Coq’s Vibrant Ecosystem for Verification Engineering
(Invited Talk)

Andrew W. Appel
Princeton University
Princeton, NJ, USA
appel@princeton.edu

Abstract

Program verification in the large is not only a matter of
mechanizing a program logic to handle the semantics of
your programming language. You must reason in the math-
ematics of your application domain—and there are many
application domains, each with their own community of do-
main experts. So you will need to import mechanized proof
theories from many domains, and they must all interoperate.
Such an ecosystem is not only a matter of mathematics, it
is a matter of software process engineering and social engi-
neering. Coq’s ecosystem has been maturing nicely in these
senses.

CCS Concepts: « Software and its engineering — Soft-
ware libraries and repositories; Correctness.

Keywords: None, nil

ACM Reference Format:

Andrew W. Appel. 2022. Coq’s Vibrant Ecosystem for Verification
Engineering (Invited Talk). In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP °22),
January 17-18, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3497775.3503951

1 Introduction
“The key design principles in engineering
a large program verification effort are not
the focus of the most well-known publica-
tions of the effort. Instead, they can be in
less standard references such as ...invited
talks ...” [45]

I am interested in the formal verification of software and
hardware at scale, of their functional correctness and other
important properties. This often requires the verification

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

CPP °22, January 17-18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9182-5/22/01.
https://doi.org/10.1145/3497775.3503951

of many different components, working in application do-
mains that require different kinds of mathematical reasoning,
connected together at interfaces.

The logical framework for verification should support this
by allowing proofs about different components to be com-
posed, and by allowing proofs about the same component
at different levels of abstraction. As a practical matter, that
means all the proofs should be conducted in the same imple-
mentation of the same logic—exporting nontrivial theorems
from one logical framework to another is difficult to sustain
at scale [31].

The logic should support data abstraction in the conven-
tional software-engineering sense, which is also the conven-
tional mathematical sense [39]. It should permit high-level
specifications to be stated formally in a way that we can be
reasonably confident that we’ve proved the right theorem
[42]. It should support enough abstraction to clearly express
these interfaces between different mathematical application
domains, different levels of abstraction, different compo-
nents, and the interface between human and proof-checker.
These desiderata are not novel, and all are reasonably well
satisfied by proof assistants based on higher-order logics
such as HOL4, Isabelle/HOL, Coq, and others.

Much of this is explained in the survey by Ringer et al.
[45]. But what happens now that these infrastructures have
been in place for several years, and people have been using
them?

We begin to see the combination of large and diverse com-
ponents and tools, embodying very different collections of
expertise, whose authors may never have communicated
with each other. In this respect, verification follows trends in
software engineering: today’s engineer combines many pre-
existing packages, frameworks, and subsystems and layers
them into one big useful system. And the same for hardware:
SOCs (systems-on-chip) and multicomponent computer sys-
tems are put together by architects who have little insight
into the internal design of the individual components.

In conventional hardware and software engineering, the
components are often rather ill-specified. So it’s a miracle
that big software and hardware systems work at all, with any
degree of reliability or predictability. It ought to be easier for
us in the world of specification and proof: if we do everything


https://orcid.org/0000-0001-6009-0325
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3497775.3503951

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

within a single machine-checked logic, we can get end-to-
end guarantees about our large-scale theories, proofs, and
tools—even when we have composed opaque components.

2 Two-Layer Program Verification

In software verification one must typically reason about
the program and its data structures at a low level, using
the semantics of the programming language; and about the
mathematics of the application domain, which explains why
the program accomplishes the user’s high-level goals. Each
of these kinds of reasoning may be complex in itself, and they
may require different kinds of expertise. So it is common
engineering practice to separate the proofinto layers. Instead
of proving all at once that the program implements a high-
level specification, write a functional model (or “low-level
specification” or “algorithm”) of the program, and separately
prove that the program implements the functional model,
and that the functional model accomplishes the high-level
goal. This approach was outlined by Heitmeyer et al. [24]
(although they had no mechanized way of doing the program-
implements-low-level-spec proof); and was used in the seL4
verification [29] and in many others.

The tool for proving that the program implements the func-
tional model is typically a program logic (or an operational-
semantic forward-simulation methodology), for a particu-
lar programming language, embedded in a general-purpose
proof assistant. There are several such tools, some of which
I will describe in the next section.

I am particularly interested in tools that are embedded in
general-purpose logical frameworks, because they can better
connect both above and below:

e When the tool for verifying that the program refines a
functional model is in the same logic, and framework, as
the tool for verifying that the functional model satisfies
the high-level specification, then these two proofs can
compose.

e When the program verification tool is in a logic and frame-
work capable of expressing operational semantics of pro-
gramming languages, then the tool can be proved sound.
And if there happens to be a compiler that is proved correct
w.r.t. that operational semantics, then the soundness proof
of the verification tool can compose with the correctness
proof of the compiler.

When these proofs compose, ideally they do so seamlessly
within a single logic. Otherwise there could be unintended
semantic gaps as a theorem statement from one logic (or
framework) is interpreted in another logic.

2.1 Example of a Layered Verification

Although it’s possible in some program logics to directly
prove high-level properties of an imperative program, it’s
often best to prove that the imperative program refines a

Andrew W. Appel

functional model, and then prove high-level properties of
the functional model.

I illustrate by an example: binary search trees. The C pro-
gram has an insert function that takes the address of structure-
fields and uses a loop to traverse the tree from top to bottom
[17, Fig. 1]. The high-level specification says that insert and
lookup interact in the expected way:

lookup(insert(t, i,v),i) = v
i #j — lookup(insert(t,i,v), j) = lookup(t, j)

We can do this verification in VST, the Verified Software
Toolchain. Instead of trying to prove directly that the C pro-
gram has this property, we prove that the C program refines a
functional model—that is, binary search trees as a functional
program in Coq [4, Chapter “SearchTree”].

Inductive tree := E : tree | T: tree — key — V — tree — tree.

Fixpoint insert (x: key) (v: V) (s: tree) : tree :=
match s with
|[E=>TExVE
|[Tayv' b= ifx<?ythenT (insertxva)yv'b
else if y <? xthen T ay v' (insert x v b)
elseTaxvb
end.

Then we prove that this functional model satisfies the high-
level specification for the interaction of insert and lookup. For
this we need a “program logic” for functional programs;
but since this program is written in Gallina, which is Coq’s
logic, then Coq is the program logic. This proof is quite
straightforward in Coq.

Given the lower-level refinement proof [17] and the higher-
level properties proof [4, Chapter “SearchTree”], we can com-
pose these in VST using the principle of function specification
subsumption [10]: that is, any function that satisfies specifi-
cation A must also satisfy specification B.

And really, I wouldn’t want to try verifying this impera-
tive search-tree program in a single layer. In a Hoare logic
proof, what loop invariants for insert or lookup would directly
express the two equations of the high-level specification?

3 Tools for Verifying Imperative Programs

The lower-level refinement proof could be done in any of
several tools. I cannot possibly list here all the good tools,
but here are some that form part of the ecosystems of Coq
(and, for comparison, of HOL4 and Isabelle/HOL):

Verified Software Toolchain! [1] (for C, embedded in Coq)
is a higher-order impredicative separation logic. “Separa-
tion logic” means it is an extension of Hoare logic that
can reason concisely about pointer (anti)aliasing. “Higher-
order” means it can reason about higher-order functions
(function pointers in C) and about higher-order types
(data abstraction). “Impredicative” means it can reason

Uhttps://github.com/PrincetonUniversity/VST


https://github.com/PrincetonUniversity/VST

Coq’s Vibrant Ecosystem for Verification Engineering

even about contravariant patterns—that occur in programs
but cannot be expressed using least fixed points. VST is
proved sound in Coq using a semantic model with step-
indexed logical relations encapsulated in a “later” modal-
ity [6]. The soundness proof is w.r.t. the operational se-
mantics of CompCert Clight, for which CompCert is a
proved correct optimizing compiler. VST handles almost
the entire C language (but not bitfields, gotos, or whole-
struct assignments). VST has been used for several veri-
fications by teams that overlap with the VST developers
[2,5, 8, 11, 30, 38, 48], and also has several external users
who are applying it to verify proprietary software that
has never been seen by the VST developers.?

Iris® [27] is a library in Coq for the construction of program
logics that (like VST) embody higher-order impredicative
separation logic, proved sound in Coq using a semantic
model with step-indexed logical relations encapsulated in
a “later” modality. The Iris model is constructed differently
(and more modularly) than that of VST, but has similar
properties and goals.

RustBelt* [26] (for Rust, embedded in Coq) is a higher-
order impredicative concurrent separation logic, proved
sound in Coq using Iris. The Rustbelt verification tool han-
dles a subset of the Rust language. It is not yet engineered
into a general-purpose Rust verification tool, or in a form
easily accessible to external users.

seL4 proofs [29] (for C, in Isabelle/HOL) of correctness of
the seL4 microkernel operating system were done by direct
forward simulation between a functional program (written
in the pure ML-like language embedded in the HOL logic)
and the operational semantics of the C program.

Certified Abstraction Layers [21] (for C, embedded in Coq)
is a method of direct forward simulation between a func-
tional program (written in the pure ML-like language em-
bedded in Coq’s logic) and the operational semantics of
the C program. It was used to prove correctness of the
CertiKOS hypervisor kernel. This library is not released
in a form easily accessible to external users.

CompCert® [35] In order to reason formally about the be-
havior of C programs, one needs a formalization of the
semantics of C. Both VST and Certified Abstraction Layers
use CompCert’s formalization of the Clight operational
semantics as their specification. Users of CAL often use
CompCert’s operational-semantic rules directly; users of
VST use them indirectly via the Verifiable C program logic.

%I believe, but am not entirely sure, that Company A has verified orbital-
satellite operating systems, Company B is verifying 5G and 6G software-
defined radio, and Company C is verifying some blockchain thing, and
Company D is doing autonomous vehicle operating systems.
3https://gitlab.mpi-sws.org/iris/iris/
4https://gitlab.mpi-sws.org/iris/lambda-rust/
Shttps://github.com/AbsInt/CompCert
Shttps://github.com/bedrocksystems/BRiCk

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

BedRock’s C++ toolchain® (for C++, in Coq) is a program
logic for C++, implemented atop Iris but with many design
features influenced by VST. It does not have a soundness
proof with respect to an operational semantics. It was built
for the purpose of proving correctness of a commercial
hypervisor operating system.’

CFML? (for OCaml, in Coq). Characteristic Formulae for ML
[18] is a program logic for OCaml based on separation
logic. ML with mutable references and mutable arrays is a
mixed functional-imperative language. In CFML, separa-
tion logic (anti)aliasing reasoning is needed only for the
mutable part while simpler reasoning can be used for the
functional part.

Characteristic Formulae for CakeML’ [22] (for ML, in
HOL4) is an implementation of a similar program logic
for Standard ML, proved sound w.r.t. the CakeML [33]
verified optimizing compiler.

RefinedC'’ [46] (for C, in Coq) is a program logic based on
refinement types and separation logic, implemented via
Iris, proved sound w.r.t. a C semantics called Caesium.

Several of these tools target the C programming language,
because: C is a least-common-denominator lingua franca
for systems programming. It’s (just barely) small enough
to have a formalizable semantics. Its pointers and its spicy-
Curry-style type system!! allow the ability to express almost
arbitrary data structures and design patterns.

These tools fall into two camps on the question of whether
to support data-pointers and function-pointers in their full
generality. Both the sel4 verification and Certified Abstrac-
tion Layers support a limited subset of C: no function point-
ers, very limited use of data pointers, no mutually recursive
modules. This straightjacket greatly improves the compos-
ability and simplicity of the program logic, to the point where
(strictly speaking) they don’t even have a program logic, they
both reason by forward simulations between logical func-
tions and C operational semantics. And within this straight-
jacket it’s possible to implement (and prove) a small kernel
operating system.

On the other hand, both the Verified Software Toolchain
(VST) and the Iris framework support data pointers, function
pointers, and function pointers within data structures, in
an attempt to support any wacky design pattern that the C
or Rust programmer might use. They both do this through
modal step-indexed separation logic; that is, separation logic
to express (anti)aliasing patterns of data-structure pointers,

"Do not confuse BedRock Systems Inc. with the (earlier and continuing)
Bedrock project of Adam Chlipala at MIT.
8https://gitlab.inria.fr/charguer/cfml2
®https://github.com/CakeML/cakeml/tree/master/characteristic
Ohttps://gitlab.mpi-sws.org/iris/refinedc

A Curry-style type system means, “a program can have an execution
semantics even though it may not type-check;” I'll define a spicy-Curry-
style type system to mean, a program can have semantics even though its
type system may be unsound.


https://gitlab.mpi-sws.org/iris/iris/
https://gitlab.mpi-sws.org/iris/lambda-rust/
https://github.com/AbsInt/CompCert
https://github.com/bedrocksystems/BRiCk
https://gitlab.inria.fr/charguer/cfml2
https://github.com/CakeML/cakeml/tree/master/characteristic
https://gitlab.mpi-sws.org/iris/refinedc

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

step-indexed logical relations to express patterns of (mutual)
recursion of function pointers (with data pointers), and a
modal logic to encapsulate the step-indexing. This adds a
thick and fairly opaque layer between the program logic
(in which one proves programs correct) and the operational
semantics (with respect to which a compiler might be proved
correct); this layer is the model and soundness proof of the
program logic.

These tools are built as large libraries that contain both
lemmas (e.g., proofs relating an axiomatic semantics to an
operational semantics) and automation (tactic programming
or proof-by-reflection programming to assist in applying
the program logic to one’s programs). That is, one can im-
plement the VST-Floyd [16] separation-logic proof automa-
tion system and Iris Proof Mode [32] because Coq has a
tactic language. HOL4 and Isabelle/HOL also support proof
metaprogramming; Agda and Twelf, not so much.

In contrast, there are several tools that are entirely ex-
ternal to a proof assistant, including Verifast [25], Dafny
[34], and Frama-C [28]. Those tools have some advantages:
they are more automated, requiring users “only” to provide
function preconditions and postconditions, loop invariants,
and (often) if-statement postconditions. They achieve this
automation via integration with SMT solvers. They are (typ-
ically) quick, (typically) thanks to excellent integration with
the underlying solvers. But they have some disadvantages:
they are not foundational, i.e. proved sound w.r.t. some under-
lying operational semantics for the programming language
(that could be connected to a proved-correct compiler, for
example). Their assertion languages (in which preconditions
and invariants are written) must be fairly weak, to accommo-
date the first-order logics of SMT. The user must sometimes
“encode” assertions, preconditions, postconditions into this
relatively unexpressive language, making them difficult to
comprehend.

The weak assertion language limits what can be expressed
in a specification of program correctness. That’s not nec-
essarily a severe problem when proving that a C or Dafny
program satisfies a low-level spec, but then there is the prob-
lem of proving that the low-level spec (written in the limited
assertion language) satisfies some high-level property. As
the rest of this paper explains, such proofs cannot generally
be done in SMT, so it requires an embedding of the low-level
specification language in a higher-order-logic proof assistant.
Frama-C has taken some steps to support this, for connecting
to Coq.

4 Auxiliary Tools for Proving Refinement

When using a modal separation logic such as VST or (one
embedded in) Iris, it’s sometimes useful to rely on other Coq
libraries or packages meant for special-purpose reasoning.

Zhttps://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/proofmode

Andrew W. Appel

Iris Proof Mode'? [32] is a tactical proof system for manip-
ulating formulas in modal separation logic. Some of the
modes include “persistence” (for quasistatic properties)
and “later” [7] (to encapsulate step-indexed approxima-
tion); and these interact logically with separating con-
junction *, ordinary conjunction A, and with the Hoare
judgment. It’s useful to have a tactical system for manag-
ing the application of those proof rules. Iris Proof Mode
(IPM) was originally developed for Iris, but is now portable
to almost any separation logic, and has been used atop
VST [37].

VST-Floyd [16] is the proof automation for VST’s separa-
tion logic for C; it operates by semiautomatic symbolic
execution of C programs, where the symbolic “states” are
really separation-logic assertions. In contrast to IPM, it has
weak support for modes and much stronger support for
forward Hoare-logic reasoning and automated entailment
solving.

CertiGraph!® [47]is the theory of directed-graph data struc-
tures embedded in separation logic. Separation logic is
(normally) tuned to assertions of the form {P % Q}, in
which the addresses of the data structure satisfying P must
be disjoint from the addresses satisfying Q. But directed
acyclic graphs, or directed cyclic graphs, naturally express
sharing. To model and prove algorithms such as graph
search, shortest path, minimum spanning tree, union-find,
and garbage collectors, we need to reason explicitly about
directed graphs. But we still want to do this within the
context of separation logic, so we can use logics such as
VST and Iris to handle other aspects of the program that
naturally want separation. CertiGraph has been success-
fully used atop VST-Floyd to prove the correctness of a
generational copying garbage collector [47] and Dijkstra’s,
Kruskal’s, and Prim’s algorithms [40].

5 Hardware

The recipe for comprehensively verifying software is: write
a high-level specification of the functional properties you
demand; write an algorithm / functional model / low-level
specification; prove the functional model satisfies the high-
level specification; write a program in a language with a
formalized semantics; prove that the program refines the
functional model; compile the program to a low level imple-
mentation in machine language; prove that the compiler is
correct; compose all those proofs.

Perhaps you have chosen to implement something directly
in hardware (VLSI or FPGA) rather than in software. The
verification layers are analogous: Replace the word program
with circuit design, and replace machine language with logic
gates, and you have the recipe for proving the functional
correctness (and other properties) of hardware.

Bhttps://github.com/Salamari/CertiGraph


https://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/proofmode
https://github.com/Salamari/CertiGraph

Coq’s Vibrant Ecosystem for Verification Engineering

And you will want a tool for proving that the circuit design
implements your functional model:

Koika'* [15] is a Coq formalization of Bluespec—a Haskell-
like functional language for describing digital circuits.
The compiler is a program in Coq that compiles these
Bluespec-like programs to Verilog, a low-level register-
transfer-language for describing digital circuits. This com-
piler is proved correct in Coq, based on semantics of source
and target languages.

6 Proving Properties of the Functional
Model

In Section 2.1 I wrote, “Coq is the program logic [for prov-
ing properties of the functional model] so the proof goes
smoothly” If only it were so simple! In fact, this proof may
be highly nontrivial. The functional model is the algorithm—
and the correctness of an algorithm can be a complex proof,
and may use different kinds of mathematics in different ap-
plication domains.

Therefore you should use libraries or packages, Coq theo-
ries for your domain-specific mathematics—where a “theory”
is not just a set of definitions and lemmas but often includes
programs (in Gallina or Ltac) and other forms of proof au-
tomation.

Here are some of the Coq packages that have been useful
in proving (functional models of) C programs correct:

Coq-std++' is a library of functional models of data struc-

tures such as lists, trees, search tree lookup tables, binary
tries, and so on, along with monad notations, an equal-
ity simplifier, a solver for compatibility of functions w.r.t.
relations, and so on.

Foundational Cryptography Framework [41]isbased on
a theory of computational monads over probability spaces.
It can be used to prove such things as “the attacker who
can only do 2 steps of computation can guess the next
bit that your random-number generator will produce with
probability < 0.5 + 27 (17075~ [43].

Flocq [13, 14] is a formalization in Coq of the IEEE-754
floating-point standard used in all modern computers.
That standard is so good that it earned a Turing award!®
and was first formalized (in HOL Light) in 1999 [23]. In
Flocq one can reason about how 32-bit or 64-bit (or any
other size) formats represent binary exponent-mantissa
scientific notation, and how that notation injects into the
real numbers, and how the arithmetic operations work
with their rounding modes, and so on.

Flocq is used in CompCert’s specification of the floating-
point operations of C, and of the assembly languages to
which CompCert is targeted [12]. Flocq’s floating-point

https://github.com/mit-plv/koika
Bhttps://gitlab.mpi-sws.org/iris/stdpp
Bhttps://github.com/adampetcher/fcf
16for William Kahan in 1989

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

spec is also used in VST s program logic (which of course
is based on CompCert’s operational semantics of C). And
therefore, Flocq is also needed in correctness proofs (of C
programs) built by users of VST [5].

Flocq is built in such a modular way that it can repre-
sent a wide variety of floating-point formats, and it can
also represent fixed-point arithmetic (where one computes
using fixed-precision integers in which that are implicitly
scaled in a way that the algorithm designer keeps track
of). This is quite useful for some engineering applications.

Coq.Reals is the formalization of the classical real numbers
in Coq’s standard library. Computer programs cannot com-
pute on the (classical) real numbers—only on computable
representations such as the integers, rationals, or floating-
point.!” But we usually need to reason in the reals in prov-
ing floating-point programs correct. That is, the program
computes on floating-point numbers that represent real
numbers. If a : float represents R(a) : R and b represents
R(D) then when we floating-point multiply a Xg b = ¢ we
get a number c that represents R(a) - R(b) + §, where §
is the floating-point rounding error. We reason this way,
instead of directly in the floating-point numbers, because
the mathematical theory of real analysis is well developed
and has reasonable properties.

Interval [14, §4.2] is an interval arithmetic package for the
Real numbers. It is useful for reasoning about bounds for
approximation errors that may arise from discretization
(finitary sums rather than integration of infinitesimals)
and from floating-point error (computing in the rationals
rather than the reals). That is, if we know that a : float
approximates some quantity of interest a : R with accumu-
lated error §,, that is, a — 8, < R(d) < a+J, and similarly
for b, ¢, then we can use interval arithmetic to manage
inequalities such as a + b — (8, + &) < R(4) + R(b) <
a+b+ (6q+ ).

Gappa [14, §4.3.1] is a package for automating the reason-
ing about floating-point rounding errors. Gappa is imple-
mented in C++ and generates proofs checkable by Coq. In
a proof that a C program correctly and accurately imple-
ments floating-point square root by Newton’s method [5],
we use Gappa in the layer between the functional model
and the high-level specification.

VCFloat'® [44] is a package layered atop Interval and Flocq
that calculates a reified (syntactic) description of a floating-
point expression (for example, from a CompCert Clight
syntax tree); allows annotation with some expected prop-
erties of the floating-point calculation; then calculates
what verification conditions would need to be proved in
order to bound the floating-point roundoff error of the

17Whether it can be practical to compute on the constructive reals is perhaps

still a research question.
Bhttps://github.com/reservoirlabs/vcfloat


https://github.com/mit-plv/koika
https://gitlab.mpi-sws.org/iris/stdpp
https://github.com/adampetcher/fcf
https://github.com/reservoirlabs/vcfloat

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

entire expression; then discharges those verification con-
ditions using the Interval package.

VCFloat and Gappa are intended to solve essentially the
same problem, but VCFloat is implemented entirely within
Coq. We are experimenting'’ with VCFloat in proving
accurate a numerical integrator for ordinary differential
equations (ODEs).

Mathematical Components?® [36] formalizes mathemat-
ical structures such as ordinals, groups, fields, matrices,
polynomials, and some of the useful theorems and algo-
rithms upon them. Many interesting projects have used
Mathcomp; in software verification we have used it in a
verification of forward erasure correction (FEC) based on
Reed-Solomon codes [19]. In this project, the algorithm
expresses computation over a finite field modulo a primi-
tive polynomial, via matrix multiplication and Gaussian
elimination. We prove using VST that the C program cor-
rectly implements the algorithm, in a proof that doesn’t
understand much mathematics at all (and does not use
Mathcomp); we prove using Mathcomp that the algorithm
correctly reconstructs missing network packets in a proof
that doesn’t mention a C program (and does not use VST).

Interaction Trees?' [30] is a library for reasoning about
reactive input/output or for representing functional mod-
els of recursive and imperative programs, employing a
coinductive datatype.

Sail?? [9] is a language for describing machine languages
(instruction-set architectures), that can generate formal de-
scriptions of the syntax and semantics of ISAs in Isabelle,
Coq, and other logics. It comes with well-researched for-
mal descriptions of several widely used machines. A Coq
proof about a compiler (targeting an ISA), a CPU design
(implementing an ISA), a static analyzer, would find it
useful to import these as libraries.

See also

Many packages in the Coq ecosystem are described at https:
//github.com/coq-community/awesome-coq.

7 The Coq Platform

“Coq has reached the usage size, where
the central maintenance of libraries is no
longer feasible. Instead, the Coq library has
been factored into hundreds of repositories
with a somewhat standardized build pro-
cess. This allows distributed maintenance
of the library. But it also means that not
every repository always builds with the
latest version of Coq. For example, when

19 Ariel Kellison and Andrew W. Appel, work in progress.
Dhttps://github.com/math-comp
Hhttps://github.com/DeepSpec/InteractionTrees
Zhttps://github.com/rems-project/sail

Andrew W. Appel
we ran our export? in early 2019, only
around 70 of around 250 repositories could
be built, including the MathComp libraries
(the situation has improved since then)”
[31].

The good news about a vibrant ecosystem of substantial
libraries developed and maintained by many different people
is that one can compose them to engineer large verifications.

The bad news is that one can now enter DLL Hell?*, or
more generally Dependency Hell?. This is a situation ob-
served in software builds where, for example, package D
depends on packages B and C, which both depend on pack-
age A. But B and C depend on different incompatible versions
of A; or B and C build only in incompatible versions of the
language/compiler in which they’re programmed.*®

So, for example, if you need VST version 2.8 that builds
in Coq 8.13.2 and depends on CompCert 3.9 (which uses
Flocq 3.4), but you also want to reason about floating-point
calculations using VCfloat 1.0 that requires Coq 8.5beta2,
CompCert 2.6, Flocq 2.5—then you are in Dependency Hell.

Many technical solutions are proposed?’ for detecting
and mitigating Dependency Hell, but most of them will not
solve the problem in this particular application, program
verification. The reason is that if you need to reason about
your source program in the same theory of floating point
upon which the program logic is proved sound, then VST and
VCfloat must use the same version of Flocq, the specification
of floating point.

The solution that will actually work is the Coq Platform,
an effort led by Michael Soegtrop with the help of Karl Palm-
skog, Enrico Tassi, Théo Zimmermann, and others. It is much
a work of social engineering as it is of software engineer-
ing. That is: with each release of Coq, there must also be a
“Platform” release of each of the many libraries (such as I
have described in this paper) that are compatible with that
release of Coq and with each other. Then, an end user can
simply download and install a given Platform release, with
the confidence that all the libraries will be compatible.

This means that (before each Platform release is con-
structed) the authors or maintainers of each of these libraries

23The situation that Kohlhase and Rabe describe was transient: in early 2019
anew release of Coq had just come out, and many of the library maintainers
had not yet released their new versions, and eventually there were over
450 compatible packages for that release 8.9.0 of Coq. But even so, the Coq
Platform has improved the release process; library maintainers test against
release-candidate Coq versions in advance of the Coq release, and the Coq
Platform release follows within a month or two of the Coq major-version
release.

Y https://en.wikipedia.org/wiki/DLL_Hell
Bhttps://en.wikipedia.org/wiki/Dependency_hell

26Furthermore, it is not feasible to test version dependency information in
opam, so one cannot assume that it is accurate. Sometimes opam builds
fail not because something is impossible, but because opam select wrong
versions based on inaccurate dependency information.
?Thttps://en.wikipedia.org/wiki/Dependency_hell#Solutions


https://github.com/coq-community/awesome-coq
https://github.com/coq-community/awesome-coq
https://github.com/math-comp
https://github.com/DeepSpec/InteractionTrees
https://github.com/rems-project/sail
https://en.wikipedia.org/wiki/DLL_Hell
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Dependency_hell#Solutions

Coq’s Vibrant Ecosystem for Verification Engineering

must coordinate with the maintainers of those libraries that
are adjacent on the dependency graph. For example, the
maintainer of CompCert must coordinate with the main-
tainer of Flocq, and the maintainer of VST must coordinate
with the maintainer of CompCert.

The managers of the Coq Platform coordinate this effort
by using tools such as e-mail, Zulip, Github issues, and opam.
In addition a significant part of the Platform effort is to deter-
mine how best to use tools such as opam to make installation
smoother for users.

The Coq Platform has been in existence only since about
mid-2020; the third major Platform release is expected in late
2021. It is enormously useful.

8 Community Tools

How can Coq’s library ecosystem be healthy even though it
is beyond the scale where a single group could possibly main-
tain it? Of course, Coq is hardly unique in this respect—many
open-source software ecosystems are diverse, interoperable,
and healthy in this way.

And it is possible, in part, by using tools and processes
developed in the open-source community at large:

Open-source itself, as a legal and social concept.

git, a 5th-generation source code control system.”®

Github or Gitlab, which integrate many project-management

interfaces atop git, such as access control, issue reports,
pull requests, and distribution packaging.

Public repositories: the idea that every commit to your
repo should be visible to the public, that every bug you
commit, every discussion you have, should be readable by
the world—that is revolutionary, compared to a previous
ethos in which a “release” was published every year or
two.

Continuous integration, and especially the kind of linked
continuous integration that can immediately notice inter-
package incompatibilities.

Continuous delivery, even in the limited sense that the
main branch of package A’s repo may import the main
branch of B as a subrepo, meaning that B is continuously
delivered even though its maintainers did not make a
conscious decision to do that, and may not even be aware
that A exists. And this is enabled by public repositories.

opam and other package-management systems.

The first time I shipped an open-source distribution, Stan-
dard ML of New Jersey (jointly with David B. MacQueen in
1988), we did so using the BSD license, on 9-track magnetic
tapes sent through snail mail. Other than open-source itself,
we had none of these 21st-century affordances. That was
more than 30 years ago; but most of these affordances have
become important in the Coq ecosystem only in the past 10
years, or the past 5 years.

2] write as a user, in the past, of SCCS then RCS then CVS then subversion.

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

9 Difficulties

Building large systems in Coq has its difficulties. Here I will
describe a few.

9.1 Division of Labor

Building verified software requires many different kinds of
skill and expertise: Software engineering (writing efficient
C programs), specification engineering (functional models,
high-level specs), C language verification (such as the use
of VST), mathematics of the application domain (proving
properties of the functional model). In some real verifications
that we (and others) have done, these five jobs are done by
five different engineers [3]. There is no need to find a single
genius who can do everything.

9.2 Proof Dialects

Suppose you say to yourself, “Come, let us build a program
and its correctness proof, that reaches unto the heavens, so
that we may make a name for ourselves” You hire many
talented proof engineers. But some of those engineers write
their proofs in Ltac, others in Ltac2, and others in ssreflect.
After your engineers scatter over the face of the Earth, you
try to maintain the resulting artifact. But you are fluent in
just one of these tactic languages; and therefore you find the
task very difficult.

The existences of several tactic languages is not a bug; it is
a feature that must be managed just like any other engineer-
ing technology. For example, my students verified a program
that does erasure correction by matrix multiplication over
a finite field modulo a primitive polynomial [19]. To prove
that the C program correctly implemented the functional
model they used VST. To prove that the functional model
correctly decoded in the finite field, they used Mathematical
Components. VST uses the Ltac tactic language and uses
first-order data structures to represent matrices: lists of lists.
MathComp uses the ssreflect tactic language and uses depen-
dently typed data structures to represent matrices. It would
be extremely difficult to mix ssreflect and dependently typed
matrices into a VST proof; and it would be equally difficult
to perform a MathComp proof with Ltac and nondependent
types.

The solution was to write two layers of functional model.
The lower layer expresses Gaussian elimination as a Coq
function on lists of lists; the upper layer expresses Gaussian
elimination as a Coq function on dependently typed matrices.
One proves the C program correct with respect to the lower-
level functional model; the other proves the mathematical
correctness of the upper-level functional model; and it’s a
straightforward proof to relate the two functional models.
Ltac lives in one land, ssreflect lives in another, and they
trade peaceably with each other at arm’s length.

You might think, “you still need two engineers, speaking
respectively Ltac and ssreflect, to maintain the two parts of



CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

Fixpoint big (n: nat) : is_true true :=
match n with
| O = eq_refl
| S n' = eq_trans (big n') (big n)
end.

Definition t := {x: bool | is_true x}.
Definition a (n: nat) : t := exist is_true true (big n).

a 10).
a 20).
a21).
a 22).
a 23).
a 24).
a 25).
a 26).

* 0 Secs )

* 0.061 secs *)
« 0.144 secs *)
* 0.279 secs *)
* 0.565 secs *)
* 1.189 secs *)
* 2,115 secs *)
* 4.917 secs *)

Time Compute
Time Compute
Time Compute
Time Compute
Time Compute
Time Compute
Time Compute

AA,_\,_\AAA,_\
PRy

Time Compute

Figure 1. Proof blowup in a dependently typed computation.

the system.” But this was already the case. Just let it be that
one engineer can maintain the VST proof of the C program,
without having to understand MathComp, finite fields, or ss-
reflect. And let it be that the other engineer can maintain the
MathComp proof of the properties of the functional model,
without having to understand C programming or VST proofs.
“You shall not wear a garment of different sorts, such as wool
and linen mixed together”

9.3 Computation in Coq

One can prove a program correct in Coq, extract it to OCaml,
and run it. But there are also reasons to run computations
inside Coq. For example, VST does (partly computational)
symbolic execution of C programs, but within the terms
on which it computes are Coq values that describe what
the C program represents. The types of these values are
chosen by the user (as part of the program’s specification);
the expressions constituting these values are used in the
user’s interactive functional-correctness proofs. So there is
a mix of computation and interactive proof, and this could
not possibly be done in extraction to OCaml.

Coq can do efficient computation of its native lambda-
terms in CiC, using the the tactics compute (call-by-value
reduction, reasonably fast), vim_compute (compilation to byte
code then interpretation, faster) and native_compute (compi-
lation to native code, fastest). But we run into difficulties
when some of the subterms are not meant to be computed
or reduced. For example, we want to simplify all the terms
having to do with symbolic execution—the semantics of C—
but not the user’s subterms (within the symbolic execution).
If we compute the user’s application-specific subterms, that

Andrew W. Appel

makes proof management difficult for the user (and it can
sometimes blow up into huge normal forms).

There are ways to accomplish this in Coq, but they are a
bit clumsy, nonmodular, and difficult to make reliable. For
example, Coq’s cbv delta tactic has a way to specify just which
terms to expand, but it’s not very modular.

9.4 Computations on Terms with Proofs

Terms with subterms that are proofs can cause difficulty
when computing in Coq. Coq’s logic permits, for example,
packaging a value with a proof of a property of that value:
{x : T | P(x)}. The big libraries I describe in Sections 3, 4,
and 6 sometimes build such packages, and it leads to trouble
with computation in the clients of those libraries.

We have observed this behavior calculating on Comp-
Cert’s structure-field type definitions, which contain inter-
nal proofs about field-alignment; and when computing on
Flocq’s representation of floating-point numbers, which con-
tain internal proofs about exponent bounds.

Consider the example in Figure 1: The function big(n) pro-
duces a proof (of is_true true) of size 2". The function a(n)
produces a package of the boolean b and a proof that b is
true. The size of the term a(n) is n + 2: the name a applied to
the natural number n. But when we compute, the term blows
up to size 2™.

You might think, “no one would write such silly, deliber-
ately huge proofs” No, not deliberately. What happens is
that we have, in CompCert, a structure field with a proof
that its offset is aligned; or in Flocq, a floating point number
with a proof that its mantissa is in bounds. For example,
5 < 22, The shortest proof of that is tiny. But in practice (in
CompCert and Flocq) those proofs are done using decision
procedures (such as lia for linear integer arithmetic) based on
other terms that 5 and 23 are calculated from, and the bound-
proofs of those terms. So we do indeed get huge proofs of
trivial facts.

And why should we not? The whole point of proving a
lemma is to encapsulate a mathematical fact, so that you
don’t have to worry about how it was proved. But abstrac-
tion can sometimes be the enemy of efficiency. Proofs are
proofs, programs are programs, and don’t try to use proofs as
programs! You may have heard of the Curry-Howard corre-
spondence, but if you want to take it seriously and compute
with proofs, then you’ll have to optimize all your proofs the
same way you optimize your programs, and nobody wants
to do that.

Is there a way to achieve true proof irrelevance in the Coq
kernel, such that terms that are proofs of propositions (of
type Prop) are truly ignored? There may be type-theoretic
difficulties here, since we also have terms that pattern-match
on proofs of equality and reduce only when those proofs
calculate all the way down to eq_refl.

Indeed, this is a research question that’s the subject of in-
tense study. Gilbert et al. [20] demonstrated a slightly weaker



Coq’s Vibrant Ecosystem for Verification Engineering

variant of Prop which is truly computationally irrelevant,
but loses the ability to pattern-match on equalities soundly.
Pujet and Tabareau [43] describe a type theory that fixes
that problem along with many others.

Until these type-theoretic innovations can be integrated
into Cogq, I suggest that a less radical solution would be to
implement a reduction strategy similar to call-by-value but
that does not step into terms of type proof-of-Prop.

In the present, my advice to users is: avoid putting proofs
into terms on which someone might wish to compute. It’s
not enough to avoid putting proofs into terms on which you
intend to compute! Recall that we have difficulties when we
are clients of CompCert and of Flocq, with proof terms inside
computational objects built by those systems. The authors
of CompCert and Flocq did not intend to compute on these
terms. But we want to do so.

10 Conclusion

Coq has a vibrant ecosystem of libraries and packages thanks
to the many researchers who take the trouble to publish
software in addition to papers, and who take the trouble to
maintain that software, and to the many people who help
maintain the infrastructure of the ecosystem itself, and the
instituts and corporations who employ those people. This
builds on itself in a virtuous cycle: with libraries and tools,
you can do your research, and build new libraries and tools.
And this permits projects of a scale that no single institution,
or no single organized research group, could support.

It is not only the number of lines of code; it is the huge
variety of expertise embodied and encapsulated within these
library packages. One can compose these packages without
needing to be expert in how they all work internally. And
that is especially true in the world of machine-checked proof,
where one can be sure that if theorem A is proved with
reliance on theorem B, there has been no misunderstanding
about the definitions.

So the individual researcher and tool builder can lever-
age the ecosystem by finding and using the right tools and
packages for the job, allowing software verification at a scale
not otherwise possible. Just don’t forget to do it in a public
repo with continuous integration, and if you build something
good, then try to participate in the Platform.

References

[1] Andrew W. Appel. 2011. Verified Software Toolchain. In ESOP’11: Euro-
pean Symposium on Programming, Gilles Barthe (Ed.). LNCS, Vol. 6602.
Springer, 1-17.

[2] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive:
SHA-256. ACM Trans. on Programming Languages and Systems 37, 2
(April 2015), 7:1-7:31.

[3] Andrew W. Appel. 2016. Modular Verification for Computer Security.
In CSF 2016: 29th IEEE Computer Security Foundations Symposium. 1-8.

[4] Andrew W. Appel. 2107. Verified Functional Algorithms. Software
Foundations, Vol. 3. softwarefoundations.org.

10

CPP 22, January 17-18, 2022, Philadelphia, PA, USA

[5] Andrew W. Appel and Yves Bertot. 2020. C-language floating-point
proofs layered with VST and Flocq. Journal of Formalized Reasoning
13, 1 (Dec. 2020), 1-16. https://doi.org/10.6092/issn.1972-5787/11442
Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014.
Program Logics for Certified Compilers. Cambridge.

Andrew W. Appel, Paul-Andre Melliés, Christopher D. Richards, and
Jeréme Vouillon. 2007. A Very Modal Model of a Modern, Major,
General Type System. In Proc. 34th Annual Symposium on Principles of
Programming Languages (POPL’07). 109-122.

Andrew W. Appel and David A. Naumann. 2020. Verified Sequen-
tial Malloc/Free. In International Symposium on Memory Management
(ISMM). 48-59.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-
sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-
naswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a, RISC-v,
and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article 71 (Jan.
2019), 31 pages. https://doi.org/10.1145/3290384

Lennart Beringer and Andrew W. Appel. 2021. Abstraction and Sub-
sumption in Modular Verification of C Programs. Formal Methods in
System Design (2021). https://doi.org/10.1007/s10703-020-00353-1
Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. 2015. Verified Correctness and Security of OpenSSL HMAC. In
24th USENIX Security Symposium. USENIX Assocation, 207-221.
Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. 2013. A formally-verified C compiler supporting floating-
point arithmetic. In 2013 IEEE 21st Symposium on Computer Arithmetic.
IEEE, 107-115.

Sylvie Boldo and Guillaume Melquiond. 2011. Flocq: A unified li-
brary for proving floating-point algorithms in Coq. In 2011 IEEE 20th
Symposium on Computer Arithmetic. IEEE, 243-252.

Sylvie Boldo and Guillaume Melquiond. 2017. Computer Arithmetic
and Formal Proofs: Verifying Floating-point Algorithms with the Coq
System. Elsevier.

Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. 2020. The
essence of Bluespec: a core language for rule-based hardware design.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 243-257.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify
Correctness of C Programs. J. Autom. Reason. 61, 1-4 (June 2018),
367-422. https://doi.org/10.1007/s10817-018-9457-5

Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel.
2018. Proof Pearl: Magic Wand as Frame. https://www.cs.princeton.
edu/~appel/papers/wand-frame.pdf

Arthur Charguéraud. 2011. Characteristic Formulae for the Verification
of Imperative Programs. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming (Tokyo, Japan)
(ICFP ’11). Association for Computing Machinery, New York, NY, USA,
418-430. https://doi.org/10.1145/2034773.2034828

[19] Joshua M. Cohen, Qinshi Wang, and Andrew W. Appel. 2021. Verified
Forward Erasure Correction in Coq. in preparation.

Gaétan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
2019. Definitional Proof-Irrelevance without K. Proc. ACM Program.
Lang. 3, POPL, Article 3 (jan 2019), 28 pages. https://doi.org/10.1145/
3290316

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015 (Mumbai, India,
January 15-17, 2015), Sriram K. Rajamani and David Walker (Eds.).
ACM, 595-608. https://doi.org/10.1145/2676726.2676975

(6]

7

—

—
(o)
—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[20]

[21]


https://www.inria.fr/fr
https://doi.org/10.6092/issn.1972-5787/11442
https://doi.org/10.1145/3290384
https://doi.org/10.1007/s10703-020-00353-1
https://doi.org/10.1007/s10817-018-9457-5
https://www.cs.princeton.edu/~appel/papers/wand-frame.pdf
https://www.cs.princeton.edu/~appel/papers/wand-frame.pdf
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/2676726.2676975

—

—

—

—

—

[t

—

—

—

flans)

CPP ’22, January 17-18, 2022, Philadelphia, PA, USA

[22] Armaél Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael

Norrish. 2017. Verified Characteristic Formulae for CakeML. In Pro-
gramming Languages and Systems: 26th European Symposium on Pro-
gramming, ESOP 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22—
29, 2017, Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
584-610. https://doi.org/10.1007/978-3-662-54434-1_22

John Harrison. 1999. A Machine-Checked Theory of Floating Point
Arithmetic. In Theorem Proving in Higher Order Logics: 12th Inter-
national Conference, TPHOLs 99 (LNCS), Vol. 1690. Springer-Verlag,
113-130.

Constance Heitmeyer, Myla Archer, Elizabeth Leonard, and John
McLean. 2008. Applying formal methods to a certifiably secure soft-
ware system. IEEE Transactions on Software Engineering 34, 1 (2008),
82-98.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In NASA Formal Methods
Symposium. Springer, 41-55.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the foundations of the Rust programming
language. Proceedings of the ACM on Programming Languages 2, POPL
(2017), 1-34.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal of
Functional Programming 28 (2018).

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspective.
Formal Aspects of Computing 27, 3 (01 May 2015), 573-609. https:
//doi.org/10.1007/s00165-014-0326-7

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. ACM, 207-220.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C Pierce, and Steve Zdancewic.
2019. From C to interaction trees: specifying, verifying, and testing a
networked server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 234-248.

Michael Kohlhase and Florian Rabe. 2021. Experiences from Exporting
Major Proof Assistant Libraries. J. Automated Reasoning 65 (Aug. 2021),
1265-1298. https://doi.org/10.1007/s10817-021-09604-0

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,
Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek
Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for
Interactive Proofs in Separation Logic. Proc. ACM Program. Lang. 2,
ICFP, Article 77 (July 2018), 30 pages. https://doi.org/10.1145/3236772
Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: a verified implementation of ML. ACM SIGPLAN Notices
49,1 (2014), 179-191.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers (LNCS 6355), Edmund M.
Clarke and Andrei Voronkov (Eds.). Springer, 348-370. https://doi.
org/10.1007/978-3-642-17511-4_20

Andrew W. Appel

[35] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52, 7 (2009), 107-115.

Assia Mahboubi and Enrico Tassi. 2021. Mathematical Components.
Zenodo. https://doi.org/10.5281/zenodo0.4457887

William Mansky. 2022. Bringing Iris into the Verified Software
Toolchain. (2022). (in preparation).

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A
Verified Messaging System. In Proceedings of the 2017 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA °17). ACM.

John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have
Existential Type. ACM Trans. on Programming Languages and Systems
10, 3 (July 1988), 470-502.

Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor. 2021. Func-
tional Correctness of C Implementations of Dijkstra’s, Kruskal’s, and
Prim’s Algorithms. In International Conference on Computer Aided
Verification. Springer, 801-826.

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptogra-
phy Framework. In Principles of Security and Trust (POST’15) (LNCS),
Vol. 9036. Springer, 53-72.

Robert Pollack. 1998. How to Believe a Machine-Checked Proof. In
Twenty Five Years of Constructive Type Theory, G. Sambin and J. Smith
(Eds.). Oxford University Press.

Loic Pujet and Nicolas Tabareau. 2022. Observational Equality: Now
For Good. Proc. ACM Program. Lang. 5, POPL, Article (to appear) (jan
2022).

Tahina Ramananandro, Paul Mountcastle, Benoit Meister, and Richard
Lethin. 2016. A Unified Coq Framework for Verifying C Programs with
Floating-Point Computations. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs (CPP 2016). Association
for Computing Machinery, New York, NY, USA, 15-26. https://doi.
org/10.1145/2854065.2854066

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary
Tatlock. 2019. QED at Large: A Survey of Engineering of Formally
Verified Software. Foundations and Trends in Programming Languages
5, 2-3(2019), 102-281. https://doi.org/10.1561/2500000045

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-
tomating the Foundational Verification of C Code with Refined
Ownership Types. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Imple-
mentation (PLDI). Association for Computing Machinery, 158-174.
https://doi.org/10.1145/3453483.3454036

Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor.
2019. Certifying Graph-Manipulating C Programs via Localizations
within Data Structures. Proc. ACM Program. Lang. 3, OOPSLA, Article
171 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360597

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. 2017. Verified Correctness and
Security of mbedTLS HMAC-DRBG. In ACM Conference on Computer
and Communications Security (CCS’17). ACM, 2007-2020. https://doi.
org/10.1145/3133956.3133974


https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3360597
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3133974

	Abstract
	1 Introduction
	2 Two-Layer Program Verification
	2.1 Example of a Layered Verification

	3 Tools for Verifying Imperative Programs
	4 Auxiliary Tools for Proving Refinement
	5 Hardware
	6 Proving Properties of the Functional Model
	7 The Coq Platform
	8 Community Tools
	9 Difficulties
	9.1 Division of Labor
	9.2 Proof Dialects
	9.3 Computation in Coq
	9.4 Computations on Terms with Proofs

	10 Conclusion
	References

