J. Functional Programming 1 (1): 1-000, January 1993 © 1993 Cambridge University Press 1

A Debugger for Standard ML '

ANDREW TOLMACH

Dept. of Computer Science, Portland State University
P.O. Boxz 751, Portland, OR, USA 97207-0751

email: apt@cs.pdx.edu

ANDREW W. APPEL

Dept. of Computer Science, Princeton University,
85 Olden Street, Princeton, NJ USA 08544-2087
email: appel@cs.princeton.edu

Abstract

We have built a portable, instrumentation-based, replay debugger for the Standard ML of
New Jersey compiler. Traditional “source-level” debuggers for compiled languages actually
operate at machine level, which makes them complex, difficult to port, and intolerant of
compiler optimization. For secure languages like ML, however, debugging support can
be provided without reference to the underlying machine, by adding instrumentation to
program source code before compilation. Because instrumented code is (almost) ordinary
source, it can be processed by the ordinary compiler. Our debugger is thus independent
from the underlying hardware and runtime system, and from the optimization strategies
used by the compiler. The debugger also provides reverse execution, both as a user feature
and an internal mechanism. Reverse execution is implemented using a checkpoint and
replay system; checkpoints are represented primarily by first-class continuations.

1 Introduction

Most “source-level” debuggers for compiled languages actually operate at machine
level. They rely on detailed knowledge of object-code formats, runtime layout, and
hardware properties of the target machine. They also require accurate mappings
between source and object code. These factors make machine-based debuggers com-
plex, dependent on their compilers, runtime systems, and target machines, and
intolerant of compiler optimizations that distort the source-to-object mapping.
We have built a debugger that uses a different approach, based on automated
source-code instrumentation. This approach works by preprocessing source code to
insert debugging statements at all potentially interesting points in the program.
Because the instrumented code is (almost) ordinary source, it can be processed

! This work was completed while the first author was at Princeton University. A pre-
liminary version of this paper appeared in Procedings of the 1990 ACM Conference on
Lisp and Functional Programming, Nice France, June 1990. The work was supported,
in part, by the National Science Foundation under grants CCR-8806121, CCR-8914570,
and CCR-9002786.

2 A. Tolmach and A. W. Appel

by the ordinary compiler. The debugger is thus independent from the underlying
hardware and runtime system and from the optimization strategies used by the
compiler.

Debugger features that might appear hopelessly inefficient in the machine-based
model are more plausible when instrumentation is used. One such feature is reverse
ezecution—the ability to reset the program to an earlier state in its execution
history. Reverse execution can also be used in the debugger implementation to
decrease the overhead of more conventional debugging commands. We implement
reverse execution using a checkpoint and replay system.

Our work is based on the Standard ML language (Milner et al., 1990), and the
Standard ML of New Jersey (SML/NJ) compiler (Appel, 1992; Appel and Mac-
Queen, 1991).1 Although our instrumentation and time-travel methods are applica-
ble to many systems, SML/NJ has a distinctive combination of characteristics that
make it a particularly good target. First, ML is a secure language (Hoare, 1989);
programs cannot “dump core” due to runtime typing or bounds errors. Security
means that the behavior of all ML programs—even buggy ones—can be under-
stood fully without reference to the underlying compiler implementation, runtime
system, or machine. Second, the SML/NJ compiler performs extensive optimiza-
tions, which makes a traditional debugger implementation very difficult. SML/NJ
uses continuation-passing style (CPS), which eliminates storage for dead variables;
it performs tail-recursion elimination, which destroys information about the call
chain; and it does not use a runtime stack. Third, SML/NJ supports efficient first-
class continuations, which provide a cheap and elegant mechanism for checkpointing
immutable variables and control state. Since most ML programs have few side-
effects, and mutable variables are distinguished statically, a checkpoint in a typical
computation can be described by a continuation plus a small amount of additional
information describing the values of mutable variables. We assume basic familiarity
with Standard ML in the remainder of this paper.

Our source-level debugger is mostly conventional: it includes support for break-
points, value display, and call traceback. To implement these features, the debugger
inserts instrumentation code at each interesting event site, e.g., just before function
calls, just after function entries, and when local variables are bound. The instru-
mentation code is inserted by modifying the abstract syntax tree that the compiler
produces from the user’s source text. At each event, the instrumentation code can
build an event record describing the event and preserving the values of any variables
bound there. Static and dynamic links between event records enable the variable
environment and the call chain to be reconstructed at runtime by simple debugger
algorithms. The instrumentation code also checks whether a breakpoint has been
set at the event, and if so, transfers control to an interactive debug monitor. This
monitor is a special version of ML’s top-level read-eval-print loop, modified so that

! Standard ML of New Jersey is being developed jointly at Princeton University and
AT&T Bell Laboratories. Source code for the the compiler and debugger and bi-
naries for several processors are available via anonymous FTP from princeton.edu
(128.112.129.1), directory pub/ml, or from research.att.com (192.20.225.2), directory
dist/ml.

A Debugger for Standard ML 3

expressions are evaluated in the binding environment corresponding to the current
event.

The debugger also supports an unconventional feature: reverse execution. This
feature enables users to investigate the origins of an error without having to re-
execute their programs from the beginning. Execution events are given sequential
time values, and users can set breakpoints at particular times in the future or the
past. Time travel is also used by the debugger itself to implement conventional
features. For example, times are used as indirect pointers to event records; the
records themselves can be generated on demand by jumping back to the time of the
event. Ordinary location breakpoints and “skipping” (single-stepping over, rather
than into, function calls) can be simulated using time travel to perform a binary
search over execution history, avoiding expensive per-event checks during forward
execution. Internally, the debugger implements all program control mechanisms in
terms of time travel.

Reverse execution is itself implemented by taking periodic checkpoints of program
state and re-executing as necessary. The control state and the values of immutable
identifiers are captured using first-class continuations. Mutable store information
is captured separately by instrumenting store update operations to maintain a
history log; log entries use special “weak” pointers so that objects referenced only
by the log can be reclaimed. Stream input operations are also logged so that they
can be repeated on re-execution. Since memory is finite, not all checkpoints taken
can be saved; the debugger implements a checkpoint cache managed using simple
heuristics.

The debugger is portable and independent of the underlying ML implementation
and executes almost entirely within the source-language model. The only exception
is a carefully controlled violation of the type system needed to pass runtime values
to the debug monitor. Time travel relies on certain SML/NJ language features not
found in official Standard ML (e.g., first-class continuations and weak pointers) but
not on the details of their implementation. The debugger runs on all of SML/NJ’s
current hardware platforms, including the MIPS, SPARC, Intel 386, IBM RS6000,
and MC68020.

Instrumentation makes code run about three times slower than normal and causes
code size (and thus compile time) to increase by about five times. Programs be-
ing debugged require three to eight times more memory than normal programs.
Although these are large resource demands, we estimate that the alternatives for
debugging are also expensive. Any hypothetical machine-based debugger would have
to switch off many of SML/NJ’s optimizations. We estimate that the resulting code
would run close to three times slower than normally-compiled code, and might re-
quire much more memory. Another possible approach to debugging is to use an
interpreter: SML/NJ’s runs 10 to 100 times slower than compiled code. Thus, the
performance of our debugging approach appears competitive with the alternatives.

This paper describes the design, implementation, and performance of the instru-
mentation and replay mechanisms. Additional details may be found in Tolmach’s
Ph.D. thesis (1992). We have also used our instrumentation and replay approach

4 A. Tolmach and A. W. Appel

to build a debugger for an extended version of ML that supports shared-memory
concurrent programming (Tolmach, 1992; Tolmach and Appel, 1991).

2 Debugging ML

ML programmers can make good use of a conventional debugger, because the
source-level model suitable for understanding the execution of an ML program
is fairly conventional. In particular, although ML is often used in a mainly applica-
tive style, users must be aware of evaluation order in any program that updates
the mutable store, performs I/O, or uses exceptions. The possibility of side-effects
also makes it natural to think of function application as a procedure call rather
than as a A-calculus F-substitution. Thus, for debugging purposes, ML is closer
in character to C or PASCAL than it is to pure lazy functional languages such
as Miranda (Turner, 1985) or Haskell (Hudak and Wadler, 1990), in which precise

information about evaluation order is more likely to be a hindrance than a help.

2.1 Debugging Model

Our model for executing ML programs under debugger control is based on the
notion of events, i.e., interesting junctures in program execution. Events occur at
moments in execution where the user might wish to stop the program and examine
its current state, or contert. A context includes a source code site, an environment,
mapping identifiers in scope at the source site to typed values, and a call chain, a list
of contexts representing the “stack” of suspended function applications.? The user
sees program execution under debugger control as a sequence of atomic events;
the internal behavior of the program between events is invisible. Asynchronous
phenomena that occur between two events, such as keyboard interrupts or uncaught
arithmetic exceptions, are mapped to a neighboring event.

Every interesting change in context, e.g., the addition of a new variable into the
environment or the entry of a new function onto the call chain, requires an event.
Thus, events occur immediately before each function application, at the beginning of
each function rule body, and immediately after each declaration has been evaluated.
Since all branching in ML, conditional or otherwise, is expressed in terms of rule
pattern matching, placing an event at the top of each rule body guarantees that
there is an event after each branch and hence within each loop. There are no events
prior to the application of constructors or to the formation of closures because these
operations do not affect the context in an interesting way. There are also no events
at function returns; some debuggers report the values returned by functions, but
ours does not.?

Program events can be identified by logical teme values, integers assigned consec-
utively to events as they occur during forward execution. Forward execution can
be visualized as progress rightward along a time line marked off at each event (see

2 Exception handling contexts also appear in the call chain.
® This restriction preserves tail-recursion in our instrumented code; see Section 4.5.

A Debugger for Standard ML 5

— . — —o —

Initial Current Maximum Final

Time Time Known Time
Time

Fig. 1. A sample time line. The program has been executed as far as time 5, but the

current time is presently reset to time 3, perhaps after having been reset to other values

in the interim. Execution will terminate at time 8, either by reaching the end of program

or by raising an uncaught exception, but this fact is not yet known to the debugger or,

perhaps, the user.

Figure 1). Whenever the program is halted at an event, there is a well-defined cur-

rent time, 1.e., the time label assigned to the event when it was originally executed.

To “execute 1n reverse” means to reestablish the context associated with an event

that occurred at an earlier time. In this sense, directing execution to a specific state

in the past or future of the computation is time travel.

2.2 Debugger Features

There is a small set of fundamental debugger control and query functions.

Set a location breakpoint at a specified site in the source text. When the
program reaches any event corresponding to that site, while executing in
either direction, control passes to the debugger, with the current context set
to the context for that event.

Advance or reset to a specified time, starting from the current time, subject
to currently set breakpoints. The time line expands to the right whenever
the user advances the program to a target time that lies beyond the previous
maximum known time. If the end of the program is reached or an uncaught
exception occurs, the right endpoint of the time line 1s fixed at the final time;
it is impossible to advance past this time, but resetting to a known time is
always possible.

Halt execution when a keyboard interrupt or uncaught exception is raised,
setting the current context to the event where the interruption occurred.
Obtain the values and types of identifiers in scope at the current context.

e Alter the current values of mutable variables in scope at the current context.

The time line is truncated to the right of the current time, to avoid possible
temporal paradoxes.

Obtain the times and corresponding context information for all events on the
call chain, allowing display of a call trace.

Adjust the current context by moving up (or down) the call chain.

6 A. Tolmach and A. W. Appel

(* Some built-in functions on events *)
type time = int
val currentTime: unit -> time
(* Returns the current time. *)
val caller : time -> time
(* Given an event time within some function, returns time of the
application event that invoked function. *)
val advanceTo: time -> unit
(* Executes forward to the specified time. *)

(* Synthesized functions *)
fun singleStep () : unit = advanceTo(currentTime() + 1)

(¥ ‘‘Skip’’ over a call.
If executed at an application event, continues single-stepping until
that application event is no longer on the call chain.
If executed at any other event, just single-steps. *)

fun skip () : unit =
let val startTime = currentTime()
fun startOnChain t =
if t = startTime then
true
else if t < startTime then (* use time ordering ! *)
false
else startOnChain(caller t)
in singleStep();
while startOnChain(currentTime()) do
singleStep()
end

Fig. 2. Synthesizing singleStep and skip from primitive functions.

Users interact with the debugger via an interactive debug monitor, which is a re-
cursively invoked, specialized variant of the compiler’s standard top-level loop. The
monitor’s top-level environment emulates the dynamic environment for the current
user-program context, which allows the standard expression evaluator to be used
to display, deconstruct, and operate on values in the current debugging context.
Other debugging primitives, such as displaying the call history, controlling break-
points, and restarting execution, are implemented as functions built into a pervasive
debugging support environment and executed for side—effect. Like other ML func-
tions, they can be embedded in more complicated user-defined functions, invoked
from external files, assigned to new names or abbreviations, etc. As an example,
Figure 2 shows how a single step function and a naive “skipping” function can be
synthesized from built-in primitives that perform time travel and call-chain lookup.

A Debugger for Standard ML 7

let val pair = fn x => fn y => (x,y)
val pairl = pair 1
val pairt = pair true
val £ = fn (h::t) => pairt h

in £ [1,2,3]

end

Fig. 3. Example of dynamic types.

2.3 Values and Types

Displaying values in a manner appropriate to their type is non-trivial for a language
that includes user-defined data types, first-class functions, functors, and polymor-
phic identifiers. There are obvious limits to the abilities of any general-purpose
pretty printer to deal with user-defined types or with large aggregate data struc-
tures. Our approach is to let the user display values via the standard top-level ex-
pression evaluator, modified so that identifiers are looked up in the environment of
the current context. This approach allows the user to deconstruct complex values by
evaluating arbitrary ML expressions. The current context’s environment is accessed
using a special set of emulation functions. These functions translate an identifier
lookup, which the ordinary top-level environment would handle by consulting a
hash table, into a call to the debugger’s lookup routine, implicitly parameterized
by the current context. To the top-level loop and parser, this “synthetic” debugger
environment looks just like a “real” symbol table.

Variables bound to functions have no directly printable “value.” The expression
evaluator can be used to examine a function’s behavior by applying it to sample
arguments. The debugger can also report the binding context, including source-code
site, for an identifier; this feature, used recursively as necessary, enables the user to
find and inspect the A-expression that defines the code bound to a function-valued
variable.

Displaying values of variables with polymorphic types is a major debugging chal-
lenge. Consider the program in Figure 3. Here pair has the polymorphic type
scheme Yo, .00 — — (a x), and is applied first to an integer, later to a
boolean. If the user stops at a breakpoint just inside an invocation of pair, after
x has been bound to the actual argument, how 1s the debugger to determine the
dynamic type of x, when the compiled code for pair is deliberately oblivious to its
argument’s type, and runtime values themselves do not carry precise type tags?

To solve this problem, the debugger relies on the fact that the dynamic type of
a value doesn’t change when it is passed to a function; i.e., the dynamic type of
the formal parameter must match that of the actual argument (Appel, 1989a). To
find the actual argument’s type, the debugger looks up the call chain to find the
event where the function was called and consults the corresponding code site. In
this example, both applications of pair take as argument a constant of manifest
type, so the dynamic type of x is immediately deducible. In general, more work
may be required. Consider what happens if the user breaks execution just after

8 A. Tolmach and A. W. Appel

pairt has been applied and y has been bound, and asks for y’s type. As before,
the debugger looks up the call chain, and determines that the dynamic type of y is
the same as that of h. But h’s dynamic type is not immediately obvious; it must be
computed by a recursive application of the same procedure. By following another
link in the call chain, the debugger can determine that since the argument to £ has
static (and dynamic) type int list, h must have dynamic type int. In general,
the debugger may need to traverse an arbitrary number of links in the call chain.*
Moreover, it is not always sufficient to consult the current call chain (Goldberg
and Gloger, 1992). Suppose that the user, still halted at the same event after the
binding of y, asks for the type of x. At this point, the application of pair to true is
no longer on the current call chain; the debugger must retrieve the call chain that
was current when x was bound before beginning the reconstruction process. Thus,
the type reconstruction algorithm requires a mechanism to access the binding-time
call chain of every variable in scope. An efficient mechanism for this purpose is
described in Section 4.3. We believe that this procedure always terminates with a
secure dynamic type, although we have not proved this fact formally.

Most source-level debuggers allow the user to alter the course of execution, usu-
ally by changing the values of variables. In ML, this feature makes good sense
only for mutable ref and array variables. It is provided by permitting the user
to evaluate assignments for their side-effects. Allowing other identifier values to
be changed amounts to changing the program’s source code, and would typically
require dynamic recompilation.

A debugging session has exactly one history time line representing one consistent
execution history. However, the debugger permits the user to reset to a time ¢ before
the maximum known time and then change the values of mutable variables. Since
these changes might alter the course of execution, the debugger automatically resets
the maximum known time to ¢, truncating the time line in order to avoid possible
temporal paradoxes. Other user actions that might change execution history, such
as altering an input stream during re-execution, are prohibited. To avoid compli-
cating the user interface, we deliberately do not support an “undo/redo” system
for speculative computing or “parallel worlds” of execution.

2.4 Debugger Interface

The debugger uses a screen, keyboard, and mouse-driven interface, implemented
as an extension to the GNU Emacs editor, roughly in the style of gdb (Stallman
and Pesch, 1991). It is independent of the debugger implementation and, to a large
degree, of the specific functionality the debugger provides. Whenever execution
halts under debugger control at a particular event, the corresponding source code
is displayed with a pointer to the current site; the user can select other sites in the

* In principle, the debugger could avoid traversing recursive applications, since these can
add no useful type reconstruction information. If we implemented this optimization,
the complexity of the reconstruction process would be limited by the depth of static
nesting rather than by the dynamic call depth.

A Debugger for Standard ML 9

source by scrolling and pointing at the text. Debugger commands can be issued
using single keystrokes which are translated into the equivalent typed commands
and passed to the debug monitor.

3 Debugging SML/NJ

The SML/NJ system poses many problems for conventional machine-based or in-
terpretive debuggers. This section describes the compiler and runtime system and
the difficulties they provoke.

3.1 Compiler and Runtime System

SML/NJ implements the full Standard ML language with a few trivial omissions
and variants. It makes extensive internal use of continuations, and also exports them
as first-class user objects, similar to those in Scheme (Clinger and Rees, 1991), but
typed (Duba et al., 1991). Continuations are captured with the callcc primitive
and invoked using the throw primitive.

SML/NJ compiles a program by performing a complex sequence of rewritings
from one intermediate representation to another. Source programs are parsed into
conventional abstract syntax trees, which are then elaborated and type-checked.
Elaborated abstract syntax is translated into A-language, an intermediate represen-
tation resembling an applied call-by-value A-calculus. Various simplifications are
made at this stage, notably the compilation of pattern matches into explicit test
and branch code. The SML/NJ system includes a simple interpreter that operates
directly on A-language.

Next, A-language is converted into the continuation-passing style (CPS) language.
This is another A-calculus-like language, but with all control flow made explicit. All
function operands must be atomic, 1.e., they must already have been explicitly
evaluated and bound to a variable. Also, functions never return; they terminate
by calling a continuation function representing “the rest of the program.” Most
of SML/NJ’s optimizing is done on the CPS representation (Appel, 1992). CPS
optimizationsinclude in-line expansion, n-reduction and splitting, flattening of tuple
arguments and uncurrying, and code hoisting.

After optimization, the CPS is further rewritten to convert references to free vari-
ables into explicit code to create and access heap-allocated closure records. Then,
the CPS is translated to code for an abstract machine; a further optimization that
chooses function argument registers is performed as part of this translation. Finally,
the abstract machine code is translated to binary code for a specific target. Only
this last phase is machine dependent. On RISC machines, target code generation
includes instruction scheduling to fill branch and load/store delay slots.

In addition to these explicit optimizations, the SML/NJ compiler implicitly per-
forms certain operations that other compilers might treat as elective optimizations.
Live variable analysis is performed implicitly as part of CPS conversion: only “live”
variables appear free in continuation functions, so “dead” variables never occupy
space in continuation closures. Whereas a conventional compiler may view regis-

10 A. Tolmach and A. W. Appel

ter assignment of local data as an optimization on the “standard” placement in
activation records, SML/NJ looks at things the other way around: it assumes all
data reside in registers unless explicitly needed in a closure record or spilled. These
optimizations cannot be disabled; they are intrinsic to SML/NJ’s compilation ap-
proach.

The SML/NJ system also contains a runtime component, implemented in C,
that provides access to operating-system facilities, including I/O and signals, and
a garbage collector for the heap. SML/NJ uses a two-generation copying collec-
tor (Appel, 1989b); frequent minor collections scavenge the younger generation,
and occasional major collections scavenge the entire heap. The heap is very heavily
used, because SML/NJ has no runtime stack of activation records. Its role is played
by heap-allocated closures for continuation functions, which hold on to the values
needed for continuing the computation of suspended functions higher up the call
chain. Furthermore, closures are not stored into after their creation and initializa-
tion. This scheme makes execution of callcc almost free: the current continuation
can be saved simply by taking a new pointer to a linked set of heap-allocated
records, and there is no stack to copy. Of course, there are allocation and garbage
collection costs associated with using a heap representation, although these costs
might not be higher than those of stack management (Appel, 1987).

3.2 Problems with Machine-Based Debugging

The number and complexity of SML/NJ’s optimizations and the nature of its run-
time systemn make the prospect of writing a conventional machine-based debugger
quite daunting. To provide a source-level interface, a machine-level debugger must
have access to a bidirectional map between source program locations and object
code addresses, and a map from source code variables to machine data locations
(addresses and/or registers). In addition, the debugger must understand the run-
time format of each data type it must print (e.g., strings, arrays, and user-defined
types). Finally, it must be able to determine the current call chain (typically by
knowing the runtime stack format) and represent it in terms of the source code
using the maps described above. All of these tasks are difficult in SML/NJ.
Optimization greatly increases the complexity of the debugger’s maps. A typical
ML source function is split into a set of CPS functions; an elaborate mapping scheme
would be needed to translate correctly between source-code and object-code loca-
tions. To avoid reporting incorrect data values, a similarly elaborate scheme would
be needed to map source identifiers to values as they move in and out of regis-
ters and closures. In-line expansion, n-splitting, argument flattening, uncurrying,
etc. all cause the source-to-object code mapping to become one-to-many, and the
inverse object-to-source map to become many-to-one. Keeping track of these map-
ping changes would be fundamentally straightforward and should not carry any
runtime cost, but it would be a substantial bookkeeping task even if we demanded
merely truthful behavior from the debugger (Coutant et al., 1988). More seriously,
previous research on debugging optimized code (Hennessy, 1982; Zellweger, 1984)
suggests that it is impossible to provide cost-free expected debugger behavior in the

A Debugger for Standard ML 11

presence of n-reductions, since they remove the reduced functions from the object
code; either n-reduction must be prevented or an additional parameter to indicate
which original function was applied must be passed at runtime, which might be
expensive. And visible but “dead” variables must somehow be preserved despite
CPS conversion.

Polymorphic functions prevent any simple static correlation between variable
names and types, and runtime values are essentially untagged (although a very
weak form of tagging is used to support garbage collection). Finally, there is no
conventional stack, and it 1s not obvious how to extract call chain information from
continuation function closures.

3.3 Interpreters

Interpretive environments offer a number of advantages for debugging. Since the
interval between making a source edit and running the resulting program is typ-
ically shorter than in compiled systems, at least for small programs, interpreters
encourage debugging by source-code modification and experimentation. Moreover,
the interpreter’s evaluator can be modified to support internal debugging features,
such as tracing function calls, arguments, and return values, at relatively small cost
in added execution time. Many Lisp systems have powerful and elaborate debug-
ging environments based on interpretation (e.g., Interlisp (Teitelman, 1978)), and
this approach has also been used for C (e.g., Saber-C (Kaufer et al., 1988)). Since
interpreters are typically fairly machine-independent, debugging systems based on
them are also portable.

Unfortunately, interpretation is usually one to two orders of magnitude slower
than compiled code execution. To make interpretation a feasible basis for debugging,
it must be possible to intermix interpreted and compiled procedures at link time,
and preferably at runtime (without halting the program) (Goldberg and Robson,
1983). SML/NJ would require significant changes to support dynamic recompila-
tion.

4 Source-code Instrumentation

Our ML debugger avoids the problems of conventional implementations by using an
unconventional approach: it automatically instruments programs at compile time
so that they can be interactively debugged at runtime. This approach derives from
one of the oldest manual debugging techniques: inserting explicit code into the
source program to print values at points of interest. In the absence of a source-level
debugger, this “insert a PRINT statement” method may be the only one available.
Instrumenting by hand can be crudely effective, but it has serious drawbacks, par-
ticularly when the location and nature of a bug are unknown. It is hard to predict
at compile time what information will be of interest at runtime; indeed, the focus
of interest often changes in the course of a debugging session. It is then necessary
to add or alter the instrumentation, re-translate, and re-run the program. If the
compilation cycle is slow, the method becomes tedious.

12 A. Tolmach and A. W. Appel

Moreover, although the source language is a flexible medium in which to describe
what information to display, it is not always a convenient one. For example, few
languages provide any direct method for inspecting the call chain. ML doesn’t even
provide a built-in mechanism for printing variables, because the necessary runtime
type information is not normally available. Finally, to instrument a program by
hand the user must alter the source text, which can be time-consuming and error-
prone. Unless instrumentation is carefully planned as a part of the program from
the beginning, adding it (and later removing it) can easily make the source code
less readable and maintainable, and can itself introduce bugs.

If the program is large, and instrumentation is planned from the beginning, it
may be reasonable to include support for more complex operations than simply
printing the values of variables: a trace history, breakpoints and watch points, and
even an interactive interface for controlling these features might be added. In fairly
short order, the user will have built most of a debugger.

A better idea is to generate the debugging code automatically. Our debugger
inserts simple and uniform instrumentation code that supports breakpointing, vari-
able lookup, and control-flow tracing at arbitrary event sites. This instrumentation
is itself written in (almost) Standard ML. Instrumentation can be performed as a
source-to-source transformation prior to compiling; the resulting instrumented code
is legal compiler input, and the instrumented program works as expected in spite
of any compiler optimizations and with any back-end. Only one caveat is required:
the added code is not quite valid ML because 1t violates the type system in order
to pass the recorded state to the debugger. Runtime values do not carry type infor-
mation, so they must be treated as having generic type object.® Fortunately, this
violation does not weaken the overall security of the system significantly, because
user programs with type errors are still prevented from executing, and other kinds
of user-program errors cannot disrupt the instrumentation code or the debugger.
In short, we have a simple, reliable, platform-independent debugging strategy.

This approach to debugging may seem awkward or inelegant. In fact, source
modification is a natural way to cope with an aggressive optimizer. Optimizing
compilers may make any changes to a program so long as the observable behavior
of the program remains the same. Unfortunately, debuggers must expose the inter-
nal behavior of the original program, which may be altered by optimization. The
instrumentation-based debugger solves this problem by transforming the original
source into a new program in which the internal state of the original is made poten-
tially observable at frequent intervals. This transformation constrains the compiler
to maintain the original form of the computation.

The remainder of this section describes the instrumentation process in more
detail. For simplicity, the discussion is given in terms of the core language subset
shown in Figure 4.

° The compiler already has to bypass ML’s type system in order to manipulate code
objects and values of uncertain type in the top-level loop. These type violations mean
that the compiler itself does not have the security property of well-typed ML programs,
but the violations are few and isolated.

A Debugger for Standard ML 13

exp ::= nconst (nullary constructors, i.e., constants)
uconst (unary constructors)
var (variables)
op (primitive operators)
€XPopr ¥ €XParg (function applications)
let dec in exp end (local declarations)
fn rule; | ...| rule, (functions)
(exp1,expa,...,eXpn) (tuples)
(exp1;expz;...;expn) (sequences)
nconst ::=0,1,2,... (integer constants)
nil (empty list constructor)
uconst 1= :: (list cons constructor)
ref (reference constructor)
op 1= +,— %,/ (integer operators)
V= (reference operators)
array,update,sub (array operators)
rule ::= pattern => t exp
pattern ;= _ (wildcard, i.e., match anything)
var (variable)
nconst (constant)
(uconst pattern) (constructions)
(pattern; ,patterns,... ,pattern,) (tuples)
dec ::= val t pattern; = exp; and ... and pattern, = expn (ordinary declarations)
val rec ¥ var; = exp; and ... and var, = expn (recursive declarations)
decy ;. .. ;decy, (sequences)

Fig. 4. A subset of Core Standard ML. Primitive operators and constructors whose
arguments are pairs can be written in infix, e.g., a+b for +(a,b), and
[expi,exp2s...,expn] 1s syntactic sugar for the pattern or expression

expr::(expa:: (... ::(expp::inil))). Superscript daggers (i) indicate the positions of
the source-code sites described in the text. Semicolons separating members of a sequence
of declarations may be omitted.

4.1 Sites

Instrumentation code is placed at each event site; the event “happens” at runtime
when the instrumentation code is executed. Each site has an associated site type.
For the subset language, the debugger defines FN sites, located at the top of each
function rule body; APP sites, located just prior to each function application; and VAL
and VALREC sites, located just after each val or val rec declaration. To debug the
full language, a somewhat larger set of site types is defined. There is a well-defined
mapping from sites to source-code locations, illustrated in Figure 4 for the subset
language. There is also an inverse mapping from each source-code location to the
nearest neighboring sites. FN, VAL, and VAL REC sites are called binding sites, since

14 A. Tolmach and A. W. Appel

let vall cons = fn (x,y) =>% x :: y
val® rev =
fn list =>*
let val rec® r =
fn (h::t,a) =>°
r®(t, cons’(h,a))
| (nil,a) =>° a

in r'®(list,nil)

end
in rev'! [1,2,3]

end

Fig. 5. The rev function.

Fig. 6. Event sites for rev. Each binding site is annotated with site number:site
type:bound variables. Arrows connect each site to the site corresponding to its
immediately enclosing binding under ML’s standard static scoping rules.

identifiers may be bound there; the names of these identifiers can be determined by
examining the source code at the site. In our implementation, a site actually points
to a node in the program’s abstract syntax tree, and its associated bound variables
can be extracted from the node. Each site in a program is given a unique identifying
site number, which can be used to index tables or lists of site information.

Figure b shows a fragment of code that reverses a short list; this fragment serves
as a running example in the remainder of this section. The program is fairly realistic
except for the redefinition of the built-in cons operator (::) as the cons function,
which has been introduced for illustrative purposes only. The superscripts are site
numbers; the corresponding sites are described in Figure 6, organized into a tree
showing how sites are related under static scoping. Each branch in the definition
of val rec r has a separate FN site; these sites would be present even for branches

A Debugger for Standard ML 15

(* Basic types *)
type siteNumber = int
type time = int

type value = object

(* Event records #)
datatype eventRecord =
EVENT of {time: time,
siteNumber: siteNumber,
binding: eventRecord,
caller: eventRecord option,
boundValues: value list}
| NULLEVENT (* corresponds to siteNumber O *)

Fig. 7. A naive eventRecord data type.

that failed to bind any variables. Constructors such as :: are not instrumented,
because they operate atomically; cons, on the other hand, is instrumented.

4.2 Event Code

The code at each site must determine whether the user has requested a halt at
the current event; if so, it stops the user program and passes context information
about the event to the debugger. In a conventional debugger, it is usual to specify
where to halt by giving a source code site; we call this a “location breakpoint.” In
a time-travel debugger, however, it is also very useful to be able to specify halts at
a particular time (before or after the current time). Deciding whether to break at
an event 1s thus expressed as a test of the current time against a particular target
time together with a check of whether a location breakpoint is set for this site.

The context information that must be retrievable at an event includes the event
site; the current call chain, i.e., the identity of each pending APP event; the current
values and types of all identifiers in scope at this site, or at any site on the call chain,;
and the call chain that was current when each of these identifiers was bound. The
context at any given event is only incrementally different from that at a previous
event; e.g., a variable is added to the environment or a call is added to the call
chain. Thus, the context can be succinctly described by a pointer to a previous
context plus the incremental changes.

A naive approach to obtaining context information would be for instrumentation
code to build an event record at each event, whether or not a breakpoint occurs;
the contents of this record are shown in Figure 7. The boundValues list contains an
entry for each identifier bound at the event, if any. The caller field is present only
for FN (top-of-function) events; it points to the record for the APP event that caused
the function to be entered. The binding field points to the record that describes
the most recent lexically-enclosing binding event; it is the dynamic analogue of the
static scope nesting relation shown in Figure 6.

From a given event record, the debugger can determine the source location of the

16 A. Tolmach and A. W. Appel

corresponding site (using a table built during instrumentation; see Section 4.4) and
the values of the identifiers bound there. By traversing the binding chain defined
by the binding pointers, it can find the value of any identifier in scope at the
initially given event. As a byproduct of this search, the debugger also determines
the event at which the identifier was bound. This information is useful for identifiers
representing functions, whose values cannot be printed. It also gives access to the
call chain that was current when the value was bound, as required for dynamic type
reconstruction (see Section 2.3). Finding an identifier value traverses O(d) binding
pointers, where d is the static nesting depth of the initial event site, which is at
worst proportional to the size of the source text.

Identifier lookup can start from any event record, so if the debugger can obtain
the event record for an event on the call chain, it can display the value of any
variable in scope at that event. To find these call chain event records, the debugger
relies on the following properties of the instrumentation.

e Each function rule body has exactly one FN site, located at the beginning of
the body.

e Each FN event is treated as a binding event (even if the rule binds no identi-
fiers) and appears on the binding chain for every event in the function body.

Thus, given an event record, the debugger can find the record of the caller’s appli-
cation event by following the chain of binding pointers until a FN event is reached
and then following the caller pointer. Iterating this process produces the event
record of the caller’s caller, and so forth.

The caller and binding fields are similar to the control (or dynamic) and access
(or static) links, respectively, used to link activation records in languages with
nested procedures, such as Pascal (Aho et al., 1986, Chapter 7). A Pascal compiler
typically generates code to maintain static links and relies on the hardware stack to
maintain dynamic links; SML/NJ generates code to maintain similar information
in the form of closure and continuation pointers. We, however, must invent source-
language instrumentation to do both jobs.

This naive approach incurs an expensive space penalty, especially in the case of
tail-recursive functions. These functions remain tail-recursive, thanks to our pol-
icy of not placing events after applications, so the compiler can continue to avoid
building a continuation closure for the recursive call. But the values that would have
been referenced from this closure, which would ordinarily become garbage, are now
stored explicitly into event records. The resulting space penalty is proportional to
the depth of dynamic function call nesting (before tail-recursion elimination) and
can be substantial for deeply recursive programs with large data structures. More-
over, we also pay this penalty for each in-scope binding. Measurements of the space
overhead incurred by this naive approach are given in Section 8.1.

4.3 Lazy FEvent Record Construction

The fundamental drawback of the naive approach is that it builds a complete record
of the values bound at each event even though most of these values are never needed

A Debugger for Standard ML 17

(* Lazily-generated event records *)
datatype eventRecord =
EVENT of {siteNumber: siteNumber,
binding: time,
boundValues: value list}

val currentTime : time ref
val targetTime : time ref

val breakWanted : bool array

fun event (siteNumber,binding,boundValues) : time =

let val newTime = !'currentTime + 1
in currentTime := newTime;
if (newTime = !'targetTime) orelse

(breakWanted sub siteNumber) then
break (EVENT{siteNumber=siteNumber,
binding=binding,
boundValues=boundValues})
else ();
newTime
end

Fig. 8. Lazy eventRecord data structure and event instrumentation code. Other types
are as in Figure 7. The break function is described in Figure 13.

by the debugger. A more elegant solution is to use time travel nternally to recreate
values lazily, upon demand. During forward execution, debugger instrumentation
generates an event record only if a break is taken at the event; otherwise, the time
of the event is preserved but no values are recorded. If more detailed information
proves to be needed, the debugger can jump back to the event in question and
collect it. This approach makes controlled execution, i.e., execution under debugger
control but with no debugging queries; cheaper in time and space at the possible
expense of longer times for query operations.

The event record has a revised form (see Figure 8). The explicit binding pointer
is replaced by the fime of the relevant binding event. To obtain a record on the
binding chain, the debugger internally jumps back to the recorded time, generating
a full event record, and jumps forward again to the original time. The caller
pointer is unnecessary because times provide a sequential ordering for events. Since
each FN event is immediately preceded by its corresponding APP event in the calling
function, the record for that APP event can be obtained simply by internally jumping
back one time unit.

The process of obtaining an event record by jumping back in time is encapsulated
into an internal function

eventRecordAt: time -> eventRecord

Time travel performed during execution of this function is invisible to the user,
except perhaps for a delay in evaluating queries.

18 A. Tolmach and A. W. Appel

Figure 8 shows the lazy instrumentation code inserted at each site in the form
of an event function, which is ordinarily expanded in line to improve execution
speed. Location breakpoints are established by setting the appropriate entry in
breakWanted, an array of booleans indexed by site number. Note that current and
target times are simply ML integer refs. Overflow of time values is a potential
problem; SML/NJ integers occupy only 31 bits, which allows for 2.1 x 10° events
in a single debugged execution. Using pessimistic assumptions, this number should
allow debugging a program that takes up to about 15 minutes of CPU time (not
including garbage-collection time) on a typical workstation. Unfortunately, any form
of multiple-precision counter appears to be much more expensive; we eagerly await
64-bit machine architectures.

4.4 Imstrumentation Algorithm

Figure 9 describes the instrumentation process for the subset language of Figure 4
as a set of mutually recursive instrumenting functions that transform the concrete
syntax of expressions, rules, and declarations. Function £ takes a pair of arguments:
a source-code expression to be instrumented and an auxiliary source-code expres-
sion Ibexp that evaluates (at runtime) to the binding pointer; it returns the instru-
mented version of the first source-code expression. Function R is similar except that
its first argument is a source-code rule. Function D takes a source-code declaration
and Ibexp expression as arguments and returns a pair: the instrumented declaration
and a new value for Ibexp to be used within the scope of the declaration. A top-level
declaration dec is instrumented by calling D(dec, 0). The auxiliary metafunction S
takes a site type and source-code position (represented by) as arguments, creates
a new site with that type and position, and returns the new site’s number. A table
of all sites so created is produced as a by-product of the instrumentation process.

Most of the transformations are straightforward. Application expressions are
complicated slightly because the instrumented code must evaluate both the op-
erator and argument subexpressions before executing the application event. The
most complicated case is for val rec declarations: the name of a recursive function
is visible inside the function’s own body, but the function’s value i1s not available
until after the val rec binding has been executed, so execution of the binding
event needs to be deferred until then. Fortunately, the #ime of this event can be
calculated in advance, since the body of a val rec is always a non-executable fn
expression.®

Figure 10 shows the instrumented version of the rev program of Figure 5, exactly
as 1t would be produced by the execution of the algorithm in Figure 9. Site numbers
are as in Figures 5 and 6. The algorithm may produce unnecessary temporaries (e.g.,
many of the instances of opr and arg) and other bindings (e.g., event_2), but these
are removed by the optimizer. event is expanded in line, so the code expands by
an even larger factor than shown here. Also, Figure 10 is not strictly legal Standard

% In practice, this technique is unnecessary because VALREC events are coalesced into
neighboring APP events (see Section 4.6).

A Debugger for Standard ML 19

&(nconst, Ibexp) = nconst

&(uconst, Ibexp) = uconst

&(var, Ibexp) = var

E(op, Ibexp) = op

S(expopr t exparg,lbexp) = 1let val opr = S(expopr,lbexp)

and arg = S(exparg,lbexp)
in event (S(APP, {),lbexp,nil);

opr arg
end

E(let dec in exp end,lbexp) = let dec’ in &(exp,lbexp’) end

where (dec’, Ibexp’) = D(dec, Ibexp)
E(fn rule; | ...| ruley,lbexp) = fn R(rulei,lbexp)| ... | R(rule,,lbexp)
E((expy,expz,...,expn),lbexp) = (&(expy,lbexp),E(expz, Ibexp),. ..,

E(expn,lbexp))
E((exprsexpz;. .. expn),lbexp) = (E(exps,lbexp); E(expz, Ibexp);. .. ;

E(expn,lbexp))

R(pattern =>Texp,lbexp) =
pattern =>
let val event.n = event(n,lbexp,vars)
in &(exp,event.n)

end
where n = S(FN, 1) and vars = list of variables bound in pattern
D(valTpatternl = exp; and ... and pattern, = expm,lbexp) =
(val pattern; = E(expi,lbexp) and ... and pattern,, = E£(expm,lbexp);
val event_n = event(n,lbexp,vars),
event_n)
where n = S(VAL, 1)
and vars = list of variables bound in pattern,,...,pattern,,
D(val recharl = exp; and ... and var, = expm,lbexp) =
(val event_n_time = !currentTime + 1;
val rec var; = £(exp;,event_n_time)
and ...
and var, = E(expm,event_n_time);
val event_n = event(n,lbexp,[vari,...,varnl);
event_n)
where n = S(VALREC, })
D(deci;decs;. . . ;decn,Ibexp) = (dech;dech;...;dec’y, Ibexp'y)

where (dec’,lbexp't) = D(dear, Ibexp)
and (dec’s, Ibexp’s) = D(dec, Ibexph)
and

and (dec’n,lbexp'y) = D(dec,, Ibexp'n_1)

Fig. 9. Instrumenting functions £, R, and D. Fragments of concrete syntax are shown in
typewriter font and metavariables representing source text are shown in slanted font.

20 A. Tolmach and A. W. Appel

ML code, because the lists of values passed to event contain entries having multiple
types. In practice, these are cast to a generic object type and are treated as vectors
(immutable arrays) rather than lists.

The debugger instruments code by transforming the compiler’s elaborated ab-
stract syntax representation, after parsing and type checking, but before transla-
tion into A-language. A more direct method might be to pre-process the source
code before feeding it to the compiler, but our approach avoids parsing the source
twice. ML 1s a complicated language to parse; neither the effort required to rewrite
or extract the parser nor the inefficiency implied by parsing twice was attractive.
The only serious disadvantage of our approach is that derived forms, such as fun,
have already been expanded into core forms before instrumentation is performed,
making it difficult to assign source-code locations to event sites accurately.

4.5 Performance Effects

How much will lazy instrumentation slow down code, in the overwhelmingly com-
mon case when a break does not occur? The direct costs are clear: currentTime
must be incremented and compared against targetTime, and the breakWanted ar-
ray must be checked. The indirect costs of executing this code are more subtle. Each
event_n binding time variable must be kept live as long as the associated binding
is live, which increases demand for registers and the size of closures. Fortunately,
the total number of such variables live at any one time is limited by the depth of
static nesting in the program, which is typically small. In addition, the addresses
of currentTime, targetTime, breakWanted, and the break routine must be kept
live throughout the code, which puts further pressure on registers and closures.

If break is called, the compiler must build a continuation closure to pass to it,
which can be costly if there are many live variables.” It is desirable to avoid building
this closure if the break test fails; unfortunately, the optimizer occasionally hoists
the closure creation above the break test.

Another subtle effect is that every named identifier must now remain live from
its binding point until the last event that may put its value on a boundValues
list. Again, more registers or closure space may be needed, although most of these
values may be live anyway, since the distance from binding to reporting event is
usually short. More interestingly, the liveness requirement also applies to identifiers
that the optimizer would ordinarily eliminate by constant folding or n-reduction.
In such cases, the original optimization may still take place, with the resuscitated
variables used only to fill in event records.

Function in-lining and its special case, loop unrolling, are still possible, but are
less likely to be invoked by the optimizer’s heuristic because of the growth in func-
tion size caused by the insertion of instrumentation. When in-lining does occur,

T This continuation is constructed and passed in the CPS version of the program generated
internally by the compiler. Essentially the same continuation is subsequently “reified”
into a user-level continuation by a callcc within the body of break; see Section 6.

A Debugger for Standard ML 21

let
val cons =
fn (x,y) =>
let val event 2 = event (2,0, [x,y])
in x::y
end
val event 1 = event (1,0, [cons])
val rev =
fn list =>
let val event 4 = event (4,event_ 1, [list])
in let
val event 5 time = !currentTime + 1
val rec r =
fn (h::t,a) =>
let val event 6 =
event (6,event 5 time, [h,t,al)
in let val opr = r
and arg = (t, let val opr = cons
and arg = (h,a)
in event (7,event 6,nil);
opr arg
end)
in event (8,event 6,nil);
opr arg
end
end
| (nil,a) =>
let val event 9 =
event (9,event 5 time, [a])
in a
end
val event 5 = event(5,event_ 4, [r])
in let val opr = r and arg = (list,nil)
in event (10,event 5,nil);
opr arg
end
end
end
val event 3 = event(3,event 1, [rev])
in let val opr = rev and arg = [1,2,3]
in event (11,event 3,nil);
opr arg
end
end

Fig. 10. Instrumented version of rev. Original program code is shown in bold
typewriter font and instrumentation code is shown in 1light typewriter font.
Event types are shown in Figure 6.

22 A. Tolmach and A. W. Appel

the instrumentation is copied along with the original code, so the pattern of event
records 1s unaffected.

It is instructive to examine the instrumented code generated for rev. The original
program is optimized away to almost nothing by a combination of loop unrolling
and constant propagation; all that remains to do at runtime is to cons together
the result list [3,2,1].The instrumented version, on the other hand, executes the
full computation in its original form plus all the debugging support code. No in-
line expansion is performed; the compiler doesn’t even n-reduce the function cons,
although it i1s n-split, so that the call from inside r can be optimized to avoid
packing its arguments into a pair.

4.6 Improvements and Extensions

In practice, the debugger instruments significantly fewer sites than shown here.
Adjacent sites in the binding tree are coalesced with neighboring sites whenever
they lie in the same basic block. In particular, VAL and VALREC events are always
coalesced with neighboring APP and FN events. The resulting “augmented” sites
are instrumented to build event records containing values for the identifiers bound
at all the constituent original sites. Coalescing improves runtime performance by
reducing the number of calls to event and the number of event records built.

To handle the full ML language, the debugger uses a number of other site types.
Events at type and infix declarations, and at module declarations and functor ap-
plications, permit the debugger to emulate environments correctly; events at raise
and handle expressions support exception tracing, and so forth. Most of these
events are coalesced with others, so they cost little at runtime. In some cases, fea-
tures in the full language merit new site types even if they could be handled with the
core set of types. For example, case expressions could be treated as function appli-
cations, but doing so would require two event executions per case execution. Since
the “function” body is only called from one site, there 1s no need for a separate APP
event at runtime; removing it halves the execution overhead of instrumenting. Since
if-then-else expressions are simply derived forms of case expressions, they ben-
efit from this optimization as well. In addition, APP events for arithmetic primitives
can be omitted to improve efficiency, although this technique reduces the accuracy
of the call chain information provided if an uncaught arithmetic exception occurs.

5 Speculative Computation and Time-Line Search

Time travel can be used for speculative as well as retrospective computation. If the
user wishes to halt in a particular state, there is no need to make sure that the halt
occurs during forward execution. If the target state i1s overshot, the user can back
up to it; indeed, it is often easier to identify the target after the fact.

For example, suppose the program has a loop, with a ref cell ¢ used as the loop
counter, and the user wants to halt the program when ¢ has just been incremented
to a particular value v. Assuming that the counter is never decremented, the user
can perform a two-step procedure to direct the program to this time. First, the user

A Debugger for Standard ML 23

val timeDelta = ...

fun advanceToRealizationTime (realizedAt:unit -> time) =
let fun narrow(falseTime,trueTime) =
if falseTime+1 < trueTime then
let val targetTime = (falseTime + trueTime) div 2
in resetTo(targetTime);
let val trueTime’ = realizedAt()
in if trueTime’ < infinity then
narrow(falseTime, trueTime’)
else narrow(targetTime,trueTime)
else resetTo(trueTime)
fun expand() =
let val startTime = currentTime()
in advanceTo(startTime + timeDelta);
let val trueTime = realizedAt()
in if trueTime < infinity then (* predicate now true *)
narrow(startTime, trueTime)
else if currentTime() < !'finalTime then
expand () (* predicate not yet true *)
else () (* predicate never true #)
end
end
in expand()
end

Fig. 11. Finding realization time for monotonic predicate by binary search.

repeatedly executes forward at full speed, stopping periodically to check the value
of ¢, until 'c >= v. At this point, the target time lies between the current time,
tiate, and the time of the last unsuccessful check, t.4r1y. The user then performs
binary search on the temporal interval (fcqr1y,tiaze] to pinpoint the earliest time at
which !¢ = v. This procedure is likely to be faster than checking the value of ¢ at
every time step during forward execution, even if there is built-in support for doing
the check efficiently.

Call t the realization time for a predicate P if P first becomes true at ¢. The
binary-search technique can be automated to find the realization time for any
monotone predicate on execution states, i.e., any predicate that stays true once
it becomes true. Moreover, the algorithm that directs the search can be abstracted
into a user-level function, advanceToRealizationTime, that takes P as an argu-
ment. A simplified version of the code for this function is shown in Figure 11. The
realizedAt function consults the current state to determine if the predicate defin-
ing the desired target state is true. If so, it returns the earliest time for which it
knows the predicate to be true; this might be simply the current time, but some
predicates can return better bounds. If not, it returns infinity.

The debugger uses this function internally to implement certain targeted exe-
cution commands as binary searches over the execution time line. One important

24 A. Tolmach and A. W. Appel

example is the implementation of location breakpoints. Suppose we modify the code
for event to maintain an auxiliary array lastTimes, indexed by site, and holding
the time of the last event executed at each site. Forward execution from an initial
time t0 to a location breakpoint at site s can now be implemented by invoking
advanceToRealizationTime with the function:

fn () =>
let val last = lastTimes sub s
in if last > t0 then last else infinity
end

Now the debugger can stop checking the breakWanted array at each event (see
Figure 8), so that the test for whether to break is just a comparison of the current
and target times. Of course, the debugger must also now update lastTimes at each
event, so this technique may not save much time during controlled execution. How-
ever, lastTimes can also be used to support location-based breakpointing during
reverse execution, since invoking

resetTo(lastTimes sub s)

resets the current time directly to the desired breakpoint.

A more sophisticated application is to a “skipping” function. The naive imple-
mentation of this function by single stepping, shown in Figure 2, can be very slow; a
skip may involve an arbitrary number of steps, and the overhead of single-stepping
and checking the call chain must be paid for each of them. To implement skip
via speculative execution, we note that the startOnChain function i1s actually a
monotone predicate on the contents of the call chain, so binary search can be used
in place of sequential search.® The revised skip function is shown in Figure 12.
Interestingly, time-travel primitives will be invoked recursively to determine the
contents of the call chain when evaluating the skip predicate.

In principle, users can apply binary search to predicates of their own design. At
present, however, we do not provide a way to test the values of local program vari-
ables within predicates. Some support for dynamic scoping and typing of variable
names 1s required; such support does not fit easily into ML, but could be provided
via special debugger functions that explicitly query, extract, and type-test values
from the current environment.

User-supplied predicates can be arbitrarily complicated, and arbitrarily expensive
to compute. The advantages of the binary search approach increase with the cost
of predicate evaluation. On the other hand, the user will also typically pay a price
in “extra” speculative execution beyond the actual realization time, though this
execution will not be wasted if the user later decides to proceed forward from the
breakpoint. The amount of “extra” computation is bounded by the timeDelta
parameter in Figure 11.

& This method doesn’t work if the user program contains callccs, since these can be used
to switch call chains (e.g., to implement coroutines), which destroys the monotonicity
of the predicate.

A Debugger for Standard ML 25

fun skip () =
let val startTime = currentTime()
fun pred () =
let fun startOnChain (t,bound) =
if t = startTime then
infinity
else if t < startTime then
bound
else startOnChain(caller t,t)
val ct = currentTime()
in startOnChain(ct,ct)
end
in singleStep();
advanceToRealizationTime (pred)
end

Fig. 12. Implementing skip using speculative execution.

6 Controlling Program Execution

When the user program is halted, the debug monitor’s code is active, and vice-versa;
transitions between debug monitor and program control are essentially coroutine
hand-offs, implemented with callcc in a well-known fashion (Wand, 1980). Simpli-
fied code for the basic control functions is shown in Figure 13. setCompilationUnit
sets the debugger ready to execute a user program. Control passes to that program
via recordTo or replayTo when the user issues a forward execution command
and back to the monitor when the instrumented code calls break. The distinction
between recording and replaying governs whether logs describing changes to the
mutable store or external inputs are written or read; see Section 7.

During recording, it is possible that the user program will be interrupted before
reaching the targetTime because the end of the program is reached, an uncaught
exception is raised, the program is signaled, or CTRL/C is typed. In these cases, con-
trol is still passed to the debug monitor via break with a suitable event record. For
end of program, this record contains a special END event. For uncaught exceptions,
it contains a “pseudo-event” UNCAUGHT lacking a code location; the debugger must
jump back one time unit to find the last real event and pinpoint the source of the
exception.

The debugger handles CTRL/C from the keyboard via a special ML signal
handler.® Interrupts are asynchronous with respect to events in our debugging
model, so the handler must delay the effect of the interrupt until the next event. It
does so by setting a flag indicating that an interrupt has occurred and resetting

targetTime := (!currentTime + 1)
When the program breaks at the next event, the debugger notices the interrupt

® SML/NJ extends the Standard ML definition with a continuation-based signal handling
mechanism (Reppy, 1990).

26 A. Tolmach and A. W. Appel

local
val debuggerCont: unit cont ref
val userCont: unit cont ref
type mode = RECORD | REPLAY
val userMode: mode ref
val currentEvent: eventRecord ref

fun execTo (time:time) : unit =
(targetTime := time;
callcc (fn ¢ => (debuggerCont := c;
throw ('userCont) ())))
in
fun setCompilationUnit (f:unit -> ’a) : unit =
callcc (fn ¢ => (callcc (fn c1 => (userCont := cl;
throw ¢ ()));
£ O3
0N

fun recordTo (time:time) : unit = (userMode := RECORD; execTo time)
fun replayTo (time:time) : unit = (userMode := REPLAY; execTo time)

fun break(eventRecord:eventRecord) : unit =
(currentEvent := eventRecord;
callcc (fn ¢ => (userCont := c;
throw (!debuggerCont) ())))
end

Fig. 13. Implementation of basic control functions.

flag and interprets it as a request to “halt execution.” The interpretation of this
request depends on context. If the debugger was performing explicit, user-initiated,
forward time travel, travel is halted at the current time, which allows the user
to halt a lengthy or infinite computation in the natural way. If the debugger was
resetting to an earlier time, or performing implicit time travel in support of a query
command, the debugging operation is aborted and the program is reset to the state
it was 1n before the operation began.

7 Implementing Time Travel

The debugger supports reverse execution by taking periodic checkpoints of program
state during initial execution. To reset to a particular target time, the debugger first
restores the nearest previous saved checkpoint and then re-executes to the target.
We divide the state of an SML/NJ program at a particular execution event into
three parts.

e The functional state consists of the current program counter, the contents of
the call chain, and the values of all identifiers live at any point on the call
chain; i.e., the program continuation at this event.

A Debugger for Standard ML 27

e The store state describes the contents of the mutable store (ref and array
variables) when the event is executed.

e The external state describes the stream of external information (input via the
I/0O library, signals received, etc.) that will be seen by the program from this
event until the maximum known time.

In a “typical” ML program, the size of the functional state dominates the overall
size of a checkpoint, because most heap cells are immutable. For example, more
than 99% of the objects created when SML/NJ compiles itself are immutable. Of
course, it is easy to write an ML program that generates a large store or I/O state,
but most ML programs are mostly functional.

Saving and restoring first-class continuations is fast. Moreover, these continu-
ations are inherently incremental: if the debugger saves a sequence of continua-
tions, the total space required is proportional to the total number of different heap
cells referenced, rather than to the sum of the sizes of each continuation. Finally,
SML/NJ first-class continuations are type-safe objects that can be manipulated
inside the language model; in particular, they are garbage collected just like other
objects without requiring any special back-end features.

Unfortunately, SML/NJ has no such convenient built-in mechanism for saving the
state of the mutable store, so the debugger synthesizes its own store checkpoints.
It uses an approach that preserves the existing representation of the store: store
operations are instrumented to build lists of changed objects and so form incre-
mental checkpoints. This approach can be implemented entirely within the source
language, but to implement it efficiently requires unsafe type coercions and some
support from the garbage collector.

To ensure correct re-execution, the debugger must log all external influences on
the initial execution. These include the contents of input streams read by the pro-
gram using the standard 1/O interface and explicit debugging interpolations made
by the user, normally to change the value of a mutable variable. The logging process
is straightforward and is implemented by instrumenting the relevant input opera-
tions and handlers or providing special versions of standard library routines. The
instantaneous state is represented as a set of pointers into these logs. There are
other ways in which the external environment can affect SML/NJ programs, e.g.,
through signals or via system calls that return the time of day or read files directly.
The debugger does not support reverse execution for such programs, although ex-
tending logging methods to them would not be difficult in principle.

7.1 Checkpoints

A checkpoint is a compact characterization of a state suitable for storage and re-
trieval. Primitive

getState: unit->checkpoint
produces a checkpoint from the current state, and

resetState: checkpoint->unit

28 A. Tolmach and A. W. Appel

resets the current state from a checkpoint. Once taken, a checkpoint remains valid
until it 1s discarded, however many times it is used and regardless of other execution
and checkpointing activity. A checkpoint may be discarded to conserve memory (see
Section 7.5) or when the maximum known time is reset to a time before that of the
checkpoint (see Section 2.3).

We briefly sketch the implementation of getState and resetState. Capturing
the functional part of the current state (the current continuation) is trivial; it is
already stored in userCont during the control transfer from the user program to the
debug monitor. To reset this part of the state, the debugger just changes userCont.
The bulk of the state-related code in the debugger deals with mutable program
state, which requires special treatment both during execution and when saving or
restoring checkpoints. This code is organized into subsystems, each devoted to a
separate piece of mutable state. Subsystems include the mutable store, the stream
I/0 library, and the lastTimes array. Each subsystem maintains significant internal
state, such as a log filled under record mode and used to control replay. Each
subsystem implements a function

remember:unit —> memory

that, when invoked, encapsulates that subsystem’s part of the current state into a
memory object that can be stored as part of a checkpoint. A memory consists of two
reset functions, undo and redo. To reset the subsystem to the state it had when
the memory was created, the debugger invokes the appropriate reset function.

Each subsystemn communicates with the executing user code by means of instru-
mentation code or via special versions of runtime libraries. Typically, interaction
with the running program involves executing some fixed piece of code each time
a particular user event occurs, e.g., logging each mutable cell creation. Code exe-
cuted in this context has access to useful debugger globals, such as currentTime,
targetTime, userMode, etc.

7.2 Time-travel Primaitives

Figure 14 gives code for advanceTo and resetTo in terms of getState and setState,
replayTo and recordTo, and the cache functions described in Section 7.5. The code
1s quite 1mperative in style. It would be possible to present the basic time-travel
functions as side-effect-free transformations from states to states, giving them some-
thing of the flavor of “engines” (Haynes and Friedman, 1984). However, since parts
of the state—especially the mutable store—are expensive to save and restore, we
make the notion of a “current” state explicit and discourage excessive saves and
restores.

In practice, the time-travel primitives are complicated somewhat by the need to
handle multiple compilation units. Each compilation unit initiated from the top-
level loop is considered to extend the existing time line; on re-execution, special
steps are taken to pass control from one unit to its successor without re-entering
the top-level loop. Moreover, at any breakpoint the user may enter a command
(itself a compilation unit) that alters the mutable state; the debugger must arrange

A Debugger for Standard ML

local
fun restoreBestPrev (target:time) =
let val (bestTime, bestCheckpoint) =
findPrevCheckpointInCache target
in if (target > !'currentTime andalso bestTime > !currentTime)
orelse (target < !currentTime) then

(currentTime := bestTime;
resetState bestCheckpoint)
else ()

end

fun saveCurrentState () =
let val checkpoint = getState()
in putInCache (!currentTime,checkpoint)
end

val maxKnownTime : time ref = ref 0
in
fun resetTo (target:time) =
if target <> !currentTime then
(restoreBestPrev target;
if !currentTime < target then
(replayTo target;
saveCurrentState ())
else ()
else O

fun advanceTo (target:time) =
if target <> !currentTime then
(restoreBestPrev target;
if !currentTime < target andalso
'currentTime < !'maxKnownTime then
replayTo (min('maxKnownTime, target))
else ();
if !currentTime < target then
(recordTo target;
maxKnownTime := !currentTime)
else();
saveCurrentState ())
else O
end

Fig. 14. Time-travel functions. Functions getState and setState are described in
Section 7.1; recordTo and replayTo are defined in Figure 13; and the cache access
functions are described in Section 7.5.

30 A. Tolmach and A. W. Appel

to re-execute this interpolated unit at the same program time whenever the program
is replayed.

When the debugger recreates an old state by re-executing, the resulting state
is not identical to the one produced during the original execution, because values
allocated during re-execution will occupy different memory locations. ML has no
notion of “pointer equality” for ordinary immutable values, i.e., such values cannot
be distinguished by memory location. Thus, the fact that the original and re-created
states may point to different copies of a value poses no semantic problems; in fact,

“value,” however,

the debugger can’t tell the copies apart anyway.'® A ref variable’s
is actually a pointer to a memory cell, and re-executing a ref creation would create
a new cell. This cell would not have been affected by any of the updates that were
made to the original cell; so looking up the ref variable would return a pointer to
a valid cell having the correct type, but typically containing the wrong value. To
avoid this problem, the debugger instruments ref creations so that actual creation

occurs only on initial execution, while on replay the original cell is reused.

7.8 Checkpointing the Mutable Store

The debugger uses an incremental delta list technique to checkpoint the mutable
store. Each creation and update of a ref cell is instrumented to add a pointer to the
cell to a global list. Arrays are handled similarly on an element-by-element basis; the
list entry for an array element consists of a pointer to the whole array plus an offset.
When a memory is needed, the mutable store subsystem retrieves the global list,
removes duplicate cell pointers (which are typically numerous), fetches a copy of the
current contents of each remaining cell, and produces a set of (pointer,value) pairs;
the global list is then cleared. The resulting set of (pointer,value) pairs describes
the incremental change (or delta) in the store since the previous memory was taken.
The new memory consists of this delta plus a pointer to the previous delta.

By the time a memory is requested, the global list may contain many mutable cells
that are no longer reachable from the current continuation and whose values are
therefore not worth saving. Normally, these cells would have become garbage, but if
the global list holds pointers to them, the garbage collector must consider them live.
Our solution is to use weak pointers, i.e., pointers that the garbage collector ignores
when tracing live data and are invalidated when the object pointed to is collected.
The global lists consist of such weak pointers; invalidated pointers are omitted from
the delta list. Once stored in a checkpoint, the pointers become ordinary and the
cells to which they point can never be collected so long as the checkpoint exists.

As program execution progresses, a series of incremental store deltas is generated,
each tagged with the checkpoint’s time. To reset the store forward to a given time ¢
from an earlier time tg, the system must consult, in order, the contents of all delta
lists with tags between ¢y and ¢ and reset the values of each cell in each list. To

10 There is, however, a problem with space efficiency: in SML/NJ the two copies of the
value will always occupy separate locations, though a cleverer runtime system might
merge them.

A Debugger for Standard ML 31

reset backward to time ¢ from a later time, all delta lists with tags between 0 and
t must be consulted. If the same objects are updated repeatedly by the program,
they tend to appear on many delta lists, and so will be reset repeatedly. To improve
the efficiency of the reset operation, the system merges adjacent deltas tagged ¢ ,t5
into a single delta ¢, whenever the delta at ¢; is no longer referenced directly from
a checkpoint. To determine when a delta is no longer needed, the system keeps a
weak pointer to it and waits for that pointer to be invalidated.

As explained in Section 7.2, actual ref and array creations occur only during
recording; on replay, the object created originally is reused. To arrange this reuse,
the debugger records a special log of mutable object creations and uses it to guide
replay; a pointer into this log 1s part of a mutable store memory object. Reuse is
necessary only if the original object 1s still referenced from some continuation, 1.e.,
still live independently of its appearance in the log. Therefore, log entries use weak
pointers and a new object is created on replay if the corresponding entry pointer
has been invalidated.

The instrumentation of creations and updates described above is either inserted
in line (for ref creation and assignment) or placed in special versions of library
routines (for the array operations). This instrumentation violates ML’s typing
rules. The global list itself contains pointers to cells of different types. Moreover,
to remove duplicate update entries the debugger uses a type-unsafe algorithm that
involves marking ref cells. The algorithm operates in linear time and requires no
extra space (Tolmach, 1992). There are type-safe algorithms that take linear time
and linear extra space, or take quadratic time.

The SML/NJ garbage collector maintains a “store list” that tracks stores of young
generation pointers into old generations. With minor modifications, this list could
be used as the debugger’s global update list. An earlier version of our debugger
did so; we switched to an instrumentation approach to decrease the debugger’s
dependence on the collector’s implementation.

7.4 Stream I/0

Debugger support for repeatable stream I/0O is in a special version of the I/0
library. Stream input performed via this library is logged during recording phase;
on replay, input is taken from the log. At present, the log is kept in main memory;
it could be kept on disk instead. The state of an input stream, as recorded in a
memory, is a pointer into the log. In principle, logging of input from files that do
not change during execution could be avoided; a pointer into the file itself could be
used to represent the stream’s state. We have not implemented this optimization.

Programs that interact with their environment by performing I/O or receiving
signals affect that environment during time travel. Advances beyond the maximum
previously known time generally act like normal execution; input is requested, sig-
nals are accepted, and output to all devices is displayed or written in the usual
way.

Speculative computation, e.g., for location breakpointing, introduces a difficulty:
if the user has asked to break at a particular location, the debugger must not show

32 A. Tolmach and A. W. Appel

output (or, worse yet, ask for input) that actually occurs after the breakpoint has
been reached and passed over. A simple solution, at the cost of increased overhead
for T/O events when executing speculatively, is to test the predicate before each
potentially visible I/O and terminate forward execution if the predicate is true.
When resetting to a known time, the debugger does not reverse side-effects on the
file system or other parts of the environment that hold state; it leaves the outside
world unaffected. The user terminal, however, is treated as a stateless device; the
debugger supports two terminal I/O modes when resetting forward to a known
time. In noisy mode, the user sees the same terminal I/O as occurred during initial
execution: the same output is displayed, and input from the terminal is simulated by
the debugger and echoed so that input and output are correctly interleaved. In quzet
mode, intended for implicit time-travel operations used internally by debugger, no

I/0 is visible.

7.5 Checkpoint Caching

Average re-execution time, and hence average total reverse execution time, can be
minimized by keeping as many checkpoints as possible. But the debugger holds all
checkpoint data in the heap; under the current SML/NJ garbage collector, this ap-
proach effectively constrains checkpoint storage to fit in main memory, which limits
the number of checkpoints that can be kept. Therefore, the debugger maintains a
cache containing checkpoints that are expected to be useful.

The cache is simply a set of checkpoints, ordered by time. It is accessed by two
routines:

findPrevCheckpointInCache:time—>(time * checkpoint)
returns the cache entry at or most nearly preceding its argument;
putInCache: (time * checkpoint)->unit

inserts its argument into the cache if there is room.

The targets of explicit user jumps are usually clustered in short intervals of
the execution time line, typically tens to thousands of events long, separated by
wide gaps that are never visited. The targets of implicit jumps made in support
of eventRecordAt are to events on the static or dynamic chain. These time-travel
patterns suggest that the cache should include entries spaced evenly throughout
execution history, with additional entries near recent time-travel targets.

Checkpoints are generated at the end of every advanceTo or resetTo, 1.e., at
the target times of explicit and implicit jumps and also at periodic intervals during
untargeted execution, as governed by the timeDelta parameter (see Figure 11). The
value of timeDelta therefore has a major influence on the number of checkpoints
generated during execution. Obviously, most of these checkpoints are not useful, so
our cache replacement policy must be able to weed them out easily. Evidently, the
policy should contain an LRU component, since we expect recently visited targets to
be revisited. However, a pure LRU policy allows arbitrarily large gaps to appear in
the cache set, so we have developed an alternative heuristic that favors retention of

A Debugger for Standard ML 33

checkpoints that would be most expensive to recompute. Experiments show little
difference between these heuristics, probably because cache replacement is fairly
rare.

The debugger controls cache size on the basis of memory availability rather than
by maintaining a fixed number of entries. Memory availability is measured as the
ratio r between physical memory size and live-data size. The higher the ratio, the
less frequently garbage collections will be needed, and the better overall system
performance we can expect. Normally, live-data size is a fixed characteristic of the
user program, so SML/NJ simply lets r grow as large as the available physical
memory size allows.

However, the debugger can control the amount of live data it requires by varying
the size of the checkpoint cache, so we must make some a prior: choice of good target
ratio rg. Appel’s experiments (1992, page 193) suggest using a value between 3 and
6; we somewhat arbitrarily take o = 5. The debugger’s cache sizing policy allows
insertions if r > rg; if » < rg, the debugger attempts to delete enough entries to
bring r back to ry and retries the insertion. This simple feedback mechanism keeps
r near rg, but is rather expensive, because accurately calculating r requires a major
garbage collection.

Since eventRecordAt is typically called repeatedly with the same set of time
arguments (e.g., the binding times for global variables), it makes better sense to
memoize the function independently from the checkpoint cache, so that a given
event record need be reconstructed at most once. Memoization of siteNumber and
binding fields can be enabled separately from memoization of boundValue fields,
since the former are accessed more frequently and take only a small fixed amount
of space per event, whereas the latter can be indefinitely large. Memoization for
eventRecordAt is implemented using a separate hash table, which is also updated
by putInCache.

8 Performance

To assess the debugger’s practicality, we measured its performance on real programs.
The benchmark suite consisted of a program implementing the game of Life (Reade,
1989), running 50 generations of a glider gun; Simple, a spherical fluid-dynamics
program originally developed as a FORTRAN benchmark (Crowley et al., 1978);
the Knuth—Bendix completion algorithm processing some axioms of geometry; a
program to build a dictionary using RedBlack trees from an input of 300,000 in-
tegers; a machine-generated Lexer for ML that counts tokens, run on a 5760-line
input file; UnionFind, a program that performs 5,000 union and find operations
with path compression on a database of strings; and a TermRewriter originally
written in Scheme (Kamin, 1990), performing symbolic differentiation on polyno-
mials. The benchmarks ranged in size from 65 to 764 lines of ML. Compile times for
the uninstrumented, optimized programs ranged from 5.5 to 67.7 seconds and code
size ranged from 5 to 93 KB. Live data size ranged from 3 to 5266 KB and total
execution time ranged from 0.8 to 46.3 seconds. Some additional characteristics of
the benchmark suite are shown in Table 1.

34 A. Tolmach and A. W. Appel

Table 1. Benchmark event characteristics.

Millions of % %

Sites/ Events Events/ Store 1/0
Key Name Line® Executed® Instruction® Events® Events®
1 Life 3.4 13.2 031 0 < 0.01
S Simple 1.7 56.6 .076 0.52 < 0.01
k Knuth—Bendix 1.7 25.9 124 0 0.02
r RedBlack 0.9 37.8 .056 0.79 0
X Lexer 0.3 1.0 .039 2.70 < 0.01
u UnionFind 1.4 0.6 .042 7.98 1.72
t TermRewriter 1.6 2.4 .083 0 0

¢ Average number of instrumentation sites per source line (after coalescing).

b Total for a simple execution of the program.
¢ Average number of events executed for each machine instruction executed by the unin-
strumented program, a measure of dynamic event density.

4 Dynamic percentage of executed events that alter the mutable store.
¢ Dynamic percentage of executed events that perform stream I/0O.

Benchmarks were run on a MIPS Magnum 3000 workstation with 128 MB of
memory, 32KB direct-mapped instruction cache, and 32KB direct-mapped write-
through data cache, under the RiscOs 4.51 operating system. Benchmarks used a
variant of SML/NJ version 0.69. The benchmarked version of the debugger built
event records lazily, coalescing events where possible, and used speculative compu-
tation to support location breakpoints.

8.1 Measuring Instrumentation Overhead

We consider first the time and space overheads introduced by instrumentation,
by measuring execution under debugger control without taking checkpoints. We
execute each benchmark from beginning to end, without performing any debugging
operations. Figure 15 shows how the execution times of each benchmark compare
under the different compilation disciplines.

On average, instrumentation slows program execution by a bit less than 3 times
(again, in the absence of checkpointing), though individual benchmarks have widely
varying behavior. UnionFind runs particularly slowly under under the debugger;
this anomaly disappears if the overhead of logging updates and I/0 is excluded
(debugger nolog), which is not surprising since UnionFind has the highest frequen-
cies of store update and I/0O events among the benchmarks.

We have no machine-based debugger for ML for comparison, but we can make a
rough estimate of how such a debugger would perform. It would suffer no slow down
from instrumentation, but it would need to inhibit some optimizations to support
expected behavior. Many debuggers turn off optimization altogether; wholly unop-
timized SML/NJ code runs about 3 times slower than normal code, hence about

A Debugger for Standard ML 35

Relative
Execution
160.0 Times
7k7
80.0 o
51.7 —
x
40.0 H
717
—
20.0 H
10.0
50] —u— :ls{:
—k— ke
3.0 . 3.1
2.7 — —§=
L —x— 2.3
2.0 —u— g
1.5 - 1= 1=
1.0+ 1.0 —
normal debugger unoptimized interpreted debugger
nolog

Fig. 15. Relative controlled execution costs (measured as the sum of user, garbage
collection, and system times) under various compilation disciplines described in the text.
The vertical scale is logarithmic; the labels indicate the ratio of execution time for each

discipline to that of the normal discipline. The thick bar is the geometric mean of the

benchmark time ratios. The thin bars marked with letters indicate the time ratios for

the individual benchmarks; see Table 1 for the key. Two of the interpreted benchmarks

were aborted when they didn’t complete within one hour, so the geometric mean time
ratio shown for the interpreted discipline is artificially low.

36 A. Tolmach and A. W. Appel

comparably with our debugger.t? We could expect a well-engineered machine-based
debugger to do somewhat better than this, since not all optimizations are fatal to
debugging, but not as well as unoptimized code. Another approach to debugging
is to use an interpreter, but interpreted code runs one to two orders of magnitude
slower than any of the compiled approaches.

Code generated under the debugger is, on average, five times larger than normal
code. There is relatively little variation in code size expansion from one benchmark
to another. By comparison, the unoptimized discipline causes code size to increase
by an average factor of three. Increased code size 1s not in itself a significant problem,
but compile time also increases with code size at a somewhat superlinear rate.
For Simple, the largest benchmark, a normal compile time of about one minute
corresponds to a debugger compile time of more than five minutes, which is too
long for use in edit—compile—test cycles.

One way to reduce code size and compilation time at the expense of execution
time is to implement the event instrumentation code as a true function instead
of in-lining it. Experiments on earlier versions of the debugger suggest that this
technique could cut compilation time by 30-50% and increase execution time by
25-75%. For large programs with short execution times, another option is to inter-
pret the instrumented code. Since instrumentation is performed before translating
abstract syntax to A-language, the debugger can operate in interpretive mode with-
out modification. Execution will be slow, but the time from edit to completed test
might be reduced. Compiling the instrumented code with some optimizations dis-
abled is another option.

To see how much live data the instrumented program generates compared to
normal execution, we compare live-data profiles measured over the course of the
execution, omitting checkpoint storage. Each profile 1s constructed by measuring
the amount of live data at a selection of frequently executed sites. The benchmarks
can be divided into two distinct classes based on their normal execution profiles.
RedBlack, Knuth-Bendix, and UnionFind build internal data structures that grow
steadily (typically linearly) during execution. Life, Lexer, TermRewriter, and Simple
use an essentially fixed amount of live data (although the content of the data may
be changing).

Figure 16 shows profiles for a characteristic member of each class. For the first
class of benchmarks, the debugger discipline generates a constant factor more live
data than normal. Comparison with the debugger nolog profile shows that log space
often accounts for much of this increase; this fact holds even for RedBlack, for which
less than 1% of events are store updates, and is much more marked for UnionFind,
with 8% store update events. The unoptimized discipline also generates a constant
factor more live data, though the factor is smaller. The second class of benchmarks
shows more varied behavior. While the benchmark shown, Life, generates only a
constant amount of additional data under the debugger, other benchmarks that
have substantial numbers of store events, such as Lex, generate a linearly increasing

1 Tn fact, the “unoptimized” discipline still performs certain optimizations, such as those
associated with CPS conversion, that cannot be turned off in SML/NJ.

A Debugger for Standard ML 37

25000 50
RedBlack Life
20000 40 4
F 15000 30 A
Live
Data
(KB)
F 10000 20 A
F 5000 10 +
0 0
Program Execution Time Program Execution Time

Fig. 16. Live data measured for RedBlack and Life, without checkpointing. Execution
disciplines: normal (¢), unoptimized (x), debugger (), debugger nolog (o), naive (*).
The points of each profile are connected for graphical clarity; the connecting lines should
not be used for interpolation.

amount of extra data, primarily due to logs. The same behavior occurs with the
unoptimized discipline, probably because of the loss of tail-recursion elimination.

We also show how much live data is generated by an implementation of the naive
event record creation scheme described in Section 4.2—generally much more than
by our lazy event record scheme. Of course, checkpoints are needed to make the
lazy scheme reasonably efficient, so we can’t claim an overall space savings.

8.2 Time vs. Space

The debugger’s time and space use cannot be measured independently. On the
one hand, like any garbage-collected system, SML/NJ will run faster given more
memory. On the other hand, the debugger takes advantage of increased memory
to enlarge its checkpoint cache, which should make reverse execution faster but
will slow garbage collection. To compare performance under different disciplines,
we measure execution time over a range of memory sizes for each discipline, and
compare overall time vs. space curves; Figure 17 shows two characteristic sets of
curves. Each point on the curve shows the total elapsed time for a single simulated
debugging session with total system memory held constant. Each debugging session
is driven by a synthetic command script designed to represent typical but simplified
patterns of user behavior, including some explicit reverse execution. For the normal
and unoptimized disciplines, which don’t implement reverse execution, we estimate
the execution time by charging the cost of re-executing from the beginning of the
program each time the script performs a reverse motion. This estimate is unfair,
since a user without a reverse-execution debugger would probably avoid such re-
executions, but it provides a rough basis for comparison.

To compare the debugger’s performance with other systems, we construct curves

38 A. Tolmach and A. W. Appel

3600
- 1800 —

TermRewriter 720 4

- 360

- 120

— 5_

— 2_

T T T T secs T T T T T T
0.0 2.6 5.1 7.7 10.3 12.8 0.0 5.7 11.5 17.2 22.9 28.7 34.4 40.2

Memory Limit (MB) Memory Limit (MB)

Fig. 17. Time vs. Space for TermRewriter and Knuth—Bendix, with checkpointing.
Execution disciplines: normal (¢), unoptimized code (x), debugger (o), debugger without
memoization (>). The checkpointing interval for the debugger disciplines was 16,000
events for TermRewriter and 256,000 events for Knuth-Bendix. Each plotted point
represents a single execution of a particular debugging command script with memory
held fixed. Elapsed times (user—l—gc—l—system time) are shown on a logarithmic scale. The
points for each discipline are connected for graphical clarity; the connecting lines should
not be used for interpolation. Runs that exceeded the available memory aborted; their
symbols are shown above the graph at the appropriate memory coordinate, and they are
connected to the curve with a dotted line.

for fully optimized normal execution and unoptimized execution. We also show the
effects of disabling memoization. Each curve typically shows a clear “knee” at a
particular memory size; at smaller memory sizes, execution time increases sharply
or the system halts due to lack of memory. The memory size at the knee is a
“natural” minimum for “comfortable” execution, although in many cases the system
can execute with less memory at a slower speed. Increasing memory above the knee
produces little benefit under any of the measured disciplines. We can compare knees
to estimate the “extra” memory needed for the debugging disciplines.

By examining many such sets of curves, we can draw some basic conclusions
about performance. The checkpointing interval has a significant effect on script
execution time. The best checkpointing interval for each benchmark was chosen by
running the benchmark repeatedly under each script with an interval of 4,000, 8,000,
16,000,. .., 64,000,000 events. The best interval varies with program and script, but
consistently lies in the range 8,000 to 256,000 events, roughly 10-150 msec of user
program CPU time on our hardware; within this range, most of the benchmarks are
fairly insensitive to the exact value chosen. Thus, while being able to change the
checkpointing interval may be useful, a default value seems satisfactory for most
programs.

The debugger uses much more memory than normal execution. How much more
varies widely among the benchmarks: for example, debugging Lexer requires about

A Debugger for Standard ML 39

three times as much memory as running it normally, while debugging Simple seems
to require about five times as much. The ratio is also sensitive to the debugging
script used; for Life, it varied from four to eight. If the memory to run the debug-
ger comfortably is available, its speed is competitive with the hypothetical debug-
ging approaches for most benchmarks. We estimate that a machine-based debugger
should give performance somewhere in the band between the normal and unop-
timized curves. For scripts involving reverse execution, the debugger’s execution
time lies in or below the machine-based band for all benchmarks except UnionFind
and Life (under one script); UnionFind is substantially slowed by its need to log
mutable memory updates. For scripts not involving reverse execution, a machine-
based debugger will generally do better than ours and a debugger based on the
naive record event approach (which doesn’t require time travel) usually does about
as well; these facts suggest that time travel is not worth implementing solely for
internal use by other parts of the debugger.

One way to save space at the expense of more time is to disable memoization.
The curves shown for this discipline in Figure 17 are typical: there is a large increase
in execution time, but the debugger can continue executing with less memory. A
milder version of the same effect can be seen by disabling only memoization of
bound values in event records.

8.3 Query Times

Since the debugger 1s an interactive tool, it must service requests promptly. A rea-
sonable, though arbitrary, standard is that most commands should require less than
1 second of elapsed time. Commands in this class include variable lookup, chang-
ing scope along the call stack, showing a call frame, and single-stepping forward
or backward. Commands that require an arbitrary amount of execution, such as
“proceed to next breakpoint,” are excluded from this standard.

We measured elapsed time for the above commands for each benchmark under
each of our simulation scripts, using the lowest memory size “comfortable” for all
scripts. Nearly all the tested commands executed in less than 1 second; many ran
an order of magnitude faster. Execution time exceeded 2 seconds only for showing a
frame under Life and Knuth-Bendix (10% of calls required as much as 10 seconds)
and for most commands under Simple (about 50% of commands to change scope,
show a frame, and single-step backward required up to 10 seconds). The “show
frame” problem may reflect the high cost of dynamic type reconstruction, which
invokes an expensive unification algorithm and has not been optimized. The results
for Life probably include a run in which a major garbage collection occurred during
the execution of a “show frame.” The poor times under Simple, our largest bench-
mark, may be due to the cost of saving and restoring the program’s large mutable
state when time-traveling.

40 A. Tolmach and A. W. Appel

9 Discussion and Related Work

We have used source-code instrumentation to build a simple, portable debugger
for a complex language with an optimizing compiler. Our debugger supports time
travel, which, in addition to being a valuable user-level feature, is used to implement
conventional debugger features elegantly and efficiently.

Despite the existence of several working compilers for Standard ML, and a sub-
stantial body of users, there are no other full-featured source-level debuggers for
the language. This situation may be due in part to lack of demand: there is con-
siderable anecdotal evidence that compile-time type checking leads to relatively
fewer runtime bugs than in conventional languages (Cardelli, 1984), and a debug-
ger is therefore less important. Limited debugging support, in the form of tracing,
has been developed for two non-standard ML implementations, ANU ML (Ophel,
1991) and CAML (Projet Formel, INRTA-ENS, 1990). Both these systems support
tracing by patching the internal representation of functions. Neither prints poly-
morphic variable values correctly.

Our debugger is independent of the rewriting, optimization, and code-generation
phases of the SML/NJ compiler. During the course of this research, these phases
have been modified several times, without requiring any changes to the debugger.
The debugger has also become available on several new target architectures as a
result of back-end ports, without any changes to the debugger’s code. Currently,
the debugger does rely on the compiler’s front end for parsing and type informa-
tion; these dependencies could be reduced if the compiler exported the ability to
manipulate abstract syntax directly, and, in principle, they could be avoided by
preprocessing the source.

The debugger is simple. It is implemented in about 7,900 lines of ML, versus
about 44,000 for the compiler as a whole.'? Supporting debugging is much simpler
than compiling because the debugger 1s back-end independent. Most machine-based
debuggers supporting multiple architectures are larger relative to their compilers;
for example, gdb is roughly the same size as geec (about 100,000 lines of C). Most
of the complexity in our debugger stems from the complexity of ML itself, rather
than from elaborate debugger algorithms.

9.1 Instrumentation

Automated instrumentation of source code is not a new idea. BUGTRAN (Ferguson
and Berner, 1963), one of the first source-level debuggers, transformed FORTRAN
source programs to support batch debugging. Balzer’s Extendable Debugging and
Monitoring System (EXDAMS) (1969) instrumented FORTRAN source-code to
generate a “history tape” containing all conceivably interesting information about
the course of execution. Later, this tape could be replayed, forward or backward, to
study the program’s behavior. Our approach is very similar, although we support

12 This figure for the compiler includes the code generator for just one target architecture.
The code generators for additional architectures average about 1500 lines each.

A Debugger for Standard ML 41

interactive rather than batch-based debugging. LISP systems have long used macro
packages (e.g.,(Dybvig et al., 1988)) and dynamic scope to implement debuggers
by automatically replacing user-defined functions with instrumented variants that
perform tracing, breakpointing, etc.

Debugging instrumentation may also be inserted at lower levels. Reflective sys-
tems (Friedman and Wand, 1984; Maes, 1987; Smith, 1982) give the ability to
examine and alter the internal state of a language interpreter from within the
source language being interpreted. Reflective mechanisms can be used to modify
the normal operation of the interpreter to support debugging features such as single-
stepping and tracing. Hanson (1978) describes a symbolic debugger for SNOBOL4
programs built using event associations, a mechanism for automatically invoking a
source-language function each time an event of interest occurs during program exe-
cution. Hanson’s approach has much in common with ours; whereas he implements
the association mechanism inside the runtime system, we make associations explicit
in the modified source code, and rely on general-purpose optimization techniques
to render the resulting code efficient.

Kishon, Hudak, and Consel (1991) describe how a standard continuation seman-
tics for a language such as Haskell may be systematically transformed into a non-
standard monitoring semanticsin which the domain of program meanings (answers)
is enhanced to include monitoring results as well as the original answer. A monitor
is implemented using two levels of partial evaluation. First, a standard interpreter
is specialized with respect to a monitoring specification to yield a monitoring in-
terpreter. Then, this interpreter is specialized with respect to a user program to
yield an instrumented version of the program, which, like our instrumented code,
is fed to an ordinary compiler. By comparison, our hand-crafted instrumentation
process appears quite ad-hoc, but 1t is orders of magnitude faster than the partial
evaluation approach, and produces more efficient, direct-style instrumented code.

9.2 Time Travel

Our debugger’s user features, which include value querying, breakpointing, and
single-stepping, are fairly ordinary (Beander, 1983; Linton, 1990; Stallman and
Pesch, 1991); our system is unusual because it integrates these features with a flex-
ible time-travel mechanism. Although reverse execution is not provided by many
commercial debuggers, it has a long research and prototyping history. Most pre-
vious systems have implemented reverse execution by building a log of execution
steps or memory updates (Balzer, 1969; Grishman, 1970; Teitelbaum and Reps,
1981; Teitelman, 1978; Zelkowitz, 1971); such systems typically limit the size of
the log, and hence the number of reverse execution steps permitted. Some recent
systems (Agrawal et al., 1991; Choi et al., 1991) maintain information about the
entire execution history by taking what amount to incremental checkpoints at se-
lected program points; in principle, these systems could support reverse execution
to arbitrary points, as we do, by restoring a suitable checkpoint and re-executing
as necessary.

Reverse execution is usually supported as a meta-level facility external to the

42 A. Tolmach and A. W. Appel

standard semantics of the language being debugged. However, many of the seman-
tic and implementation issues uncovered in generalizing and automating explicit
“undo” facilities for programming languages (Archer et al., 1984; Leeman, 1986;
Teitelman, 1978; Vitter, 1984) are also relevant to replay debugging. Some Prolog
debuggers use the language’s built-in backtracking model to support limited reverse
execution (Bowen et al., 1984; Byrd, 1980).

Ordinary debuggers typically conflate the notion of an event site with that of an
event execution, sometimes relying on a repetition count to indicate which execution
is wanted (e.g., “stop on the fifth repetition of the call at line 177). Identifying
events via simple integer “time” values has many advantages for both the user and
the debugger’s internal bookkeeping needs. We use a machine-independent software
clock, but there are other ways to provide the essential features of a clock, namely
predictability, monotonicity, and an “alarm” feature. One alternative approach is
to count machine instructions, either in hardware (Cargill and Locanthi, 1987)
or software (Mellor-Crummey and LeBlanc, 1989), and cause an interrupt after a
certain number of instructions have been executed. Another, suitable for heap-based
languages like SML/NJ, is to use the allocation pointer as a sort of clock whose
alarm is set by altering the heap limit (Wilson and Moher, 1989).

Unfortunately, times have little intrinsic meaning for the user. A debugger should
also be able to locate events specified by other predicates, involving site, vari-
able values, and meta-information such as the length of the call chain. Debuggers
supporting arbitrarily complicated predicates have mostly used single-stepping to
locate matching events (Feldman and Brown, 1988; Grishman, 1970), which is pro-
hibitively slow.'® Qur implementation of speculative computation shows that, for
monotone predicates, a binary search based on time travel can be much more effi-
cient. Our approach was inspired by Cargill and Locanthi (1987); a similar idea was
used in more limited fashion in IGOR (Feldman and Brown, 1988). Several exist-
ing systems use reverse execution primarily as a foundation for more sophisticated
debugging aids. These include visualization (Teitelbaum and Reps, 1981); “flow-
back analysis,” the automated display of the assignments that have led a variable
to have a particular value (Balzer, 1969; Choi et al., 1991); and dynamic program
slicing (Agrawal et al., 1991). We could build similar tools on top of our time-travel
primitives.

9.3 Checkpointing

One important source of simplicity in the debugger is the use of callcc to capture
most of the program’s state at a checkpoint. Interestingly, we rely heavily on the
ability to throw to a continuation more than once; most other applications, such
as exceptions and coroutines, seem to need only one-shot continuations. callcc is
efficient in SML/NJ, but even if it were slower, it would remain an elegant way to

13 This characterization ignores the possibility of hardware support mechanisms such as
memory protection traps, which can sometimes be used to speed up debugger execution
substantially.

A Debugger for Standard ML 43

gather checkpoint information without requiring the debugger to understand the
compiler’s back end.

The debugger could be implemented more elegantly and portably if SML-NJ
supported first-class stores as well as first-class continuations. First-class stores
might be implemented using delta lists (Morrisett, 1993), persistent trees (Johnson
and Duggan, 1988), or page-level checkpointing mechanisms (Archer et al., 1984;
Feldman and Brown, 1988; Wilson and Moher, 1989). These schemes rely on support
from the underlying runtime system, especially the garbage collector.

A more sophisticated, multi-generational garbage collector would also allow the
debugger to maintain a larger checkpoint cache: under such a collector, checkpoints
should automatically migrate to older generations and eventually to backing store.
It would also be possible for the debugger to place some checkpoint data onto
backing store explicitly; this would be easy for external input logs, whose contents
are already formatted for I/O, but much harder for continuations or store update
lists, which contain pointers that need to be forwarded during garbage collections.

9.4 Performance

Debugger performance is adequate for small programs. Execution speed under de-
bugger control is typically about three times slower than normal execution; this
makes the debugger performance competitive with our estimates for hypotheti-
cal machine-based debuggers and much better than for interpretation. Debugger-
controlled execution generates more live data than normal execution, although the
worst effects of a naive approach are avoided by generating event records lazily.
Still, the debugger requires large amounts of space for logs and checkpoints in or-
der to run “comfortably,” although i1t can continue to operate at slower speed even
when few checkpoints are cached.

For large programs, these performance overheads limit the debugger’s practical-
ity. A further serious drawback to using the debugger for large programs is that
the increase in source-code size caused by instrumentation increases compilation
times by roughly a factor of five, and the SML/NJ compiler is already slow. It is
possible to trade smaller code size for increased execution time by not in-lining the
instrumentation code at events. A better long-term solution would be to speed up
the compiler enough so that it compiles even large instrumented programs quickly.

9.5 Modularity

A related problem is that the debugger does not handle modular programs well. At
present, all parts of the user program that perform side-effects or manipulate higher-
order functions must be instrumented in order for the debugger to function correctly
and securely. To simplify debugging a large system, users typically assume that some
“trusted” portions of the system, e.g., library routines, are correct. They do not
wish to see the internal details of trusted functions or associated data structures.
The debugger itself should take advantage of trusted functions by instrumenting

44 A. Tolmach and A. W. Appel

them minimally, and, in the case of an imperative function, by logging only the net
side-effects of the function rather than its internal, individual side-effects.

It would be straightforward to introduce a user mechanism for declaring specified
abstract units such as abstypes or structures, or perhaps entire source files, to be
trusted. It should be possible to change these declarations at runtime, which would
require support for dynamic recompilation of selected units. Such a scheme would
resemble dynamic deoptimization (Holzle et al., 1992; Zurawski and Johnson, 1991).
Higher-order functions introduce another complication: a trusted library routine,
such as map, may invoke a non-trustworthy user function that requires debugging
support, and it is not clear how much contextual information from the invoking
library routine may be needed to understand the user function’s behavior.

Developing a mechanism for users to specify the net side-effects of trustworthy
units 1s a harder problem, but it represents the key to making the debugger gen-
uinely extensible. Our application of the debugger technology to ML Threads (Tol-
mach, 1992) offers several examples.

10 Acknowledgements

David Tardit1 designed and implemented the original version of the dynamic type
reconstruction algorithm. Adam Dingle designed and implemented the debugger’s
original emacs user interface.

References

Agrawal, H., DeMillo, R. A., and Spafford, E. H. (1991). An execution-backtracking
approach to debugging. IEEE Software, 8(3):21-26.

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

Appel, A. W. (1987). Garbage collection can be faster than stack allocation. Information
Processing Letters, 25(4):275-279.

Appel, A. W. (1989a). Runtime tags aren’t necessary. Lisp and Symbolic Computation,
2(2):153-162.

Appel, A. W. (1989b). Simple generational garbage collection and fast allocation.
Software—Practice and Experience, 19(2):171-183.

Appel, A. W. (1992). Compiling with Continuations. Cambridge University Press.

Appel, A, W. and MacQueen, D. B. (1991). Standard ML of New Jersey. In Wirsing,
M., editor, Therd Int’l Symp. on Prog. Lang. Implementation and Logic Programming,
volume 528 of Lecture Notes in Computer Science, pages 1-13, New York. Springer-
Verlag.

Arxcher, Jr., J. E., Conway, R., and Schneider, F. B. (1984). User recovery and reversal
in interactive systems. ACM Transactions on Programming Languages and Systems,
6(1):1-19.

Balzer, R. M. (1969). EXDAMS-EXtendable Debugging and Monitoring System. In
Proceedings AFIPS 1969 Spring Joint Computer Conference, volume 34, pages 567—
580, Montvale, NJ. AFIPS Press.

Beander, B. (1983). VAX DEBUG: An interactive, symbolic, multilingual debugger. In
Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on High Level De-
bugging, pages 173-179. Published as SIGPLAN Notices, 18(8), Aug. 1983.

A Debugger for Standard ML 45

Bowen, D., Byrd, L., Pereira, F., Pereira, L., and Warren, D. (1984). Prolog-20 User’s
Manual.

Byrd, L. (1980). Understanding the control flow of prolog programs. In Proc. Logic
Programming Workshop, Debrecen, Hungary, pages 127-138. Also Univ. of Edinburgh
Dept. of Artificial Intelligence Research Paper 151.

Cardelli, L. (1984). Compiling a functional language. In Proc. 1984 ACM Conference on
Lisp and Functional Programming, pages 208-217.

Cargill, T. A. and Locanthi, B. N. (1987). Cheap hardware support for software debugging
and profiling. In Proc. Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 82—-83.

Choi, J.-D., Miller, B. P., and Netzer, R. H. B. (1991). Techniques for debugging parallel
programs with flowback analysis. ACM Transactions on Programming Languages and
Systems, 13(4):491-530.

Clinger, W. and Rees, J. (1991). Revised* report on the algorithmic language Scheme.
LISP Pointers, IV(3):1-55.

Coutant, D. S., Meloy, S., and Ruscetta, M. (1988). DOC: A practical approach to source-
level debugging of globally optimized code. In Proc. SIGPLAN 88 Conference on
Programming Language Design and Implementation, pages 125-134. Published as SIG-
PLAN Notices, 23(7), July 1988.

Crowley, W. P., Hendrickson, C. P., and Rudy, T. E. (1978). The SIMPLE code. Technical
Report UCID 17715, Lawrence Livermore Laboratory, Livermore, CA.

Duba, B., Harper, R., and MacQueen, D. (1991). Typing first-class continuations in ML.
In Fighteenth Annual ACM Symp. on Principles of Programming Languages, pages
163-173.

Dybvig, R. K., Friedman, D. P., and Haynes, C. T. (1988). Expansion-passing style: A
general macro mechanism. Lisp and Symbolic Computation, 1(1):53-75.

Feldman, S. I. and Brown, C. B. (1988). IGOR: A system for program debugging via
reversible execution. In Proc. ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, pages 112-123. Published as SIGPLAN Notices, 24(1), Jan.
1989.

Ferguson, H. E. and Berner, E. (1963). Debugging systems at the source language level.
Communications of the ACM, 6(8):430-432.

Friedman, D. P. and Wand, M. (1984). Reification: Reflection without metaphysics. In
Proc. 1984 ACM Conference on Lisp and Functional Programming, pages 348-355.
Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its Implementation.

Addison—Wesley, Reading, MA.

Goldberg, B. and Gloger, M. (1992). Polymorphic type reconstruction for garbage collec-
tion without tags. In Proc. 1992 ACM Conference on Lisp and Functional Programming,
pages 53-65. Published as LISP Pointers V(1), Jan.—Mar. 1992.

Grishman, R. (1970). The debugging system AIDS. In Proc. AFIPS 1970 Spring Joint
Computer Conference, volume 36, pages 59-64, Montvale, NJ. AFIPS Press.

Hanson, D. R. (1978). Event associations in SNOBOL4 for program debugging. Software—
Practice and Ezperience, 8(2):115-129.

Haynes, C. T. and Friedman, D. P. (1984). Engines build process abstractions. In Proc.
1984 ACM Conference on Lisp and Functional Programming, pages 18—24.

Hennessy, J. L. (1982). Symbolic debugging of optimized code. ACM Transactions on
Programming Languages and Systems, 4(3):323-344.

Hoare, C. A. R. (1989). Hints on programming-language design. In Essays in Comput-
ing Science, pages 193-216. Prentice Hall. Keynote address to the ACM SIGPLAN
conference, Oct. 1973.

Hoélzle, U., Chambers, C., and Ungar, D. (1992). Debugging optimized code with dynamic
deoptimization. In Proc. SIGPLAN’92 Conference on Programming Language Design
and Implementation, pages 32-43. Published as SIGPLAN Notices, 27(7), July 1992.

46 A. Tolmach and A. W. Appel

Hudak, P. and Wadler, P. (1990). Report on the programming language Haskell: A non-
strict, purely functional language, Version 1.0. Technical Report YALEU/DCS/RR-777,
Yale University, Dept. of Computer Science.

Johnson, G. F. and Duggan, D. (1988). Stores and partial continuations as first-class
objects in a language and environment. In Proc. 15th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, pages 158—168.

Kamin, S. N. (1990). Programming Languages: An Interpreter-Based Approach. Addison-
Wesley, Reading, MA.

Kaufer, S., Lopez, R., and Pratap, S. (1988). Saber-C: An interpreter-based programming
environment for the C language. In Proc. Summer ‘88 USENIX Conference, pages
161-172.

Kishon, A., Hudak, P., and Consel, C. (1991). Monitoring semantics: A formal framework
for specifying, implementing, and reasoning about execution monitors. In Proc. SIG-
PLAN ’91 Conference on Programming Language Design and Implementation, pages
338-352. Published as SIGPLAN Notices, 26(6), June 1991.

Leeman, Jr., G. B. (1986). A formal approach to undo operations in programming lan-
guages. ACM Transactions on Programming Languages and Systems, 8(1):50-87.

Linton, M. A. (1990). The evolution of dbx. In Proc. Summer USENIX Conference, pages
211-220.

Maes, P. (1987). Concepts and experiments in computational reflection. In Proc. 1987
Conf. on Object-Oriented Programming Systems, Languages, and Applications, pages
147-155.

Mellor-Crummey, J. and LeBlanc, T. (1989). A software instruction counter. In Proc.
Theird International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 78-86. Published as Computer Architecture News 17(2),
Apr. 1989.

Milner, R., Tofte, M., and Harper, R. (1990). The Definition of Standard ML. MIT Press,
Cambridge, MA.

Morrisett, J. G. (1993). Generalizing first-class stores. In Proc. ACM SIGPLAN Workshop
on State in Programming Langauges (SIPL ’93), Copenhagen, Denmark, pages 73-87.
Published as Yale University Dept. of Computer Science Tech. Rep. YALEU/DCS/RR-
968.

Ophel, I. L. (1991). AIMLESS: A Programming Environment for ML. PhD thesis, The
Australian National University.

Projet Formel, INRTA-ENS (1990). Caml reference manual (version 2.6.1). Technical
Report 121, INRIA.

Reade, C. (1989). Elements of Functional Programming. Addison-Wesley, Reading, MA.

Reppy, J. H. (1990). Asynchronous signals in Standard ML. Technical Report TR 90-1144,
Cornell University, Dept. of Computer Science.

Smith, B. (1982). Reflection and semantics in a procedural language. Technical Report
MIT-LCS-TR-272, Massachusetts Institute of Technology, Cambridge, MA.

Stallman, R. M. and Pesch, R. H. (1991). Using GDB: A Guide to the GNU Source-Level
Debugger (GDB version 4.0). Free Software Foundation, Inc.

Teitelbaum, T. and Reps, T. (1981). The Cornell Program Synthesizer: A syntax-directed
programming environment. Comrmunications of the ACM, 24(9):563-573.

Teitelman, W. (1978). Interlisp Reference Manual. Xerox Palo Alto Research Center.

Tolmach, A. P. (1992). Debugging Standard ML. PhD thesis, Princeton University. Also
Princeton Univ. Dept. of Computer Science Tech. Rep. CS-TR-378-92.

Tolmach, A. P. and Appel, A. W. (1991). Debuggable concurrency extensions for Standard
ML. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, pages 120—
131. Published as SIGPLAN Notices 26(12), Dec. 1991. Also Princeton Univ. Dept. of
Computer Science Tech. Rep. CS-TR-352-91.

A Debugger for Standard ML 47

Turner, D. A. (1985). Miranda: A non-strict functional language with polymorphic types.
In Functional Programming Languages and Computer Architecture, volume 201 of Lec-
ture Notes in Computer Science, pages 1-16. Springer-Verlag.

Vitter, J. S. (1984). US&R: A new framework for redoing. In Proc. ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, pages 168-176. Published as SIGPLAN Notices, 19(5), May 1984.

Wand, M. (1980). Continuation-based multiprocessing. In Proc. 1980 LISP Conference,
pages 19-28.

Wilson, P. R. and Moher, T. G. (1989). Demonic memory for process histories. In
Proc. SIGPLAN ’89 Conference on Programming Language Design and Implementation,
pages 330-343. Published as SIGPLAN Notices, 24(7), July 1989.

Zelkowitz, M. (1971). Reversible Execution as a Diagnostic Tool. PhD thesis, Cornell
University.

Zellweger, P. T. (1984). Interactive Source-level Debugging of Optimized Programs. PhD
thesis, University of California, Berkeley. Also Xerox Corporation Palo Alto Research
Center Tech. Report CSI1.-84-5.

Zurawski, L. W. and Johnson, R. E. (1991). Debugging optimized code with expected
behavior. Unpublished manuscript.

