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Abstract
Specialized farming technology is on the rise but efforts to accurately predict crop yield and

identify crop disease are still in their infancy. In this project, I aimed to find a solution to both

problems with a caveat: I wanted to ensure that yield prediction was cost-effective. I studied

tomato yield at three New Jersey farms and attempted to predict yield based off of common crop

measurements like normalized difference vegetation index (NDVI), evapotranspiration, and growing

degree days (GDD). I found that elastic net was the best regression method due to both its feature

selection and accuracy (R2 = .39). In the second phase of my experiment, in which I sought to

distinguish different types of crop disease from drone images, my results indicated that further

data collection was needed to create a more even distribution of labels and allow for better model

training.

1. Introduction

In this project 1, I sought to accurately predict tomato yield using common crop health metrics

like normalized difference vegetation index (NDVI), evapotranspiration, and growing degree days

(GDD). I wanted to determine which metrics were most predictive in order to identify the minimum

number of measurements that need to be made in order to accurately predict yield. In particular, I

wanted to assess the accuracy of current GDD models and explore potential variations in the GDD

formula. Furthermore, I pursued a secondary goal of detecting and classifying crop disease using

a series of drone RGB and NIR images that I collected from farm fields. I wanted to develop a

classification model that could distinguish between crop decay and animal damage.
1Parts of the text in this final project report are adapted from (and at times exactly the same as) passages that appear

in Lauren Johnston, Spring Independent Work Proposal, 2019 [8]



Crop damage erodes farm economic viability and is often caused by diseases such as blight and

mildew, animals, or natural decay at the end of the growing season. Figures 1 and 2 show the

disparity between healthy and diseased crops. Diseased crops, such as the tomatoes shown in Figure

2, are difficult to sell and often farmers are forced to compost them or feed them to livestock instead

of earning a profit. The New Jersey farmers that participated in this study cited crop damage as a

major source of profit loss and anxiety during the growing season. If farmers were able to check an

accurate summary of crop disease in their farm and farms in surrounding areas, they would be able

to alter their planting dates or switch crops to avoid disease affecting a particular crop.

In addition, finding a formula for GDD that is an accurate predictor of yield would provide a

solution to a major agriculture-technology problem. GDD is simple and inexpensive to measure

using temperature, so a technology solution can easily be implemented in farms. If farmers are able

to more accurately predict yield, they can proactively alter budgets and planting strategies during

the growing season.

Figure 1: Healthy tomatoes (heirloom variety).
Figure 2: Diseased tomatoes (heirloom va-
riety).
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2. Problem Background and Related Work

2.1. Yield regression models

Crop evaluation metrics such as NDVI, evapotranspiration, and GDD were developed in the mid

20th century and remain relevant today in modified forms. NDVI was developed from a study

in the Great Plains that used "multispectral remote sensing" to generate images of agricultural

fields [18]. This study used supervised machine learning methods to classify vegetation cover

including "boundary enhancement" by thresholding, "chromaticity transformation", and "automatic

classification of ground cover types" [18]. The standard equation used for NDVI used currently is:

αnir−αvis

αnir +αvis

In this equation, αnir is the mean "surface reflectance" over the IR spectrum and αvis is the mean

surface reflectance in the visual or "red" spectrum [2]. NDVI has been used to predict crop yield

in wheat, corn, rice, and cotton [17] and recently tomato yield [9, 5]. Due to the limitations of

NDVI described chiefly by Wang et al., including the "effect of canopy background" and other

forms of noise, NDVI alone is often not a successful predictor for yield [19]. However, alongside

evapotranspiration and GDD measures, an accurate model could potentially be built to predict yield.

A formula for evapotranspiration (the combination of evaporation and transpiration) was first

derived from physics formulae by Penman in 1948 using parameters such as solar radiation, vapor

pressure and temperature [15]. GDD, on the other hand, is a simple formula that takes mean daily

temperature minimums and maximums and cumulatively calculates the number of viable growing

days.

GDD =
max(T )+min(T )

2
−T0

In the above equation for GDD, T0 (the base temperature) is often 10 degrees Celsius [16].

According to McMaster and Wilheim, however, there are two diverging methods of calculating
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GDD that yield different results [11]. The first involves setting T0 to mean(T ) if mean(T ) < T0

and the second entails setting max(T ) and min(T ) to T0 if (max(T ) or min(T ))< T0 [11]. In this

project, I will explore the efficacy of both calculations in regards to tomato yield prediction.

2.2. Crop damage classification models

In regards to computer vision techniques for classifying crop damage, there are two key models that

have been used previously for agricultural image applications: random forest (RF) classification

and convolutional neural networks (CNNs) [7, 4]. A previous study conducted by Huang et al. used

CNNs to create maps of weed areas in crops [7]. This particular application could be extended to

exclude weed areas of crop fields in order to focus on crop disease. On the other hand, a study

by Castro et al. used a combination of object-based image analysis (OBIA) and RF classification

to perform automatic weed mapping [4]. This study combined both RGB and Infrared data and

therefore enhances the potential of analysis beyond the visual spectrum and allows for NDVI

computation. In this project, I will endeavor to extend the previously attempted use of CNNs in

weed mapping in order to classify crop disease.

3. Approach

3.1. Yield Prediction

For the tomato yield prediction phase of my project, I decided to collect NDVI, evapotranspiration,

GDD measures, and other crop health measurements from local farms. These crop health mea-

surements would act as descriptive features to predict yield, the target feature. To create a yield

prediction model, I hoped to obtain cumulative tomato yield data from three different New Jersey

farms collected over the same time interval to train the model. Training the model entails splitting

the instances by day into a training and test set and then applying appropriate regression methods to

the training set before testing on the test set.

I decided to attempt canonical machine learning regression methods such as ridge, Lasso, and

elastic net. Given that these methods are known for their feature selection abilities, I hoped to use

4



them to generate model coefficient sets that eliminated less predictive factors. Through analysis of

the efficacy of the combined NDVI, evapotranspiration, and GDD features I endeavored to determine

an improved method for forecasting crop yield. I believed this approach would be successful with

robust data collection over the growing season, the placement of sensors to collect crop health

metrics directly in tomato fields at each farm in order to directly link the data to the yield numbers,

and the use of proven machine learning methods in order to create a sparse prediction model.

3.2. Spotlight Yield Regression Method: Elastic Net

One particular method that was critical to the approach of the tomato yield prediction phase of

my project was elastic net. Elastic net was developed in 2003 by Zou and Hastie as a response to

limitations in ordinary least squares (OLS) regression and related methods such as ridge and Lasso

regression [21].

Both ridge and Lasso regression have benefits and pitfalls. Ridge regression was created to

generate model coefficients with most coefficients being very small except for the most predictive

[12]. It shrinks continuously by minimizing the residual sum of squares (RSS) in a squared term (L2-

regularization). However, it does not perform effective subset selection because most coefficients

are not reduced to zero. On the other hand, Lasso regression generates a sparse model coefficient

set. Lasso uses the L1-norm or the absolute value of the RSS to generate coefficients [12]. There

is a definite benefit to Lasso: it zeroes some coefficients and effectively eliminates them from the

model. Unfortunately, however, it is known for arbitrarily selecting only one of two variables with

high pairwise correlation [21]. Therefore, even a feature that is highly predictive may be eliminated

due to its correlation with another variable. With these shortcomings in mind, Zou and Hastie saw

the need to improve upon current linear regression techniques and develop elastic net regularization.

Elastic net regularization is defined in Zou and Hastie’s paper [21] as:

L(λ1,λ2,β ) = |y−Xβ |2 +λ2|β |2 +λ1|β |1
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In the above equation, y is the set of response variables and X is the model matrix with each X

corresponding to a set of predictors. In naive elastic net, the equation is optimized with respect to β :

B̂ = argmin{L(λ1, lambda2,β )}

This can be simplified to the following equation, with a penalty:

B̂ = argmin{|y−Xβ |2},given : (1−α)|β |1 +α|β |2

In practice, the elastic net is solved in a two-part process by first performing L2-norm (ridge)

regularization and then L1-norm (Lasso) shrinkage. This leads to the desired sparse coefficient

set (a property of Lasso) while also balancing bias and variance (a property of ridge regression).

Furthermore, elastic net improves on both methods because it exhibits the grouping effect [21].

The grouping effect is a property that means that given closely-correlated variables in a feature set,

variables will be consistently assigned similar (and same-signed) coefficients. This effect results

in a consistent set of features, a benefit that is highly desirable in this application because many

features in the Arable data set are closely correlated. Figure 3, taken directly from Zou and Hastie,

explains why the grouping effect occurs. It shows the total convexity of the elastic net solution in

relation to ridge and Lasso’s.
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Figure 3: "Two-dimensional contour plots (level 1) ( - . - . -, shape of the ridge penalty; - - - - -,
contour of the lasso penalty; ——-, contour of the elastic net penalty with α = 0.5): we see that
singularities at the vertices and the edges are strictly convex; the strength of convexity varies with
α" [21]

3.3. Crop Damage Classification

With regards to the crop damage classification phase of the project, I decided to collect drone image

(RGB and Infrared) data using a Sentera-modified drone over summer 2018. Given Huang’s study

that employed CNNs to generate maps of weed patterns, I decided to use one of the CNNs that was

important to the study: AlexNet [7].

3.4. Spotlight Image Classification Method: AlexNet CNN

For the crop disease classification phase of my project, the AlexNet CNN model was the most

appropriate for the task due to its success in unsupervised image classification tasks [10]. AlexNet,

invented by Krizhevsky et al. in 2012, was initially trained on the LSVRC-2010 ImageNet photo

set and was both efficient and low in error.

AlexNet’s architecture built upon previous CNN designs while adding certain unique modifica-

tions. The AlexNet network consists of eight layers as shown in Figure 4 below, taken directly from

Krizhevsky et al. [10].
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Figure 4: AlexNet 8-layer architecture.

The five leftmost layers in the architecture figure are convolutional layers while the final three

on the right are fully-connected. The convolutional layers, computed in parallel, generate a series

of linear activations [6]. Then, AlexNet’s rectified linear activation function (ReLU) processes

the linear activations. Finally, these activations are connected by the max pooling function. Max

pooling is a function designed by Zhou and Chellappa in 1988 that maximizes the output in a kernel

region by selecting the maximum value [20]. In early max pooling functions, kernel regions were

covered non-overlapping portions of the input. Meanwhile, in AlexNet Zhou and Chellappa were

able to reduce overfitting-caused error by introducing overlap to max pooling applied on the kernel

regions. A combination of architecture and modification of functions led to AlexNet’s success

at image classification tasks. Furthermore, as Huang et al. proved in 2018, AlexNet is useful in

agriculture applications including weed mapping [7].

4. Implementation

4.1. Yield Prediction

4.1.1. Data Collection Only 3 out of 7 farms that participated in the Farm Project conducted in the

Rubenstein Lab at Princeton’s Ecology and Evolutionary Biology Department grew standard size

tomatoes. As a result, I chose those three farms to compare tomato yield numbers and crop health

metrics (Table 1). In order to measure crop health metrics such as NDVI, evapotranspiration, and

GDD, I helped the Farm Project team install Arable Mark sensors at the three farms.

8



Farm Organic Arable collection dates Sale Method Notes
Cherry Grove Yes 6/6 to 9/22 CSA membership Composting + crop rotation.
Honey Brook Yes 6/8 to 9/19 CSA, boxed shares. Tomatoes covered by tunnels.
Kerr’s Korn Stand No 6/7 to 9/24 Road-side stand Compost + synthetic fertilizer.

Table 1: Farms chosen for comparison in tomato yield prediction.

4.1.2. Data Collection I completed the data collection phase of this project from June to October

2018. Using Arable Mark sensors, I collected information on temperature, evapotranspiration, solar

radiation, GDD, NDVI, rainfall, and more 2. Arable calculates GDD using the standard equation

[16] and computes NDVI using the Penman equation [1].

Furthermore, I collected tomato sales data from farmers and measurements on the average tomato

weight and circumference per box sold. From these measurements, I calculated the total daily yield

in pounds per day.

4.1.3. Models I chose five methods of linear regression for the yield prediction phase of my project:

ridge, Lasso, Lasso with cross validation, Lasso computed via LARS, and elastic net. I used the

Python Scikit-learn implementation for all 5 methods [14]:

• Ridge regression: Ridge(alpha=.5)

• Lasso regression: Lasso(alpha = 0.01)

• Lasso with 10 rounds of cross validation: LassoCV(cv=10, random_state=0)

• Lasso computed via LARS: LassoLars(alpha=0.01)

• Elastic net: ElasticNet(alpha=0.01, l1_ratio=0.7)

As discussed in the Related Work section, I chose elastic net because it generates a sparse model

(thus performing feature selection) and also balances this sparsity with the bias-variance tradeoff. I

wanted to compare elastic net with forms of Lasso, which also generates sparse coefficients, for

accuracy. However, I knew that Lasso was not well-suited to handling features with high pairwise

correlation. Thus, I included ridge regression to compare sparse models with non-sparse models for

accuracy.

For ridge regression, I chose 0.5 alpha (default is the max, 1.0) in order to perform regularization

2For a full list of Arable data features, go to: https://www.arable.com/solutions_weather/
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with moderate strength. As for Lasso and elastic net I chose a 0.01 alpha through trial and error.

Higher values for alpha yielded solutions that were too sparse in both cases.

In addition to linear regression methods, I performed principle component analysis (PCA) as an

alternative method of feature selection. I calculated PCA with 1 to 10 components and compared

the explained variance ratio for each in order to find an ideal drop-off point. At the ideal drop-off

point, feature selection can occur with minimal reduction in prediction accuracy. I used the Sci-kit

learn implementation of PCA with all default parameters except for the number of components (10)

[14].

4.2. Crop Damage Classification

4.2.1. Data Collection In this phase of the project, I collected aerial images (both RGB and NIR)

using a Sentera-modified drone during summer 2018. These images were collected at 400ft altitude

using the Digital Surface Model (DSM)/Ortho setting with 80% overlap. In addition, the drone

images were taken on different dates with varying amounts of light and on different crops, which

increased the amount of variation of the dataset. In total, 913 images were collected on 11 separate

occasions. The fields that I flew over were corn and soybean primarily due to the near-total crop

coverage of both types of fields from above. Choosing corn and soybeans eliminated the task of

separating crops row by row so as not to include bare ground in prediction.

4.2.2. Models I used the Pytorch implementation of AlexNet and Pytorch dataloader documentation

in order to classify crop disease in my image set [13]. Instead of using the trained model of Alexnet,

I used the untrained version because I wanted the ability to train the network on the class labels. I

designed a custom Pytorch dataloader for the drone dataset.

The parameters I chose for the Alexnet model are as follows:

torchvision.models.alexnet(pretrained=False, num_classes=6)

In the next section, I will discuss the specifics of the AlexNet model training and evaluation

process.

10



5. Evaluation

5.1. Yield Prediction

5.1.1. Data pre-processing The first step in pre-processing yield data was calculating the weekly

yield total and distributing it evenly over each day of the week. This step is essential due to the fact

that certain days are more productive then others because some days have more rigorous harvest

schedules or better weather for picking. Therefore, it made the most sense to eliminate day-to-day

fluctuation by allowing each day to be smoothed according to the weekly yield. I accomplished this

smoothing by dividing the measured total weekly weight picked by the number of days. Next, I

normalized the yield for each farm using the formula (where w is the total weight picked that day

and W is the set of all weights):

w−min(W )

max(W )−min(W )

This normalization was necessary due to the variability between farms in terms of scale of

operation and thus total yield. However, normalizing does make it difficult to compare between

farm and assess the impact of individual farming methods. It would have been preferable to divide

yield by total area, but unfortunately the Farm Project was not able to obtain this data for all three

farms.

Another important pre-processing step was removing "time", "location", "device", "latitude",

"longitude", and "rainfall". All except for rainfall were removed before regression modeling due to

the small number of farms that would not produce meaningful location comparison. Rainfall, on the

other hand, was removed because Honey Brook Chesterfield tomatoes were under cover, in a hot

house. This meant that rain measures would not be viable for cross-farm comparison.

5.2. Crop Damage Classification

5.2.1. Data labelling In order to classify the drone images, I decided to manually generate multi-

label classification sets for each image. I chose to specify six unique target labels: animal damage,
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disease, decay, trees, bare ground, and road. Each of these was a binary (1 or 0) for presence in the

image or lack thereof. The images below (Figures 5 and 6) show labels on two sample images from

the drone RGB image set. The labels themselves are binary rather than region-dependent, but I

overlayed the classes on the image where they occur for the purpose of demonstrating classification

decisions.

Figure 5: Sample RGB drone image with
decay, disease, trees, and animal damage
present.

Figure 6: Sample RGB drone image with
road, decay, disease, trees, animal damage
present.

5.2.2. Data pre-processing Each drone image was subjected to a series of transformations during

the loading process. First, I resized each image to 256 pixels along one side. Then, I performed a

center crop so that the resulting image was 256 x 256 pixels. This resizing and center-crop were

originally employed by Krizhevsky et al. [10]. Together, the methods help improve performance

due to the dimension reduction of model inputs. Finally, I transformed the image into a tensor and

then normalized it to a mean of 0.5 and a standard deviation of 0.5. This transform, implemented in

Pytorch, works as follows (X is the image, µ is the mean and σ is the standard deviation):

X
′
=

X−µ

σ

The resulting image is in the range [-1,1]. This new, reduced image range diminishes skew in the

data and minimizes bias in the model.
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5.2.3. Experiment design First of all, I randomly split all images and labels into a 70/30 train-test

split. I used the random_split function in Pytorch [13] to perform random subset sampling without

replacement. Next, I trained the Alexnet model using gradient descent with batches of 25 images

each, randomly shuffled. For the gradient descent loss function, I used binary cross entropy loss,

which has independent vectors, to update model weights. Finally, I inputted the test data into the

trained model and compared the labels with the classification predictions.

6. Results

6.1. Yield Prediction

By fitting yield regression models with normalized tomato yield and Arable sensor data, I was able

to generate useful subsets of descriptive features from the Arable data. I found that cumulative

GDD was by far the most predictive feature for yield, with coefficients ranging from 0.347 in Lasso

with LARS to 0.920 in Lasso with cross validation. This is unsurprising given the high correlation

between yield and cumulative growing degree days, as shown in Figure 10. Furthermore, growing

degree days essentially measures how productive a day is with regards to temperature and plant

maturation, so it is natural that it is highly predictive of yield. However, it is surprising that NDVI is

completely eliminated as a feature in Lasso, Lasso LARS, and elastic net given previous research to

indicate its ability to predict yield. This disparity could be due to a genuine lack of usefulness as a

yield predictor in tomatoes or perhaps due to inaccuracies in the measurements made by the Arable

sensor.

NDVI may be less useful as a yield predictor in tomatoes due to the uneven cover of tomatoes on

the ground. In some farms, there are large (1-2ft.) gaps between plants and in others the tomato

plants may be so overgrown that no bare ground can be seen. Depending on where NDVI (which

depends on mean surface reflectance) is measured, there could be a lot of variability that does not

reflect the health of the plant but rather the spacing.

Following GDD, chlorophyll index (CI) was typically the second highest coefficient across the

models. Chlorophyll index is an indication of the amount of chlorophyll in a plant’s leaves, so this
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correlation is not surprising [3]. It is calculated from down-welling spectrometer bands, meaning

that if chlorophyll index were included in the final model for yield prediction, a spectrometer would

need to be used for any further calculations [3]. As NDVI also requires a spectrometer, it would be

preferable to either include or eliminate both.

Feature Ridge Lasso Lasso CV Lasso LARS Elastic net
GDD (cumulative) 0.885973 0.629643 0.920113 0.347498 0.650474
Chlorophyll index 0.242645 0.127821 0.221249 0 0.179403
Evapotranspiration 0.029076 0 0 0 0
GDD for day -0.045835 0 0 0 0
LfAirDelta -0.113918 0 -0.040104 0 0
NDVI 0.107615 0 0.254656 0 0
shortwave DW radiation -0.03192 0 0 0 0
maxT -0.121239 0 0 0 0
meanT 0.113613 0 0.004334 0 0
minT 0.131308 0 0.112843 0 0.015313
sea level pressure -0.139502 -0.117789 -0.113361 0 -0.125171
crop coefficient Kc 0.107623 0 0 0 0
crop evapotranspiration 0.044176 0 0 0 0

Table 2: Regression coefficients for Arable data features by model.

I found that Lasso regression with cross validation yielded the most accurate results with an R2

score of 0.417 (Table 3). Meanwhile, ridge regression was a close second at 0.403 and elastic net

was third at 0.390. The success of Lasso with cross validation is intuitive because cross validation

prevents over-fitting on the training set. With 10 rounds of cross validation, the model coefficients

are less likely to be susceptible to noise in the training data.

Model R2 Score Time (train) Time (predict)
Ridge 0.403 0.0016 0.0002
Lasso 0.386 0.0013 0.0002
Lasso CV=10 0.417 0.1156 0.0001
LARS Lasso 0.218 0.0038 0.0002
Elastic Net 0.390 0.0012 0.0007

Table 3: Accuracy and speed tests for yield regression models (with normalized yield).

As shown in Figure 7, ridge regression has the most non-zero coefficients. This is to be expected

because it doesn’t have the property of reducing coefficients to zero like Lasso and elastic net.
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Interestingly, Lasso computed via LARS only has a single non-zero coefficient (growing degree

days). This extreme feature selection hurt the R2 score which, at 0.218, is the lowest of all models

tested.

Figure 7: Yield regression coefficients across all models.

As an extension on the descriptive features provided by Arable, I calculated GDD using the

two popular methods described in McMaster and Wilheim [11]. These methods clamp the mini-

mum/maximum and the mean respectively. Table 4 shows the results of running regression models

with alternative calculations of GDD included. Surprisingly, the results reaffirm that GDD with

no clamping is the most successful predictor of yield. The cumulative GDD Max/Min Clamp

has a slightly higher coefficient than GDD Mean Clamp (Cumulative) in most models. However,

cumulative GDD ranges from 0.40-.85 while the two clamping GDD methods had a 0.27 coefficient

at maximum.
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GDD Coefficient Ridge Lasso Lasso CV Lasso LARS Elastic Net
GDD Max/Min Clamp -0.021 0 0 0 0
GDD Mean Clamp -0.021 0 0 0 0
GDD Max/Min Clamp (Cumulative) 0.224 0.266 0.253 0 0.148
GDD Mean Clamp (Cumulative) 0.224 0.000 0.000 0.048 0.146
GDD (Cumulative) 0.765 0.618 0.847 0.400 0.607
GDD -0.021 0 0 0 0

Table 4: GDD coefficients by method of GDD calculation.

In addition to linear regression methods, I performed principle component analysis (PCA) in

search of a method to perform feature selection. Figure 8, shown below, displays the results. There

is a promising drop off between 3-4 components that suggest 3-4 components would be an ideal

number to select in the final model. However, when I used the PCA output with 3-4 components to

train regression models, I noticed a significant decrease in the performance. For ridge regression,

for example, the R2 value went from 0.38 at 10 components to 0.13 at 3 components. Therefore, I

ultimately decided against using PCA in my yield prediction model.

Figure 8: Explained variance by number of PCA components.
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6.2. Crop Damage Classification

In the crop damage classification portion of my experiment, I found that error did not significantly

decrease over training epochs with a learning rate of 1e−3. Table 5 shows this slow progression in

loss decrease that seems to be nearly stagnant from the beginning. However, I tested the trained

model on a held-out test set and found a 56.1% accuracy across class labels. In order to calculate

the accuracy, I calculated the sum of all correctly predicted individual labels divided by the total

number of labels. Given the lack of improvement over epochs, this is a surprisingly high result.

Epoch Average BCELoss Time (s) Epoch Average BCELoss Time (s)
1 0.693 13.68 14 0.692 14.37
2 0.693 13.6 15 0.692 13.59
3 0.693 13.6 16 0.692 16.52
4 0.693 13.63 17 0.692 14.62
5 0.693 13.75 18 0.691 14.7
6 0.692 13.52 19 0.691 15.71
7 0.692 13.58 20 0.691 15.92
8 0.692 13.56 21 0.691 14.37
9 0.692 13.53 22 0.691 14.49
10 0.692 13.51 23 0.691 14.82
11 0.692 13.61 24 0.691 14.58
12 0.692 13.52 25 0.691 14.95

Table 5: Binary cross entropy (BCE) loss over training epochs.

Table 5 also shows the average speed of each batch in an epoch. The roughly 15 seconds per

epoch is to be expected and would be improved on a machine that allows Pytorch GPU functionality.

7. Summary

From the tomato yield prediction phase of my experiment, I determined that Lasso regression with

cross validation, ridge regression, and elastic net regression generate the most accurate yield models.

Of these three, Lasso with cross validation and elastic net are the most promising due to the sparsity

of their solutions. However, given that the highest R2 score was 0.417, there likely needs to be

further data collection and exploration of new crop health metrics to create a more accurate yield

prediction method. These results, despite their limitations, have still generated interesting feature
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subsets that may be used to reduce farming technology in future. In particular, Table 2 indicates that

cumulative GDD and Chlorophyll index are important while NDVI eliminated in three out of five

models. Furthermore, by testing two alternative clamping methods of GDD I was able to show that

with the current data it is unclear if there is any benefit to clamping GDD methods over traditional

GDD calculations.

With regards to the crop disease classification portion of my experiment, I found that Alexnet had

a prediction accuracy of 56.1% across all classes. I concluded that this was likely due to the uneven

distribution of class labels in the training data. I also found that there was no significant decrease in

BCE loss over epochs during model training.

Given the opportunity to further develop this project, I would consider performing image segmen-

tation before training my model with Alexnet. Furthermore, I would make use of the NIR images

collected and add them as an additional input dimension to the model. This could potentially act as

well as boundary segmentation due to the high contrast of NIR that showcase areas of healthy vs.

unhealthy crops. Additionally, I would reconsider the class labels that I chose for the model. It was

difficult to differentiate between crop disease and crop decay, so often I simply ended up classifying

images as both. Part of the issue in differentiating classes was due to the fact that images were taken

from the high altitude of 400ft. If I were to collect more data, I could consider flying at a much

lower altitude (around 100-200ft.) so that images contained only 1 or 2 classes rather than most of

them.
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A. Appendix

AlexNet(

(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))

(1): ReLU(inplace)

(2): MaxPool2d(kernel_size=3, stride=2, padding=0,

dilation=1, ceil_mode=False)

(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): ReLU(inplace)

(5): MaxPool2d(kernel_size=3, stride=2, padding=0,

dilation=1, ceil_mode=False)

(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(7): ReLU(inplace)

(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(9): ReLU(inplace)

(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace)

(12): MaxPool2d(kernel_size=3, stride=2, padding=0,

dilation=1, ceil_mode=False)

)

(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))

(classifier): Sequential(

(0): Dropout(p=0.5)

(1): Linear(in_features=9216, out_features=4096, bias=True)

(2): ReLU(inplace)

(3): Dropout(p=0.5)

(4): Linear(in_features=4096, out_features=4096, bias=True)

(5): ReLU(inplace)

(6): Linear(in_features=4096, out_features=6, bias=True)

)

)

Figure 9: Pytorch Alexnet architecture, tailored to 6 class labels.
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Figure 10: Correlation matrix of Arable sensor data and yield
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