
A Microprocessor Based CAI System with Graphic Capabilities'*

by

Frank J. Mabry, Andrew W. Appel and Allan H. Levy, M. D.

I. Introduction

With the invention of the microprocessor chip, the economic
restraints to personal computing have been substantially removed. Our
laboratory has been concerned with developing microprocessor-:;;...based
systems that are useful in education. We recognize that not all
educational computing can be done well on a stand-alone basis; indeed, a
user community actively participating in the interchange of information is
an important component of the educational process, involving both
feedback for the creation and evaluation of educational material.
However, there are many aspects of the operation of a Computer Assisted
Instruction (CAI) system in which such a system should functibn
efficiently and adequately on a stand-alone basis, free of the costs of
continuous communications.

With this in mind, we have developed a system which operates
in a dual mode, on an independent basis, as well as connected to a
communications network. We have constructed a hardware-software
system which allows a standard PLATO IV (1) terminal to act as an
independent computing system with the aid of a microprocessor equipped
with digital cassette tape drives, and also to access remote systems,
including PLATO, as well as standard teletype-like systems.

The PLATO system (2), developed by Bitzer and associates,
has been a model for user flexibility · and for the effective use of graphical
techniques. Our system, in stand-alone mode, attempts to capture these
attributes as far as possible.

II. Background

The Medical Computing Laboratory (MCL) of the College of .
Medicine at the University of Illinois has been involved with service
delivery of computer based instruction to units within the College of
Medicine, as · well . as outside the University via terminals connected to the
PLATO system .. (3). Simultaneously, MCL research activity has been

, directed .. toward·s investigation of alternative forms of CAI delivery.

Significant progress ha~ ··been made by Chen (4) in the
development of a "local node 11 of · computation with the potential for
support of a 30-50 terminal CAI system,, roughly equivalent in function to
the larger PLATO system. Noting the ongoing development by Chen, the
problems surrounding use of the existing medically oriented CAI systems,

, including single terminal systems, took our interest. We have attempted

*University of Illinois College of Medicine, School of Basic Medical
Sciences at Urbana-Champaign .

2

to develop a system with the capability of accessing teletype-like (ASCII*)
communication systems and the PLATO system. The new system also was
to be capable of stand-alone support of CAI activity and, in particular,
should support the CAI language PILOT (Programmed Inquiry, Learning
or Teaching) as specified by Starkweather (5). ·

The hardware configuration is detailed in Appendix A and
shown in Figure 1 and includes the following:

- IMSAI microprocessor (based upon an INTEL 8080 micro-
processor chip)

- 16K (K=l024) bytes of storage
- ASCII bi-directional communication ports (two)
- l millisecond interval timer
- Vectored interrupt driver
- Dual digital cassette tape drives (6)
- PLATO IV terminal and interface.

The software configuration used provides software to access
CAI systems using teletype-like communications (e.g. , Coursewriter on
IBM systems or MUMPS on DEC systems). The software system also
provides a BASIC** interpreter (referred to as NSBASIC [Not-So­
BASIC]) which has extensions for allowing local programs to utilize the
native capabilities of the PLATO IV terminal in a stand-alone mode. The
capability remains for the PLATO IV terminal to access the CERL
(Computer Based Education Research Laboratory) PLATO system which
can be accomplished by a single switch setting on the system.

The general memory configuration and requirements of the
system are given in Figure 2. A brief syntactic description of NSBASIC
is given in Appendix B .

.III. NSBASIC (Not-So-BASIC]

Beginning with an interpreter which provided the rudiments of
the BASIC language, we have made extensions to support access to the
native features of the PLATO IV terminal (particularly graphics), to allow
"judging" of interactive responses, to provide program and data
management primitives, and to facilitate communication under local
program control with remote terminal systems.

The graphic extensions that have been added provide for line
drawing (DRAW), absolute positioning (AT) and setting display mode
(MODE). The DRAW statement allows the programmer to indicate the end

·,points of one or more line segments. The coordinates of these end points

*ASCII - American Standard Code for Information Interchange.

**The BASIC Interpreter was written by Dr. Paul Tucker at CERL. It
has been modified and extended in the course of the work described
here.

3

may be any NSBASIC numeric expression. This allows the use of
constants, expressions and/or variable reference. The AT statement both
influences the beginning point of the next DRAW statement and where text
is Ot1tput in subsequent PRINT statements. The MODE command is used
to indicate how output is to affect the present display. In mode "write"
the dots of the display (512 x 512) are illuminated. In mode "erase" dots
are turned off where lines or characters are displayed. Mode "rewrite"
indicates that the 8 x 16 dot area associated with character output is to be
erased before a new character is displayed.

Obviously CAI is more than graphics. Moreover, flexible
student response judging is an important factor in providing effective
student-computer interaction. In order to support sufficient capacity for
interactive response processing new character string manipulation
statements and functions were added to NSBASIC. The capabilities
designed into these statements were influenced in roughly equal amounts
by the capabilities found in PILOT and TUTOR*. As an example, the
NSBASIC "MATCH" command allows a programmer to specify a list of
words of varying length to be checked for in a string variable. The
command indicates which word of the list (if any) was found and where it
was found in the string. This facility allows a lesson author to specify
lists of words that should or should not be found in a student's response
and easily specify checking for their existence.

Many of the language primitives which were developed with
response-judging in mind, have been useful in the development of both
the PILOT translator and the graphic editor. For example, commands,
such as MATCH, MOVE and FIND operating on strings can be used both
to judge an interactive user response or to . determine what source
statement should be generated based on the character string value of a
program statement which can be read as data.

Most users experienced in the PLATO system have come to
expect "single-key-response," particularly when moving through multiple
choice sequences . The facility for the programmer to direct massive
display changes based upon a single keypress is widely accepted as a
significant accomplishment of the system. Such sequences are
successfully used at many points in student interaction to enhance the
feeling of existence in a "friendly environment." NSBASIC provides
several facilities to allow the programmer to support such user options.
The "KEY" statement returns characters from the user one at a time as
keys are pressed on the keyboard. An 11 0NFUNC" statement allows the
programmer to establish a "flow-of-control" sequence to be invoked if any
of the function keys on the PLATO IV terminal are pressed. In the event

·a function key is pressed, a function "FKEY" is available to allow the
programmer to determine which specific function key was used.

*TUTOR is the programming language used for lesson writing on
the PLATO system.

4

With the construction of the digital cassete drives and
development of software for access to program and for data storage,
program development support services were placed in the NSBASIC
interpreter. Statements which support program storage, retrieval and
linkage (DTSA VE, DTREST, DTLINK) were added. Each of these
statements accepts two parameters. The first indicates a relative
beginning block (each block is 256 bytes long) to access. The second
parameter indicates which of the two drives to access. When a program
11link11 is requested the interpreter will read in the requested program and
then begin executing at its first statement. The storage and retrieval
facilities provide for control information to be recorded or utilized which
specifies the program's length. The program storage and retrieval
commands are generally used in "immediate 11 mode while the linkage facility
may be incorporated to move between programs.

Data storage and retrieval is accomplished via the "DTREAD"
and "DTWRITE 11 statements. The programmer specifies the information's

, location, length (in blocks of 256 bytes) relative block and drive number.
The initial use of these statements was in the PILOT translator (described
in section IV). Program source written and saved as though it were text,
can be read as data translated in memory and written back as data for
subsequent use via a DTLINK command.

This same approach was used to support the graphic editor
(section V), a program merge utility, macro utility, stand alone 8080
assembler-loader and a source listing program.

IV. Microprocessor-supported PILOT

Following the addition of the string manipulation statements to
NSBASIC, , an NSBASIC program for translation from PILOT source to
NSBASIC source was written. In essence this allows a user of the
terminal to utilize the existing editing functions of the NSBASIC
interpreter to enter the source of a PILOT program. The same
constraints and capabilities as those found in Appendix B can be used in
construction of a PILOT lesson. Following the entry of such a lesson, the
standard editor supported function for program storage is utilized, and
the use of the program linking function allows the initiation of the
NSBASIC translator. The translator inputs the source of the previously
written PILOT lesson treating it as data and translating it in a line-for­
line process into NSBASIC. Following the successful translation of a ·
PILOT program into NSBASIC source, the translation process is not
required for subsequent uses of the lesson.

In addition to the core PILOT described by Starkweather in his
PILOT-73 statement, an escape to NSBASIC was provided for in the
translator. This feature, although not absolutely necessary, did allow
immediate testing of the integration of PILOT source with graphic
primitives and provided for early testing of concepts which seem
appropriate to any implementation of graphics in a PILOT environment.

V. Graphic Source Generation

In the course of experimenting with the stand-alone processor
connected to the PLATO IV terminal and following the development of

5

statements necessary for PILOT translation, a graphic editor was devel­
oped much like that found on the PLATO system (2). The
microprocessor-based graphic editor provides for cursor movement with
the directional keys. The cursor movement may be either in fine steps of
one coordinate value per key stroke, or with the use of the shifted
directional key 10 coordinate values per key stroke. Also, the cursor may
be moved by use of the terminal touch panel. The graphic editor allows
the user to identify specific points on the screen and to establish lines
between these points. A user may also specify text to be displayed. Also
available from graphic editor is the present numeric representation of all
of the generated display. If, due to various display options, the display
becomes obscured by other information displayed simultaneously, the
graphic editor provides for regeneration of the graphic display after
initial erasure of the screen. A help sequence is provided for the user
explaining each of the options and how to actuate their use. Following
the generation of a graphics display under the graphic editor, the user
may request that a source be generated which accomplishes the display
described to the graphic editor. This source may be used subsequently
with an existing program. The integration of such source with existing
programs is supported by a merge facility. Figure 3 portrays the steps
in the graphic generation process. Figure 4 shows a display generated
by the graphic editor which has included the user invoked 11help"
sequence and shows the subsequently produced NSBASIC source
statements.

VI. Sized Writing and User Defined Special Characters

On the PLATO system, a programmer can specify that the
display panel be used as a writing tablet for large or small letters . The
actual characters written are specified by the standard "write" statement.
This writing process is influenced by sizing and rotation commands.

We felt that this capability would be useful on the
microprocessor based system. However, the sized writing function
requires significant computation during the display process. In order to
implement this capability on the microprocessor system with its
appreciably lower computational power, a line writing editor was
developed which executes the various "DRAW 11 s and 11 AT"s in advance,
saving the graphic description for use with actual lessons. The
description created by this process can be inserted into programs as
source. The major functional difference between the preprocessed
approach used on the microprocessor and that used on PLATO is the
inability of the microprocessor system to display variable information.
This is generally mitigated by the tendency on authors' parts to use sized

, writing for titling and descriptions which don't require an ability to
display variable information.

The PLATO IV terminal has the capability for loading user
defined special characters. These characters can be developed and edited
on the PLATO system. The characters are formed within an 8 x 16 dot
area. This facility has been used by lesson writers to enhance textual

. display (e.g. , italics), in animation sequences and in display of special ·
notation (e.g., chemical symbols or mathematical notation). Characters
developed for such use are loaded into alternate character memory on the
PLATO IV terminal by the central PLATO system.

6

In order to provide access to this graphic capability of the
terminal a combination of microprocessor software (in NSBASIC) and
software on the PLATO system was developed. The PLATO system
software we developed provides a translation and transmission capability.
This software accesses existing character set definitions and translates
them into character sequences which are sent via the external output
facility of the PLATO IV terminal to the ASCII input channel on the
microprocessor. The microprocessor translates the character sequences
received in this manner into the appropriate data to be transmitted for
loading into the terminal when the ·specific user defined character set is
desired. The data is saved on digital tape and can be loaded into the
terminal by use of the NSBASIC 11 PRINT 11 statement.

VII. Programming Support

As with larger systems, the microprocessor based system has
fostered development of programmer support services as programmi.'1.g has
been underway. Support services have fallen into four general areas:
aid for the programmer in developing software in NSBASIC, assembly
language support for the production of 8080 machine language routines,
assists in conversion of PLATO system based lessons to the
microprocessor system and the previously mentioned PILOT language
translation program.

Services for access to graphic capabilities have followed closely
those found on PLATO (see sections V and VI). NSBASIC programs have
been developed which support program listing, source statement merging
and context editing. The program listing facility has gone through
several modifications to allow listing on two different hardcopy terminals
with differing control sequences and a local computing system which has a
high speed printer. In the latter case, the listing program includes the
"job control11 statements necessary for the computing system as well as
programmed delays to wait for responses from the computing system,
thereby providing proper synchronization with activities on that system.

In the process of developing new machine language support
routines, it became evident that our dependence on a remote system for
machine language programming was not practical. To alleviate this
dependence, an assembler-loader for the microprocessor was written in
NSBASIC. The source of an assembly language routine is entered and
edited in the same manner as standard NSBASIC programs, but is
translated by an NSBASIC program and loaded immediately into the
memory it is to execute in. The assembler optionally produces a printed
listing of the assembly. Errors encountered during assembly are
displayed to the user indicating line number and error type.

Both because of the large amount of lessons existing on the
PLATO system but appropriate in the microprocessor environment and
because both systems use the same display device, we developed software
on the microprocessor for aiding the conversion of such lessons from
PLATO to the microprocessor. Using a PLATO system lesson which prints
lessons on ASCII devices, software was developed which causes the ·

'microprocessor to read in the text being converted via one of its ASCII
interfaces. The TUTOR source is converted to NSBASIC on a statement
by statement basis. "AT 11 and 11DRAW 11 statements have the minor

7

syntactic differences between NSBASIC and TUTOR resolved. "WRITE"
statements in TUTOR, which contain only constant information, are
converted to NSBASIC 11 PRINT 11 statements. All other statements are
prefixed as . "REMark" statements, thereby allowing later conversion by
the programmer.

VIII. Commentary

Development of Local System on a Microprocessor

Use of Dr. Tucker's BASIC interpreter has provided a
"jumping off" point for local support software. The interpreter has not,
throughout the course of our work, been felt to be an end but rather a
base from which to extend as local needs became apparent. It has been
this willingness to extend the statements supported by the interpreter
which has allowed the rapid production of application software. It has
allowed us to provide new statements to meet needs on several application
and program support fronts simultaneously.

PILOT on the Microprocessor

The NSBASIC source program, which implemented the PILOT
translation process, was written and implemented in a very short period
of time due primarily to the interpretive nature of the language, and the
fact that the string handling statements provided sufficient language
power to rapidly translate the source. This same technique was utilized
for developing the graphic editor and, to a lesser extent, the 8080
assembler-loader. The language primitives appear to have been the
sufficient and necessary ones necessary for the completion of the
translation tasks where the language "translated to 11 provides for a
one-to-one mapping of the language "translated from. 11 Had this not been
the case, then in all likelihood the requirements in terms of primitive ;~ for
translation would have been more extensive and required at a minimum
table look up capabilities and the maintenance of such tables for variable
and label reference.

Graphics in a Microprocessor Environment

An extension to the graphic editor, which seems worthwhile in
light of the potentials for use of the microprocessor by an interactive
user, is to allow the generation within the source of coordinate translation
and scaling information. Following the specification of such information,
the subsequent source generated can be utilized with multiple references
to cause output in different areas of the screen by respecification of

; translation and scaling variables' values. Such a capability would not
require internal modification of the actual source statements which would
be more tedious than parameterization of translation and scaling
information.

IX. Summary

A system has been · developed which allows access to remote ·
systems: PLATO and ASCII based communication systems. The system
also has facilities for local production and use of PILOT lessons, for
support of a generalized programming language (NSBASIC) and for

8

development of graphic sequences. The capabilities required for both a
stand alone CAI system oriented towards a single user and for a system
which provides access to remote CAI systems has been realized.

*** The authors wish to acknowledge the support · of research
assistants in Medical Computing Laboratory who aided the developments
described here. Mr. Tom Szolyga developed both the PLATO IV - 8080
hardware interface and much of the translation software.
Mr. A. B . Baskin has aided in clarifying portions of input/output control
code and in describing the theory of the translation process to/from
ASCII and the PLATO IV terminal.

;·--

16K Memory
ectored Interrup

1 Millisec . Timer
ASCII Interface
Dig.Tape Interface

PLATO IV Terminal
Interface

. IMSAf
.___ _ _. ..____ c:::::::J
.__ _ _, ._ __ , c=:::J

8080
MIC RO PROCESSOR

0

· MODEM

• t_ Figure 1

•

'

TO PLATO
~-=Ji£==,,==

PLATO TIZ
TERMINAL

SYSTEM

D :J
D I GI TA L TA P ES

System Hardware Configurat:ion
. .' . . ~-

9.5K

6.5K

I

; ...

Transl.s..t ion
Routines

I/O Buffers

NSBRSIC
Interpreter

Progra.m
Stor·age

[Interrupt processing
L _,.O bu f fer i ng -so ft -:­
ware; ASCII to/from
PLATO tr~.ns lat ion]

[lnterpr·et.::r; Inter­
preter ex~cution
stacks; sc.a. lar
variable storage]

----·--------------
Program variable
Space

(Addi t i ona J 1.>Jor k space can
be added to 6 4k as · r ·ie·=tu ired
. by app l i cat i on so f b~ re w i thou t
system 5oftvJare rflodification) ·

. Figure 2.
Microprocessor Memory Configuration.

•
• J

.. ~:

• . .
! .

GRAPHIC EDITOR
IS "LINKED" IN

USER DESCRIBES

GRAPHIC FIGURE
.· . ..

TO GRAPHIC EDITOR .

REQUEST IS

MADE FOR TRANSLATION
TO SOURCE

. .

GRAPHIC DATA IS

WRITTEN TO WORK TAPE

.

GRAPHIC TRANSLATOR
IS 11

LINKED
11

IN FRc.M

SYSTEM TAPE

. - . - .

GRAPHIC DATABASE
IS READ FROM

WORK TAPE

...

SOURCE IS GB~ERATED
AND WRITTEN BACK

TO WORK TAPE (FOR
SUBSEQUENT INCLUSION I.N A PROGRAM)

Figure 3

Steps in the Graphic Generation Process

·WoRK•

0

L A very simple
di5Play

Take note"of the

cursor~+

And the HELP seqiern;e

1
DIRECTIONAL KEYS AS t1ARKED
'R' redisplay, 'I' for inf orrnat ion, 'T' for text
• S' shovJ present coords, 'L ' I i ne, 'P' poi nt
'/' delete last graphic element; DATAi ·source gener.3.­
tion option; Touch is a.vai lab le for rapid curs·:>r movement

- a -

3.0 AT8.0' 4.0'2: DRAW (8 8' 41 fl; urn' 41 JJ; 1 l 7' 4.01 ; 11 7' 3 9.0'; 1ff8' 3 81)
32 DRAW(89,381;8E,393;8B,431) ~AT103,356:DPAW(92,358)

3 4 DRA!JJ (1 ff 8 , 3 5 8 ; 1 fHJ , 3 6 6 ; 1 .ff .0 , 3 1 8 ; 1 4 8 , 3 1 8) : AT 1 6 9 , 3 1 8

36 P A very simple" :P. • display"' :AT167, 255
38 P."Take note of . the~:P." cursor~:AT351,223:P.u+•

4H AT263,246:DRAW()43,23~;335,233;331,226;343,23ff)
42 AT8ff, 20'8: P. N An•::J the HELP ~.equ.<::nce .. : AT2 5 4, 21 4

4 4 DRAl.J (2 7 fJ , 2 1 4 ; 2 7 Z , 1 7 4 ; 2 6 2 , 1 3 2 ; 2 7 8 , 1 8 2 ; 2 7 0 , 1 7 4)

·- b _ .

Figure· 4. .
a - Graphic Editor Display

and "Help" Sequence.
b - The NSBASIC Source Generated

for 4-a by the Graphic Translator •

•
I ~

/

{
I

References

1.

2.

3.

Stifle, Jack. The PLATO' lV"'T '6J,;1ninal: Description of Operation.
Urbana: University of illlinois Pres' (1974).

"'---~.----······_,.--··
Sherwood, Bruce A. and Smith, Stanley G. "Educational Uses of the
PLATO Computer System." Science (1976) Vol. 192, pp. 344-352.

Levy, Allan H. and Williams, Ben T. "Experiences with Health
Sciences Education Using PLATO." Proceedings of the Society for
Computer Medicine Conference, November, 1976.

4. Chen, Thomas T., Levy, Allan H. and Williams, Ben T. "A
Depository Health-Computer Network." Medical Information (1973)
Vol. I, No. 3, pp. 167-178.

5 . Starkweather, John. PILOT Guide. USC 03.01.03 (1976) USSF
Computer Center.

6. The Digital Group Cassette Storage System, CSS-RO, The Digital
Group, Inc. , Denver .

	Image
	Image (2)
	Image (3)
	Image (4)
	Image (5)
	Image (6)
	Image (7)
	Image (8)
	Image (9)
	Image (10)
	Image (11)
	Image (12)
	Image (13)

