To appear in NSV'22: 15th International Workshop on
Numerical Software Verification, August 2022

Verified Numerical Methods for Ordinary
Differential Equations

Ariel E. Kellison! and Andrew W. Appel?

1 Cornell University, Ithaca NY, USA
ak2485Q@cornell.edu
2 Princeton University, Princeton NJ, USA
appel@princeton.edu

Abstract. Ordinary differential equations (ODEs) are used to model
the evolution of the state of a system over time. They are ubiquitous in
the physical sciences and are often used in computational models with
safety-critical applications. For critical computations, numerical solvers
for ODEs that provide useful guarantees of their accuracy and correct-
ness are required, but do not always exist in practice. In this work, we
demonstrate how to use the Coq proof assistant to verify that a C pro-
gram correctly and accurately finds the solution to an ODE initial value
problem (IVP). Our verification framework is modular, and concisely dis-
entangles the high-level mathematical properties expected of the system
being modeled from the low-level behavior of a particular C program.
Our approach relies on the construction of two simple functional mod-
els in Coq: a floating-point valued functional model for analyzing the
intermediate-level behavior of the program, and a real-valued functional
model for analyzing the high-level mathematical properties of the system
being modeled by the IVP. Our final result is a proof that the floating-
point solution returned by the C program is an accurate solution to the
IVP, with a good quantitative bound. Our framework assumes only the
operational semantics of C and of IEEE-754 floating point arithmetic.

1 Introduction

Computing accurate solutions to differential equations is a main topic in the
field of numerical analysis. A typical problem in ordinary differential equations
requires computing the numerical solution to autonomous initial value problems
(IVPs) of the form e

&= 1), alto) =0 1)
at some time ¢ € [tg, T to within a user-specified error tolerance. In this paper,
our objective is to demonstrate a logical framework for verifying the accuracy
and correctness of numerical programs that compute the solution to problems
of the form . This framework is most suitable for critical applications that
require guarantees of numerical accuracy (i.e., the numerical solution does not
exceed the user-specified error tolerance) and program correctness (i.e., the par-
ticular implementation is bug-free and meets its specification). Our main result

is a machine-checked theorem stating that a specific imperative implementation
of a numerical method for the solution to an IVP produces a solution within
a guaranteed error bound of the true solution, where the error bound accounts
for two sources of error: discretization error and round-off error. We obtain this
machine-checked theorem using a modular, layered approach to program ver-
ification that allows us to treat program correctness and each source of error
separately within one logical framework, namely, the Coq proof assistant. For
the results presented in this work, we have chosen the simple harmonic oscillator
as an elementary but sufficiently illustrative example of an initial value prob-
1enﬂ for the numerical solution to this IVP, we consider a C implementation of
the Stormer-Verlet (“leapfrog”) method [1].

In contrast to walidated numerical methods [2H4] and their implementa-
tions [5H7] which have a long history of deriving guaranteed error bounds for
IVPs for ODEs, our framework for wverified numerical methods for IVPs for
ODEs has three distinct advantages for critical applications:

1. No additional computational overhead is introduced at run time.

2. Each source of error (e.g, discretization error, round-off error, data error,
and bugs in the implementation) is treated separately in a modular way.
This enables users to easily identify or emphasize areas of concern in their
numerical method or program.

3. Guaranteed error bounds are directly connected to low-level properties of an
implementation (in C or below). This connection provides assurance beyond
the scope of validated methods.

To obtain a correctness-and-accuracy theorem that connects guaranteed er-
ror bounds to the low-level correctness of a C implementation of the leapfrog
method, we layer the verification using several tools and libraries that are fully
integrated into the Coq proof assistant. In particular, we prove that the C pro-
gram refines a functional model using VST [8], and (separately) prove that the
functional model has the desired properties using the Coquelicot formalization
of real analysis 9], the Coq Interval [10] package, and VCFloat [L1}[12].

Our Coq development is available at |github.com/VeriNum/VerifiedLeapfrog,

2 Main Result

Our main objective is to verify that a C implementation of leapfrog integration
(given in Figure [1)) is correct, and that it accurately solves the system of ordi-
nary differential equations for the simple harmonic oscillator in R? to within an
accuracy acc at time 7. In particular, we consider the system of equations

dp 2 dg
- —w = 2

= 4 =D (2)
3 This particular model problem admits an analytical solution and is therefore not

expected to be of practical interest on its own. Instead, it is chosen for demonstrating
and analyzing the performance of our logical framework.

github.com/VeriNum/VerifiedLeapfrog

where w, p, and ¢ are, respectively, the frequency, momentum, and position of

the oscillator. To indicate that two functions p : R — R and ¢ : R — R with
initial conditions p(tg) = po and ¢(tg) = go constitute the continuous system

we use the predicate E| Harmonic_oscillator_system w p q,

Definition Harmonic_oscillator_system (w : R) (p ¢ : R — R) : Prop :=

smooth_fun p A smooth_fun ¢ AV ¢t: R, (Derive_n g1t =pt A Derive_np1lt=F(qt) w)).

where the predicate (smooth_fun f) indicates that f is continuously differentiable
and (Derive_n f n x) is the Coquelicot abstraction for the nth derivative of f at
x; the function F(q(¢),w) is the restoring force acting on the system:

Definition F (x w: R) : R := —w? - x.

An integer-step leapfrog discretization of the continuous system on a time

interval [0, 7] uniformly partitioned by a fixed time step h with unit frequency
w = 1 updates the position ¢ and momentum p of the oscillator as

2
Gnt1 = dn + hPn = -dn (3)
h
Prt1 = Pn = 5 (00 + dnt)- (4)
struct state {float p, q;l};
float force(float q) { return -q; }
void integrate(struct state *s) {
int n, N=1000; float t, h = 1.0f / 32.0f;
s->q = 1.0f; s->p = 0.0f; t = 0.0f;

for (n = 0; n < N; n++) {
float a = force(s->q);
s->q = s->q + h * s->p + (0.5f * (h * h)) * a;
s=>p = s=>p + (0.5f * h) * (a + force(s->q));
t =1t + h;
L.

Fig. 1. Leapfrog integration of the harmonic oscillator implemented in C with time

step h = 3%, frequency w = 1, initial conditions (po, o) = (0, 1).

If we define the global error at the nth time step ¢,, = nh < T of leapfrog inte-
gration as the residual between the ideal solution (p(¢,,), ¢(t,)) and the numerical
solution (pp,@n), i-e., En = |(p(tn),q(tn)) — (Pn, ¢n)|, then the C implementa-
tion of equations (3|- [)) is accurate if it has global error E,, < acc.

We prove the accuracy and correctness of the C implementation by composing
several proofs: that the C program correctly implements a floating-point func-
tional model; that in each iteration the floating-point functional model accurately

* The form Definition name (arguments) : type := term in Coq binds name to the
value of the term of type type; Prop is the type of well-formed propositions.

[correctness & accuracy

global error

[global round-off error]

i

[local round-off error]

[global discretization error] /
/ ~_ : :

implementation

- — error propagation
[local discretization error] Giotbe s) /eo‘rrect
ODE spec R functional model | | F functional model C
(Harmonic__oscillator__system) (leapfrog_ stepR) (leapfrog_ stepF) program

Fig. 2. Theorem dependency.

approximates a real-valued functional model; that in each iteration the real-
valued model accurately approximates the continuous ODE; that per-iteration
errors are uniformly bounded by a propagation factor; and that the global prop-
agation of per-iteration errors is bounded above by the desired accuracy. The
main theorem then proves, from the composition of all of these theorems, and
assuming only the operational semantics of C and of IEEE-754 floating point
arithmetic, that the floating-point solution returned by the C program shown in
Figure [1] is an accurate solution to the ODE, with a good quantitative bound.

We encapsulate the expected floating-point behavior of the C function integrate
of Figure [1fon input (p, q) = ic € F? using the a floating-point valued functional
model (leapfrog_stepF h ic), given in Figure [3] We reason about the behavior
of leapfrog integration in exact arithmetic by defining a real-valued functional
model (leapfrog_stepR h ic). Iterations of leapfrog_stepF and leapfrog_stepR are
defined as iternF and iternR . Henceforth we assume w = 1 and we omit it.

We use the predicate (accurate_harmonic_oscillator acc x n) to indicate that
the single-precision floating-point valued momentum-position pair x differs by
at most acc from the true position and momentum (at time 7' = Nh) of the
ideal system defined by equation [2] Then, with x being the result computed by
the C program, the C program specification is stated as integrate_spec:

Definition integrate_spec :=
DECLARE _integrate

WITH s: val
PRE [tptr t_state | PROP() PARAMS(s) SEP(data_at_ Tsh t_state s)
POST [tvoid] EX (z: F x F), PROP(accurate_harmonic_oscillator acc N)

RETURN() SEP(data_at Tsh t_state z s).

Definition F (x : F) : F :=—z.
Definition leapfrog_stepR Definition leapfrog_stepF
(h:R) (ic: R?) : R? := (h: F) (ic: F?) : F? :=
let p:=fst ic in let g :=sndic in let p:=fst ic in let g :=sndic in
let ¢ : (1——)q+hp|n let (11 (q+hp) (5 (h-h))-F(g) in
let 3 = (1= 12)p— B2 B).qin '€ P =2t h) (Fl)+F()) in
(v @) (o @)
Fixpoint iternR Fixpoint iterr;F ,
(h: R) (ic : R?*) (n: N): R? := (h: F) (ic: F?) (n: N) : F? :=
match n with match n with
| 0 = ic | 0 = ic
| Sn' = | Sn' =
iternR 1 (leapfrog_stepR h ic) n/ iternF h (leapfrog_stepF h ic) n’
end. end.

Fig. 3. The floating-point and real valued functional models for leapfrog integration of
the harmonic oscillator.

The precondition and postcondition are assertions about any C value s that is
the address of a struct state. In particular,

PRE: The precondition asserts that the function parameter (of type pointer-to-
struct-state) does indeed contain the value s and that the “data at” that
location is uninitialized (or is initialized but we don’t care).

POST: The postcondition asserts that a pair x of single-precision floating-point
values that are an accurate solution to the ODE are stored at address s.

If the C function satisfies this specification, then it correctly implements an ac-
curate numerical integration of the ODE, which is our desired main result. We
denote the C function’s abstract-syntax tree as f_integrate and prove the main
theorem body_integrate, which guarantees that f_integrate satisfies the specifica-
tion integrate_spec:

Theorem body_integrate : semax_body Vprog Gprog f_integrate integrate_spec.

In the remainder of the paper, we present the modular proofs of accuracy
and correctness that are composed to derive this main result.

3 Verified Error Bounds

For a given accuracy acc, time step h, initial condition (pg, go), and final time
T = Nh, our goal is to prove that the solution (pn,dn) obtained by the C
implementation of equations - given in Figure has global error En

bounded above by acc:

Ex = [(p(tn), q(tn)) — (PN, qn)| < ace. (5)

We derive a verified upper bound for Ex by considering separately the global
discretization error and global round-off error. If we denote the numerical so-
lution in ideal arithmetic at time ¢y as (Pn,Gn), then an upper bound on the
global error is

Ex = [(p(tn), q(tn)) = (D 4n)] (6)
< |(p(tn), q(tn)) = By, qn) | + (PN, Gv) — (D, 4n)| = Dy + Ry
global discretization error global round-off error

We obtain bounds on the global discretization error Dy and global round-off
error Ry by first estimating the maximum possible local error from each source
and then estimating the propagation of local errors as the iterations advance.

The local error associated with a numerical method is the residual between
the ideal solution and the numerical solution after a single time step of size h
starting from the same initial point [13]. To estimate the local discretization error
T4 at time ¢, = nh we therefore analyze the residual |(p(tn),q(tn)) — (B, Gn)|
where p and ¢ satisfy (Harmonic_oscillator_system w p ¢) and (P, ¢n) is defined
as (leapfrog_stepR h (p(tn—1),q(tn—1))). Similarly, we estimate the local round-
off error 7, by analyzing the residual |(pn, dn) — (Pn, Gn)| where (P, Gn) is de-
fined as (leapfrog_stepR h (Pp—1,Gn—1)) and (Pn, §,) is defined as the injection of
(leapfrog_stepF h (Prn—1,dn—1)) into the reals.

Deriving bounds on the global errors Ry and Dy requires that we are able
to invoke our local error theorems at any iteration 0 < n < N. We therefore
conservatively estimate the local errors 74 and 7 such that

mae |(p(t), () = (P 82)] < 7, and (7)
max H(ﬁn’ q’ﬂ) - (ﬁna (jn>|| S Tr. (8)
n€[N]

We derive such a 7q and 7, using the fact that the momentum p and posi-
tion ¢ of both the ideal solution specified by Harmonic_oscillator_system and the
numerical solution specified by leapfrog_stepR do not grow too large on the fi-
nite time interval ty < ¢,, < T. In particular, observe that one can prove from
the specification Harmonic_oscillator_system (even without solving the ODE) that
[(p(t),q()| = |(po,qo)| for all ¢. Unfortunately, this property does not hold
exactly for leapfrog_stepR but we prove bounds on the growth of ||leapfrog_stepR
h p q | for all p and ¢—see Section Finally, while the exact conservation of
[(p(t),q(t))| in our model problem is useful for deriving tight bounds on local
errors, it is not a requirement of our analysis. The error analysis presented here
applies to IVPs of the form as long as the local errors can be uniformly
bounded on the finite time interval of concern, which is guranteed provided that
f(z) is Lipschitz continuous in = [14].

3.1 Local Discretization Error

Local discretization error is estimated as the residual difference between the
exact solution characterized by Harmonic_oscillator_system and the numerical so-
lution computed in exact arithmetic by (leapfrog_stepR) starting from the point
(p(tn),q(tn)) € R? after a single time step of size h. We prove that the local
discretization error is bounded, for all ¢, by 74 = k% | (p(to), a(to))]-

Theorem local__discretization__error :
Vipg:R—=>R)(totn h:R),0<h<4—
let w:= 1in Harmonic_oscillator_system w p ¢ —
let (pn,qn) := leapfrog_stepR h (p(tn),q(tn)) in
[(p(tn + R), q(tn + h)) = (pn, @) < B*[(p(t0), q(t0))].

Proof. We expand the ideal solution of the harmonic oscillator (p(t,, + h), ¢(t, + h))
as Taylor expansions around ¢, using the Taylor_Lagrange theorem from the
Coquelicot library [9] and use the derivative relations for p and ¢ from
Harmonic_oscillator_system to derive the differences

|p(tn + h) _pn| = h3]% - q(lt;) ’ (93‘)
3
alt+ 1)~ gl = 2 Ip(m) (90)

for some t, < n1,m2 < t, + h. Recall that |(p(t),q(t))] = |(p(t0),q(t0))] is a
property of our model problem. Provided that 0 < h < 4, it then follows that

[(p(tn), a(tn)) = (Pny @n)| < 7a = 1° | (po, q0)] - (10)

We will see in the next section that the restriction h < 4 is not overly restrictive.

3.2 Propagation of Errors

To bound the propagation of local errors over n iterations, we use the 2-norm of
the transition matrix of leapfrog updates to position and momentum [15417]. In
particular, if we represent the leapfrog method for the evolution of the harmonic
oscillator as the transition matrix M(h) : (pn, ¢n) = (Pnt1; 1)

M(h) = with ¢ = - (11)
ho 14¢ 2

then the evolution over n steps is denoted as applications of powers of the tran-
sition matrix M (h) to the initial conditions py and ¢o:

(2) = (7). (12)

An upper bound for the global error e, (where e, could be either R,, or D,,)
at step n can be decomposed into two parts: the local error at step n and the
propagation of accumulated errors from previous steps.

en = [(p(tn); 4(tn)) = (Pns @n)| = |(p(tn), q(tn)) = M(A)(Pn—1,qn-1)| ~ (13)
< [((tn), q(tn)) = M(h)(p(tn-1), q(tn-1))| +
local error at step n
‘|M(h)(p(tn—l)7 Q(tn—l)) - M(h’)(pn—la qn—l)”
propagation of prior local errors
<7+ MBI (p(tn-1), a(tn-1)) = (Pn—1, an-1)] -

We can therefore estimate an upper bound for e,, from an appropriate estimate
for the local error at step n and a reasonable approximation of | M (h)].

To use equation in our verified error analysis, we define M (h) using the
Coquelicot matrix library. We then derive a tight bound on |M(h)|, using the
predicate two_norm_pred to indicate that the real number o is the 2-norm of the
n X n matrix A:

Definition two_norm_pred (n: N) (A : matrix C n n) (o: R) : Prop :=
V (u : vector C n), |Au| < ou| A (=3 (s : R), V (z : vector C n), |Az| < s|z| < o |z|).

We prove (but do not present here) that this predicate is satisfied for any matrix
A € R?*2 by the maximum singular value of A. |M(h)| is therefore defined as
the positive real number o(h) in (two_norm_pred 2 (M (h)) (c(k))) such that o(h)
is the square root of the maximum eigenvalue of the matrix B = M (h)T M (h):
Definition o (h: R): R :=

let a:=+vh%+64 in

let A:= (h'°+ h7a+ 4h°® 4 64h* + 4h%a + 32ha + 256)(h* — 2)? in

VA/(2(h* — 4h2 + 4)((=h® + 8h + a)2 + 16(h2 — 2)2))

Leapfrog integration of the harmonic oscillator with unit frequency is stable for
time-steps 0 < h < /2 [18]; since our time step is fixed by h = 3% in our C
program, we derive a verified bound on the solution vector (py,¢,) at step n for
any initial (pg, qo) by proving the following theorem, which follows by induction
on the iteration number and unfolding of the definition of the predicate for the

2-norm.

Theorem matrix_bound : V (po go: R) (n : N), [(M(h))"(po,q0)| < (a(h)" |(po,q0)]-

A bound on leapfrog_stepR follows as a corollary. In particular, for h = =

35
we have o(h) < 1.000003814704543, and therefore

Corollary method_norm_bound :
Vpq R, |(leapfrog_stepR(p,q)h)| < 1.000003814704543 |(p, q)|-

Given that the C program (Figure [1)) runs for N = 1000 iterations with the
initial condition (p(to),q(to)) = (0,1), method_norm_bound guarantees that each
component of the numerical solution (position and momentum) will be bounded
by 1.00383 in absolute value; we use these bounds on the solution vector when
deriving an upper bound on the local round-off error.

3.3 Global Discretization Error

Analyzing the recurrence in the term for the propagation of prior local errors in
equation over several iterations leads to the following estimate of an upper
bound for the global discretization error.

Dy = |(p(tn), q(tn)) — (iternR h (p(to), a(to)) n)| <k |(p(to), a(to))] 2_: a(h)*.
k=0

We prove that this estimate holds by invoking our local error theorem and per-
forming induction on the iteration step in the following theorem.

Theorem global_discretization_error :
V(pg:R—=R)(to:R), letw:=1in
Harmonic_oscillator_system w p ¢ —
Vn:N, lett,:=ty+nhin

[(p(tn), q(tn)) = (itemR A (p(to), q(to)) n)| < 1* [(p(to), q(to))l :éa(h)k-

Given that the C program (Figure [I]) runs for N = 1000 iterations with time

step h = g5 and initial condition (p(to),q(to)) = (0,1), the contribution from
discretization error to the global error at ¢ = Nh is guaranteed to be at most

3.06-1072.

3.4 Local Round-off Error

Local round-off error is the residual difference between the numerical solution
computed in exact arithmetic and the numerical solution computed in single-
precision floating-point arithmetic after a single time step of size h = 3—12 on the
same input. We derive a bound on the maximum possible local round-off error
for leapfrog integration of the harmonic oscillator using VCFloat [11,/12] and the
Coq interval package [10]:

Theorem local_roundoff_error:
V x : state, boundsmap_denote leapfrog_bmap (leapfrog_vmap z) —
|[FT2R_prod(leapfrog_stepF h z) — leapfrog_stepR h (FT2R_prod z)| < 7,
where 7, = 1.399 - 107",

The proof of local_roundoff_error is mostly automatic. We will not show the
details here; see Ramanandro et al. [12] and Appel and Kellison [11]. The function
FT2R_prod : F x F — R x R in local_roundoff_error injects floating-point pairs to
real number pairs. The boundsmap_denote hypothesis enforces bounds on the
components of the state vector x = (p, ¢) € F2. In particular, we have constructed
leapfrog_bmap to specify that —1.0041 < p, ¢ < 1.0041.

Tighter bounds on p and g will result in a tighter round-off error bound.
Initially, |(po,qo)] = 1, so =1 < pp,qo < 1. But as errors (from discretization
and round-off) accumulate, the bounds on p, ¢ must loosen.

In principle the leapfrog_bmap could be a function of n; the nth-iteration
bounds on p, g could be used to calculate the nth-iteration round-off error. As

discussed at the beginning of Section [3] we prove a local round-off error bound 7
just once, in part because the VCFloat library requires the bounds to be constant
values. So 7 is basically the worst-case bound on p, g after the last iteration.

The looser the bounds, the worse the round-off error, therefore the looser the
bounds. Fortunately the round-off error is only weakly dependent on the bounds
on p and ¢, so we can cut this Gordian knot by choosing 7, small enough to
prove an adequately tight bound in local_roundoff_error and large enough to be
proved from global_roundoff_error.

We derive the hypothesis —1.0041 < p,q < 1.0041 as follows. If there were
no round-off error, then (according to theorem method_norm_bound), |(p, q)| in-
creases by (at most) a factor of 1.0000039 in each iteration, so over 1000 iterations
that is (at most) 1.00383. The machine epsilon for single-precision floating point
is € = 1.19 - 10~ 7. Assuming this error in (each component of) the calculation
of |(p,q)|, then the norm of the floating-point solution for N iterations can be

bounded as:
N-1

|(leapfrog_ stepF x)| < |(leapfrog_ stepR x| + € o(h)*
k=0

N—-1
<o(h)N+e> o(h)" <1.0041 (14)
k=0

Finally, note that the appropriate application of the function FT2R_prod
has been elided in equation for succinctness—e.g., |leapfrog stepR(x)]
should appear as |[FT2R_ prod(leapfrog_stepR(x))|—we will continue to omit
this function in the remainder of the paper.

3.5 Global Round-Off Error

We estimate an upper bound for the global round-off error Ry by replicating
the analysis for the global discretization error Dy given in Section [3:3]

Theorem global_roundoff_error :
boundsmap_denote leapfrog_bmap (leapfrog_vmap (po, qo)) —
V(n:N),n<N—
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (po, qo) n))

n—1

A| (iternR h (po, o) n) — (iternF h (po,qo) n) | < 7 > o(h)*.
k=0

Theorem global_roundoff_error provides a verified bound for global round-off er-
ror. It states that if the bounds required by the boundsmap_denote predicate (see
Section hold, then the solution (iternF h (po,qo) n) obtained by single pre-
cision leapfrog integration over N iterations satisfies the bounds required by
boundsmap_denote, and that the global round-off error for N iterations is upper
bounded by the product of the maximum local round-off error and the sum of
powers of the global error propagation factor (see Section .

The upper bound on | (iternR h (po,qo) n) — (iternF h (po, qo) n) | follows by
induction: if we define the floating-point solution after n steps of integration as

10

(P, q) = (iternF h (po,qo) n) then
liternR A (po, qo) (n+ 1) —iternF h (po, qo) (n +1)]
= |iternR & (po, qo) (n + 1) — leapfrog_stepF (p, §)|
< |iternR A (po,qo) (n + 1) — leapfrog_stepR (p,)| +

propagation of prior local errors

|(leapfrog_stepR (p,§) — leapfrog_stepF (p,q)]|

local round-off error at step (n + 1)

n
<7 Z o(h)*.
k=0
(15)
From equation @ it is clear that we must invoke local_roundoff_error in
the proof of global_roundoff_error. To do so, we must show that (p,q) satisfy
the boundsmap_denote predicate. To this end, we prove lemma itern_implies_bmd,

which guarantees that the estimate in equation is sufficient.
Lemma itern_implies_bmd:
VipgF)(nN),n+1<N—
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (p,q) n)) —
I (iternR h (p,q) (n+1)) — (iternF h (p,q) (n+1)) | < 7 32 o(h)* —
k=0

| (iternR £ (p,q) (n+1))] < o(h)™ —
boundsmap_denote leapfrog_bmap (leapfrog_vmap (iternF h (p,q) (n+1))).

From global_roundoff_error we conclude that the contribution from round-off
error to the global error at t = Nh is guaranteed to be at most 1.4 - 1074,

3.6 Total Global Error

Using global_roundoff_error and global_discretization_error from Sections [3.1] and
[3:4] we derive a verifed concrete upper bound for the total global error for single
precision leapfrog integration of the harmonic oscillator over N time steps as

En < |(p(tn),q(tn)) — (B, an)| + | (Bns dn) — (B, aw)|
global discretization error global round-off error
N-1
< (ra+m) Y o(h)* <0.0308. (16)
k=0

This bound is guaranteed by the following theorem, which uses the closed
form expression for the geometric series in equation
Theorem total__error:

V(pt g: R->R) (n:N),n <N —

let to:=0inlett, :=to+nhinp(to)=po — qto) =q —

let w := 1 in Harmonic_oscillator_system w p; q: —

I(pt(tn), i (tn)) — (iternF h (po, o) n)| < (7a +7)(o(h)" —1)/(o(h) — 1) .

11

In the following sections, we describe how the bound provided by total_error
is composed with the refinement proof that C program implements the floating-
point functional model to prove our main result.

4 Program Verification

The Verified Software Toolchain [19] is a program logic for C, with a soundness
proof in Coq with respect to the formal operational semantics of C, and with
proof automation tools in Coq for interactive verification.

When verifying programs in VST (or in other program logics), it is common
to layer the verification: prove that the C program refines a functional model,
and (separately) prove that the functional model has the desired properties.
In this case, the functional model is our floating-point model defined by the
functions leapfrog_stepF and iternF .

We showed a high-level specification for the integrate function of the C pro-
gram (Figure in Section namely, that it accurately solves the ODE. Here we
start with the low-level spec that the C program implements the floating-point
functional model:

Definition integrate_spec_lowlevel :=
DECLARE _integrate
WITH s: val
PRE [tptr t_state]
PROP(iternF_is_finite) PARAMS (s) SEP(data_at_ Tsh t_state s)
POST [tvoid |
PROP() RETURN()
SEP(data_at Tsh t_state (floats_to_vals (iternF h (p_init,q_init) N)) s).

This claims that when the function returns, the float values iternF A (pinit, init) N
will be stored at location s—provided that (in the precondition) struct-fields
s->p and s->q are accessible, and assuming iterF_is_finite .

The functional model is deliberately designed so that its floating-point opera-
tions adhere closely to the operations performed by the C program. So the proof
is almost fully automatic, except that the VST user must provide a loop invari-
ant. In this case the loop invariant looks much like the function postcondition,
except with the iteration variable n instead of the final value N.

The proofs of these functions are fairly C C Proof Proof
short; see Table [1] If the program had used

Program Lines Lines Chars
nontrivial data structures or shared-memory

force 3 2 25
threads, the functional model might be the Ifstep 6 15 281
same but the C program would be more com- integrate 12 30 953

plex. The relation between the program and

the model would be more intricate. VST can Table 1. VST proof effort, count-

handle such intricacy with more user effort. ing nonblank, noncomment lines of
We designed the functional model so that C or Coq. Proofs count text be-

one can prove correctness of the C program tween (not including) Proof and

without knowing (almost) anything about Qed

12

the properties of floating-point, and (completely) without knowing about the
existence of the real numbers. One is simply proving that the C program does
these float-ops, in this tree-order, without needing to know why.

5 Composing the main theorems

We prove subsume_integrate: that integrate_spec_lowlevel implies the high-level
integrate_spec. We use the theorem yes_iternF_is_finite to discharge the pre-
condition iternF_js_finite of the low-level spec, and use the total_error the-
orem to show that the iternF postcondition of the low-level spec implies the
accurate__harmonic_oscillator postcondition of the high-level spec.

Lemma subsume__integrate:
funspec_sub (snd integrate_spec_lowlevel) (snd integrate_spec).

The proof is only a few lines long (since all the hard work is done elsewhere).
Then, using VST’s subsumption principle [20] we can prove the body_integrate
theorem stated in Section 2

6 Soundness

Underlying our main result are several soundness theorems: soundness of VST
[19] with respect to the formal operational semantics of C and the Flocq [10]
model of IEEE-754 floating point; soundness of the Interval package and the
VCFloat package with respect to models of floating point and the real numbers;
proofs of Coquelicot’s standard theorems of real analysis.

To test this, we used Coq’s Print Assumptions command to list the axioms
on which our proof depends. We use 6 standard axioms of classical logic (excluded
middle, dependent functional extensionality, propositional extensionality) and 74
axioms about primitive floats and primitive 63-bit integers.

Regarding those 74: One could compute in Coq on the binary model of
floating-point numbers, with no axioms at all. Our proofs use such reasoning.
However, the standard installation of the Interval package allows a configura-
tion that uses the Coq kernel’s support for native 64-bit floating-point and 63-bit
modular integers—so they appear in our list of trusted axioms whether we use
them or not. The algorithms within Interval and VCFloat (written as functional
programs in Coq’s Gallina language) would run much faster with machine floats
and machine integers. But then we would have to trust that Coq’s kernel uses
them correctly, as claimed by those 74 axioms.

7 Related Work

A significant difference between the logical verification framework presented in
this paper and the majority of existing methods for estimating the error in
numerical solvers for differential equations is that our verification framework

13

connects guaranteed error bounds to low-level properties of the solver imple-
mentation. An exception is the work by Boldo et al. [21], which verifies a C
program implementing a second-order finite difference scheme for solving the
one-dimensional acoustic wave equation. Although their model problem is a
PDE, the framework could be generalized to IVPs for ODEs. The authors derive
a total error theorem that composes global round-off and discretization error
bounds, and connect this theorem to a proof of correctness of their C program.
The authors use a combination of tools to perform their verification, including
Coq, Gappa, Frama-C, Why, and various SMT solvers. Unlike VST, Frama-C
has no soundness or correctness proof with respect to any formal semantics of C.
Furthermore, VST is embedded in Coq and therefore enjoys the expressiveness
of Coq’s high-order logic; Frama-C lacks this expressivity, and this point was
noted by the authors as a challenge in the verification effort.

The leapfrog method used as a solver for the two-dimensional model IVP
in this paper is a simple example of one of many different families of solvers
for IVPs for ODEs. Another class of methods that have been studied using
logical frameworks and their related tools are Runge-Kutta methods. Boldo et
al. [22] analyze the round-off errors (but not discretization error) of Runge-
Kutta methods applied to linear one-dimensional IVPs using Gappa [23}24], a
tool for bounding round-off error in numerical programs that produces proof
terms which can be verified in Coq. The authors use Gappa to derive tight
local error bounds, similar to our use of VCFloat as described in Section [3.4]
but perform their global round-off error analysis outside of a mechanized proof
framework. Immler and Holzl [25] formalize IVPs for ODEs in Isabelle/HOL
and prove the existence of unique solutions. They perform an error analysis on
the simplest one-dimensional Runge-Kutta method and treat discretization error
and round-off error uniformly as perturbations of the same order of magnitude.

Finally, as previously mentioned, validated numerical methods for ODEs have
a long history of using interval arithmetic to derive guaranteed estimates for
global truncation and round-off error [2,|4[2629]; this can be computationally
inefficient for practical use. However, even unvalidated methods for estimating
global error are inefficient. A common approach entails computing the solution a
second time using a smaller time step, and using this second computation as an
approximation of the exact solution [30]. An alternative approach implements
a posteriori global error estimates in existing ODE solvers [31,132] to control
errors by dynamically adjusting the time-step. Unlike the error bounds derived in
validated methods, the global error estimates have no guarantees of correctness.

8 Conclusion and future work

We have presented a framework for developing end-to-end proofs verifying the
accuracy and correctness of imperative implementations of ODE solvers for IVPs,
and have demonstrated the utility of this framework on leapfrog integration of
the simple harmonic oscillator. Our framework leverages several libraries and
tools embedded in the Coq proof assistant to modularize the verification process.

14

The end-to-end result is a proof that the floating-point solution returned by a C
implementation of leapfrog integration of the harmonic oscillator is an accurate
solution to the IVP. This proof is composed of two main theorems that clearly
disentagle program correctness from numerical accuracy.

Our main theorem regarding the numerical accuracy of the program treats
round-off error, discretization error, and global error propagation distinctly, and
makes clear how discretization error can be used to derive tight bounds on round-
off error. By treating each source of error in this modular way, our framework
could be extended to include additional sources of error of concern in the solution
to IVPs for ODEs, such as error in the data and uncertainty in the model; we
leave this extension to future work.

In its current state, our framework would require substantial user effort in
order to be re-used on a different IVP or ODE solver. This obstacle could be
overcome by developing proof automation for each component of the error anal-
ysis presented in Section [3] In particular, the derivation of local discretization
error presented in Section [3.1]is standard: given user-supplied input for the order
at which to truncate the Taylor series expansion, the specification for the con-
tinuous system could be used to derive a maximum local error bound supposing
that the autonomous IVP is Lipschitz continuous in x as discussed in Section
This assumption on the IVP is enough to guarantee existence and uniqueness of
a solution [13}/14]; we leave the Coq formalization of existence and uniqueness
theorems (using Coquelicot) to future work. One could mostly automate the er-
ror propagation analysis in Section if the user supplied (or if an unverified
tool calculated) a transition matrix M (h) for the ODE solver and a guess C' for
an upper bound on a suitable norm of M (h), one would only need to discharge a
proof that |M ()| < C. Finally, while the proof of a local round-off error bound
is already mostly automatic using VCFloat, employing the global discretization
error bound in the proof of local round-off error is currently done by the user;
this process could be completed in an automatic way.

Acknowledgments

This work benefited substantially from discussions with David Bindel. We thank
Michael Soegtrop for his close reading and helpful feedback. Ariel Kellison is
supported by the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Department of Energy Computational
Science Graduate Fellowship under Award Number DE-SC0021110.

References

1. Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical in-
tegration illustrated by the stormer—verlet method. Acta Numerica, 12:399-450,
2003.

2. N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computa-
tion, 105(1):21-68, 1999.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Youdong Lin and Mark A. Stadtherr. Validated solutions of initial value problems
for parametric ODEs. Applied Numerical Mathematics, 57(10):1145-1162, 2007.

. Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated explicit and

implicit Runge-Kutta methods. Reliable Computing electronic edition, 22, July
2016.

Andreas Rauh and Ekaterina Auer. Verified simulation of ODEs and their solution.
Reliable Computing, 15(4):370-381, 2011.

Nedialko S. Nedialkov and Kenneth R. Jackson. ODE software that computes
guaranteed bounds on the solution. In Hans Petter Langtangen, Are Magnus
Bruaset, and Ewald Quak, editors, Advances in Software Tools for Scientific Com-
puting, pages 197-224, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

N.S. Nedialkov. Interval tools for ODEs and DAEs. In 12th GAMM - IMACS Inter-
national Symposium on Scientific Computing, Computer Arithmetic and Validated
Numerics (SCAN 2006), pages 4—4, 2006.

Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor,
ESOP’11: European Symposium on Programming, volume 6602 of LNCS, pages
1-17. Springer, 2011.

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-
friendly library of real analysis for Coq. Mathematics in Computer Science, 9(1):41—
62, March 2015.

Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs:
Verifying Floating-point Algorithms with the Coq System. Elsevier, 2017.

Andrew W. Appel and Ariel E. Kellison. VCFloat2: Floating-point error analysis
in Coq. Draft, 2022.

Tahina Ramananandro, Paul Mountcastle, Benoit Meister, and Richard Lethin.
A unified Coq framework for verifying C programs with floating-point computa-
tions. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, CPP 2016, page 15-26, New York, NY, USA, 2016. Association for
Computing Machinery.

Ernst Hairer, Syvert P. Norsett, and Gerhard Wanner. Solving Ordinary Differen-
tial Equations 1. Nonstiff Problems. Springer, Berlin, 2nd rev. ed. 1993. corr. 3rd
printing edition, 1993.

Randall J LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations. Society for Industrial and Applied Mathematics, January 2007.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical In-
tegration, volume 31 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 2006. Structure-preserving algorithms for ordinary
differential equations.

Nawaf Bou-Rabee and Jesis Maria Sanz-Serna. Geometric integrators and the
Hamiltonian Monte Carlo method. Acta Numerica, 27:113 — 206, 2018.

Sergio Blanes, Fernando Casas, and J. M. Sanz-Serna. Numerical integrators for the
hybrid Monte Carlo method. SIAM Journal on Scientific Computing, 36(4):A1556—
A1580, 2014.

Robert D. Skeel. Integration Schemes for Molecular Dynamics and Related Appli-
cations. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge, 2014.

Lennart Beringer and Andrew W. Appel. Abstraction and subsumption in modular
verification of C programs. Formal Methods in System Design, 2021.

16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Sylvie Boldo, Frangois Clément, Jean-Christophe Fillidtre, Micaela Mayero, Guil-
laume Melquiond, and Pierre Weis. Trusting computations: A mechanized proof
from partial differential equations to actual program. Computers and Mathematics
with Applications, 68(3):325-352, 2014.

Sylvie Boldo, Florian Faissole, and Alexandre Chapoutot. Round-off error analysis
of explicit one-step numerical integration methods. In 24th IEEE Symposium on
Computer Arithmetic, London, United Kingdom, Jul 2017.

Marc Daumas and Guillaume Melquiond. Certification of bounds on expressions in-
volving rounded operators. ACM Transactions on Mathematical Software, 37(1):1-
20, 2010.

Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying the
floating-point implementation of an elementary function using gappa. IEEE Trans-
actions on Computers, 60(2):242-253, 2011.

Fabian Immler and Johannes Ho6lzl. Numerical analysis of ordinary differential
equations in Isabelle/HOL. In ITP 2012: Interactive Theorem Proving, pages 377—
392, 2012.

George F. Corliss. Guaranteed Error Bounds for Ordinary Differential Equations.
Oxford University Press, 1994.

Nedialko S. Nedialkov, Kenneth R. Jackson, and John D. Pryce. An effective high-
order interval method for validating existence and uniqueness of the solution of an
IVP for an ODE. Reliable Computing, 7(6):449-465, 2001.

Kenneth R. Jackson and Nedialko S. Nedialkov. Some recent advances in validated
methods for IVPs for ODEs. Applied Numerical Mathematics, 42(1):269-284, 2002.
Robert Rihm. Interval methods for initial value problems in ODEs. In Topics
in validated computations : proceedings of IMACS-GAMM International Workshop
on Validated Computation, September 1993.

L. F. Shampine. FError estimation and control for ODEs. J. Sci. Comput.,
25(1):3-16, October 2005.

Yang Cao and Linda Petzold. A posteriori error estimation and global error con-
trol for ordinary differential equations by the adjoint method. SIAM Journal on
Scientific Computing, 26(2):359-374, 2004.

Benjamin Kehlet and Anders Logg. A posteriori error analysis of round-off errors
in the numerical solution of ordinary differential equations. Numer. Algorithms,
76(1):191-210, September 2017.

17

	Verified Numerical Methods for Ordinary Differential Equations

