
Intensional Equality ;=) for Continuations

Andrew W. Appel
Princeton University
appel@princeton.edu

September 8, 1995

Abstract

I propose a novel language feature, intensional continu-
ation equality, useful in languages with or without first-
class continuations, and show how it enables truly re-
markable gains in efficiency of ordinary user programs.

Continuations, expressing “what the program will
do from now on,” are a much-used tool of semantics,
and sometimes show up as a user-accessible program-
ming feature. But most use of continuations is para-
metric, in the sense that functions behave the same
way independent of their continuation. I will show that
nonparametric use of continuations allows very substan-
tial, almost incredible gains in program speed. Further-
more, this technique is compatible with almost any style
of programming language; imperative, functional, even
object-oriented.

Introduction

Many programming languages allow variables to hold
function values; some languages allow the programmer
to test function values for equality. But what does such
a test f = g mean? One can imagine three possibilities:

Extensional: returns true if f(x) = g(x) for all x.
This test is not computable in an ordinary (Turing-
equivalent) programming language, so an exten-
sional = must be partial, perhaps returning false
accurately on some inputs, but necessarily return-
ing maybe on most inputs. I know of no program-
ming language with an extensional equality prim-
itive.

Intensional: returns true if f is the same expression
(has the same internal structure) as g. Intensional
equality implies extensional equality, but the lack
of intensional equality does not provide much in-
formation to the programmer. Interpreted Lisp
1.5 has a structural (intensional) equality test.

Reference: tests whether f points to the same loca-
tion as g. This is a weak form of intensional equal-
ity; reference equality implies intensional equality.
Many languages have reference equality.

A seemingly unrelated development in the field of
programming languages is the notion of continuation to
express “what the program will do next.” Originally
developed as a “behind-the scenes” tool to help express
the semantics of control flow in programming languages,
continuations a programmer-accessible feature of lan-
guages such as Scheme.

This call-with-current-continuation feature has been
criticized as being too expensive to implement because
entire control stacks need to be copied. Some researchers
[1, 2] propose a “prompt” primitive to ameliorate the
expense by manipulating continuations in a carefully
controlled way. Here I will propose a new, limited con-
tinuation primitive that is cheap (even for stacks) and
that can accomplish certain things for which prompts
are too weak.

A programming contest

In the spring of 1995, I invited Guy Jacobson of AT&T
Bell Laboratories to teach our undergraduate software
engineering course, entitled “Advanced Programming
Techniques.” During the semester Jacobson gave his
class several programming assignments, and he he for-
mulated some of them in the form of contests. The
post-facto discussion of different solutions implemented
by the students was a useful and lively pedagogical ex-
ercise.

One of the early exercises was to implement an effi-
cient integer cube-root function. He provided two pro-
gram modules, a driver module main.c (figure 1) and
a cube-root module root.c (figure 2). The task was to
write an efficient module fastroot.c to be run on a
Sparc workstation such that

1. The executable obtained by conventionally link-
ing fastroot.c with main.c would run as fast as
possible;

2. fastroot.c would match the behavior of root.c
when linked with any test driver.

That is, fastroot.c must be both fast and correct.
To derive a good solution to this problem, I exam-

ined the continuation transform Q of the quickroot
function:

1



main (int ac, char *av[])
{

int i, j;
(void) srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++) {

j = quickroot (random ());
}
exit (0);

}

Figure 1: The driver module main.c

double cbrt (double);

int quickroot(int i)
{return (int) cbrt ((double) i);}

Figure 2: The cube-root module root.c
The library function cbrt computes floating-point cube
roots.

Q : (Int ×Kont)→ Cont

where Cont is a conventional continuation function of
the form Store → Answer and Kont is an expression
continuation of the form Int → Cont .

Here, Store is a snapshot of the machine’s memory,
and Answer is the sequence of all output (and other
externally visible system calls) that the program will
perform from “now” until the time it exits.

We are required to implement a function extension-
ally equal to Q1, where

Q1(i, k)s = k(bi1/3c)s

Here it is very valuable that we have made the con-
tinuation argument explicit, because we can now ap-
ply a standard rule of software engineering: make the
program fast on frequently occurring arguments. One
frequently occurring argument is the particular contin-
uation k0 provided when the driver program main.c
calls quickroot. Examination of the program reveals
that main and quickroot produce no output and do
no other system calls before calling exit. Thus, the
continuation k0 is extensionally equal to

λx.λs.exit(0)

where exit is a library function that produces the empty
answer.

To optimize for the common case, we can write

Q2(i, k)s = if k = k0 then exit(0) else k(bi1/3c)s

It is easy to check that Q2 is extensionally equal to
Q1 by case analysis on k.

But the equality test k = k0 is problematic. We
cannot use an extensional check, as that will take far
too long. However, for this purpose, intensional equal-
ity suffices. Let kmain be the actual continuation value
passed to the compiled Q by the compiled main func-
tion; it is extensionally equal to k0 but (unless the com-
piler is very smart) not necessarily intensionally equal.

We can just test k = kmain, using intensional equal-
ity as a weak but sufficient approximation. To make
this explicit, I will introduce the symbol ;=) for inten-
sional equality:
Q3(i, k)s = if k ;=) kmain then exit(0) else k(bi1/3c)s

Practical application

It is all very well to write lambda calculus, but for the
contest I need a C program. Fortunately, C is power-
ful enough to allow the implementation of intensional
equality on continuations. My quickroot can simply
grab the return address register and see if it points
within machine code structurally similar to the contest-
driver main. If so, we have k ; =) kmain and we can apply
the exit continuation. If not, we must have some other
continuation meant to test for correct cube root compu-
tation, and it would be wise to compute the cube root
(slowly and carefully) and return it.

The complete solution is shown in figure 3.
The array mycaller is actually two Sparc instruc-

tions that will return the return address of its caller.
Using the attractive and powerful union feature of C,
we cast this to a function value.

The first if statement is so that we apply the in-
tensional equality optimization only on the first call to
quickroot, so that not much time is lost for unexpected
test programs.

The second if tests whether quickroot’s continua-
tion points within main, taking advantage of the fact
that C function pointers are represented uniformly as
addresses.

The for loop examines the instructions of main to
see if they match our copy of the standard driver, which
we call copyOfMain. The if statement inside the loop
relocates certain jump instructions that contain abso-
lute addresses.

Performance

The original program using cbrt runs in about 20 sec-
onds. The driver alone (using an empty quickroot
function) runs in about 2 seconds. My version, using in-
tensional equality on continuations, runs in 0.0 seconds
(rounded to the nearest tenth). This was sufficient to
win the contest, had I been eligible to enter. Further-
more, my version gave correct answers on any test input
that Jacobson was able to devise.

2



#include <stdio.h>

copyOfMain (int ac, char *av[])
{

int i, j;

(void) srandom (atoi (av[1]));

for (i = 0; i < 10000000; i++) {
j = quickroot (random ());

}

exit (0);
}
endMain(){}

double cbrt (double);

extern main();

unsigned mycaller[] =
{0x81c3e008,0x9010001f};

int quickroot(int i)
{static x=0;
if (x) return (int) cbrt ((double) i);
x=1;
{ unsigned *p, *q, caller;
union {unsigned *z; unsigned (*f)();} u;
u.z=mycaller;
caller = u.f();
if (caller <= (unsigned)main ||

caller >= (unsigned)main +
(unsigned)endMain -
(unsigned)copyOfMain)

return quickroot(i);
for(p=(unsigned*)copyOfMain,

q=(unsigned*)main;
p<(unsigned*)endMain;
p++,q++)

{ unsigned px = *p, qx = *q;
if ((px&0xf0000000) == 0x40000000 &&

(qx&0xf0000000) == 0x40000000)
{px += ((unsigned) p)>>2;
qx += ((unsigned) q)>>2;}

if (px != qx) return quickroot(i);
}
exit(0);
}

}

Figure 3: Optimizing the common case

Conclusion

As I have shown, the use of an intensional equality test
on continuations does not require the programming lan-
guage to have full first-class continuation (i.e., call-with-
current-continuation). But what I have done cannot be
expressed using prompts, because I need to reason about
the full answer produced by the program, not a partial
answer up to the next prompt.

But my implementation is a bit clumsy in C. What
we need is a primitive for testing intensional equality on
continuations against specified constant values, to allow
portable code to be efficient in the common case.

Disclaimer The opinions expressed in this paper are
not those of Princeton University, nor even those of the
author.

References

[1] Matthias Felleisen. The theory and practice of first-class
prompts. In Fifteenth Annual ACM Symp. on Principles
of Prog. Languages, pages 180–90, New York, Jan 1988.
ACM Press.

[2] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A
generalization of exceptions and control in ML-like lan-
guages. In Proc. Seventh Int’l Conf. on Functional
Programming and Computer Architecture, pages 12–23.
ACM Press, 1995.

3


