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Where Did it Come From,
 

What is it,

What is it Good For



Comp Geom−−Where did it come from?

Personal recollections

Computational Geometry as a research 
discipline started in the early 1970’s in the 
math programming, theory/algorithms and CAD 
communities.

Earliest papers, 

Chand+Kapur −− convex hull by gift wrapping
motivated by math programming

 Graham  −− convex hull by Graham scan
motivated by statistics problem

 DPD + Lipton −− multidimensional searching
motivated by NPcompleteness, 
open problem in Knuth, vol 3.

 Shamos  −− geometric computing
roots in theory, numerical analysis, OR

Shamos + Hoey−− Voronoi diagram
solved open problem in previous paper

Forrest  −− computational geometry
motivated by CAD/CAM work



Comp Geom −− How did it grow?

Separate conferences, journals start in 1985

SCG 1985
DCG
CCCG
CGTA
IJCGA

Various workshops

Santa Cruz
Oberwohlfach
Dagstuhl
Manufacturing + CG, CG Software, ...
now, 10 year retrospective ...

Currently,  500−600 papers per year

Experiments with the computational geometry 
bibliography (version of February 1, 1996). 
ftp.cs.usask.ca:pub/geometry/geombib.tar.Z

(with enormous thanks!!)



The Bibliography −− What goes in?  

Papers relevant to computational geometry, 
which for us means the study of the 
computational complexity of well−defined 
geometric problems.  Thus we are talking 
algorithms, data structures, analysis of time 
and storage, lower and upper bounds, but also 
geometric objects, geometric operations, and 
combinatorial complexity of geometric 
structures.

We interpret relevance in a rather broad 
sense, although we prefer that references 
from cognate areas (such as discrete 
geometry, solid modeling, image processing, 
computer graphics, and robotics) emphasize 
books or survey articles rather than 
individual papers.



The earliest papers

1850       Dirichlet (first Voronoi paper)
1857       Sylvester  quadratic forms
1860       Sylvester
1885       min circle enclosing n points in plane
1888       line arrangements
1907       by Voronoi on quadratic forms
1908       original Voronoi paper
1909       by Voronoi
1911a)     Thiessen "Precipitation Averages for Large Areas"
1911b)     Lennes 

Theorems on the simple finite polygon and polyhedron
1928       Ackermann function
1930       Helly
1932       van Kampen;  Flores  cell complexes 
1934a)     Steinitz and Rademacher −− polyhedra
1934b)     Delaunay −− Delaunay triangulation
1935a)     Erdos and Szekeres, 

"A combinatorial problem in geometry"
1935b)     Alexandroff and Hopf, Topologie
1936a)     Santalo, integral geometry (2)
1936b)     Wagner 
  (any triangulation can be transformed into any other by flips)
1948       Fary (straight line embeddings of graphs)
1951       Tarski, ...
1955       Hadwiger
1957       Prim, MST
1959       Dijkstra, shortest path



1850-1949

1950-1959

1960-1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

0

20
0

40
0

60
0

Pu
bl

ic
at

io
ns

 o
ve

r 
tim

e



What is computational geometry?

Nature of the work

theoretical −− combinatorial insights into the
nature of geometric structures

algorithmic −− new and improved methods of
doing computations geometric

applications −− using the new techniques to
understand, then solve problems of
practice.

Sample areas

Computer Graphics 
Robotics 
GIS
Computer Vision
Information Retrieval
CAD/CAM
Manufacturing
Computational Biology
Medicine
Machine Learning



What is it good for?

Possible answers

1. intellectual sustenance
these are difficult problems whose 
solutions are interesting

2. seed corn
if we understand  these concepts, we will
have fuel with which to solve problems

3. direct solutions to problems
there are real world problems requiring
these techniques for their solution

4. provoker of problems
by solving these problems, we will find
new problems that are interesting

5. creation of tools (meta−solutions)
the tools we develop here are the basis of 
many problem solutions

6. combining many of the above



How to find the answer

1. Prove hard and interesting theorems

2. Develop ideas and then look for a problem
that needs these ideas.

3. Build environments in which it is easier to
prove theorems.

4. Consider a problem from an application and
look for methods that can be used to 
solve it.

5. Implement an algorithm, publicize your code
and ask people how they use it.

6. Build environments in which it is easier to
implement algorithms.



Case Studies

1. qhull −− an implementation of practical 
importance that arose from theoretical 
considerations.

2. sampling problems of computer graphics −−
a problem that arose in practice, admitted a
theoretical solution, led to theoretical
extensions that found practical application
in machine learning.

3. polyhedral hierarchies −− finding an 
application to the progressive refinement 
of meshes many years later.  

Case studies not covered −−

4. Doing empirical studies of algorithms on data
sets of practical import.

5. Algorithm animation and debugging tools.

6. Libraries, programming environments and
a usable software base.



1. qhull

Where it came from?

Brad Barber proposal −− I want to build the 
ideal programming system.

DPD −− here’s an application.
robust geometric computation.

Step 1 −− problem to consider
Convex hull in arbitrary dimension.

Step 2 −− split time between 
proving theorems and 
doing experiments to 
understand the problem

Step 3 −− write paper, publish code

Step 4 −− iterate with referees re paper,
iterate with users re code

add author Hannu Huhdanpaa

Step 5 −− measure impact



A few observations...

People don’t really want the hull,
they want a structure to use.

So, develop an algorithm that generates a 
structure which when queried with 
points returns

INSIDE
OUTSIDE
CANNOT DETERMINE

Avis et al  (posting to compgeom mailing list)
     CH1:  Find all faces of all dimensions of P.
         CH2:  Construct the Hasse diagram of the face lattice of P.
         CH3:  Find all facets of P.
         CH4:  Construct a triangulation of the boundary of P.

Besides roundoff error, input data may not 
be precise.  Points are really balls.

This leads to convex hulls where facets 
have thickness, and where the convex hull
may not be convex.



Modes of operation

Measuring running times

Theoretical
If the following conditions hold, the
algorithms runs in time ....

Worst case vs. average case

What you can prove vs. what you observe

Practical
Benchmarking against the best known 
algorithms on datasets from practice.

Times observed by users after the code
is released.



Modes of operation

Complexity of doing the work

Proving theorems is a difficult task; we all
understand this.

Implementing code that people (who are in 
vastly different communities) will want to use
is a more difficult task; we don’t understand this 
process as well.

Reward system

Papers are judged to be correct and important 
by referees who are experts in the field.  The 
key thing is that the proofs are correct and the 
results are valuable.

Programs are judged to be correct when bugs 
stop being reported.  Their importance is 
measured empirically by ftp counts, breadth of 
application, ...



Demographics of convex hull programs

Who uses them?

[Qhull] has been used for 
support structures in layered manufacturing 
\cite{all−dut95},
classification of molecules by their biological
activity, 
vibration control, 
geographic information systems, 
neighbors of the origin in the \R{8} lattice, 
stress analysis,  
stability of robot grasps \cite{bel−ras95}, 
spectrometry \cite{boar93},
constrained control allocation \cite{bor−dur95},
robot navigation \cite{cuc−net95},
micromagnetic modeling \cite{por−gla96},
and invariant sets of delta−sigma modulators 
\cite{zha−goo94}.



Demographics of convex hull programs

How many people use them? (Data as of 1/96)

ftp counts for copies of qhull
    3071    qhull.tar.Z
    655     qhull.sit.hqx           (mac version)
    443     qhull−2.01.tar.Z
    424     qhull−1.0.tar.Z
    296     qhull−2.1.tar.Z
    184     qhull−2.02.tar.Z
    118     qhull−2.0.tar.Z
    87      qhull−2.2.tar.Z
    19      qhull−2.1b.tar.Z
    1       qhull.tar.gz
    −−−−
    5298    total

(from Steve Fortune)

I counted about 3000 distinct requests for 
my voronoi code over the life of netlib.   For 
1995 only, Ken’s [Clarkson] convex hull code 
was requested 924 times.  My guess is 
anybody who gets one of the programs gets 
them all.



Lessons learned

Convex Hull/Voronoi/Delaunay code is most
desired by those in other areas.

Next highest is ~ 1000 ftp hits.
but still not as popular as other tools

geomview, mpeg_play ~ 30K ftp hits

Software that’s out there will be applied,
often to problems we don’t know and in 
directions we’d have never guessed.

Writing good code is significantly more time 
consuming than writing a good paper.

the rewards are higher
broad application possible, reaches a much 
wider community.

the rewards are lower
within the community we give little 
recognition to experimental work.

 



2. Sampling Problem

Initial Motivation
Mitchell −− Need for good sampling sets

Good ==> the fraction of sample points in a 
region approximates the area of the region.

Measure of goodness −− maximum (L∞)  or 
weighted average (L2).

Discrepancy is the right measure

D(X) = max {| Area(R) − |(R   X)|/|X| |}

line cuts      (anchored) box cuts



The Underlying data structures question 

Our data are real numbers in [0,1].

Our operations are:

INSERT(x): Add x to the data set,
increase the number of data by 1.

After each insertion assume that the data are
sorted as

x1, x2, ..., xn
QUERY: Find the value of i such that

xi − i/n is maximized or minimized.

Difficulty:
xi − i/n  > xi+1 − (i+1)/n

But,
xi − i/(n+1)  < xi+1 − (i+1)/(n+1)

Enter David Eppstein...



Discrepancy of Arbitrary Edges

The typical graphics situation has an edge
clipped within a pixel.  

We want to be sure to sample
the correct proportion of 
samples in each part of the 
pixel.

S is a point set S
the Edge Discrepancy of S is 

max (Area(R) − |R  S|/|s|) 
the max is over all possible shaded regions R.

R



Computing the Edge Discrepancy

1. Observe that there are a limited # of 
possible ‘‘shaded regions’’

2. Notice that we can move to dual space
and walk the line arrangement of
the points in S.

3. Analyze this situation in primal space.

There are n2  edges that matter
plus a few boundary effects.

4. Implementation is more easily done by
an O(n2 log n) algorithm which is
faster than the naive O(n3) algorithm.

5. There are extensions to higher dimensions...



Points       Fast               Slow

100     1.7           3.2
200     6.8          23.9
400     28.7        178.7
800     120.2      1399.5
1600    513.2     11272.3
3200        2258.9   89351.3
6400        9554.8  738041.4

Running Times...

Who cares?

The discrepancy gives us a sense of how well
we are approximating an integral via
a Monte Carlo procedure.

Lower discrepancy  ==> faster convergence
==> fewer samples ==> faster rendering



Process         16 points       256 points

Zaremba         0.184           0.0345
jittered         0.183           0.0296
Dart−Throwing  0.180           0.0339
Poisson          0.299          0.0791
On−Line MC      0.169           0.0281
Off−Line MC     0.106           0.0215

2−Dimensional arbitrary−edge L∞ discrepancies.
   (average over 100 trials for random ones)
    (on line add a point at a time) 

      (off line find n points and move to improve)

N       Poisson Jittered Uniform Annealed
4       0.46      0.41     0.25     0.25
9       0.38      0.25     0.17      0.14
16      0.35      0.21      0.12      0.094
25      0.15      0.12      0.10      0.069
36      0.23      0.11      0.083    0.055
49      0.19      0.09     0.071     0.045
64      0.12      0.07     0.062     0.038

Arbitrary−edge discrepancies for some patterns





One last discrepancy model

Generalize the rooted rectangle to arbitrary
axis−oriented rectangles.

Other extension, consider bichromatic points

Discrepancy = 5−1 = 4

Applicable to problems of concept learning.

e.g. Appendicitis data, other data sets in 
the machine learning community



Lessons learned

Practice and theory can cross−fertilize.

Doing ‘‘theoretical generalizations’’ may lead
to ‘‘practical applications’’ in some cases.

An asymptotically faster algorithm may run 
faster in practice 

Sample data sets are useful in experimental work

This work may lead to publication in unexpected 
places

DPD + Eppstein −−> SCG
DPD + Mitchell   −−> GI
DPD + Eppstein + Mitchell  −−> TOGS

DPD + Gunopolous −−> COLT 
...  + Maass −−> JCSS



3. Hierarchical searching

Pick an independent
set of vertices.

Remove them

Retriangulate

Kirkpatrick 1979



Key observations

1. You always make progress
   i.e. remove a constant fraction of vertices

2. Coarse −−> fine follows from fine −−> coarse

3. Planar subdivision searching becomes easy

4. Extends to polyhedral intersection problems
can detect intersection faster than
you can read the input (DPD+Kirkpatrick)



Questions

1. Is it practical?
Asymptotic provable constants are large,
In practice, it works fair

2. Can it be implemented?
600 lines of theoretician’s C
of which 150 are debugging
Builds on pre−existing solid modeling tools

3. What can we learn from an implementation?
real behavior
experiments

e.g. does the shape stay symmetric
can we bias removal
what are average shapes
how robust is it

4. Does it have further applications?
decimation
sub−sampling (e.g. for wavelets)
 



Application

Large meshes need to be presented at 
various levels of simplification.

This simplification is used for progressive
rendering of a shape.  (simple example GIF−89)

This simplification is also used for solving 
PDE’s (simple example multigrid techniques)

Modeling the simplification can be done by 
wavelet techniques.  Even points remain, odd 
points are removed.  Reconstruction is done 
by adding back in odd points.  Empty regions 
are filled from information stored with the 
even points and then updated by the odd 
points.

Implementation done
Application in process
‘‘pretty pictures beginning to result’’
DPD + Schroeder + Sweldens 



Health Report

Computational Geometry
Conferences and Journals continue to thrive
Field has leveled off but appears stable

Applied Computational Geometry
There’s a lot out there waiting to blossom
Conference program is very good

rejected good rather than accepting bad

Experimental Computational Geometry
Field needs some encouragement
Reward system needs to be changed
Tools for software sharing must be improved
Sample data sets are needed, ...



Conclusion

Computational Geometry as we know won’t be 
around in 10 years (and shouldn’t be).

A prescription for the future
Keep the good theory happening
Encourage applications
Reward experimental work
Make experimental work easier to do
Keep the discussion going

task force report, 
workshops at different directions,
compgeom mailing list,
dialogues with other fields


