) to integers (contents). Every register of the
instruction-set architecture (ISA) must be assigned a number in the register
bank: the general registers, the floating-point registers,the condition codes,
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and the program counter. Where the ISA does not specify a number (such as
for the PC) or when the numbers for two registers conflict (such as for the
floating point and integer registers) we use an arbitrary unused index:

r
0: r0

1: r1
...

31: r31

32: fp0
...

63: fp31

64: cc

65: PC

unused
...

m
0:

1:

2:

...

A single step of the machine is the execution of one instruction. We can
specify instruction execution by giving a step relation(r,m) 7→ (r′,m′)
that maps the prior state(r,m) to the next state(r′,m′) that holds after the
execution of the machine instruction.

For example, to describe the add instructionr1 ← r2 + r3 we might start
by writing,

(r,m) 7→ (r′,m′) ≡
r′(1) = r(2) + r(3) ∧ (∀x 6= 1. r′(x) = r(x)) ∧ m′ = m

In fact, we can parameterize the above on the three registersinvolved and
defineadd(i, j, k) as the following predicate on four arguments(r,m, r′,m′):

add(i, j, k) ≡
λr,m, r′,m′. r′(i) = r(j) + r(k) ∧ (∀x 6= i. r′(x) = r(x)) ∧ m′ = m

Similarly, for the load instructionri ← m[rj + c] we define its semantics to
be the predicate:

load(i, j, c) ≡
λr,m, r′,m′. r′(i) = m(r(j) + c)

∧ (∀x 6= i. r′(x) = r(x)) ∧ m′ = m

To enforce memory safety policies, we will modify the definition of load(i, j, c)
to require that the loaded address is legal (Appel, 2001), but we omit those
details here.
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But we must also take into account instruction fetch and decode. Suppose,
for example, that the add instruction is encoded as a 32-bit word, containing
a 6-bit field with opcode 3 denotingadd,a 5-bit field denoting the destination
registeri, and 5-bit fields denoting the source registersj, k:

3 i j 0 k

26 21 16 5 0
The load instruction might be encoded as:

12 i j c

26 21 16 0
Then we can say that some numberw decodes to an instructioninstr iff,

decode(w, instr ) ≡
(∃i, j, k.
0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ k < 25 ∧
w = 3 · 226 + i · 221 + j · 216 + k · 20 ∧
instr = add(i, j, k))
∨ (∃i, j, c.

0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ c < 216 ∧
w = 12 · 226 + i · 221 + j · 216 + c · 20 ∧
instr = load(i, j, c))
∨ . . .

with the ellipsis denoting the many other instructions of the machine, which
must also be specified in this formula.

We have shown (Michael and Appel, 2000) how to scale this ideaup to
the instruction set of a real machine. Real machines have large but semi-
regular instruction sets; instead of a single global disjunction, the decode
relation can be factored into operands, addressing modes, and so on. Real
machines don’t use integer arithmetic, they use modular arithmetic, which
can itself be specified in our higher-order logic. Some real machines have
multiple program counters (e.g., Sparc) or variable-length instructions (e.g.,
Pentium), and these can also be accommodated.

Our description of the decode relation is heavily factored by higher-order
predicates (this would not be possible without higher-order logic). We have
specified the execution behavior of a large subset of the Sparc architecture,
and we have built a prototype proof-generating compiler that targets that sub-
set. For proof-carrying code, it is sufficient to specify a subset of the machine
architecture; any unspecified instruction will be treated by the safety policy
as illegal. While this may be inconvenient for compilers that want to generate
that instruction, it does ensure that safety cannot be compromised.
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4. Specifying safety

Our step relation(r,m) 7→ (r′,m′) is deliberately partial; some states have
no successor state. In these states the program counterr(PC) points to an
illegal instruction. Using this partial step relation, we can define safety. A
safe program is one that will never execute an illegal instruction; that is, a
given state is safe if, for any state reachable in the Kleene closure of the step
relation, there is a successor state:

safe-state(r,m) ≡
∀r′,m′. (r,m) 7→∗ (r′,m′) ⇒ ∃r′′,m′′. (r′,m′) 7→ (r′′,m′′)

A program is just a sequence of integers (each representing amachine
instruction); we say that a programp is loaded at a locationl in memorym if

loaded(p,m, l) ≡ ∀i ∈ dom(p). m(i + l) = p(i)

Finally (assuming that programs are written in position-independent code), a
program issafeif, no matter where we load it in memory, we get a safe state:

safe(p) ≡
∀r,m, start . loaded(p,m, start) ∧ r(PC) = start ⇒ safe-state(r,m)

Let ; be a “cons” operator for sequences of integers (easily definable in
higher-order logic); then for some program

8420 ; 2837 ; 2938 ; 2384 ; nil

the safety theorem is simply

safe ( 8420 ; 2837 ; 2938 ; 2384 ; nil )

and, given a proofP , the LF definition that must be typechecked is

t: pf(safe(8420;2837;2938;2384;nil)) = P .

Though we wrote in section 2 that definitions need not be trusted because
they can be type-checked, this is not strictly true. Any definition that is used
(directly or indirectly) in the statement of the theorem must be trusted, be-
cause the wrong definition will lead to the proof of the wrong theorem. Thus,
all the definitions leading up to the definition ofsafe (includingadd , load ,
safe-state , step , loaded , etc.) must be part of the trusted checker. Since
we have approximately 1,600 lines of such definitions, and they are a compo-
nent of our “minimal” checker, one of the most important issues we faced is
the representation of these definitions; we discuss this in section 7.

On the other hand, a large proof will contain hundreds of internal defini-
tions. These are predicates and internal lemmas of the proof(not of the state-
ment of the theorem), and are at the discretion of the proof provider. Since
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Logic: 7%

Arithmetic: 9%

Machine
 Syntax:25%

Machine
 Semantics: 54%

Safety Predicate:6%

Figure 2. The relative component sizes of the Safety Specification forthe Sparc. The Machine
Semantics take the lion’s share of the Specification.

each is type checked by the checker before it is used in further definitions and
proofs, they don’t need to be trusted.

In the table below we show the various pieces needed for the specification
of the safety theorem in our logic. Every piece in this table is part of the
TCB. Column two shows the number of lines of Twelf code neededfor the
specification and column three the number of definitions in that specification.
The first two lines show the size of the logical and arithmeticconnectives (in
which theorems are specified) as well as the size of the logical and arithmetic
axioms (using which theorems are proved). The Sparc specification has two
components, a “syntactic” part (the decode relation) and a semantic part (the
definitions ofadd, load,etc.); these are shown in the next two lines. The size
of the safety predicate is shown last. The relative sizes of each component are
shown in figure 2.

Safety Specification Lines Definitions

Logic 135 61

Arithmetic 160 94

Machine Syntax 460 334

Machine Semantics 1,005 692

Safety Predicate 105 25

Total 1,865 1,206

From this point on we will refer to everything in the table as the safety
specificationor simply thespecification.
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5. Eliminating redundancy

Typically an LF signature will contain much redundant information. Consider
for example the rules forimp presented previously; in fully explicit form,
their representation in LF is as follows:

imp_i: {A : form}{B : form}
(pf A -> pf B) -> pf (A imp B).

imp_e: {A : form}{B : form}
pf (A imp B) -> pf A -> pf B.

The fact that bothA andB are formulas can be easily inferred by the fact they
are given as arguments to the constructorimp , which has been previously
declared as an operator over formulas.

On the one hand, eliminating redundancy from the representation of proofs
benefits both proof size and type-checking time. On the otherhand, it requires
performing term reconstruction, and thus it may dramatically increase the
complexity of type checking, driving us away from our goal ofbuilding a
minimal checker.

Twelf deals with redundancy by allowing the user to declare some pa-
rameters asimplicit. More precisely, all variables which are not quantified in
the declaration are automatically assumed implicit. Whenever an operator is
used, Twelf’s term reconstruction will try to determine thecorrect substitution
for all its implicit arguments. For example, in type-checking the lemma

imp_refl : pf (A imp A) = imp_i ([p : pf A] p).

Twelf will automatically reconstruct the two implicit arguments ofimp i to
be both equal toA.

While Twelf’s notion of implicit arguments is effective in eliminating most
of the redundancy, type reconstruction adds considerable complexity to the
system. Another drawback of Twelf’s type reconstruction isits reliance on
higher-order unification, which is undecidable. Because ofthis, type checking
of some valid proofs may fail.

Since full type reconstruction is too complex to use in a trusted checker,
one might think of sending fully explicit LF proof terms; buta fully explicit
proof in Twelf syntax can be exponentially larger than its implicit representa-
tion. To avoid these problems, Necula’sLFi (Necula, 1997) uses partial type
reconstruction and a simple algorithm to determine which ofthe arguments
can be made implicit. Implicit arguments are omitted in the representation,
and replaced by placeholders. Oracle-based checking (Necula and Rahul,
2001) reduces the proof size even further by allowing the erasure of subterms
whose reconstruction is not uniquely determined. Specifically, in cases when
the reconstruction of a subterm is not unique, but there is a finite (and usually
small) list of candidates, it stores an oracle for the right candidate number
instead of storing the entire subterm.
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These techniques use clever syntactic representations of proofs that min-
imize proof size; checking these representations is not as complex as full
Twelf-style type reconstruction, but is still more complexthan is appropri-
ate for a minimal proof checker. We are willing to tolerate somewhat larger
proofs in exchange for a really simple checking algorithm. Instead of using
a syntactic representation of proofs, we avoid the need for the checker to
parse proofs by using a data-structure representation. However, we still need
to avoid exponential blowups, so we reduce redundancy by structure shar-
ing. Therefore, we represent and transmit proofs as LF termsin the form of
directed acyclic graphs (DAGs), with structure sharing of common subex-
pressions to avoid exponential blowup.

A node in the DAG can be one of ten possible types: one for kinds, five
for ordinary LF terms, and four for arithmetic expressions.Each node may
store up to three integers,arg1 , arg2 , andtype . This last one, if present,
will always point to the sub-DAG representing the type of theexpression.

arg1 arg2 type

n U U U kind

c U U M constant

v M M M variable

a M M O application

p M M O product

l M M O abstraction

# M U O number

+ M M O addition proof obj

* M M O mult proof obj

/ M M O div proof obj

M = mandatory

O = optional

U = unused

The content ofarg1 andarg2 is used in different ways for different node
types. For all nodes representing arithmetic expressions (‘#’, ‘+’, ‘*’, and
‘/’), they contain integer values; in particular, for the nodes corresponding to
meta-level numbers (‘#’) onlyarg1 is used. For products and abstractions
(‘p’ and ‘l’), arg1 points to the bound variable, andarg2 to the term where
the binding takes place. For variable nodes (‘v’),arg1 andarg2 are used
to make sure that the variable always occurs within the scopeof a quanti-
fier. For application nodes (‘a’),arg1 and arg2 point to the function and
its argument, respectively. Finally, constant declaration nodes (‘c’), and kind
declaration nodes (‘n’) use neither of the two.
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For a concrete example, consider the LF signature:

form : type.
pf : form -> type.
imp : form -> form -> form.

We present below the DAG representation of this signature. We “flattened”
the DAG into a numbered list, and, for clarity, we also added acomment on
the right showing the corresponding LF term.

1| n 0 0 0 ; type Kind
2| c 0 0 1 ; form: type
3| v 0 0 2 ; x: form
4| p 3 1 0 ; {x: form} type
5| c 0 0 4 ; pf: {x: form} type
6| v 0 0 2 ; y: form
7| p 6 2 0 ; {y: form} form
8| v 0 0 2 ; x: form
9| p 8 7 0 ; {x: form}{y: form} form

10| c 0 0 9 ; imp: {x: form}{y: form} form

6. Dealing with arithmetic

Since our proofs reason about encodings of machine instructions (opcode
calculations) and integer values manipulated by programs,the problem of
representing arithmetic within our system is a critical one. A purely logical
representation based on 0, successor and predecessor is notsuitable to us,
since it would cause proof size to explode. Even a binary representation
(using 0,×2, and×2 + 1) is not attractive, because in our PCC application
there are many 32-bit constants (representations of machine instructions) that
would then take 32 operators each.

The latest releases of Twelf offer extensions that deal natively with infinite-
precision integers and rationals. While these extensions are very powerful
and convenient to use, they offer far more than we need, and because of their
generality they have a very complex implementation (the rational extension
alone is 1,950 lines of Standard ML). What we would like for our checker is
an extension built in the same spirit as those, but much simpler and lighter.

There are essentially two properties that we require from such an exten-
sion:

1. LF terms for all the numbers we use; moreover, the size of the LF term
for n should be constant and independent ofn.

2. Proof objects for single-operation arithmetic facts such as “10+2 = 12”;
again, we require that such proof objects have constant size.
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Our arithmetic extensions to the checker are the smallest and simplest
ones to satisfy (1) and (2) above. We add theword32 type to the TCB,
(representing integers in the range [0, 232 − 1]) as well as the following
axioms:

word32 : type.
+ : word32 -> word32 -> word32 -> type.
* : word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.

We also modify the checker to accept arithmetic terms such as:

567 : word32.
456+25 : + 456 25 481.
32*4 : * 32 4 128.
56/5 : / 56 5 11.

This extension does not modify in any way the standard LF typechecking:
we could have obtained the same result (although much more inefficiently) if
we added all these constants to the trusted LF signature by hand. However,
granting them special treatment allowed us to save literally millions of lines
in the axioms in exchange for an extra 55 lines in the checker.

To embed and use these new constants in our object logic, we also declare:

c: word32 -> tm num.
eval_plus: + A B C -> pf (eq (plus (c A) (c B)) (c C)).
eval_times: * A B C -> pf (eq (times (c A) (c B)) (c C)).
eval_div: / M N Q ->

pf ((geq (c M) (times (c N) (c Q))) and
(not (geq (c M) (times (c N) (plus one (c Q)))))).

This embedding fromword32 to numbers in our object logic is not sur-
jective. Numbers in our object logic are still unbounded;word32 merely
provides us with handy names for the ones used most often.

With this “glue” to connect object logic to meta logic, numbers and proofs
of elementary arithmetic properties, are just terms of sizetwo. For example,
the representation of5634 in the object logic, is(c 5634) , which, by virtue
of these additional axioms, can be easily verified to be a valid term of type
num.

7. Representing axioms and trusted definitions

Since we can represent axioms, theorems, and proofs as DAGs,it might seem
that we need neither a parser nor a pretty-printer in our minimal checker. In
principle, we could provide our checker with an initial trusted DAG repre-
senting the axioms and the theorem to be proved, and then it could receive
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and check an untrusted DAG representing the proof. The trusted DAG could
be represented in the C language as an initialized array of graph nodes.

This might work if we had a very small number of axioms and trusted
definitions, and if the statement of the theorem to be proved were very small.
We would have to read and trust the initialized-array statements in C, and un-
derstand their correspondence to the axioms (etc.) as we would write them in
LF notation. For a sufficiently small DAG, this might be simpler than reading
and trusting a parser for LF notation.

However, even a small set of operators and axioms (especially once the
axioms of arithmetic are included) requires hundreds of graph nodes. In ad-
dition, as explained in section 4, our trusted definitions include the machine-
instruction step relation of the Sparc processor. These 1,865 lines of Twelf
expand to 22,270 DAG nodes. Clearly it is impossible for a human to directly
read and trust a graph that large.

Therefore, we require a parser or pretty-printer in the minimal checker; we
choose to use a parser. Our C program will parse the 1,865 lines of axioms and
trusted definitions, translating the LF notation into DAG nodes. The axioms
and definitions are also part of the C program: they are a constant string to
which the parser is applied on startup.

This parser is 428 lines of C code; adding these lines to the minimal
checker means our minimal checker can use 1,865 lines of LF instead of
22,270 lines of graph-node initializers, clearly a good tradeoff.

Our parser accepts valid LF expressions, written in the samesyntax used
by Twelf. In addition to those, it will also parse nonnegative numbers below
232 and type them asword32 objects.

Two extra features we added to our parser are infix operators (the fixity
information is passed to the parser using the same%infix directive used by
Twelf), and single-line comments. While these are not strictly necessary, im-
plementing them did not significantly affect the complexityof the parser, and
their use greatly improved the readability of the specification, and therefore
its trustworthiness.

7.1. ENCODING HIGHER-ORDER LOGIC INLF

Our encoding of higher-order logic in LF follows that of Harper et al. (1993)
and is shown in figure 7. Theconstructorsgenerate the syntax of the object
logic and theaxiomsgenerate its proofs. A meta-logical type istype and an
object-logic type istp . Object-logic types are constructed fromform (the
type of formulas),num (the type of integers), and thearrow constructor.
So the object-logic predicateeven? , for instance, would have object type
(num arrow form) . The LF termtm maps an object type to a meta type,
so an object-level term of typeT has type (tm T) in the meta logic.
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Logic Constructors

tp : type.

tm : tp -> type.

form : tp.

num : tp.

arrow : tp -> tp -> tp.

pf : tm form -> type.

lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).

@ : tm (T1 arrow T2) -> tm T1 -> tm T2.

forall : (tm T -> tm form) -> tm form.

imp : tm form -> tm form -> tm form.

Logic Axioms

beta e : pf (P ((lam F) @ X)) -> pf (P (F X)).

beta i : pf (P (F X)) -> pf (P (lam F) @ X).

imp i : (pf A -> pf B) -> pf (A imp B).

imp e : pf (A imp B) -> pf A -> pf B.

forall i : ( {X : tm T } pf (A X)) -> pf (forall A).

forall e : pf (forall A) -> {X : tm T } pf (A X).

Figure 3. Higher-Order Logic in Twelf

Abstraction in the object logic is expressed by thelam term. The term
(lam [x] (F x)) is the object-logic function that mapsx to (F x) . Ap-
plication for such lambda terms is expressed via the@operator. The quan-
tifier forall is defined to take as input a meta-level (LF) function of type
(tm T -> tm form) and produce atm form . The use of the LF functions
here makes it easy to perform substitution when a proof offorall needs to
be discharged, since equality in LF is justβη-conversion.

Notice that most of the standard logical connectives are absent from fig-
ure 7. This is because we can produce them as definitions from the construc-
tors we already have. For instance, theand andor connectives can be defined
as follows:

and = [A][B] forall [C] (A imp B imp C) imp C.
or = [A][B] forall [C] (A imp C) imp (B imp C) imp C.

It is easy to see that the above formulae are equivalent to thestandard def-
initions of and andor . What is in fact required in order to assert this, is to
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derive the standard introduction and elimination rules foreach of them. These
rules are proven as lemmas (from the definitions of the connectives and the
existing axioms), so they need not be part of the trusted computing base. On
the other hand, since the constructors are used in the definition of the safety
predicate, they must be part of the TCB.
Object-level equality2 is also easy to define:

eq : tm T -> tm T -> tm form =
[A : tm T][B : tm T] forall [P] P @ B imp P @ A.

This states that objectsA andB are considered equal iff any predicateP that
holds onB also holds onA.

Terms of type (pf A ) are terms representing proofs of object formulaA.
Such terms are constructed using the axioms of figure 7. Axiomsbeta e and
beta i are used to proveβ-equivalence in the object logic. The first states
that for any meta-level predicateP (of type tm T -> tm form ), if P holds
on the term((lam F) @ X) then it also holds on(F X) . Axiom beta i
takes one in the other direction. Axiomsimp i andimp e transform a meta-
level proof function to the object level and vice-versa. Finally, forall i
introduces theforall statement if it is presented with a meta-level function
from X to pf (A X) , and forall e discharges aforall by applying the
meta-level functionA to an instanceX of its domain to producepf (A X) .
Notice how the higher-order abstract syntax of LF makes thisdischarging
(and the term substitution ofX in the body ofA) completely painless for the
designer of the logic.

As an example of a simple proof we show how to prove the reflexivity
lemmarefl , which states that all objects equal themselves. By the definition
of eq, if X is to equal itself, we must to show that for any predicateP if
(P @ X) then(P @ X) – which is obvious. Here is the proof:

refl : pf (eq X X) =
forall_i [P] imp_i [q : pf (P @ X)] q.

7.2. “POLYMORPHIC” PROGRAMMING IN TWELF

ML-style implicit polymorphism allows one to write a function usable at
many different argument types, and ML-style type inferencedoes this with

2 The equality predicate is polymorphic inT. The objectsA andB have object typeT and
so they could benums, form s or even object level functions (arrow types). The object type
T is implicit in the sense that when we use theeq predicate we do not have to specify it;
Twelf can automatically infer it. So internally, the meta-level type ofeq is not what we have
specified above but the following:

{T : tp} tm T -> tm T -> tm form.

We will have more to say about this in section 7.2.
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a low syntactic overhead. We are writing proofs, not programs, but we would
still like to have polymorphic predicates and polymorphic lemmas. LF is not
polymorphic in the ML sense, but Harper et al. (1993) show howto use
LF’s dependent type system to get the effect and (most of) theconvenience
of implicit parametric polymorphism with an encoding trick, which we will
illustrate with an example.

Suppose we wish to write the lemmacongr that would allow us to sub-
stitute equals for equals:

congr : {H : type -> tm form}
pf (eq X Z) -> pf (H Z) -> pf (H X) = ...

The lemma states that for any predicateH, if H holds onZ andZ = X thenH
also holds onX. Unfortunately this is ill-typed in LF since LF does not allow
polymorphism. Fortunately though, there is way to get polymorphism at the
object level. We rewritecongr as:

congr : {H : tm T -> tm form}
pf (eq X Z) -> pf (H Z) -> pf (H X) = ...

and this is now acceptable to Twelf. FunctionH now judges objects of meta-
type (tm T) for any object-level typeT, and socongr is now “polymor-
phic” in T. We can apply it on any object-level type, such asnum, form ,
num arrow num , num arrow form , etc. This solution is general enough
to allow us to express any polymorphic term or lemma with ease. Axioms
forall i andforall e in figure 7 are likewise polymorphic inT.

7.3. HOW TO WRITE EXPLICIT TWELF

In the definition of lemmacongr above, we have left out many explicit
parameters since Twelf’s type-reconstruction algorithm can infer them. The
actual LF type of the termcongr is:

congr : {T: tp}{X: tm T}{Z: tm T}{H: tm T -> tm form}
pf (_eq T X Z) -> pf (H Z) -> pf (H X) = ...

(here we also make use of the explicit version of the equalitypredicate eq).
Type reconstruction in Twelf is extremely useful, especially in a large system
like ours, where literally hundreds of definitions and lemmas have to be stated
and proved.

Our safety specification was originally written to take advantage of Twelf’s
ability to infer missing arguments. Before proof checking can begin, this
specification needs to be fed to our proof checker. In choosing then what
would be in our TCB we had to decide between the following alternatives:

1. Keep the implicitly-typed specification in the TCB and runit through
Twelf to produce an explicit version (with no missing arguments or types).
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Object Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
lam6 (arrow T1 (arrow T2 form))

(arrow T3 (arrow T2 form))
(arrow T2 form)
(arrow T1 (arrow T3 T4))
T4 T2 form

[f0][f1][p_pi][icons][ins][w]
(@ T2 form p_pi w) and
(exists2 T1 T3 [g0:tm T1] [g1:tm T3]

(@ T2 form
(&& T2 (@ T1 (arrow T2 form) f0 g0)

(@ T3 (arrow T2 form) f1 g1)) w) and
(eq T4 ins (@ T3 T4 (@ T1 (arrow T3 T4) icons g0) g1))).

Meta Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
[f0][f1][p_pi][icons][ins][w]
(p_pi w) and
(exists2 [g0:tm T1][g1:tm T3]

(f0 g0 && f1 g1) w) and (eq ins (icons g0 g1)).

Figure 4. Abstraction & Application in the Object versus Meta Logic.

This explicit version would be fed to our proof checker. Thisapproach
allows the specification to remain in the implicit style. Also our proof
checker would remain simple (with no type reconstruction/inference ca-
pabilities) but unfortunately we now have to add to the TCB Twelf’s
type-reconstruction and unification algorithms, which areabout 5,000
lines of ML code.

2. Run the implicitly typed specification through Twelf to get an explicit
version. Now instead of trusting the implicit specificationand Twelf’s
type-reconstruction algorithms, we keep them out of the TCBand pro-
ceed to manually verify the explicit version. This approachalso keeps the
checker simple (without type-reconstruction capabilities). Unfortunately
the explicit specification produced by Twelf explodes in size from 1,700
to 11,000 lines, and thus the code that needs to be verified correct is huge.
The TCB would grow by a lot.

3. Rewrite the trusted definitions in an explicit style. Now we do not need
type reconstruction in the TCB (the problem of choice 1), andif the
rewrite from the implicit to the explicit style can avoid thesize explosion
(the problem of choice 2), then we have achieved the best of both worlds.
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Since neither of choices 1 and 2 above were consistent with our goal of a
small trusted computing base, we followed choice 3 and rewrote the trusted
definitions in an explicit style while managing to avoid the size explosion.
The new safety specification is only 1,865 lines of explicitly-typed Twelf.
It contains no terms with implicit arguments – everything isexplicit and
every quantified variable is explicitly typed. Thus, we do not need a type-
reconstruction/type-inference algorithm in the proof checker. The rewrite solves
the problem while maintaining the succinctness and brevityof the original
TCB, the penalty of the explicit style being an increase in size of 124 lines.
The remainder of this section explains the problem in detailand the method
we used to bypass it.

To see why there is such an enormous difference in size (1,700lines vs
11,000) between the implicit specification and its explicitrepresentation gen-
erated by Twelf’s type-reconstruction algorithm, consider the following ex-
ample. LetF : tm (num arrow num arrow form) be a two-argument
object-level predicate (a typical case when describing unary operators in an
instruction set). When such a predicate is applied, as in(F @ X @ Y), Twelf
has to infer the implicit arguments to the two instances of operator@. The
explicit representation of the application then becomes:

@ num form (@ num (num arrow form) F X) Y

It is easy to see how the explicit representation explodes insize for terms of
higher order. Since the use of higher-order terms was essential in achieving
maximal factoring in the machine descriptions (Michael andAppel, 2000),
the size of the explicit representation quickly becomes unmanageable.

Here is another more concrete example from thedecode relation of sec-
tion 3. This one shows how the abstraction operatorlam suffers from the same
problem. The predicate below (given in implicit form) is used in specifying
the syntax of all Sparc instructions of two arguments.

fld2 = lam6 [f0][f1][p_pi][icons][ins][w]
p_pi @ w and
exists2 [g0][g1] (f0 @ g0 && f1 @ g1) @ w and

eq ins (icons @ g0 @ g1).

Predicatesf0 andf1 specify the input and the output registers,p pi decides
the instruction opcode,icons is the instruction constructor,ins is the in-
struction we are decoding, andw is the machine-code word.3 In explicit form

3 As we mentioned before, our specifications are highly factored and this is an example
of such factoring – any instruction of two arguments can be specified using this predicate. To
define, for instance, the predicate that decides theFMOVs(floating-point move) instruction on
the Sparc, we would say:

ins_MOVs = fld2 @ f_fs2 @ f_fd @ p_FMOVs @ i_FMOVs.

where the arguments are as described above.
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this turns into what we see on the left-hand side of figure 7.3 –an explicitly
typed definition 16 lines long.

The way around this problem is the following: We avoid using object-
logic predicates whenever possible. This way we need not specify the types
on which object-logic application and abstraction are used. For example, the
fld2 predicate above now becomes what we see on the right-hand side of
figure 7.3. This new predicate has shrunk in size by more than half.

Sometimes moving predicates to the meta-logic is not possible. For in-
stance, we representinstructionsas predicates from machine states to ma-
chine states (see section 3). Such predicates must be in the object logic since
we need to be able to use them in quantifiers (exists [ins : tm instr]
...). Thus, we face the problem of having to supply all the implicit types when
defining such predicates and when applying them. But since these types are
always fixed we can factor the partial applications and avoidthe repetition.
So, for example, when defining some Sparc machine instruction as in:

i_anyInstr = lam2 [rs : tnum][rd : tnum]
lam4 registers memory registers memory form

[r : tregs][m : tmem] [r’ : tregs][m’ : tmem]
...

we define the predicateinstr lam as:

instr_lam = lam4 registers memory registers memory form.

and then use it in defining each of the 250 or so Sparc instructions as below:

i_anyInstr = [rs : tnum][rd : tnum]
instr_lam [r : tregs][m : tmem]

[r’ : tregs][m’ : tmem]
...

This technique turns out to be very effective because our machine syntax
and semantics specifications were highly factored to begin with (Michael and
Appel, 2000).

So by moving to the meta logic and by clever factoring we have moved
the TCB from implicit to explicit style with only a minor increase in size.
Now we don’t have to trust a complicated type-reconstruction/type-inference
algorithm. What we feed to our proof checker is precisely theset of axioms
we explicitly trust.

7.4. THE IMPLICIT LAYER

When we are building proofs, we still wish to use the implicitstyle because of
its brevity and convenience. For this reason we have built animplicit layer on
top of our explicit TCB. This allows us to write proofs and definitions in the
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implicit style and LF’sβη-conversion takes care of establishing meta-level
term equality. For instance, consider the object-logic application operator@
given below:

_@ : {T1: tp}{T2: tp}
tm (T1 arrow T2) -> tm T1 -> tm T2.

In the implicit layer we now define a corresponding application operator@in
terms of @as follows:

@ : tm (T1 arrow T2) -> tm T1 -> tm T2 = _@ T1 T2.

In this term the type variablesT1 andT2 are implicit and need not be specified
when @is used. Because@is a definition used only in proofs (not in the
statement of the safety predicate), it does not have to be trusted.

8. The proof checker

The total number of lines of code that form our checker is 2,668. Of these,
1,865 are used to represent the LF signature containing the core axioms and
definition, which is stored as a static constant string.

The remaining 803 lines of C source code, can be broken down asfollows:

Component Lines

Error messaging 14

Input/Output 29

Parser 428

DAG creation and manipulation 111

Type checking and term equality 167

Main program 54

Total 803

In designing the components listed above, we make sure not touse any
library functions. Libraries often have bugs, and by avoiding their use we
eliminate the possibility that some adversary may exploit one of these bugs
to disable or subvert proof checking. However, we do make useof two POSIX
calls: read , to read the program and proof, and_exit , to quit if the proof
is invalid. This seems to be the minimum possible use of external libraries.

8.1. TYPE CHECKING AND TERM EQUALITY

The checker implements the syntax-directed algorithm given by the inference
rules of Figure 8.1, which is essentially the same as a standard algorithm
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(Harper and Pfenning, 2000, Section 6). The rules derive sequents of the
form Σ,Γ ` X : A, whereΣ is the trusted signature;Γ is a typing context
holding variables introduced byλ- or Π-abstractions when computing the
types of subexpressions of such abstractions;X is a term whose classifier we
must compute; andA is the classifier computed forX. GivenX, the rules
are applied bottom-up to computeA, whereΓ is initially empty. Note that
the signatureΣ is not type checked, which is reasonable since it is trusted.
Symbols may be bound more than once byΓ in sequents; thelookupfunction
is used to find the most recently added binding inΓ for a symbol. Thus,Γ
holds a stack of bindings. This stack is implemented by the call stack created
during recursive calls in the checker. In several rules,α is a meta-variable
ranging over{type, kind}. In (app),[N/x]B is written to denote the result of
safely substitutingN for x in B.

While the algorithm of Figure 8.1 is essentially the same as Harper and
Pfenning’s, there are a few differences that should be noted. First, the algo-
rithm is presented slightly more concisely here, by combining several rules
from Harper and Pfenning’s presentation of their algorithm. Second, Harper
and Pfenning’s algorithm compares expressions for equivalence uses type
information, where here we use Coquand’s algorithm, which does not use any
type information, for our' relation (Coquand, 1991). The one significant dif-
ference is that Harper and Pfenning’s algorithm is for LF without type-level
λ-abstractions. The PCC application makes use of type-levelλ-abstractions,
so an extension to the algorithm is needed. In (app), we need to reduce the

type of M to weak head normal form. This is indicated bywhr
→ . The weak

head normal form ofX is X if X is not of the form(λx : E.F ) G, and oth-
erwise, it is the weak head normal form of[G/x]F . This is similar to what is
done is Huet’s Constructive Engine for the Calculus of Constructions (Huet,
1989). Note that the resulting algorithm is complete for LF,since this change
to the (app) rule merely allows more classifications to be derived than in LF.

Given a proof termX and a theoremA, the checker first computes the
classifier ofX with respect to the trusted signatureΣ in the empty context.
If X indeed has a classifier,A′, then the checker checksA′ ' A. If X is not
classifiable or its classifier is not equivalent toA, the checker reports that the
proof is invalid and exits. Otherwise, it returns 0, indicating thatX is indeed
a valid proof ofA.

8.2. TRUSTING THE C COMPILER

These 803 lines of C need to be compiled by a C compiler, and so it would
appear that this compiler would need to be included in our TCB. The C com-
piler could have bugs that may potentially be exploited by anadversary to
circumvent proof checking. More dangerously perhaps, the Ccompiler could
have been written by the adversary so while compiling our checker, it could
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(type) Σ,Γ ` type: kind

(ax) Σ,Γ ` v : A A = lookup(v, Σ,Γ)

(lam)
Σ,Γ, x : A ` M : B
Σ,Γ ` A : type Σ,Γ, x : A ` B : α

Σ,Γ ` λx : A.M : Πx : A.B

(app)
Σ,Γ ` M : X X

whr
→ Πx : A.B

Σ,Γ ` N : A′ A ' A′

Σ,Γ ` (M N) : [N/x]B

(pi) Σ,Γ ` A : type Σ,Γ, x : A ` B : α
Σ,Γ ` Πx : A.B : α

Figure 5. The LF type-checking algorithm

insert a Thompson-style (Thompson, 1984) Trojan horse intothe executable
of the checker.

All proof verification systems suffer from this problem. Onesolution (as
suggested by Pollack (1996)) is that of independent checking: write the proof
checker in a widely used programming language and then use different com-
pilers of that language to compile the checker. Then, run allyour checkers
on the proof in question. This is similar to the way mathematical proofs are
“verified” as such by mathematicians today.

The small size of our checker suggests another solution. Given enough
time one may read the output of the C compiler (assembly language or ma-
chine code) and verify that this output faithfully implements the C program
given to the compiler. Such an examination would be tedious but it is not
out of the question for a C program the size of our checker (3900 Sparc
instructions, as compiled), and it could be carried out if such a high level
of assurance was necessary. Such an investigation would certainly uncover
Thompson-style Trojan horses inserted by a malicious compiler. This ap-
proach would not be feasible for the JVMs mentioned in the introduction;
they are simply too big.

One might consider writing the checker in a more sophisticated program-
ming language. For example, it might be easier to reason about the correct-
ness of ML programs than C programs. However, there would still be the
need to trust an ML compiler and its associated runtime system, including
garbage collector. We could take the same approach with ML aswith C –
don’t trust the compiler but examine the compiled code to manually verify
the faithfulness of the translation – but this might be more difficult with ML
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than with C. In this context, the advantage of C is its low level of abstraction
– the machine language corresponds closely to the source code.

Pollack (1996) writes, “it is unlikely that a bug in the computing platform
[e.g., the compiler] causes a proof checker to erroneously accept a proof.”
However, the application of machine-checked proof in computer security is
an adversarial situation. For example, Proof-Carrying Code is designed so
that an adversary can send a program to execute, with a proof that it respects
its interfaces. The adversary will have had the opportunityto study a copy of
the proof checker, and the ML or C compiler that compiles the proof checker.
If the adversary finds a bug, he can try to design a proof that exercises this
bug, in such a way that a proof of a false safety predicate is accepted. Though
this scenario may seem far-fetched, it is similar to some of the attacks on Java
Virtual Machines reported by Dean et al. (1997).

Independent implementations.Another way that we can gain confidence in
a proof is to check it in independently implemented proof checkers. For sev-
eral years we have used Twelf to check our proofs, and while wehave found
bugs in Twelf from time to time, these have always been incompleteness bugs
rather than soundness bugs: we have never observed Twelf to accept an invalid
proof. However, we have not tested Twelf in the adversarial way described
in the previous paragraph (such adversarial attacks are noteasy!). By using
our own independent checker (perhaps in addition to Twelf) we could gain
confidence in adversarially supplied proofs.

It’s not difficult to send the same proof through both Twelf and through our
checker. But the LF proof-checker is only 1/3 of our trusted base; the other
2/3 is the specification of the logical inference rules and ofthe theorem to be
proved, and we have no independent implementation of those.Furthermore,
proofs with respect to the original specification will not bevalid for the new
logic and theorem, unless adequacy results are proved and checked.

8.3. PROOF-CHECKING MEASUREMENTS

In order to test the proof checker, and measure its performance, we wrote a
small Standard ML program that converts Twelf internal datastructures into
DAG format, and dumps the output of this conversion to a file, ready for
consumption by the checker.

We performed our measurements on a sample proof of nontrivial size, that
proves a substantial set of lemmas that will be used in proofsof real Sparc
programs. The proof in its fully explicit form is 287,285 lines of Twelf. Its
DAG representation consists of 4,212,104 nodes. The Twelf system can check
this proof in 43.8 seconds.

Checking the sample proof consists of the four steps: parsing and type-
checking the TCB (0.2 sec), loading the proof from disk (0.2 sec), checking
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the DAG for well-formedness, and type-checking the proof itself (9.4 sec).
Flit is about four times faster than Twelf—although it relies on Twelf to digest
the proof and construct the DAG. During type checking of thisproof the
number of temporary nodes generated is 6,744,899. The measurements above
were made on a 1 GHz Pentium III PC with 256MB of memory.

In our original implementation of the proof-checker we found that most of
proof-checking time was spent performing substitutions. All the lemmas and
definitions we use in our proofs are closed expressions, and therefore they do
not need to be traversed when substituting for a variable. Wemodified our
checker to keep track of such closed terms and to avoid their traversal dur-
ing substitutions. This simple optimization drastically reduced type-checking
time by more than an order of magnitude.

9. Related Work

There has been a large amount of work in the area of proofs of machine
language programs using both first order (Boyer and Yu, 1992)and higher
order logics (Wahab, 1998; Gordon, 1994). Some of this work was focused on
proving the correctness of the compiler or the code generator (see for instance
Milner and Weyhrauch, 1972). For a historical survey see Stringer-Calvert
(1998).

Specifying machine architectures.Two pieces of work are most related to
our work as far as the safety specification is concerned. Wahab (1998) is
concerned with correctness (not just safety) of assembly language programs.
He defines a flow-graph language expressive enough to describe sequential
machine code programs (he deals with the Alpha AXP processor). His logic
is non-standard in that substitution is taken as a primitiveoperator and the
logic contains rules detailing term equality under it. He proves the Hoare-
logic rules as theorems and uses abstraction in order to massage the code
stream and get shorter correctness proofs. The translationfrom machine code
to the flow-graph language does not go through a “decode” relation, i.e., he
proves the safety of assembly language programs not machinecode programs.
Thus he assumes that the assembler (translating assembly language to ma-
chine code) is correct (it is part of the trusted base) which grows his TCB
substantially.

Boyer and Yu (1992) formally specify a subset of the MC68020 micro-
processor within the logic of the Boyer-Moore Theorem Prover (Boyer and
Moore, 1988), a quantifier-free first order logic with equality. Their specifica-
tion of the step relation is similar to ours (they also include a decode relation)
but in their approach these relations are functions. The theorem prover they
use allows them to “run” the step function on concrete data (i.e. once the step
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function is specified they automatically have a simulator for the CPU). Their
logic, albeit first-order, is much larger than ours mainly because of its wealth
of arithmetic operators (decoding can be done directly fromthe specification).
Also their machine descriptions are larger than ours; the subset of the 68020
machine description is about 128K bytes while our description of the Sparc is
less than half that size. Admittedly, the Motorola chip is much more complex
than the Sparc, but we suspect that most of the size difference is attributed to
our extensive use of factoring facilitated by higher order logic.

Small, trustworthy proof checkers.Watson (2001) surveys proof represen-
tations in 16 different theorem-proving systems. Relatively few of these sys-
tems support the export of proofs for independent checking.“This feature has
generally been added to the prover when mature.” One exampleof a prover
that supports proof export is HOL.

The HOL system is an theorem prover for higher-order logic (Gordon,
2000). Historically, HOL did not have a facility to produce proof objects that
could be independently verified; it relies on abstract data types to prevent
confusing formulas with theorems.

Harrison and Slind (1994) implemented a reference version of HOL, called
gtt . The gtt kernel, plus a parser and other code to handle I/O issues,
could in principle be used to check HOL proofs, though HOL at that time did
not have an external proof representation. The kernel is about 750 lines of
Standard ML (compared to our 278 lines of C for DAG manipulation, type
checking, term equality). The size of the parser is not given.

Wright (1994) implemented and formally verified a proof checker for a
higher-order logic (it was “intended to model proofs that could be output by
the HOL system”). The program was written in ML; the components that
would be relevant to the independent checking of proofs are the parser (for
parsing axioms), i/o interface, and the “core.” The core is approximately 530
lines of ML; the size of the other components are not given.

Wong (1995) designed a representation language for HOL proofs, and
built an independent checker for HOL, larger than Wright’s but more efficient.
His parser is 2297 lines of ML, his core checker is 5715 lines,and there are
2905 lines of auxiliary modules, a total of 10,917 lines of code (Wong, 2003).

It is not clear why these checkers for HOL are larger than our checker for
LF (which, in principle, is more general than HOL). It is certainly not the
conciseness and expressiveness of C (which we used) versus ML (which they
used); a general rule of thumb is that for symbolic applications such as this,
ML is about twice as concise as C. HOL just has more operators and concepts
than LF, and it appears to be more efficient to represent HOL inLF and then
check the LF. Or it may be that we pursued the (perhaps artificial) design goal
of mimizing the size of our checker, and others had differentprimary design
goals.
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10. Future work

The DAG representation of proofs is quite large, and we wouldlike to do
better. One approach would be to compress the DAGs in some way; another
approach is to use a compressed form of the LF syntactic notation. However,
we believe that the most promising approach is neither of these.

Our proofs of program safety are structured as follows: firstwe prove (by
hand, and check by machine) many structural lemmas about machine instruc-
tions and semantics of types (Appel and Felty, 2000; Appel and McAllester,
2001; Ahmed et al., 2002). Then we use these lemmas to prove (by hand,
as derived lemmas) the rules of a low-level typed assembly language (TAL).
Our TAL has several important properties:

1. Each TAL operator corresponds to exactly 0 or 1 machine instructions
(0-instruction operators are coercions that serve as hintsto the TAL type
checker and do nothing at runtime).

2. The TAL rules prescribe Sparc instruction encodings as well as the more
conventional (Morrisett et al., 1998) register names, types, and so on.

3. The TAL typing rules are syntax-directed, so type-checking a TAL ex-
pression is decidable by a simple tree-walk without backtracking.

4. The TAL rules can be expressed as a set of Horn clauses.

Although we use higher-order logic to state and prove lemmasleading up
to the proofs of the TAL typing rules, and we use higher-orderlogic in the
proofs of the TAL rules, we take care to make all the statements of the TAL
rules first-order Horn clauses. Consider such a clause,

head :- goal1 , goal2 , goal3.

In LF (using our object logic) we could express this as a lemma:

n: pf(goal3) -> pf(goal2) -> pf(goal1) -> pf(head) =
proof.

Insideproof there may be higher-order abstract syntax, quantification,and
so on, but thegoal s are all Prolog-style. The namen identifies the clause.

Our compiler produces Sparc machine code using a series of typed inter-
mediate languages, the last of which is our TAL. Our prover constructs the
safety proof for the Sparc program by “executing” the TAL Horn clauses as
a logic program, using the TAL expression as input data. The proof is then a
tree of clause names, corresponding to the TAL typing derivation.

We can make a checker that takes smaller proofs by just implementing a
simple Prolog interpreter (without backtracking, since TAL is syntax-directed).
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But then we would need to trust the Prolog interpreter and theProlog pro-
gram itself (all the TAL rules). This is similar to what Necula (1997) and
Morrisett et al. (1998) do. The problem is that in a full-scale system, the
TAL comprises about a thousand fairly complex rules. Neculaand Morrisett
have given informal (i.e., mathematical) proofs of the soundness of their type
systems for prototype languages, but no machine-checked proof, and no proof
of a full-scale system.

The solution is to use the technology we have described in theprevious
sections of this paper to check the derivations of the TAL rules from the
axioms of logic (and the specification of the Sparc). Then canadd a simple
(non-backtracking) Prolog interpreter to our minimal checker, which will no
longer be minimal. In their preliminary report on this extension, Wu, Appel,
and Stump (2003) report that an additional 366 lines of C codeare required.

The proof producer (adversary) will first send to our checker, as a DAG,
the definitions of Horn clauses for the TAL rules, which will be LF-typechecked.
Then, the “proofs” sent for machine-language programs willbe in the form of
TAL expressions, which are much smaller than the proof DAGs we measured
in section 8.

A further useful extension would be to implement oracle-based checking
(Necula and Rahul, 2001). In this scheme, a stream of “oraclebits” guides the
application of a set of Horn clauses, so that it would not be necessary to send
the TAL expression – it would be re-derived by consulting theoracle. This
would probably give the most concise safety proofs for machine-language
programs, and the implementation of the oracle-stream decoder would not be
too large. Again, in this solution the Horn clauses are first checked (using a
proof DAG), and then they can be used for checking many successive TAL
programs.

Although this approach seems very specific to our application in proof-
carrying code, it probably applies in other domains as well.Our semantic
approach to distributed authentication frameworks (Appeland Felten, 1999)
takes the form of axioms in higher-order logic, which are then used to prove
(as derived lemmas) first-order protocol-specific rules. While in that work we
did not structure those rules as Horn clauses, more recent work in distributed
authentication (DeTreville, 2002) does express security policies as sets of
Horn clauses. By combining the approaches, we could have ourchecker first
verify the soundness of a set of rules (using a DAG of higher-order logic) and
then interpret these rules as a Prolog program.

10.1. CHECKING THE CHECKER

Can we mechanically prove that our checker is sound? Any suchproof would
have to be checked by some mechanical checker, with respect to some set of
axioms and specifications. But we believe that we have reduced the size of the
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trusted base (specifications and proof checking algorithm)to approximately
the smallest possible size, so any mechanical soundness proof would have to
be with respect to a larger trusted base.

However, mechanical validation of our trusted base could still be useful.
For example, one could derive a simulator from the specification of ma-
chine instructions, and compare the execution of programs in the simulator
to programs running on the real machine. One could compare the output of
a Sparc disassembler to the evaluation of our instructiondecode relation.
And, indeed, one could construct a program correctness proof and check it in
a standard system such as Coq or HOL. These activities would not increase
the size of the trusted base; instead, they would give more reasons to trust the
trusted base.

What we have done is not to mechanically prove the trustworthiness of our
trusted base; instead, we have, by construction, measured an (approximate)
lower bound for the size of what needs to be validated.

11. Conclusion

Proof-carrying code has a number of technical advantages over other ap-
proaches to the security problem of mobile code. One of the most important
of these is that the trusted code of such a system can be made small. We
have quantified this and have shown that the trusted code can be orders of
magnitude smaller than in competing systems (e.g., Java Virtual Machines).

We have also analyzed the representation issues of the logical specifica-
tion and shown how they relate to the size of the safety predicate and the
proof checker. In our system the trusted code itself is basedon a well under-
stood and analyzed logical framework, which adds to our confidence of its
correctness.
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