
Page 1 of 4

Summary of testimony of Andrew W. Appel before N.J. State Senate, State Government

Committee, May 26, 2005.

My name is Andrew Appel. I am a Professor of Computer Science at Princeton

University, where I have been on the faculty for 20 years. My specialties in research and

teaching include computer security and the design and analysis of computer software,

especially at the interface between software and computer hardware. The kind of

problem I study is, how do you analyze a piece of software to tell whether it does what

it’s supposed to, and how do you tell whether software has security weaknesses that

permit fraudulent operations?

 These questions are particularly relevant to voting machines. In fact, I have

studied voting machine issues in great depth over the past year, and last fall I taught a

course at Princeton University on election machinery, particularly as it relates to practices

in New Jersey.

 I support S.29/S.2463, requiring a voter-verified, auditable paper record of each

vote cast. With paper ballots, the voter gets a chance to make sure that his or her vote is

recorded accurately, and in a recount, Republican and Democratic observers can see for

themselves that county officials are adding them up correctly. S.29 would be an even

better bill if it provided for mandatory recounts of randomly selected precincts, to make

sure there’s been no funny business with the machines. In addition, I would say that

precinct-based optical scan technology has many advantages—not only does optical scan

have a voter-verified auditable paper record, but voting doesn’t have to be interrupted if

the machines break down, and it’s easier to accommodate unexpectedly large voter

turnout.

 Without voter-verified paper records, we would have to trust that the voting

machine software and hardware is working correctly. As I’ll explain, it’s not realistically

possible to verify that voting-machine software will accurately count the votes. I’ll

explain what the problems are, and why there are no good solutions.

 When you push the button for your candidate, a computer program inside the

machine decides what to do about it. It’s supposed to add your vote to the total for your

candidate; this total is not a mechanical counter, it’s just a number in the memory of the

Page 2 of 4

program. It’s easy to write a program that will count the votes correctly; but it’s also

easy to write a program that cheats, that moves half the Republican votes into the

Democratic column. Of course, when election officials test the machine before the

election they might notice that! But computer programs are very flexible; we can make

one that behaves correctly on every day except the first Tuesday after the first Monday of

November, and cheats just between noon and 5 p.m. on election day; or only cheats after

the first 100 votes are cast; or only cheats after a certain write-in vote is entered. Voting

on a direct-recording electronic machine without a voter-verified paper record is like

walking into the booth and telling your choice to a little leprechaun; you have no way of

knowing whether he’ll accurately remember it.

 You might think that someone could look at the software in the machine to make

sure it doesn’t cheat, but that’s not really possible. In my testimony today I have time to

explain just two of the reasons why that doesn’t work. First, it is prohibitively difficult to

analyze the computer program inside a voting machine to make sure that it accurately

counts the votes under all circumstances; and second, even if the that could be done, it’s

really difficult to tell whether that program that was examined and analyzed is still

installed in the machine on election day, or whether it has been fraudulently replaced

with another program that manipulates elections by adding votes to the wrong candidate.

 First, the difficulty of analyzing computer programs. The typical voting machine

has about 30,000 to 60,000 lines of computer source code. If we think of a computer

program as a kind of “machine,” that’s like a machine with 30,000 different moving

parts—an incredibly complex device. It’s incredibly difficult to analyze how all those

parts will interact with each other in response to any conceivable combination of inputs.

Computer scientists have been working for years on this, and I can tell you that while we

continue to make progress on this problem in the laboratory, the problem is far from

solved for real-world applications like voting-machine software.

 Consider this: major software vendors, who have every incentive to produce good

programs, still can’t manage to produce software that’s perfectly reliable and resistant to

fraudulent takeover by computer viruses. For example, if your computer uses the

Windows operating system, every week or two you’re asked to update with new patches

to correct bugs and security vulnerabilities. Microsoft spends a billion dollars a year in

Page 3 of 4

software testing and software review, and still there are bugs, and still there are security

holes found by malicious outsiders every month: that’s the state of the art. For any

computer program of substantial size, it’s impossible for even the most expert computer

scientists to guarantee its correct operation without an expenditure of millions of dollars

to pay for hundreds of person-months of effort.

 The problem is actually worse than that with voting machines. For most kinds of

software we can assume that nobody inside the company would have much to gain by

making the program malfunction. But in elections, the stakes are very high: there’s

certainly enough motive for an insider at a voting-machine company to try to throw

elections by writing fraudulent software. It’s easy to write software that behaves well

whenever it’s tested—on every day except the first Tuesday after the first Monday in

November—but moves votes around during the election. Furthermore, an election-

fraudster could try to hide his fraud among the 30,000 or 60,000 lines of legitimate

software, making it even more difficult to detect. Even without a fraudulent insider, this

could happen; for example, when computer viruses take over your machines, it’s not

because there’s a fraudulent insider at Microsoft corporation, it’s because even Microsoft

finds it very difficult to write software without vulnerabilities that allow fraudulent

outsiders to take control. In summary, we cannot rely on the computer software in a

voting machine, and we cannot effectively review and audit that software.

 Finally, even supposing that New Jersey were willing to spend the millions of

dollars that it would take just to audit and review the computer program designed by a

voting-machine manufacturer; we have no way of knowing whether that program is the

one actually installed on the voting machine at election day! If we ask the machine to

print out what program is installed, then we’re really asking the software in the machine

to tell us about itself. It’s easy to write software that cheats on the election, but when

asked about itself, will print out a copy of the certified software.

 On some models of voting machine, such as the Sequoia AVC Edge, used in one

county in New Jersey, installing new software is as easy as inserting a smart card and

typing in a password. My colleague Professor David Dill, a computer scientist at

Stanford University, had this procedure demonstrated to him by a county election official

in Santa Clara, California. On other models, such as the Sequoia AVC Advantage used

Page 4 of 4

in Mercer County, a simple hardware modification is necessary, as I’ll demonstrate right

now with this circuit board.

 Inside a voting machine is a circuit board about a foot square, depending on what

model of machine it is. I have here a similar circuit board, from a personal computer but

very similar in technology to what voting machines use, and you can see here two

important components: the central processor that executes the instructions and the ROM

memory that contains the instructions. These instructions control everything the

computer does; you could put instructions here for the Space Invaders video game, or for

a voting machine, or even for a voting machine that fraudulently moves votes from the

Republican column to the Democratic column. Now suppose I show up at an elementary

school or a firehouse in Mercer County the day before an election or the day after. I’ll

find a few Sequoia AVC Advantage machines, unattended—most schools don’t have

round-the-clock security guards. I’ve seen the machines just sitting there in the John

Witherspoon Middle School lobby two days after the recent school board election. I

could pick the lock on the cabinet, unscrew 10 screws to remove a metal panel inside, and

pull out the software ROM just like this. Now I can install a fraudulent ROM that cheats

on elections, like this. Screw the screws back in, and now this machine will cheat on

elections for the next 20 years.

 The only foolproof way to check that the computer still has the authorized

software is to pull out this ROM chip—let me do that now—and install it into an analyzer

machine to examine its contents. Are we prepared to let each of the partisan pollwatchers

do that on the morning of election day? That doesn’t seem like a good idea. But it

illustrates the lengths we’d have to go to, if we try to audit elections without a voter-

verified paper record that permits recounts that are independent of the computer software.

 If the machine prints out voter-verified paper ballots, so that we can conduct

recounts to check that the machine is accurately counting votes, then erroneous or

fraudulent software will be caught. Without a voter-verified paper record, there’s no way

to be sure that the vote totals reported by the machines actually correspond to the voters’

choices. I urge you to provide for voter-verified paper ballots, and to remember that this

can be accomplished not only by equipping DRE machines with printers, but perhaps

even more effectively by the use of optical-scan ballots.

