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Abstract
This paper reports on the development of Compositional Comp-
Cert, the first verified separate compiler for C.

Specifying and proving separate compilation for C is made chal-
lenging by the coincidence of: compiler optimizations, such as reg-
ister spilling, that introduce compiler-managed (private) memory
regions into function stack frames, and C’s stack-allocated address-
able local variables, which may leak portions of stack frames to
other modules when their addresses are passed as arguments to ex-
ternal function calls. The CompCert compiler, as built/proved by
Leroy et al. 2006–2014, has proofs of correctness for whole pro-
grams, but its simulation relations are too weak to specify or prove
separately compiled modules.

Our technical contributions that make Compositional CompCert
possible include: language-independent linking, a new operational
model of multilanguage linking that supports strong semantic con-
textual equivalences; and structured simulations, a refinement of
Beringer et al.’s logical simulation relations that enables expres-
sive module-local invariants on the state communicated between
compilation units at runtime. All the results in the paper have been
formalized in Coq and are available for download together with the
Compositional CompCert compiler.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Verification

Keywords CompCert, Compiler Correctness

1. Introduction
Verified separate compilation is the process of independently trans-
lating a program’s components in a way that preserves correctness
of the program as a whole. In the most general case, a verified sep-
arate compiler supports heterogeneous source programs, in which
some modules are written in a high-level source language like C
while others are written in a lower-level language such as assem-
bly. A verified separate compiler in this context is one that pre-
serves the behavior of the entire source program, comprising the C
and assembly-language modules, when the C code is compiled.

Separate compilation has numerous practical benefits. It speeds
up development cycles by enabling recompilation of just those
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Figure 1. Compositional CompCert

source modules that have been edited by the programmer. It enables
shared libraries—separately compiled modules mapped at runtime
into the virtual address spaces of multiple processes. It promotes
modularity in the large, by enabling programmers to write applica-
tions containing logically distinct translation units, each composed
at a different level of abstraction or even in a different programming
language altogether.

But perhaps equally important are applications of verified sep-
arate compilers to modular verification: proving a whole program
correct by specifying and verifying its modules independently
(with respect to the specifications of the other modules). Compiling
verified modules with a semantics-preserving separate compiler re-
sults in correctness not only of each compiled module, but also of
the target whole program linked and running on the machine.

In this paper, we present Compositional CompCert, a fully ver-
ified separate compiler from CompCert’s (Leroy 2009) Clight lan-
guage to x86 assembly. Each phase uses the exact same compi-
lation function as CompCert 2.1, but a significantly strengthened
specification that supports verified separate compilation of multi-
module programs. In contrast, original CompCert’s specification is
limited to whole programs and fails to account for general shared-
memory interaction. That is, CompCert is not certified for calls to
other modules, especially if two modules might access the same
memory locations. We certify the correctness of such calls.

Compositional CompCert builds on work of (Beringer et al.
2014), which showed how to adapt CompCert to support shared-
memory interaction between a single compilation unit and its en-
vironment, under the restriction that the environment was not it-
self compiled. The technical innovations that enabled the adap-
tation to shared memory were twofold: First, a novel flavor of
operational semantics, called interaction semantics (“core seman-
tics” in (Beringer et al. 2014)), for modeling a module’s inter-
actions with its environments; and second, a new proof method,
called logical simulation relations (LSRs), for proving correctness
of compiler phases with respect to the interaction semantics inter-
face. LSRs supported interlanguage reasoning between the source,
intermediate, and target languages of an optimizing compiler by
modeling all languages uniformly, as interaction semantics. LSRs
also composed vertically, or transitively, which made it possible
to break down the correctness proof of a multiphase compiler into
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proofs of the individual compiler phases. (Leroy’s original Comp-
Cert was also vertically compositional, but only because stack-
allocated memory was not observable.)

The main deficiency of LSRs was that they did not compose
horizontally: It was not possible, in general, to infer correct compi-
lation of a whole program from the correct compilation of its mod-
ules. The reason was that LSRs, like CompCert’s original simu-
lation relations, imposed assumptions (relies) on the evolution of
memory over external function calls, such as “spilled local vari-
ables are unmodified,” but did not show that compiled code pre-
served the corresponding guarantees. This asymmetry between re-
lies and guarantees made LSRs inapplicable whenever a module
and its environment were both compiled—a situation that occurs
not only when libraries are compiled, but also whenever there is a
cyclic dependency between the modules of a program.

Contributions. In Compositional CompCert we overcome these
difficulties, and achieve horizontal compositionality, with the fol-
lowing innovations over previous work:

1. Language-Independent Linking is an extension of interaction
semantics that gives the operational interpretation of horizontal
composition. By abstracting from the details of how modules
are implemented (or even in which language they are imple-
mented), language-independent linking models the interactions
of modules in different languages, even those with different
calling conventions.

2. Structured Simulations refine LSRs to support the rely-
guarantee relationship necessary for horizontal composition,
while maintaining vertical compositionality. The key ingredi-
ents of structured simulations are: fine-grained subjective in-
variants on the state communicated between modules at run-
time, and a leakage protocol that ensures that structured sim-
ulation proofs respect the reachability relation induced by C
pointers.

Compositional CompCert’s top-level correctness theorem is a vari-
ant of contextual equivalence between source and compiled multi-
module programs in which contexts are specified semantically, as
(nearly) arbitrary observations on the memory state at external call
points. Contexts are not limited to programs in C or x86 but include
mathematical relations expressed in Gallina.

In addition to sketching formal results that relate linking seman-
tics, structured simulations, and contextual equvalence, we outline
the instantiation of interaction semantics to the source and target
languages of our compiler, Clight and x86, and present an overview
of the adaptation of the relevant proofs of the CompCert phases.

All results in this paper have been proved formally in Coq, and
are available, along with the Compositional CompCert compiler
itself, on GitHub.1 Before proceeding with the technical details, we
briefly discuss some key aspects of the above innovations.

1.1 Key Ideas
Language-independent linking provides a generic operator L for
composing interaction semantics, independent of the language level
of individual modules. Our statements of separate compilation and
contextual equivalence (Sections 3 and 6) are cross-language in the
sense that they apply even to the situation in which a multilanguage
source program is compiled to a multilanguage target program.

Informally, imagine a source program PS consisting of source
modules S1, · · · ,Sn , each in a different language. Then if target
modules PT = T1 · · ·Tn are shown related to S1 · · ·Sn (e.g., by
n different structured simulations), the results of Sections 3 and 6
give us that the target “linked” program PT is contextually equiv-

1 https://github.com/PrincetonUniversity/compcomp.

alent to the source “linked” program PS (under certain restrictions
on the Si and Ti , explained in Section 3), for a strong semantic
notion of program context. Of course, it’s not clear a priori what
it means to link multilanguage programs, at least not in any opera-
tional sense; answering this question is the subject of the first part
of Section 3. In principle, these results mean that the target mod-
ules T1 · · ·Tn need not be generated by any particular compiler—
our contextual equivalence results depend only on the existence of
the simulations. In practice in Compositional CompCert, the Si are
programs in Clight or hand-written assembly while the Ti are x86
assembly programs.

Structured simulations evolve from LSRs by lifting the restric-
tion to fixed environments, in two steps: First, we impose a rely-
guarantee discipline (inspired in part by the rely-guarantee simu-
lations used by Liang et al. (Liang et al. 2012) to prove contex-
tual refinement of concurrent programs) on the interactions of pro-
gram modules. The rely-guarantee discipline ensures that module
compilation preserves the same properties that modules themselves
assume about the behavior of external functions (those defined in
other modules). This, in turn, makes it possible to implement ex-
ternal functions or libraries with code that is itself compiled, as in
Figure 1. Second, we enrich the simulation relations with additional
“ownership” data, which makes it possible to distinguish memory
regions that are reorganized during compilation of distinct transla-
tion units. For example, the portion of the stack frame reserved for
spilling during compilation of a function A.f can be distinguished
from the spill region reserved for a second function B .g , defined in
a distinct translation unit B .

A key insight here is that the invariants that apply to distinct
regions of memory—such as the regions reserved by the compiler
for A.f ’s and B .g’s spilled locals—are subjective: function A.f
can write to its own spilled locals but not to B .g’s, and vice versa
for B .g with respect to A.f ’s spills. Structured simulations deal
with this subjectivity by imposing an “us vs. them” discipline on
compiler correctness invariants: Each structured simulation dis-
tinguishes the parts of the state that it controls (the “us”) from
the parts of the state controlled by the environment (the “them”).
This discipline is reminiscent in some ways of Ley-Wild and
Nanevski’s subjective concurrent separation logic (SCSL) (Ley-
Wild and Nanevski 2013), though here we apply a rely-guarantee
discipline to the two-program invariants used to prove compiler
correctness rather than to the verification of concurrent programs.
To ensure that structured simulations validate contextual equiva-
lences, and thus are reusable in many different program contexts,
we make them parametric in nearly all state updates that can occur
to the “them” portion of the state at external call points.

Another ingredient is a “leakage” protocol, which ensures that
the views of the memory state imposed by the compiler invariants
for different modules remain consistent. For example, when A.f
calls B .g with arguments −→v , we require that A.f ’s compilation
invariant “give up exclusive control” of all the memory regions
reachable from −→v (i.e., following pointer chains rooted in −→v ).
This condition represents the guarantee that, while later compila-
tion stages of A.f can still reorganize parts of the state reachable
from −→v (e.g., by changing the order in which memory regions are
allocated), they cannot remove these memory regions entirely (e.g.,
by dead code/memory analysis): the existence of the memory re-
gions in question has been leaked irrevocably to the environment.
Similarly, at external function return points, memory regions reach-
able from the return value are “leaked in” to the caller’s compila-
tion invariant—representing the rely that these regions will never
later be removed by compilation of the environment. Our language-
independent linking semantics and contextual equivalence proof
ensure that these conditions are in rely-guarantee relation.
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Interestingly, this leakage protocol bears much in common with
the system-level semantics of Ghica and Tzevelekos (Ghica and
Tzevelekos 2012). There, Ghica and Tzevelekos define a game se-
mantics for a C-like language that avoids imposing so-called com-
binatorial (i.e., syntactic) restrictions on the moves of the environ-
ment, by applying what they call “epistemic” restrictions instead.
These epistemic conditions, which parallel our leakage conditions,
allow the environment to update the state in nearly any way as long
as the updates are to memory regions leaked to the environment
during previous interactions with the client program. This leads to a
strong semantic notion of program context similar to the one we de-
velop in Section 3. While Ghica and Tzevelekos were interested in
modeling open C-like programs and their environments, not com-
piler correctness in this setting, we view the coincidence of our
leakage conditions with their system-level semantics as evidence
of the naturalness of our leakage protocol (Section 4).

Overview. We begin by reviewing interaction semantics, an op-
erational model of shared-memory module and thread interaction.
Section 3 employs interaction semantics to define the operational
semantics of multilanguage linked programs, and semantic contex-
tual equivalence. Then, we introduce structured simulations in Sec-
tion 4. Section 5 presents the main theoretical results: vertical and
horizontal compositionality, and contextual equivalence for Comp-
Cert. Section 6 describes the Compositional CompCert compiler
itself, with a discussion of the effort required to port CompCert’s
existing languages and proofs to structured simulations.

2. Interaction Semantics
Interaction semantics (called core semantics in (Beringer et al.
2014)) are a protocol-oriented operational semantics of thread in-
teraction, for modeling both multithread concurrent and multimod-
ule programs. Interaction semantics grew from the insight that
interaction, between well-synchronized concurrent threads or be-
tween modules, can be viewed as occuring exclusively at external
function call points, that is, via calls to functions declared in one
module but defined in another. This gives a compiler or weakly
consistent memory model the freedom to optimize between inter-
action points.2

Here we give a brief overview of interaction semantics, which
we build on in later sections to model language-independent link-
ing. First, we describe the interaction semantics protocol. Then, we
give representative encodings of interaction semantics, in this case,
of CompCert’s Clight and x86 assembly languages. In Composi-
tional CompCert, all language semantics are encoded in this way,
as interaction semantics.

2.1 Protocol
In a multithread concurrent program, threads are spawned, take nor-
mal (i.e., unobservable) steps, yield at synchronization points (e.g.,
call to unlock), and eventually halt or (silently) diverge. The same
protocol applies to module interactions: a C program is initialized
by spawning a new “thread” with a function pointer to main. This
sequential thread (which we sometimes call a core) takes normal,
unobservable steps by evaluating main or by calling other internal
functions defined in the same translation unit, “yields” to the en-
vironment by calling external functions defined in other modules,
“blocks” until the external function returns, and halts or nonter-
minates just as a concurrent thread does. At external-call interac-

2 Our model is designed to support shared-memory concurrency, although
this paper does not yet do concurrency. Well-synchronized (Dijkstra-Hoare)
programs can be proved in Concurrent Separation Logic, and from such
proofs we can derive (virtual) permission changes at interaction points (Ap-
pel et al. 2014, Ch. 44). Racy programs can be accommodated as long as
racy loads/stores can be modelled via permission changes (future work).

initial_core running

halted after_external

at_external

interference

Semantics (G C M : Type) : Type ,
initial core : G → V → list V → option C
at external : C → option (F × list V)
after external : option V → C → option C
halted : C → option V
corestep : G → C → M → C → M → Prop

Figure 2. Interaction semantics interface. The types G (global
environment), C (core state), and M (memory) are parameters to
the interface. F is the type of external function identifiers. V is the
type of CompCert values.

tion points, nearly anything can happen: For example, the (shared)
memory state might be updated arbitrarily by an external function.

Figure 2 summarizes the protocol. Each interaction semantics
is parameterized by five types: G is the type of global environ-
ments. C is the type of internal, or “core” states. Core states can be
instantiated to, e.g., the register file, instruction stream, and proces-
sor flags for a language like x86, or to local variable environment
and control continuation for a higher-level language like C. M is
the type of memories. In the models of the CompCert languages
that we employ in Compositional CompCert, M is instantiated to
mem, the type of CompCert memories. (In semantic models of pro-
gram logics such as the Verified Software Toolchain’s Verifiable
C (Appel et al. 2014), M is instantiated to a step-indexed model of
state used to model function pointer specifications and other higher-
order features.) F is the type of external function identifiers. V is
the type of values. V is usually just CompCert’s value type.

The five functions at the bottom of Figure 2, together with a few
governing axioms (not shown), encode the interaction protocol de-
scribed above. New cores are initialized with initial core ge v −→v .
The v is a value, typically a function pointer, while −→v are the ini-
tial arguments to v . initial core may fail with None when, e.g.,
the function spawned is not defined in the global environment
ge . at external interrogates core state c to determine whether c
is “blocked” at an external function call interaction point. When
at external succeeds, it does so with the name of the external func-
tion being called (of type F) and the arguments (of type list V).
The after external function is used to inject the return value of an
external call into the calling at external core state, producing a new
core state as result. halted c returns Some v with return value v if
c is halted, otherwise None. corestep gives the small-step internal
transition relation of the interaction semantics. We use the syntax
ge ` c,m 7−→ c′,m ′ to denote this relation.

2.2 Examples: Clight & x86 Assembly
Figures 3 and 4 give the syntax of Clight and CompCert x86 as-
sembly, the source and target language of Compositional Comp-
Cert, respectively. Both languages are adapted from CompCert’s
original Clight and x86 and have straightforward operational se-
mantics, which we do not present here (but see the code that ac-
companies this paper for the complete definitions). Here we focus
on the adaptations required to turn these two languages into inter-
action semantics: First, we give the core, or internal, states for each
language; then, we provide an overview of the definitions of the
interface functions, e.g., at external and after external.
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Statements
s ::= Sskip no-op

| Sassign a1 a2 lval← rval
| Sset id a temp← rval
| Scall optid a −→a function call
| Sbuiltin optid f −→τ −→a intrinsic
| Ssequence s1 s2 sequence
| Sifthenelse a s1 s2 conditional
| Sloop s1 s2 infinite loop
| Sbreak | Sreturn aopt break/return
| Scontinue s continue statement
| Switch s | Slabel l s | Sgoto l

Internal & External Functions
τ ::= int | long | ptr τ | · · · C types
γ ::= · | (id , τ), γ typing environments

fi ::=


τ function return type
γ function parameter typing
γv local variable typing
γt temporary variable typing
s function body

f ::= Internal fi | External idf
−→τ τ

Continuations
κ ::= Kstop safe termination

| Kseq s κ sequential composition
| Kloop s1 s2 κ loop continuation
| Kswitch κ catch switch break
| Kcall optid fi ρv ρt κ catch function return

Core States
ρv ::= · | (id , (loc × τ)), ρv addressed var. environment
ρt ::= · | (id , v), ρt temporaries environment
c ::= StateCL fi s κ ρv ρt

| CallState f −→v κ | ReturnState v κ

Figure 3. Syntax and semantics of Clight (excerpts). Continua-
tions and core states appear only in the operational semantics.

Registers

ri ::= EAX | EBX | ECX | EDX integer registers
| ESI | EDI | EBP | ESP

rf ::= XMM0 | · · · | XMM7 floating-point registers
crstate ::= ZF | CF | PF | SF | OF control register state
r ::= PC | IR ri | FR rf | ST0 | CR crstate | RA
rs ::= · | (r , v), rs register environments

Instructions
p ::= MOVRR ri ri |MOVRI ri i | · · · moves

| JMPL l | JMPS id | JMPc cond l | · · · jumps
| CALLS id | CALLR ri | RET | · · · calls/return
| · · · moves with conversion, integer arithmetic, etc.

Core States
d ::= StateASM τ0 rs normal states

| MarshallStateIn idf
−→v marshall args. in

| MarshallStateOut (idf ,
−→τ0 ,τ0) −→v rs marshall args. out

Figure 4. Syntax and semantics of CompCert x86 assembly (ex-
cerpts). Core states appear only in the operational semantics. Int-
floatness types τ0 (used for value decoding) are int, float, long, or
single.

Clight’s language of expressions, statements, internal function
definitions, and external function declarations is given in the top
half of Figure 3. Statements s are as in CompCert, and rely on a
language of expressions a that includes the usual binary and unary
operators. C control-flow constructs like while loops are derived
forms (not shown). The semantics of Clight depends on continua-
tions κ, described in the figure, and core states c, which come in
three varieties: Normal states StateCL fi s k ρv ρt model the “run-
ning” states of a Clight program, during evaluation of anything but
function calls, and consist of the name of the current function be-
ing executed fi , the function body s , the control continuation κ, and
two environments, ρv for mapping address-taken stack variables to
their locations in memory, and ρt for mapping temporary variables
to their values. CallState f −→v κ models Clight programs that are
about to call function f (either internal or external) with arguments−→v and continuation κ. ReturnState v κ gives the state that results
after returning from function calls (either internal or external). v is
the value returned by the callee; κ is the continuation to be executed
after the call returns.

Adapting Clight to the interaction-semantics interface is straight-
forward. For example, here is the definition of Clight after external:

cl after external vopt c ,
case c of CallState f −→v κ →

case f of Internal → None
| External idf

−→τ τ →
case vopt of
| None → Some (ReturnState vundef κ)
| Some v → Some (ReturnState v κ)

| → None

First, we check whether c is a CallState, with continuation κ. If
it is, and the function that was being called was external, then we
produce a ReturnState with return value vundef (whenever vopt
was None) and v (whenever vopt was Some v ). In all other cases,
we just return None.

The definition of initial core ge v −→v is simple, since function
arguments are passed not on the stack but abstractly, without refer-
ence to memory: we check that v is a valid pointer to a defined func-
tion fi , check that the arguments−→v are defined and match fi ’s type
signature, then introduce state CallState (Internal fi)

−→v Kstop,
which immediately steps to the body of function fi with the initial
local variable environment ρv that maps the function’s formal pa-
rameters to its arguments −→v . The definitions of initial core in the
languages below Clight follow a similar regime—all the way down
to CompCert’s Linear language, which uses an environment of ab-
stract locations such as incoming parameter stack slots to represent
the state of the stack and registers.

Adapting x86 assembly (Figure 4) is a bit trickier, since argu-
ments must be passed concretely, on the stack. (The same applies
to CompCert’s Mach language.) As we will see in Section 3, we
use the initial core function of the interaction semantics interface
to model both program initialization (i.e., by the loader) and the
function calls that occur at cross-module function invocations. If
we knew that all modules in our program were written in x86 as-
sembly and used, e.g., the standard cdecl calling convention, then
modeling cross-module invocations would be less of an issue: The
shared calling convention would mean that arguments to one func-
tion (say, B .g) would be placed by a caller A.f on the stack or in
registers exactly as expected by B .g .

But the restriction to a shared calling convention/ABI is rather
limiting. We want to be able to model, at least abstractly, the in-
teractions of modules in a variety of languages, at both higher
and lower levels of abstraction. To accomplish this, we apply a
“marshalling” transformation to the x86 language: To initialize a
new x86 core calling function idf with arguments −→v , we produce
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Figure 5. CALL case of the linking corestep relation. The outer
boxes are “stacks-of-cores.” Core state c is at external calling
function idf . Assuming l .plt idf = Some idx and ge idf =
Some bf , initializing module idx with function pointer Vptr bf
results in initial core c′ being pushed onto the stack.

state MarshallStateIn idf
−→v , which immediately steps to a run-

ning State. As a side effect of this step, however, we allocate a
“dummy” stack frame in memory in which we store the incoming
arguments −→v , in right-to-left cdecl order as expected by Comp-
Cert and gcc. (MarshallStateOut performs the symmetric step of
marshalling arguments out of memory.)

Concretely, for x86 modules all sharing the same calling con-
vention, this modeling step does not occur on a real machine (nor
does the compiler output any “marshalling” code). But by stick-
ing to the abstract “calling convention” imposed by initial core,
in which values are passed abstractly instead of in memory and
registers according to a particular calling convention, we gain flex-
ibility to model the interactions of modules in a wide variety of
languages, not only Clight and x86 but also x86 modules following
different calling conventions, such as, e.g., cdecl and Microsoft
fastcall.

3. Linking and Contextual Equivalence
In the previous section, we introduced interaction semantics as
a means of interpreting the behavior of isolated modules. In this
section, we define an abstract operator L(JS0K, JS1K, . . . , JSN−1K)
over interaction semantics that defines the linked behavior of a
set of interacting modules, as given by a multimodule program
P = S0,S1, · · · ,SN−1.

As input, L takes N interaction semantics, each with (perhaps)
a different global environment and core state type (i.e., modules
programmed in perhaps different languages). The output of L is a
new interaction semantics JPK = L(JS0K, JS1K, . . . , JSN−1K) that
models the execution of the linked program by maintaining as its
own core state a (heterogeneous) stack of the modules’ core states.
Each “frame” on the stack corresponds to a runtime invocation of
one of the modules in the program. Cross-module function calls
result in new cores being pushed onto the stack (initialized via
initial core); returning from such a function pops the top core from
the stack and injects the return value into the state of the caller,
using after external.

The modules Si are written in different languages, whose states
may have different (Coq) types. In order to treat these modules
uniformly inL, we wrap their interaction semantics by existentially
quantifying over the core state types of each module, an operation
we encapsulate in the type Modsem.

Modsem , F, V, C : Type
ge : Genv F V
sem : Semantics (Genv F V) C mem

In this dependently typed record, the types of ge and sem depend
on F, V, and C. This module is written in programming language F

(e.g., Clight or x86), whose global variables have type-specification
language V (e.g., Clight types or unit); and whose core states have
type C (e.g., Clight nonaddressable locals and control stack, or x86
register bank). We also existentially bind the global environment ge
that was statically initialized for this module. It maps addresses to
global variables and function-bodies.3

The final component is sem, an interaction semantics. It defines
the interface functions initial core, at external, etc., as well as a
step relation ge ` c,m 7−→ c′,m ′. Modules in the same language
will typically have identical · ` · 7−→ · relations, specialized by
different ge components that map disjoint sets of addresses to inter-
nal function bodies (as opposed to external function declarations).
In what follows, we use J·K to refer interchangeably to the interac-
tion semantics of modules and their Modsem wrappers.

The output of L is an interaction semantics in the LinkedState
“language.” LinkedState is parameterized by modules , a map from
module indices in the range [0,N ) to module semantics, where N
is the (nonzero) number of translation units in the program.

Core (N : pos) (modules : IN → Modsem) ,{
idx : IN
core : C (modules idx)

Core models the runtime state of a sequential execution thread. IN
is the (dependent) type of integers in range [0,N ). The idx of a
Core is the index of the module from which the core was initialized.

The runtime state of a linked program is then:

LinkedState (N : pos) (modules : IN → Modsem) ,{
plt : ident→ option IN
stack : Stack (Core N modules)

The two fields of LinkedState are: the procedure linkage table
plt—mapping function names (type ident) to the indices of the
modules in which the functions are defined, if any (option IN )—
and a stack of cores. We model the plt as a field in the LinkedState
record, as opposed to deriving it from N and modules , to retain
flexibility to do dynamic linking in the future. The stack is always
nonempty; all cores except the topmost one are at external (∀c ∈
(pop stack). at external c = Some −).

Figure 6 gives the step relation. There are three rules. The STEP
rule deals with the case in which the topmost core on the call stack
(c = peek l .stack) takes a normal internal step (gec � c,m 7−→
c′,m ′). gec is the global environment associated with the module
from which c was initialized. In this case, we just propagate the new
core state c′ and memory m ′ to the result state of the overall linking
judgment. The notation l with {stack := push c′ (pop l .stack)}
updates the topmost core state on the stack. For readability, we elide
the operations required to propagate the idx field of Core records.

The second rule, CALL, handles the case in which the topmost
core on the stack is at external (at external c = Some (idf ,

−→v ))
making a cross-module function call. In this case, we use the
initial core function of the module semantics that defines function
idf (l .plt idf = Some idx ) to initialize a new core state to han-
dle the function call (initial core (modules idx ) (Vptr bf )

−→v =
Some c′). The core c′ is then pushed onto the stack (l with {stack :=
push c′ l .stack}) to become the new running core.

The RETURN rule models external function returns. Here, the
core state c is halted with return value v (l with {stack :=
push c′ l .stack}). To resume execution, we use the after external
function exposed by the caller’s semantics c′ = peek (pop l .stack)
to inject the return value v (after external (Some v) c′ =

3 All the inputs to L must have ge functions that map exactly the same
global addresses (modules that fail to declare some unused external global
variables or functions can always be made to do so, by safety monotonicity).
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ge � c,m Z=⇒ c′,m ′

c = peek l .stack gec � c,m 7−→ c′,m ′

ge � l ,m Z=⇒ l with {stack := push c′ (pop l .stack)},m ′
(STEP)

c = peek l .stack at external c = Some (idf ,
−→v )

l .plt idf = Some idx ge idf = Some bf
initial core (modules idx ) (Vptr bf )

−→v = Some c′

ge � l ,m Z=⇒ l with {stack := push c′ l .stack},m
(CALL)

size l .stack > 1 c = peek l .stack
halted c = Some v c′ = peek (pop l .stack)

after external (Some v) c′ = Some c′′

ge � l ,m Z=⇒ l with {stack := push c′′ (pop (pop l .stack))},m
(RETURN)

Figure 6. Corestep relation of program linking semantics L.

Some c′′). State c is then popped from the stack, and state c′ is
updated to c′′ (l with {stack := push c′′ (pop (pop l .stack))}).

The stack is an abstraction of the activation-record stack of a
C or assembly program. Internal calls (within one module) do not
push on our stack; they transition from one core (and memory) to
another core (and memory) within the same top stack element. But
of course this core/memory may be the abstraction/implementation
of pushing and popping (module-local) activation records. Differ-
ent modules may or may not share a “real” activation-record stack.

The final piece of linking semantics is the definition of the
interface functions: initial core, at external, after external, and
halted. We do not have space to give the full definitions here (they
are in the Coq code); instead, we briefly describe them.

A linking semantics is initialized (initial core) by spawning a
new core to handle the entry point function that was called. The
linking semantics is at external when the topmost core on the stack
is at external calling a function defined by none of the modules
(otherwise, we would have initialized and pushed a new core to
handle the function). To inject a return value into linker states
(after external), we inject the value into the topmost core state on
the stack (after external vopt c = Some c′). Finally, a linking
semantics is halted when the stack contains a singleton halted core
state (halted c and size l .stack = 1), i.e., the topmost core is halted
but has no return context.

Contextual Equivalence. Linking semantics leads to a natural
notion of semantic context: Take program contexts C to be arbi-
trary module semantics Modsem. Then the application of a pro-
gram context to an (open) multimodule program P is just the se-
mantics that results from linking the program with that context:
L(C , JPK)!

This notion of context-as-interaction-semantics is quite gen-
eral: it supports the definition of program contexts in arbitrary lan-
guages, e.g., Clight and x86 but also Coq’s Gallina. (It is straight-
forward to define an interaction semantics whose step relation is
an arbitrary Coq relation; the code that accompanies this paper in-
cludes one such example.)

Eliding some details related to global environments and mem-
ories, contextual equivalence of two open multimodule programs
PS and PT may be defined as equitermination (halted in interac-
tion semantics)—when initialized at matching entry points—in all
contexts:

Definition 1 (Contextual Equivalence).

PS ∼ PT , ∀C . L(C , JPS K)⇓ ⇐⇒ L(C , JPT K)⇓

The context C observes the state of memory (and the arguments
to external calls) when the program interacts with the environment.
To distinguish PS and PT , C can, e.g., get stuck (as opposed to
safely terminating) at one of these interaction points if the memory
state and arguments fail to satisfy a specified predicate.

4. Structured Simulations
Section 3 showed how to define the semantics of open multimodule
programs, and what contextual equivalence meant in that setting.
Now we show how to prove contextual equivalences for Comp-
Cert. We briefly review logical simulation relations (Beringer et al.
2014), and then show our new enhancement, structured simula-
tions.

LSRs established compiler correctness by showing that com-
pilation preserved the protocol structure of interaction semantics,
using CompCert’s original match relations ∼f with memory in-
jections f to relate source and target states. For internal execu-
tion steps, they followed CompCert’s forward simulation proofs.
For external calls, they asserted that the two modules call the same
function with related arguments, and that the simulation relation is
reestablished at return points whenever the environment provides
related return values, subject to a few constraints on how memory
could evolve over the external calls.

The two most crucial of these constraints were that (1) in the
source execution, external calls did not modify any memory region
the compiler wished to remove;4 and that (2) in the target execution,
external calls did not modify locations that were unreachable from
the source memory (an “unreachable” target location is one that
does not correspond to a readable location in the source memory).
Condition (2), in particular, enabled the proof of compiler phases
such as spilling, which introduces new unreachable spill locations
into a target program’s stack frames. A deficiency of CompCert’s
simulation proofs and of LSRs was that they assumed conditions
(1) and (2) at external calls, but did not prove that these properties
were preserved by compilation.

Directly imposing constraints (1) and (2) onto the simulation
clauses for internal steps does not work, however. A compiled
function should be allowed to write to its own spill locations—just
not to those of its caller.

To capture the difference in perspective between caller and
callee, we make three adjustments to the LSR framework. First, to
index the match relation ∼, we use structured injections µ instead
of CompCert’s original injections f . The additional structure in µ
maintains the block-level ownership information necessary to tell
a callee’s (or other environmental) blocks apart from caller blocks.
Second, we decorate the internal step relation of interaction seman-
tics with modification effects E such that locations not contained in
E are guaranteed not to be modified (i.e. written to, or freed) by
the step in question. Third, we impose a restriction axiom onto ∼
that ensures compilation invariants depend only on memory regions
either allocated by the module being compiled, or leaked to it via
pointers returned from external calls. The details are as follows.

Structured Injections. In CompCert, memory is allocated in
regions, or blocks. Within each block, memory bytes are ad-
dressed using integer offsets (pointer arithmetic is allowed only
within blocks). CompCert’s memory injections f : block →

4 For example, if a source-language variable is represented in memory on
the stack, and in the translation to intermediate language the compiler
chooses to use a register (unaddressable local variable) instead, then we
say this memory region is removed by the compiler.
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Ownership , Priv | Pub | Frgn | Invis | None
µ ∈ StructuredInjection : Type ,

ownS : block→ Ownership
ownT : block→ Ownership
fus : block→ option (block×Z)
fthem : block→ option (block×Z)

ownedi , {b | owni(b) ∈ {Priv,Pub}}, i ∈ {S ,T}
sharedi , {b | owni(b) ∈ {Pub,Frgn}}, i ∈ {S ,T}

visi , ownedi ∪ sharedi , i ∈ {S ,T}
f �X , λb. if b ∈ X then f b else None
µ�X , µ with {fus := fus �X }{fthem := fthem �X }

Figure 7. Structured injections.

option (block×Z) relate source and target memories. For exam-
ple, the memory injection that maps b to Some (b′, δ) associates
source address (b, 8) with target address (b′, 8 + δ).

Structured injections µ (Figure 7) strengthen CompCert’s mem-
ory injection relations with additional ownership structure. They
have four components: Two ownership functions ownS , ownT :
block → Ownership, which map blocks (in the source and target
memories, respectively, of a related pair of program states) to val-
ues of an inductive Ownership type; and two CompCert-style mem-
ory injections: fus and fthem. fus records the source–target mapping
of blocks that were allocated by the current module; fthem maps
external blocks (those allocated by other modules).

The Ownership modes are: Priv, for memory regions (blocks)
allocated by the module being compiled but which haven’t been
leaked to the environment; Pub, for allocated blocks that have
been leaked at a previous interaction point; Frgn, for foreign blocks
leaked into µ at external calls; Invis, for blocks that have been allo-
cated (by another module) but not leaked in; and None for blocks
that may not yet have been allocated. A block is (locally) owned by
µ in the source or target memory when ownS (b) (resp. ownT (b))
is either Pub or Priv. External blocks in source and target are those
mapped by own{S,T} to Frgn or Invis. Likewise, a block is shared
if its ownership is either Pub or Frgn. The visible source blocks of
µ are those in the set visS , ownedS ∪ sharedS (and likewise for
visT ). We use notation foreign{S,T} and public{S,T} to denote the
blocks with foreign and public ownership, respectively.

We track ownership of blocks, rather than ownership byte-by-
byte, because the CompCert languages and memory model permit
pointer arithmetic within blocks. Once a location within a block has
been made public, the whole block is made public as well.

Complementing the data in Figure 7 are axioms that ensure
proper interaction of ownership, leakage, and compilation. These
axioms (not shown) enforce that fus and fthem (1) operate exclu-
sively on blocks of appropriate ownership (i.e. fus only maps owned
blocks, to owned blocks, and similarly for fthem and external
blocks); and (2) are total on their portion of shared blocks: fus must
map all PubS blocks, and must map them to PubT blocks, and sim-
ilarly for fthem and Frgn. The result is that blocks which have been
leaked to/from the environment in one compilation stage cannot be
removed by later stages.

At interaction points between a module and its environment, we
adjust the structured injections so that (at these points) the shared
regions are closed under pointer arithmetic and dereferencing (there
are no pointers from the shared to the nonshared region). We main-
tain as an additional invariant that the source visible set visS is al-
ways closed under pointer dereferencing and pointer arithmetic.

Simulation Structures. Figure 8 presents the two core clauses
of structured simulations �, those for internal (i.e. unobservable)

Internal Steps

〈c,m〉 ∼µ 〈d , tm〉 ∧ geS ` c,m
ES7−→ c′,m ′ →

∃d ′ tm ′ µ′.
(1) µ vus µ

′ ∧
(2) separated µ µ′ m tm ∧
(3) locally allocated µ µ′ m tm m ′ tm ′ ∧
(4) 〈c′,m ′〉 ∼µ′ 〈d ′, tm ′〉 ∧
(5) ∃ET . geT ` d , tm

ET7−→+ d ′, tm ′ ∧
(6) ES ⊆ visS µ→

(6a) ET ⊆ visT µ ∧
(6b) ∀bt zt . (bt , zt) ∈ET ∧ bt /∈ ownedT µ→

∃bs δ. fthem(bs) = Some (bt , δ) ∧ (bs , zt − δ) ∈ES

External Steps

(at-external)
〈c,m〉 ∼µ 〈d , tm〉 ∧
inject µ −→vs −→vt ∧ inject µm tm ∧
at external c = Some (idf ,

−→vs ) ∧
at external d = Some (idf ,

−→vt ) ∧
ν , leak out µ −→vs −→vt m tm

→
(environment)
∀ν′ vs vt m ′ tm ′.

ν vthem ν′ ∧
separated ν ν′ m tm ∧ valid ν′ m ′ tm ′ ∧
inject ν′ vs vt ∧ inject ν′ m ′ tm ′ ∧
forward m m ′ ∧ forward tm tm ′ ∧
unchanged on {(b, z ) | ownS ν b = Priv}m m ′ ∧
unchanged on (local out of reach ν m) tm tm ′ ∧
µ′ , leak in ν′ vs vt m

′ tm ′


→

(after-external)
∃c′ d ′. after external vs c = Some c′

∧ after external vt d = Some d ′

∧ 〈c′,m ′〉 ∼µ′ 〈d ′, tm ′〉

Figure 8. Structured simulations, internal and external step cases.

steps (Internal Steps) and for external interactions with the environ-
ment (External Steps) (the clauses for initial core, at external, and
halted are not shown). In the Figure,∼µ is existentially quantified.
There is no single definition of ∼µ, but instead, one per compila-
tion phase—Figure 8 defines the laws that each such ∼µ relation
must satisfy.5

The structure of the internal diagram (which is simplified in
the figure to elide stuttering source steps) is familiar from tradi-
tional forward simulation proofs: Assume we are in matching ini-
tial states 〈c,m〉 ∼µ 〈d , tm〉 and we take a source step geS `
c,m

ES7−→ c′,m ′ with effect ES . Then there exists a match-
ing d ′, tm ′, and Kripke-extended structured injection µ′ such that
geT ` d , tm

ET7−→+ d ′, tm ′ and 〈c′,m ′〉 ∼µ′ 〈d ′, tm ′〉.Clause (1)
(Kripke extension, µ vus µ′) says that µ′ may map more owned
blocks than µ (in order to deal with allocations) but otherwise is
equal to µ. Clauses (2) and (3) are side conditions that are not im-
portant for understanding the key ideas.

Clause (6) is the guarantee condition. Clause (6a) asserts that
the target effects ET are contained in visT µ, assuming that ES ⊆

5 In most Compositional CompCert phases, the �µ relation is equality up
to the injection of memory regions, the addition, removal, and merging
of certain memory regions, and invariants on private memory regions. As
in original CompCert, we say that nonpointer values such as integers are
related only if they are actually equal.
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leak-in leak-out

privateprivateprivate

publicpublicpublic

foreignforeignforeign

privateprivateprivate

publicpublicpublic

foreignforeignforeign

privateprivateprivate

publicpublicpublic

foreignforeignforeign

Figure 9. Graphical representation of the structured injection leak-
age operations. The thick black arrows are pointers in memory. The
white private and light gray public boxes are owned (“us”) blocks.
The dark gray boxes are foreign (“them”) blocks. The striped box
is an Invis memory region that was allocated by another module
but not yet leaked in. The leak-in operation marks the reachable in-
visible region as foreign. The leak-out operation marks as public a
private region reachable from a public pointer.

visS µ. In other words, the compiler preserves the property of
“writing to, and freeing, only visible locations.”

Clause (6b) guarantees that writes to (and frees of) memory
locations in the target that are not owned by µ (bt /∈ ownedT µ)
can be “tracked back” to corresponding writes and frees in the
source (∃bs δ. fthem(bs) = Some (bt , δ) and (bs , zt − δ) ∈ ES ).
Writes/frees of locations in blocks owned by the module being
compiled are always permitted, which enables the compiler to
introduce reloading code (for spilled variables) or to add function
prologue/epilogue code that saves/restores callee-save registers.

The ES and ET that appear in clause (5) and in step judgments
are effect annotations. For example, geS ` c,m

ES7−→ c′,m ′

means: configuration c,m steps to c′,m ′, writing to or freeing
exactly the locations ES . Locations not contained in this set are
guaranteed not to be modified.

We state these “does not modify” guarantees intensionally in
this way, as effect annotations, in order to prove vertical composi-
tion. The problem with a more extensional interpretation of effects
(e.g., as input–output “unchanged on” conditions) is that effects no
longer “decompose”: If a program takes two steps, from m to m ′′

with effect set E1 and from m ′′ to m ′ with effect set E2, with over-
all extensional effect E , it may be the case that E1 ∪ E2 * E if,
for example, the second step restored a value that was overwritten
by the first step. Decomposition is used in the internal step case of
the proof that structured simulations compose vertically.

We track only write and free effects, and not read effects, be-
cause compiler correctness invariants do not, in general, depend
on which locations another module merely reads. Proving more
general program refinements (e.g., between multiple implemen-
tations of an ADT), or that the compiler does not introduce ad-
ditional memory reads—a property useful in security contexts—
would most likely require a generalization to read effects.

The external step diagram occupies the bottom half of Fig-
ure 8. It relates an at external source–target configuration pair
〈c,m〉 ∼µ 〈d , tm〉 with the after external configuration pair
〈c′,m ′〉 ∼µ′ 〈d ′, tm ′〉 that results from making an external call.
The basic premise is: For any source–target return values vs , vt ,
return memories m ′ and tm ′, and structured injection ν′ satisfying
the listed conditions, it’s possible to inject vs and vt into states c
and d , resulting in the new states c′ and d ′ which match in µ′, m ′,
and tm ′ (〈c′,m ′〉 ∼µ′ 〈d ′, tm ′〉). The ν vthem ν′ is dual to the
vus condition used in the internal step diagram. It says that ν′ may

Reachability

reach : mem→ set block→ list block→ set block
reach m R nil , R

reach m R ((b′, z ′) :: L) ,
{b | b′ ∈ reach m R L ∧ perm m b′ z ′ = Readable
∧ ∃z .m(b′, z ′) = Vptr (b, z ) }

REACH m R , {b | ∃L. b ∈ reach m R L}
Export/Import

exporti µ B : StructuredInjection , µ with {owni :=
λb. if b ∈ B then Pub else owni µ b}, i ∈ {S ,T}

importi µ B : StructuredInjection , µ with {owni :=
λb. if b ∈ B then Frgn else owni µ b}, i ∈ {S ,T}

Leakage

leak out µ −→vs −→vt m tm : StructuredInjection ,
let LS , REACHm (blocksOf −→vS ∪ sharedS µ)

∩ ownedS µ

LT , REACH tm (blocksOf −→vT ∪ sharedT µ)
∩ ownedT µ

in exportT (exportS µ LS ) LT

leak in µ vs vt m tm : StructuredInjection ,
let LS , REACHm (blocksOf [vs ] ∪ sharedS µ)

∩ ownedS µ

LT , REACH tm (blocksOf [vT ] ∪ sharedT µ)
∩ ownedT µ

in importT (importS µ LS ) LT

Figure 10. Reachability and leakage.

map more external blocks than ν—in order to deal with allocations
performed by the environment—but otherwise is equal to ν. The
other nonbolded conditions are adapted from CompCert, and fol-
low in our Coq proofs directly from symmetric conditions on the
match-state relation and the internal step diagram.

The conditions listed in bold together compose the structured
simulation rely. The predicate unchanged on U m m ′ speci-
fies that memories m and m ′ are equal (same contents and per-
missions) at the locations in set U . In the source execution, we
use unchanged on {(b, z ) | ownS ν b = Priv} m m ′ to en-
sure that m and m ′ are equal at locations in the private blocks
of the injection ν, which is built from µ by updating leakage
information as described below. The target-execution condition
unchanged on (local out of reach ν m) tm tm ′ says that tm and
tm ′ are equal at owned target locations that either (1) do not corre-
spond to readable source locations, or (2) are mapped from private
source locations. By using unchanged on here, we stipulate the
nonmodification conditions of the rely extensionally.

The structured injection ν is built from µ—the injection that
originally related at external states 〈c,m〉 ∼µ 〈d , tm〉—using the
leak out function depicted graphically in Figure 9 and defined in
Figure 10. The idea is: leak out “leaks” to the public (other mod-
ules) blocks that are reachable by following pointer paths either
from the arguments −→vi to the external call (blocksOf −→vi ) or from
blocks that were previously shared (sharedi µ). This is a consis-
tency condition: It says that structured simulations may not assume
anything about the contents of leaked blocks (the unchanged on
conditions that form the rely satisfied by the environment apply
only to private blocks). The functions reach and REACH defined
at the top of Figure 10 calculate the transitive closure of the points-
to relation on CompCert memories. In the definition of leak out,
we use the auxiliary function export to update the ownership func-
tions of an injection µ to map blocks in the reachable set to Pub.
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The leak in function used to define µ′ at the end of the external
step diagram plays a role analogous to that of leak out, except that
here, we are leaking into µ′ new foreign blocks reachable from the
return value vi of the external call. Likewise, the import function
is almost equivalent to export , except that it updates the ownership
functions of a structured injection to map the block set B to Frgn
as opposed to Pub.

Restriction. The final consistency condition is: the simulation re-
lation ∼µ is independent of the Invis (and None) blocks. This con-
dition is used, e.g., in the proof of vertical composition (transitivity,
Theorem 1). Technically, we enforce Invis-independence by requir-
ing that ∼µ be closed under restrictions to reach-closed supersets
of the visible blocks, an operation defined in Figure 7 as µ�X (with
X a block set). µ �X denotes the structured injection obtained by
restricting the maps fus and fthem to the domain X . The closure con-
dition says that if 〈c,m〉 ∼µ 〈d , tm〉, then 〈c,m〉 ∼µ�X 〈d , tm〉
for any block set X that contains at least visµ and is closed under
pointer dereferencing and arithmetic in m .

5. Main Results: Compositionality and
Contextual Equivalence

Vertical Composition (Transitivity). One can compose compiler
phases (Figure 13). The proof that structured simulations com-
pose vertically follows the same outline as that of LSRs (Beringer
et al. 2014). As discussed in Section 4, the proof of transitivity
of the internal-step diagram is tightly dependent on our treatment
of effect annotations. Proving transitivity of the external-call clause
(lower half of Figure 8) requires the construction of an interpolating
after external memory m ′2 in the intermediate execution between
source and target.

Theorem 1 (Transitivity). Let L1, L2, and L3 be effect-annotated
interaction semantics. If L1 � L2 is a structured simulation from
L1 to L2 and L2 � L3 a structured simulation from L2 to L3, then
there exists a structured simulation L1 � L3 from L1 to L3.

Horizontal Composition (Linking). The second kind of compo-
sitionality is horizontal: We would like to know that composing
the simulation relations established by independently compiling the
modules in a program results in an overall simulation between the
(linked) multimodule source and target programs. We give the the-
orem statement first, then explain some of the subtleties, in par-
ticular, the restriction to reach-closed source semantics, which en-
forces the single-program conditions corresponding to the struc-
tured simulation guarantees of Section 4, and to valid target seman-
tics (a technical property related to the CompCert memory model,
explained below).

Theorem 2 (Linking).
• If PS = S0,S1, · · · ,SN−1 is a multimodule program with N

translation units, each of which is reach-closed, and
• PS is compiled to PT = T0, T1, · · · , TN−1 (possibly by N

different compilation functions) such that JSiK � JTiK for each
source–target pair, and each of the Ti is valid, then
• there is a simulation relationL(JPS K) ≤ L(JPT K) between the

source and target programs that result from linking the Si and
independently linking the Ti .

The≤ in the theorem denotes forward simulation on whole pro-
grams. Whole program simulations are as in Figure 8, but with-
out clauses (1-3) in the internal step diagram, without clauses for
at external and after external, and without effects. As Corollary 1
will show, establishing≤ is sufficient for proving contextual equiv-
alence of open multimodule programs. A valid semantics is one
that never stores invalid pointers into memory. Invalid pointers, in

CompCert parlance, are those that refer to memory regions that
have not yet been allocated (freed pointers are never invalid). All
CompCert x86 programs are valid in this way. Validity is required,
in the proof of Theorem 2, to maintain the invariant that the set of
valid target blocks is reach-closed.

Reach-Closed Semantics. The restriction to reach-closed seman-
tics (Figure 11) is best motivated with an example. Consider the
program:

//Module A
void g(void);
void h(int* x) {};
void f(void) {
int a=0;
if (a) {h(&a);}
g();}

void main(void){f();}

//Module B
.globl _g

_g:
pushl %ebp
movl %esp, %ebp
movl 42,(0x28ac1c)
popl %ebp
ret

in which A.f calls (assembly function) B.g, passing no arguments.
The strange bit is B.g: All it does is write the value 42 into mem-
ory at address 0x28ac1c, which just happens to be the address at
which local variable a is allocated on the stack in Windows.

Now imagine we compile module A through a compiler phase
like dead code elimination, which results in a (which was pre-
viously addressed in dead code if (a){h(&a);} and therefore
stack-allocated) being removed from memory. Since 0x28ac1c is
a’s address before dead code elimination, the unoptimized program
above does not get stuck (the write succeeds, to location &a, with-
out significant effect). After optimization, the program will fail,
probably because the write to &a now overwrites the return address
stored in g’s stack frame. (Incidentally, this program succeeds when
compiled with gcc -O0 but seg-faults under gcc -O1. This is
not a bug in gcc; instead, it is evidence that the gcc developers
agree with us that Module B is an ill-formed program context.)

One might object that if (a){h(&a);} is actually not dead
code, because it results in a being stack-allocated, which in turn
results in the safe execution of the (admittedly contrived) overall
program. But that way madness lies. The point of a compositional
compiler is to enable local modular compilation, which should de-
pend only on translation-unit-local analyses. Correctness of opti-
mizations like dead code elimination should be independent of the
larger program context in which a module is executed.

The challenge, then, is coming up with a characterization of
the source modules S0,S1, · · · ,SN−1 that does admit linking as
in Theorem 2. We do this in general, for arbitrary interaction se-
mantics, by observing that the write to 0x28ac1c is ill-formed not
because it goes wrong (though it will lead to going wrong in most
program contexts) but because it’s a write to a location that the
assembly program shouldn’t have known about in the first place.
Put another way, address 0x28ac1c was not reachable via pointer
arithmetic either from g’s initial arguments, from global variables,
or from the return values of external calls g may have made previ-
ously.6 This condition—no writes or frees to locations that are not
“visible”—is the analogue of the ES ⊆ visS µ in clause (6) of Fig-
ure 8, but stated as a single-program property, independent of any
particular structured injection µ. We formalize the notion of a se-
mantics that respects this characterization of visible locations as an
extension of interaction semantics called reach-closed semantics,
defined by the existence of an invariant R satisfying the laws in
Figure 11. From the perspective of compiler correctness proofs, the

6 It might seem strange to say “not reachable via pointer arithmetic” in
the context of an assembly program, since in most assembly models the
entire address space is “reachable”. Here we mean “not reachable” in the
instrumented semantics of x86 assembly used by CompCert, in which
memory is allocated in blocks, as in CompCert’s Clight, and interblock
pointer arithmetic is disallowed.
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Reach-Closed Invariant

R : C → mem→ set block→ Prop

Reach-Closed Initial Core
initial core ge v −→v = Some c →
∀m.R c m (blocksOf −→v )

Reach-Closed Step

roots (ge : G) (B : set block) , globalBlocks ge ∪ B

R c m B ∧ ge ` c,m
E7−→ c′,m ′ →

(1) E ⊆ REACH m (roots ge B) ∧
(2)R c′ m ′ (REACH m ′ (freshblks m m ′

∪ REACH m (roots ge B)))

Reach-Closed After External

R c m B ∧
at external c = Some (idf ,

−→v ) ∧
after external voptc = Some c′ →
let B ′ , case vopt of

| None→ B
| Some v → blocksOf (v :: nil) ∪ B

inR c′ m ′ B ′

Figure 11. Reach-closed semantics maintain an additional internal
invariantR on states c, memories m , and block sets B that satisfies
the laws above. The definitions are parameterized by types G and
C , by a global environment ge : G , and by an interaction semantics
of type Semantics G C mem that defines step relation 7−→ and
functions after external and initial core (at external and halted
are elided).

restriction to reach-closed contexts is what enables program trans-
formations: It would be unsound, for example, to remove a dead
memory allocation if the larger program context depended on it, as
in the example program above.

TheR invariant of reach-closed semantics quantifies over: Core
states of the argument semantics c : C , the memory m : mem,
and a set B that records the blocks exposed to the semantics at
interaction points (via pointers in the initial argument list, in the
return values of external function calls, and by local allocation).
We use the notation semrc, for reach-closed semantics, to denote a
semantics sem that exhibits such anR.

The roots of a block set B and global environment ge are the
union of B and the global blocks of ge . The operative conditions
of reach-closed semantics are those that characterize the reach-
closed step relation (clauses 1 and 2). In particular, clause (1),
which ensures that reach-closed semantics satisfy the structured
simulation guarantees of Section 4, instruments the step relation
of the underlying semantics with the additional condition that the
effects E produced by the step above clause (1) are a subset of the
locations reachable in m from the current roots.

Clause (2) asserts that the invariant can be reestablished after
the step for: the blocks reachable (in m ′) from newly allocated
blocks (freshblks m m ′), if any, as well as from the blocks that
were originally reachable in m (REACH m (roots ge c)). This
last condition ensures that the reachable set grows monotonically
at each step, by not “forgetting” locations that were previously
reachable.

The other interface laws modify B as specified above. For ex-
ample, the clause for after external asserts that R can be reestab-
lished for B ′ equal to B union the blocks exposed by the return
values of external calls (blocksOf (v :: nil)). initial core asserts
that the invariant can be established initially, with B equal to the

blocks exposed in the initial arguments. at external and halted (not
shown) assert that the arguments to external calls and return values,
respectively, are not undefined.

As a corollary of Theorem 2, we get the following contex-
tual equivalence result when the source modules are reach-closed,
stated in terms of a variation of Definition 1 in which contexts sat-
isfy a few additional properties.

Definition 2 (Reach-Closed Contextual Equivalence).

PS ∼rc PT ,
∀Crc. C � C ∧ det C ∧ valid C ∧ safe L(C , JPS K) →

L(C , JPS K)⇓ ⇐⇒ L(C , JPT K)⇓
Corollary 1 (Simulation Implies Contextual Equivalence). Let

• PS = S0,S1, · · · ,SN−1; and
• PT = T0,T1, · · · ,TN−1

for reach-closed source modules S0,S1, · · · ,SN−1 and valid
deterministic target modules T0,T1, · · · ,TN−1. If for each i ,
JSiK � JTiK, then PS ∼rc PT .

In the above, we assume closing contexts C (those that do not
themselves call external functions not defined by any of the mod-
ules; callbacks into PS and PT are permitted). C must also be
valid. Safety of the source linked program and determinism of
the target modules are required to prove the backward direction
of the equivalence (the forward direction holds without these as-
sumptions). The C � C condition says that C commutes with
memory injections: If C is initialized twice with injected argu-
ments, both executions either go wrong, nonterminate, or equiter-
minate with injected results. Although this condition follows di-
rectly from the form of Theorem 2, it is strongly motivated: We
should not allow contexts to distinguish source and target programs
based solely on bijective renamings of memory blocks exposed to
the context (pointer arithmetic is not allowed between blocks, only
within blocks). The consistency conditions on structured injections
and simulations that we described in Section 4 mean that in the
proof of C � C , the context may assume that all public blocks
leaked by the program are mapped from source to target (they are
never removed during compilation of the program).

Nor is the reach closure condition imposed above an unrealistic
proof obligation. One can show, for example, that all Clight pro-
grams satisfy the restrictions imposed in Figure 11.

Theorem 3 (Safe Clight Programs are Reach-Closed). There exists
an R, specialized to Clight states c and the Clight step relation,
that satisfies the laws given in Figure 11.

The proof of this (perhaps counterintuitive) theorem relies on the
fact that Clight programs never fabricate nonnull pointers, e.g., by
casting an integer to a pointer and then dereferencing it. (Even in
standard C, casting an integer to a pointer, or vice versa, is only
implementation defined, except when the pointer is null. See,
e.g., the C11 standard (C11 2011, 6.3.2.3).) �

The main difficulty in proving Theorem 2 (and Corollary 1) is in
devising a simulation invariant to relate the stacks-of-cores runtime
states of the linked programs PS and PT . The situation is presented
schematically in Figure 12. In the source linked program, we have
a stack of core states, growing downwards, with c in callee position
with respect to a (direct or indirect) caller core c0, which may be
implemented in a different language. We must relate this stack of
cores to the corresponding stack in the target linked program. We
use µ to denote the structured simulation that relates the callees c
and d , and ν to denote the injection that relates callers c0 and d0.
For simplicity, we elide the memories (for callers, the memory at
the call point is existentially quantified). A caller core may be a
callee with respect to another caller higher on the callstack.
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Figure 12. Schematic representation of the stacks-of-cores linking
invariant. The inner white boxes are core states. Source core c and
target core d are callees at the bottom of the LinkedState callstack,
related by structured injection µ (memory is elided). Cores c0 and
d0 are caller cores related by ν.

The key rely–guarantee condition is to ensure that blocks la-
beled as foreign, or leaked-in, by callee injections µ are always
labeled as public by caller injections ν:

foreignS µ ∩ ownedS ν ⊆ publicS ν (1)

From the fact that source modules are reach-closed

ES ⊆ REACH m (roots ge B) (2)

we then can show that the memory effects of the running callee core
at the top of the callstack are confined to callee-allocated (owned)
and foreign blocks. This implies that private caller memory regions
in ν, which are disjoint from the blocks marked as public by ν,
remain unmodified.

A difficulty here is how to relate the root sets of source modules
to the visible sets visS used in the simulation relations. We do this
by maintaining the following two invariants:

roots ge B ⊆ visS µ (3)
REACH m (visS µ) ⊆ visS µ (4)

Invariant (3) says that the root set of the source semantics is a sub-
set of the visible source blocks in µ. This invariant holds initially,
for incoming block set REACH m (roots ge (blocksOf −→v )), and
is maintained at external function calls and returns. Condition (4),
which we maintain as an invariant of all structured simulations,
says that the visible set is closed under reachability. These two con-
ditions, plus (2) and monotonicity of the REACH relation, imply
that ES is a subset of visS µ. This fact, together with condition (1)
above, is sufficient to prove the unchanged on relies of Figure 8 at
the point at which the running core returns to its calling context.

6. Compositional CompCert
The proved-correct phases of the Compositional CompCert com-
piler are shown in Figure 13, with optimization phases in gray.
The main differences with standard CompCert are: (1) We com-
pile Clight to x86 assembly, whereas standard CompCert compiles
a slightly higher-level language (CompCert C) to multiple assem-
bly targets (x86, PowerPC, and ARM); and (2) standard CompCert
includes three additional RTL-level optimizations (common subex-
pression elimination, constant propagation, and function inlining);7

the adaptation of their proofs is ongoing work. The toplevel theo-
rems we prove are the following.

7 Inlining, which merges function stack frames, requires a slightly more
general simulation relation than that of Figure 8 (without separated). We
have done this generalization in a way that supports inlining and all previ-
ously proved phases but have not yet completed this proof in Coq.

Theorem 4 (Compiler Correctness). Let CompCert denote the
compilation function that composes the phases in Figure 13 in
order. If CompCert(S) = Some T , for Clight module S and x86
module T , then JSK � JT K.

Proof. By transitive composition of the simulation proofs for the
individual phases in Figure 13 using Theorem 1.

Corollary 2 (Compositional Compiler Correctness). Let S0, S1,
. . . , SN−1 be a set of Clight modules such that CompCert(Si) =
Some Ti for each i . Then S0, S1, . . . , SN−1 ∼rc T0, T1, . . . ,
TN−1.

Proof. By Corollary 1, Theorem 3, Theorem 4, and determinism
and validity of CompCert x86 assembly.

The process of making the proof of a transformation phase com-
positional typically proceeded as follows: We refined CompCert’s
internal match-state notion ∼f (and the auxiliary relations for ac-
tivation records, frame stacks, etc.) to relations ∼µ indexed by
structured injections. In particular, because external function call
interactions may introduce memory regions related by memory in-
jections in Compositional CompCert, the simulation relations of
passes that were previously proved as memory equality or memory
extension phases had to be reformulated as injection phases. Par-
ticular care was needed to assign correct ownership and visibility
information to compiler-introduced memory blocks.

In addition, we had to add to each ∼µ relation the clauses: visµ
is closed under reachability, and the relation ∼µ is closed under
restriction to the visible set (µ �visµ ). To ensure that global blocks
were always mapped by each compiler phase, we treated them as
Frgn to all modules. While the addition of these extra invariants
proceeded in a mostly uniform manner across all phases, the re-
finement of ∼f to ∼µ was phase-by-phase, due to the considerable
internal differences between the various CompCert passes.

An issue that required special attention was the treatment of
compiler builtins. Here we had to sharpen the distinction be-
tween, on the one hand, processor-specific 64-bit helpers and
memcpy—these functions are typically inlined, and should never
yield at external despite being axiomatized as external calls by
mainline CompCert—and true external functions, which are never
inlineable, on the other. To sharpen this distinction, we modified the
definition of the CminorSel language to ensure that the compiler-
introduced calls to 64-bit helpers were unobservable.

All in all, porting the CompCert phases in Figure 13 to struc-
tured simulations took approximately 10 person-months. Much of
this time was spent at the “boundaries” of the proof, updating the
interfaces that connected our linking semantics and proofs to struc-
tured simulations. In general, the porting time decreased as as the
project went on. Adapting the first few phases of the compiler took
a few weeks to a month per phase, whereas the later phases went
much more quickly (a day or two per phase). This was due in part
to greater familiarity with CompCert, but also to the accumulation
of a library of general-purpose lemmas that will remain useful as
we continue to adapt the last few optimization passes.

As another measure of effort, we give lines-of-code for repre-
sentative files in the development (Figure 14). Proofs of individual
phases (“new”) were on the order of 5klocs. By contrast, CompCert
2.1’s (“old”) proofs are about 2× smaller. The increase in proof
lines is due mostly to the additional invariants we prove. However,
we have not yet applied much proof automation at all, so we be-
lieve there is room for improvement. The increase in specification
size is due to the use of duplicate language definitions: In order to
add effects to the CompCert languages we duplicate the step rela-
tion of each semantics (once with, and once without, effects), then
prove that the two semantics coincide. This results in specification
counts that are larger than necessary.
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Figure 13. The phases of Compositional CompCert. Boxes in gray are optimization passes. Outer boxes indicate source languages.

Specs. Proofs
Compiler Phases: old new old new
SimplLocals 725 1004 2168 4572
Cminorgen 1619 1695 2796 5018
RTLgen 961 1355 1475 4883
Tailcall 441 637 628 1769
Stacking 712 1679 2906 6657
Theories:
Structured Injs. (§4) 55 2051
Structured Sims. (§4) 763 7967
Transitivity (§5) 105 5274
Linking (§3, §5) 1651 8459

Figure 14. Lines of code for selected parts of the development.

7. Related Work
Compiler verification is one of the “big problems” of computer
science, as evidenced by the large body of research it has spawned
in the 45 years or so since McCarthy and Painter (McCarthy and
Painter 1967). We cannot hope to give a complete survey here (see
(Dave 2003)). Instead, we focus on the most closely related work.

Verified Whole-Program Compilers. Moore (Moore 1989) was
one of the first to mechanically verify a programming language im-
plementation (a compiler for a language called Piton). The most
well-known work in this vein since Moore is Leroy’s CompCert C
compiler in Coq (Leroy 2009), upon which Compositional Comp-
Cert is based. Chlipala has also built verified compilers in Coq—
first, from lambda calculus to idealized assembly language (Chli-
pala 2007), and then, later, for an impure functional language (Chli-
pala 2010). But both Chlipala and Leroy’s compilers were limited
to whole programs—they did not provide correctness guarantees,
as we do in this work, about the behavior of separately compiled
multimodule programs.

Compositional Compilation. Benton and Hur were two of the
first to explicitly do compositional specification of compilers and
low-level code fragments, first for a compiler from a simply typed
function language to a variant of Landin’s SECD machine (Ben-
ton and Hur 2009), then for a functional language with polymor-
phism (Benton and Hur 2010). Benton and Hur’s work was fol-
lowed by a string of papers—by Dreyer, Hur, and collaborators—
that resulted in refinements of the basic techniques (step-indexed
logical relations and biorthogonality). The refinements included
extensions to step-indexed Kripke logical relations, for dealing
with state in the context of more realistic ML-like languages (Hur
and Dreyer 2011), and more recently, to relation transition sys-
tems (RTSs) (Hur et al. 2012) and the related parametric bisimula-

tions (Hur et al. 2013). RTSs demonstrated that it was possible to do
bisimulation-style reasoning in the possible-worlds style of Kripke
logical relations and state transition systems; parametric bisimula-
tions refined RTSs by removing some technical restrictions. Both
parametric bisimulations and RTSs compose transitively, like our
structured simulations but unlike Kripke logical relations.

Although the context of their work is different, some of the tech-
niques used by Benton, Dreyer, Hur, and their collaborators draw
interesting parallels in our own work. Our “us vs. them” protocol is
at least superficially similar to the “local vs. global knowledge” dis-
tinction that’s made in RTSs. One difference is, we distinguish be-
tween local and external invariants on the state shared by modules,
whereas in RTSs the local vs. global distinction is really about dif-
ferent notions of term equivalence. Also, our “them” invariants—
which encapsulate one structured simulation’s view of the mem-
ory regions allocated by external funcions—are not quite “global”
in the same sense as Hur et al.’s global knowledge. Perhaps more
fruitfully, one can view interaction semantics—and the structured
simulations that are “indexed to” interaction semantics—as an ana-
logue of the type structure used to index standard logical rela-
tions, but here applied to imperative languages with impoverished
type systems: C, x86, and the other languages of CompCert. As
in Kripke logical relations, structured simulations use Kripke-style
possible worlds to model, e.g., memory allocation.

An alternative to language-independent interaction semantics is
multi-language semantics (Ahmed and Blume 2011), which com-
bines several languages of a compiler into a single host language
via syntactic boundary casts in the syle of Matthews and Find-
ler (Matthews and Findler 2007). This makes it possible to state
the correctness of a separate compiler as contextual equivalence in
the combined language, as Perconti and Ahmed have recently done
for a two-phase compiler from System F with existential and re-
cursive types (Perconti and Ahmed 2014). But where Perconti and
Ahmed define contexts syntactically, as one-hole terms in the com-
bined language, we define contexts semantically, as interaction se-
mantics. McKay’s variation of Perconti and Ahmed’s approach re-
places explicit boundary conversion with programmatic conversion
expressed as terms of the combined language, but considers only a
single transformation, closure conversion (McKay 2014). Recently,
Wang et al. (?) built a compositional compiler from a restricted C-
like language, Cito, to Bedrock. In contrast to our work, compiler
correctness in (?) is tied to the specifics of the Cito program logic.

Concurrency. Liang et al.’s work (Liang et al. 2012) on veri-
fying concurrent program transformations inspired our use of a
rely-guarantee discipline, but the complexity of stack frame man-
agement, spilling, and block coalescing in CompCert made it dif-
ficult to apply their ideas directly in our setting. Ley-Wild and
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Nanevski’s SCSL (Ley-Wild and Nanevski 2013), which we men-
tioned in the introduction, used subjective rely-guarantee invari-
ants on auxiliary state to verify coarse-grained concurrent pro-
grams, such as parallel increment. Later work by Nanevski et al. ex-
tended the techniques to support verification of fine-grained con-
current programs (Nanevski et al. 2014). These subjective invari-
ants made their proofs robust to the thread structure of the envi-
ronment. Our “us vs. them” invariants serve a similar purpose—to
prevent module-local structured simulations from being sensitive
to the exact composition of their environment (other modules).

Lochbihler verified a whole-program compiler for multithreaded
Java (Lochbihler 2012). Sevcı́k et al. built CompCertTSO (Sevcı́k
et al. 2013), which adapted CompCert’s correctness proofs to x86-
TSO in order to reason about compilation of racy C code. Man-
sky’s PTRANS framework (Mansky 2014) models optimizations
as rewrite operations on parallel control flow graphs, specified us-
ing temporal logic formulae. While all three of these projects are
whole-program, there are some similarities with our work. For ex-
ample, both CompCertTSO and PTRANS lift program refinements
from individual threads to whole programs, as we do for interact-
ing modules, under certain noninterference conditions on shared
state. A difference from our work is that PTRANS and Comp-
CertTSO state the noninterference conditions as whole-system in-
variants. Our horizontal composition results instead rely only on
a module-local characterization of noninterference, in the form of
reach-closed semantics. That said, it would be interesting to investi-
gate whether the compositional compilation approach we advocate
could be applied to compilation with weak memory models.

8. Conclusion
CompCert is one of the great successes of formal methods for soft-
ware verification. But as the authors of CompCert put it: “[Comp-
Cert’s]. . . formal guarantees of semantic preservation apply only to
whole programs that have been compiled as a whole by [the] Comp-
Cert C [compiler].” (Leroy 2014) We overcome this restriction.
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