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Abstract 

Current methods of lie detection are highly inaccurate and dependent on physiological and 

behavioral patterns. Less research has focused on creating a computational model to automate lie 

detection. This paper trains several machine learning models and a sequential neural network using 

solely acoustic features in speech for lie detection. Mel-frequency cepstral coefficients (MFCC), 

energy envelopes, and pitch contours are generated from a balanced dataset of deceptive and non-

deceptive speech recordings collected from a 2-person lying game. The best model presented is a 

majority-voting ensemble learning classifier constructed from a Gradient Boosting Classifier 

(GBC), Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD) trained on 

MFCC and energy features. The maximum accuracy for lie detection achieved using this model is 

55.8%, which outperforms the baseline chance accuracy of 50% and human accuracy of 48%. 

These results achieve an incremental improvement on a task which has monumental applications 

ranging from criminal investigations to national security.   
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1. Introduction 

Detecting lies is a challenging and necessary pursuit, with widespread implications in many high-

stakes scenarios, including police investigations, court decisions, and military circumstances. 

However, despite the significance of lie detection, modern-day methods of detecting deception are 

inaccurate. The polygraph, a common tool for lie detection, is dependent on physiological 

measures, but is easily fooled if its subject can suppress signs of physical discomfort. 

         The vast majority of previous research done in this regard has focused on studying visual 

and behavioral cues as evidence for deception (extensive review cited in [1]). Physiological 

responses, such as skin temperature and blood volume, has also been analyzed in laboratories as 

deceptive cues [2]. Less work has been done to computationally and statistically predict lies. 

Therefore, it is necessary for the development of an automated system to approach this task, in 

hopes that a machine learning model may learn deceptive cues beyond the realm of human 

detection. 

         Various machine learning models and techniques have been researched in this regard. 

Unimodal deception detection using visual features has been implemented previously using 

Support Vector Machines (SVM) and Logistic Regression (LR) models, achieving an accuracy of 

76.2% when using facial landmarks as input vectors [3]. Past research has also been done using 

multilayer perceptron (MLP) trained with 3D video features, textual information, audio features, 

and micro-expressions, achieving an accuracy of 96.14%. However, due to the small size of the 

dataset, the MLP was prone to overfitting and only applicable for a small domain [4]. 

         Aside from the visual cues to lying, multiple studies have been done to detect lies based 

purely on speech information. The Columbia-SRI-Colorado (CSC) Corpus has been widely used 
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as a deceptive speech dataset for training and testing machine learning models. The CSC Corpus 

was collected form 32 different native English speakers undergoing a laboratory interview process, 

where they were financially incentivized to lie to portray themselves to the interviewer as a target 

entrepreneur [5]. As the interviews were being conducted, subjects pressed a pedal below the table 

to indicate whether, at a specific time, they were telling a truth or lie. In total, the CSC corpus 

contains approximately 7 hours of subject speech, all of which were transcribed and aligned with 

audio [5]. 

         A study in 2005 used prosodic features of the CSC corpus (pitch, duration patterns, and 

energy) and lexical features (positive/negative flag words and filled pauses such as ‘um’s or ‘ah’s) 

as inputs to an SVM [5]. Spectral-based Mel cepstral features with energy were extracted to be fed 

into a Gaussian Mixture Model. A combination of the prosodic-lexical SVM system and audio-

based Gaussian Mixture Model were found to increase accuracy metrics to 64.4%, with baseline 

chance accuracy being 60.4% [5]. Similarly, using a lexical-prosodic-acoustic combined feature 

set to train a Ripper rule-induction classifier, researchers were able to reduce the error rate from 

baseline (39.8%) to 33.6% on the CSC dataset [6]. Other approaches to training a model on the 

CSC corpus have been to identify critical segments which are “hot spots” to tell if a speaker is 

telling a truth or lie [7]. After hand-selecting portions of the interviews that involved a direct 

question about the subjects’ test scores, researchers were able to increase accuracy over baseline 

by 23.8% [7]. 
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         Acoustic information is critical for the development of accurate machine learning models, 

and requires the preprocessing of data into different audio representations such as Mel-frequency 

cepstral coefficients (MFCC), pitch contours, and energy. Fundamental frequency contouring, or 

pitch information, can approximate the tonal features even in the presence of noise. However, the 

computation of pitch in audio is error-prone due to the ambiguity of pitch in human voice [8], so 

MFCCs have also been widely-adopted. Based on a frequency domain scale that closely 

approximates the auditory processing of the human ear, MFCCs are widely used for speech 

recognition [9]. Along with energy information, both MFCCs and pitch information are widely 

used as machine learning input features for audio recognition and classification tasks. For a sample 

audio recording of human speech [10], these different audio representations are shown for side-

by-side comparison (Figure 1).	 

Figure 1: Audio representations for a sample audio file in the dataset generated by Loy et al 2018 [10]  
(A) Original audio waveform (B) Mel-frequency cepstral coefficients (C) Energy envelope (D) Pitch contours 
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There has been substantially less research published on using purely acoustic data without 

supplementation of lexical and prosodic features. In practice, preprocessing lexical and prosodic 

features require hand-coding, thus adding extra overhead for anyone looking to use speech 

recordings for lie detection. Additionally, machine learning-oriented deceptive speech research 

has primarily focused on the CSC corpus, but for the purposes of broadening the applicability of 

lie detection models, more research is necessary on other speech datasets. Therefore, the research 

presented in this study is importantly unique in two regards: first, I focus on pure acoustical input 

features as inputs to a classifier, and second, the dataset used here has not been extensively used 

before to construct machine learning models for lie classification.  

         This study seeks to fully automate speech-based lie detection using machine learning 

models trained on acoustic data. The dataset consists of speech data from an interactive lying game, 

and is described in more detail in Section 3.2. MFCC, energy, and pitch information generated 

from speech recordings are fed into several different classifiers for comparison. The best model 

presented is a mode-based ensemble learning classifier which aggregates a Gradient Boosting 

Classifier (GBC), Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD) 

trained on MFCC and energy information.  

 

2. Statement of Purpose 

The purpose of this research is to automate lie detection in speech recordings using solely acoustic 

data.   
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3. Approach & Implementation 

3.1  Tools 

Coding was done in Python in Colab Notebooks. SciKit learn and TensorFlow with Keras API, a 

deep learning library wrapped around deep learning software in Theano, was used to construct the 

neural network. Librosa, a python package for audio analysis, was used for generating mel-

frequency cepstral coefficients and pitch contour information. Numpy, a Python package for 

scientific computing, was used to store and retrieve information due to its support for large, multi-

dimensional matrices. 

         Evaluation metrics, such as confusion matrices and epoch behavior, were visualized and 

plotted with SciKit learn, a machine learning library for python. MFCCs, energy, and pitch 

contours were graphed using Matplotlib, a Python 2D plotting library. 

 

3.2  Dataset 

The dataset used was collected in 2018 as part of an experimental study to test the validity of 

established cues to lying [10]. In the study, researchers created a 2-person, interactive lying game 

Figure 2: Displays shown in 2-person interactive lying game, taken from paper published by Loy et al, 2018 [10]. 
(Left) Guesser’s display. Guesser must choose if the coins are behind comb with hair or comb without hair.  
(Right) Speaker’s display, showing the position of the coins. Speaker then decides whether to lie and say the 
treasure’s behind the comb with hair or comb without hair. 
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where the two participants were seated in front of each other. They were shown two different 

displays (Figure 2), where the speaker was shown a pile of coins behind one of two objects. The 

participant with role of speaker was financially incentivized to make their opponent, the guesser, 

incorrectly select the position of a “treasure.” [10] All interactions were recorded and marked a 

truth or lie. For instance, in a sample recording, the speaker says “the treasure’s behind the big 

crocodile with its mouth shut” and this recording is labeled as truth [10]. The dataset which was 

provided for this research initially had 932 total recordings for 24 subjects, which each recording 

averaging around 8 seconds each. 

         Initially, the dataset was skewed, with 498 truth recordings and 434 lie recordings. Under-

sampling of the majority class was used prevent class imbalance from interfering with model 

training, and to standardize evaluation metrics to a baseline of 50%. Duplicate recordings were 

removed, and 61 truth samples were chosen at random to be omitted from the classification set. 

After cleaning and balancing the dataset, 830 total recordings were left, with 415 truths and 415 

lies. 

  

3.3 Classification 

3.3.1 Feature Extraction 

Three different features were extracted from each audio file in the dataset for use in classification: 

MFCC, energy, and pitch contours (examples of these audio representations for a sample recording 

is shown in Figure 1). 

a.     MFCCs were generated using Librosa (librosa.feature.mfcc), with 20 MFCCs generated per 

audio file, each MFCC padded with zeros to a fixed length of 1000. 
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b.  Energy envelopes were calculated as the sum of the square of the magnitude of the speech 

signals (Equation 1). The frame length was 512, and 512 samples were skipped between 

successive frames. All energy signals were padded with zeros to a fixed length of 500.  

c.     Pitch contours were generated with Librosa (librosa.core.piptrak), which provides 

pitch tracking using the sinusoidal peak interpretation. The length of FFT window was 

set at 512. Each pitch contour was padded with zeros in the second dimension to length 2000 to 

standardize the size of inputs fed into the classifier. 

  

3.3.2  Models 

After extracting features from the dataset, various models were trained and tested on either 

MFCCs, energy, or pitch. The models were implemented using scikit-learn’s library for logistic 

regression (LR), decision tree classifier (DTC), random forest (RF), gradient boosting classifier 

(GBC), linear kernel support vector machine (SVM), and stochastic gradient descent classifier 

(SGD). After training all models on either MFCC, energy, or pitch, evaluation metrics were taken 

(described below) and used for comparison. 

 

3.3.2.1 Sequential Model 

Aside from simpler models provided in scikit-learn, sequential models such as the recurrent neural 

network (RNN) have been widely adopted for sequential speech recognition and natural language 

processing tasks. In particular, the long short-term memory (LSTM) is an RNN architecture has 

been shown to allow state-of-the-art performance in speech recognition due to its ability to 

remember long-term patterns better than a simple RNN [11]. 

 (1) 
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In this research, a LSTM-based sequential model was implemented using Keras API for 

sequential layering. Two LSTM layers are used, the first with 16 LSTM units, and the second with 

8 LSTM units. Due to the small size of the dataset, the models were prone to overfitting, which is 

a phenomenon where the model starts to learn the nuances in the training set rather than general 

features. To prevent this, dropout of 5% was added at each layer and batch normalization was 

added in between the layers. Finally, the LSTM outputs were flattened and fed into a fully-

connected layer. The model was compiled with a binary cross-entropy loss function to calculate 

final probabilities of the original input being in each class. The model here uses the softmax loss 

function (Equation 2), which outputs probabilities for each class that sum to 1 and selects the 

highest probability as the selection of the predicted class. The optimizer used was the Adam 

optimization algorithm. The learning rate was set as 0.001 with a decay of 0. The final output of 

all classifiers was a binary determination of whether a speech recording is a truth or lie.  

 

3.3.2.2 Ensemble Learning 

Ensemble learning techniques have been used to improve the results of weaker machine learning 

classifiers by aggregating their individual decisions using an ensemble algorithm. Ensembling 

techniques include majority voting, in which the mode of the classifiers’ outputs is the ultimate 

output, bagging, boosting, and weighted average (see [12] for in-depth review). In order to increase 

the accuracy and F1 scores of the models in this research, majority voting ensemble learning was 

utilized for a combination of the best-performing classifiers trained on either MFCCs, energy, or 

pitch contours.  

(2) 
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 Several different combinations of ensembling were tried and tested in this paper. 

Ensembling was done both inter- and intra- feature. For each of the three types of audio features 

(MFCC, pitch, energy), ensembling was done between the other seven models tested on that 

specific feature. For instance, one intra-feature ensembling classifier was constructed from the 

outputs of LR, DTC, RF, GBC, SVM, and SGD models trained and tested on MFCC data only. 

These intra-feature ensembling classifiers were compared with inter-feature ensembling done 

between a combination of the strongest models trained on MFCC, pitch, or energy. The two inter-

feature ensembles were 1) MFCC-GBC, MFCC-SVM, energy-GBC, energy-SVM, energy-SGD, 

pitch-RF, and 2) MFCC-GBC, MFCC-SVM, energy-GBC, energy-SVM, and energy-SGD. 

 

3.3.3  Training 

Input data was split into 70% training and 30% testing. Among the training set, 20% was set as 

validation set for each of the 15 epochs. Batch size was set at 20. During each epoch, each batch 

is sent to the network and then the validation set is tested on the network to find validation accuracy 

for that epoch. 

  

3.3.4   Evaluation Metrics 

Because the dataset was initially unbalanced, F1 scores were generated in initial model testing. F1 

scores were later also generated on subsequent models trained on a balanced dataset, though since 

the classes were balanced, accuracy became a better measure for model performance. F1 score 

considers both accuracy and precision (Equation 3). Accuracy is the percentage of cases the model 

correctly classified over the total population (Equation 4). Aside from F1 scores and accuracy, 
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confusion matrices, ROC-AUC plots and scores, and model loss and accuracy plots were generated 

for LSTM classifier outputs. 

 There were several different metrics that could be successfully used as baselines to evaluate 

model performance in this research. One such baseline was the percent of cases that would be 

correctly identified if only truth was guessed for the entire dataset. This baseline, based solely on 

chance, was 50% for both accuracy and F1 for the balanced dataset. Another metric of comparison 

was the success of humans in the initial laboratory experiment from which this dataset was 

collected. The truth-lie discrimination accuracy for the guessers in the interactive lying game was 

48%, so that was set as a “real-life” standard by which to judge the machine learning model 

because both received the same auditory information [10].  

 

4.   Results and Evaluation  

4.1 Models trained on only MFCC, Pitch, or Energy 

Models were first trained on either MFCC, pitch, or energy individually, without any combination 

of the features. In total, there were 8 different models for each MFCC, pitch, and energy.  In order 

to better visualize the values, bar graphs of are created of the evaluation metrics for each of the 

three features and will be further described below (Figure 3). All raw values can be seen directly 

in Table 1. Metrics for pitch-trained gradient boosting classifiers are not shown because there was 

not enough RAM to run the GBC training using pitch as input features.  

(4) 

(3) 
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Feature Model Accuracy F1 Score 

MFCC 

LR 0.514 0.502 

DTC 0.502 0.496 

RF 0.534 0.491 

GBC 0.518 0.524 

SVM 0.518 0.516 

SGD 0.482 0.303 

LSTM 0.546 0.580 

Ensemble 0.546 0.539 

Pitch 

LR 0.511 0.397 

DTC 0.504 0.467 

RF 0.539 0.370 

GBC - - 

SVM 0.507 0.395 

SGD 0.496 0.468 

LSTM 0.518 0.388 

Ensemble 0.511 0.422 

Energy 

LR 0.434 0.436 

DTC 0.498 0.473 

RF 0.494 0.452 

GBC 0.514 0.498 

SVM 0.502 0.541 

SGD 0.502 0.520 

LSTM 0.470 0.496 

Ensemble 0.53 0.624 

MFCC, Energy Ensemble 0.558 0.574 

MFCC, Pitch, 
Energy 

Ensemble 0.534 0.525 

  

 

Table 1: Evaluation metrics for all models. Highest accuracy and 
F1 score are highlighted in yellow. 
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The highest-performing model for MFCC was the LSTM-based sequential model, with an 

accuracy of 54.6% and F1 score of 0.580, which was greater than even the ensemble classifier 

whose F1 score was 0.539. The worst model trained on MFCCs was the stochastic gradient 

descent, which had the lowest accuracy and F1 score. Ensembling for MFCC did not increase 

model performance over the LSTM and instead had a lower F1 score than the LSTM. 

 Within the models for pitch, the highest-performing model in terms of accuracy was the 

random forest classifier, at 53.9%. The worst model for pitch was again the stochastic gradient 

descent classifier, with an accuracy of 49.6% and F1 score of 0.468. None of the F1 scores in the 

Figure 3: Accuracy and F1 scores for MFCCs (A), pitch* (B), and energy (C) trained models.  
Abbreviations for classifiers are as follows: LR = logistic regression; DTC = decision tree classifier; RF = 
random forest; GBC = gradient boosting classifier; SVM = linear kernel support vector machine; SGD = 
stochastic gradient descent classifier; Ensemble = majority-voting based ensemble classifier of all the other 
7 models trained on either MFCC, pitch, or energy. 
*GBC metrics are missing from pitch due to computational limitations (too little RAM). 
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pitch-trained models are an improvement over the baseline of 0.5. Pitch-trained models were thus 

the worst-performing models overall, compared to MFCC and energy. 

The ensemble classifier for energy had the highest F1 score across the board, at 0.624, even 

higher than the inter-feature ensemble classifiers. For both MFCC and energy, ensembling the 

seven classifiers was an overall improvement over the other models. However, this was not the 

case for pitch, in which the ensemble was the runner-up classifier for accuracy. 

 

4.1.1    LSTM Results 

Because of the dearth of research on sequential models for use in speech-based lie detection, this 

paper will expand on results obtained from training the LSTM-based sequential model. It was 

hypothesized that, due to the LSTM’s ability to learn and remember long-term patterns, it may be 

able to pick up on nuanced features in long inputs and correlate those to speech deception.  

Surprisingly, the LSTM did not outperform the other models and was, in general, worse 

than any of the ensembling classifiers, with the exception of the MFCC-trained LSTM. This is 

most likely due to overfitting of the model, seen from the gap between the training and testing 

accuracies. For MFCC, the sequential model had a testing accuracy of 54.6% and training accuracy 

of 75.4%. For energy, the sequential model had a testing accuracy of 47.0% and training accuracy 

of 76.9%. For pitch, the gap was smaller with a testing accuracy of 51.8% and training accuracy 

of 60.1% The substantial decrease in accuracy for the testing set is a strong indicator that the model 

is being fitted to the specific nuances of the training set, rather than learning the overall features 

as they pertain to deceptive speech. However, due to the smaller size of the dataset, with only 830 
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files, training a multi-layered sequential model is bound to be prone to overfitting. More data is 

needed for a successful sequential model.  

The MFCC-trained LSTM had an AUC-ROC score of 0.59, which is higher than the 

baseline AUC-ROC score of 0.5. With an accuracy of 54.6%, it was also the most accurate model, 

both across the other LSTMs and across the other MFCC-trained models. Pitch-trained LSTMs 

also had an AUC-ROC score above baseline (0.538). The energy-trained LSTM was worst-

performing and had AUC-ROC score below the baseline, at 0.493. These results indicate that 

overall, the MFCC-trained LSTM delivers the most promising results for further experimentation 

with larger datasets (Table 2). 

Feature Accuracy AUC 
MFCC 0.546 0.59 
Pitch 0.518 0.538 

Energy 0.470 0.493 
Baseline 0.5 0.5 

  

4.2    Inter-feature Ensemble Learning: Combining MFCC, Pitch, Energy 

Further improvements to machine learning models are made through ensemble learning, which 

allows mistakes from an individual model to be buffered through a majority-voting algorithm. The 

output with the most “votes” from the outputs of each classifier in the ensemble is deemed the 

ultimate output. The ensemble results for intra-feature ensembling were described in Section 4.1.  

 Inter-feature ensembling was constructed with various combinations of classifiers. One 

ensemble was a combination of the best classifiers among each of the features. This comprised of 

the gradient boosting classifier for MFCC and energy, support vector machines for MFCC and 

Table 2: Evaluation metrics for LSTM. 
AUC = area under ROC curve. 
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energy, the stochastic gradient descent classifier for energy, and the random forest classifier for 

pitch. This ensemble had an accuracy of 53.4% and F1 score of 52.5%. Pitch-trained models were 

overall the worst performing models, so only one model for pitch was selected.  

The best-performing ensemble was created from the same combination of classifiers just 

described, but without the pitch-trained random forest classifier. This was not only the best-

performing ensemble, but the best model out of all the models presented here in this study (Figure 

4). The accuracy for this ensemble was 55.8% and F1 score was 0.57. The ensemble outperformed 

all models that had been individually trained on either MFCC, pitch, and energy (Figure 4).  

Figure 4: Evaluation metrics for the best-performing classifier, an ensemble-learning classifier based on 
MFCC and pitch. 
(A) Confusion matrix for the ensemble classifier 
(B) Bar graph showing the F1 score of the ensemble classifier compared with the best F1 scores among models 
trained individually on either MFCC, pitch, or energy 
(C) Bar graph showing the accuracy of the ensemble classifier compared with the best accuracy among models 
trained individually on either MFCC, pitch, or energy. 
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5.  Discussion 

Previous research done with the same dataset used in this research reported a 48% truth-lie 

discrimination accuracy for human subjects undergoing the interactive lying game. The other 

baseline used in this research was the chance accuracy, which was 50% due to the fact that the 

dataset was balanced evenly between truth and lie recordings for purposes of model training. With 

a 55.8% testing accuracy, the highest-performing model presented in this study improves upon 

both the chance and human subject baseline accuracies (Table 3). An LSTM-based sequential 

model also delivered promising results, at a 54.6% accuracy when using MFCC as input features.  

 Accuracy (%) 

Chance 50 

Human subjects 
(Loy, 2018) 48 

Current study 55.8 
 

It is important to note that the human guessers not only had auditory information but also 

full visual, prosodic, and lexical information of the lying subject. Even with a full range of audio-

prosodic-visual cues that could help them interpret if the speaker’s deception, the human guessers 

could not outperform a machine learning model trained with only acoustic information.  

 However, an accuracy of 55.8%, though higher than baseline, is still only a modest 

improvement. This may be explained by several limitations of this research. First is the general 

lack of data which limits the accuracy of neural network models due to the tendency for models 

trained on small datasets to overfit. In order to balance the dataset 61 recordings labeled “truth” 

Table 3: Current study vs baseline accuracies 
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were discarded randomly, so the dataset was even smaller than what was already a small dataset 

of 932 files. Second, in listening to the truths and lies in the dataset itself, it is hard to discern 

noticeable fluctuations in speech characteristics from lie to truth. The game itself has more 

complex workings that just telling a lie or truth in isolation. Using psychological tactics such as 

reverse psychology, the speakers may choose to purposefully insert filled pauses or manipulate the 

tone of their voice to deceive the guesser into thinking that a lie is being told.  

Training the model with male and female data together also introduced unwanted 

variability in pitch within a single class, due to the fact that male and female voices have intrinsic 

differences in pitch. This was perhaps also the reason why pitch inputs to the models were 

generally worse-performing, especially in F1 scoring, than MFCC or energy-trained models, 

which were more robust to gender differences. For future machine learning research, this 

observation should be taken into account if using a dataset consisting of male and female speakers. 

 The fact that the ensemble learning classifier arrived at an accuracy higher than chance 

signifies that it indeed found a pattern in acoustic information that can be correlated to deception. 

Thus, I conducted an experiment to try to interpret the model and understand what exactly it was 

learning. To this end, a list of files that had been scored unanimously by all the best-performing 

classifiers was compiled. Recordings and MFCC data were displayed side by side in Colab, and I 

subjectively examined the list of files to see if I could detect a pattern between the files that the 

models confidently labeled true or false. However, I could detect no such pattern. Recordings that 

sounded similar were labeled truth in one recording and false at another. It would be an interesting 

experiment to recruit more human ears to see if anyone can find a detectable pattern within 

recordings labeled truth and recordings labeled lie.  
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6.   Research Significance 

Past research in lie detection has primarily focused on physiological and behavioral signs as cues 

for deception, but an automated system this task can be better achieved using computational 

models. This research evaluates lies based solely on acoustic information, which, unlike lexical 

and prosodic speech features, does not require extra overhead of hand-coding and aligning 

transcripts to audio. Additionally, the dataset used in this research has not previously been used to 

build both computational models and neural networks. Presented here is a model that is able to 

detect acoustic patterns in speech recordings to detect lies. This research provides an important 

incremental step toward automating lie detection, which is a challenging task that cannot be 

perfected using one specific measure. Lie detection has far-reaching implications in the political 

and security sphere, where accurate lie detection is integral for criminal investigations, evaluating 

government reports, and high-stakes military scenarios. 

  

7.  Future Work 

Because this dataset has not been extensively studied through the lens of machine learning, it 

would be interesting to further develop models, expanding from solely acoustic information to 

encompass visual, prosodic, and lexical information. This would allow us to see if research 

methods done on the CSC corpus may be similarly extended to other types of data. With a 

combination of video, audio, and transcriptional information, it may possible to build a powerful 

machine learning model on this dataset that can more accurately classify truth or lie. 
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 Furthermore, interpreting the model may have important implications in psychological and 

behavioral understandings of cues to deception. If we are able to understand the patterns of the 

model and upon what it bases its classifications, we can apply that to further understand human 

behavior.  

 Lastly, there is little literature surrounding the CSC corpus that makes use of ensemble 

learning to aggregate and strengthen machine learning classifications. Using the ensemble methods 

tested in this research, further research done on the CSC corpus may be conducted to improve 

upon reported prosodic, lexical, and acoustic based models in previous literature.  

 

8.  Conclusions 

This study focused on acoustical features such as MFCC, energy, and pitch contour information 

to build machine learning models to automate lie detection. An LSTM-based sequential model is 

tested and found to produce higher-than-chance accuracy (54.6%) using MFCCs as input features. 

The best-performing model in this research is an ensemble-learning classifier which is constructed 

from a majority voting system, based on outputs from the Gradient Boosting Classifier (GBC), 

Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD) trained on MFCC and 

energy information. Using this classifier, the maximum accuracy achieved is 55.8%, which 

presents an improvement over the baseline chance accuracy of 50% and human accuracy of 48%. 

This has important implications in lie detection automation, which, if perfected, will revolutionize 

criminal investigations, military proceedings, and national security protocols. 
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